
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 13, No. 6, pp. 1441-1484

DOI: 10.4208/aamm.OA-2020-0170
December 2021

WENO Interpolation-Based and Upwind-Biased
Free-Stream Preserving Nonlinear Schemes

Qin Li1,2,3,∗, Dong Sun1 and Fengyuan Xu3

1 State Key Laboratory of Aerodynamics, China Aerodynamics Research and
Development Center, Mianyang, Sichuan 621000, China
2 Key Laboratory of Aerodynamics Noise Control, China Aerodynamics Research
and Development Center, Mianyang, Sichuan 621000, China
3 School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361102, China

Received 2 June 2020; Accepted (in revised version) 6 November 2020

Abstract. For flow simulations with complex geometries and structured grids, it is
preferred for high-order difference schemes to achieve high accuracy. In order to
achieve this goal, the satisfaction of free-stream preservation is necessary to reduce
the numerical error in the numerical evaluation of grid metrics. For the linear upwind
schemes with flux splitting the free-stream preserving property has been achieved in
the early study [Q. Li et al., Commun. Comput. Phys., 22 (2017), pp. 64–94]. In
the current paper, new series of nonlinear upwind-biased schemes through WENO
interpolation will be proposed. In the new nonlinear schemes, the shock-capturing
capability on distorted grids is achieved, which is unavailable for the aforementioned
linear upwind schemes. By the inclusion of fluxes on the midpoints, the nonlinear-
ity in the scheme is obtained through WENO interpolations, and the upwind-biased
construction is acquired by choosing relevant grid stencils. New third- and fifth-order
nonlinear schemes are developed and tested. Discussions are made among proposed
schemes, alternative formulations of WENO and hybrid WCNS, in which a general
formulation of center scheme with midpoint and nodes employed is obtained as a
byproduct. Through the numerical tests, the proposed schemes can achieve the de-
signed orders of accuracy and free-stream preservation property. In 1-D Sod and Shu-
Osher problems, the results are consistent with the theoretical predictions. In 2-D
cases, the vortex preservation, supersonic inviscid flow around cylinder at M∞ = 4,
Riemann problem, and shock-vortex interaction problems have been tested. More
specifically, two types of grids are employed, i.e., the uniform/smooth grids and the
randomized/locally-randomized grids. All schemes can get satisfactory results in uni-
form/smooth grids. On the randomized grids, most schemes have accomplished com-
putations with reasonable accuracy, except the failure of one third-order scheme in Rie-
mann problem and shock-vortex interaction. Overall, the proposed nonlinear schemes
have the capability to solve flow problems on badly deformed grids, and the schemes
can be used in the engineering applications.
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1 Introduction

On developing high-order difference schemes, large advances have been achieved since
the presence of WENO scheme series [1–13]. Besides WENO schemes, high-order com-
pact schemes [14] were proposed as well with well-designed dispersion relations. De-
spite of abundant researches and outcomes, it is interesting to observe that high-order
difference schemes are seldom applied for engineering complexities such as airplanes. In
such situations, multi-blocked grids are inevitably used, the variation of grid topology
usually happens, and meshes with locally bad quality might be encountered. For ex-
ample, distorted grids would exist either inside blocks or on boundaries between them.
Regarding the former one, Visbal and Gaitonde [15] showed that large errors may arise in
computations, and similar conclusions were made in the subsequent studies [16, 24]. Re-
garding the latter one, it was reported [18] that spurious oscillations would occur around
the grid conjunctions. It is known that one of the causes would be the mismatches be-
tween evaluating grid metrics and solving conservative governing equations in curvilin-
ear coordinate system.

In deriving conservative governing equations, theoretically zero-valued identities,
namely metric identities, are introduced in partial differential operations [19]. However,
the identities might not be null in practical computations [20]. In order to minimize such
metric-caused errors, the following understandings are reached: (1) The grid metrics are
suggested to adopt the conservative form rather than the expanded one [21, 22]; (2) The
consistent use of difference scheme in each coordinate direction should be applied to dis-
cretize the spatial derivatives in grid metrics and governing equations [15, 23]. The key
issue involved is the commutativity of difference operators [23], which was proved in [23]
first and [24] later. With the help of commutativity, for an initially uniform flow, the flow
will remain constant all the time, i.e., the satisfaction of the so-called free-stream preser-
vation (FSP) property. Although FSP may be achieved by either linear central or upwind
schemes, nonlinear mechanisms should become necessary to ensure numerical stability
for the flow with possible discontinuity. In this regard, two methodologies have been em-
ployed for linear central schemes, i.e., filtering [15] and WENO interpolations [17,18]. For
linear upwind schemes, however, the consistent use of certain scheme might invoke nu-
merical instability because flow characteristics may contain both upwind and downwind
components. Moreover, the flux is usually split into two parts with upwind discretiza-
tion, the conventional implementation may make the schemes not to meet the require-
ment of the FSP property.
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In [25], Nonomura et al. developed the fifth- and sixth-order WENO schemes and

re-arranged the original f̂ j+1/2 in ∂ê
∂ξ =

f̂ j+1/2− f̂ j−1/2
hs

into a central consistent part plus two
nonlinear dissipations in the splitting fluxes. In dissipative parts, a flux splitting-like op-
eration was proposed to replace the standard splitting with a frozen treatment of grid
metric. Combining the conservative metric derivation by Thomas et al. [21,22], the mod-
ified WENO schemes were shown to achieve FSP [25]. In [26], a detailed investigation
was carried out in order to alleviate errors in metric evaluation for arbitrary linear up-
wind schemes with flux splitting. In the reference, the central scheme decomposition
(CSD) was presented for metric evaluations, where the requirement for flux splitting to
cancel out metric-evoked errors was derived. At the same time, a requirement for direc-
tionally consistent interpolation was proposed once the grid metrics on cell midpoints
were involved in the schemes. Although the interpretation of an upwind scheme as a
central scheme with additional dissipation part was used in above studies, the technique
was used before. For example, the approach had been referred in TVD schemes [27] and
high-order schemes [28–31]. In [26], some upwind linear schemes were proposed in the
computations. However, they can only be applied in cases without shock waves. It is
natural to further develop nonlinear upwind schemes with FSP in a general situation.

Based on the analyses in [26] and the introduction of nonlinearity through WENO
interpolation [32] in [17, 18], new series of third-, fifth- and seventh-order WENO
interpolation-based and upwind-biased schemes are proposed in this study, which are
abbreviated as WENOIU for convenience. The schemes will be shown to achieve both
shock capturing and FSP. The term ”upwind-biased” means that with respect to the sym-
metric point (e.g., xj for schemes of ( ∂

∂x )j or xj+1/2 for aforementioned f̂ j+1/2), the number
of upwind nodes and midpoints is one more than the number of the downwind ones.
In [33], such form of scheme is shown to introduce less dissipation. The arrangement of
the paper is as follows. Relevant studies are first reviewed in Section 2, then the construc-
tion of the third-, fifth-order WENOIU schemes are described there as well; in Section 3,
the characteristics of the schemes are analyzed; in Section 4, the convergence property
and FSP are discussed; in Section 5, validating examples are tested; at last, conclusions
and discussions are given in Section 6.

2 Nonlinear upwind-biased free-stream preserving scheme
based on WENO interpolation

2.1 Governing equations and coordinate transformation

3-D Euler equations are chosen for illustration and also for later validating computations.
The equation in Cartesian coordinate system is

∂Q
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

=0, (2.1)
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where Q=(ρ,ρu,ρv,ρw,e)T, e= p/(γ−1)+1/2×ρ
(
u2+v2+w2), and {E,F,G} are invis-

cid flux vectors. In practical computations, Eq. (2.1) is usually transformed and solved
in curvilinear coordinate system (ξ,η,ζ). The conversion from (x,y,z) to (ξ,η,γ) is de-
rived through the chain rule such as: ∂/∂x = ξx (∂/∂ξ)+ηx (∂/∂η)+ζx (∂/∂ζ), and the
transformed equation is

∂Q̂
∂t

+
∂Ê
∂ξ

+
∂F̂
∂η

+
∂Ĝ
∂ζ

=0, (2.2)

where

Q̂= J−1Q with J−1=

∣∣∣∣ ∂(x,y,z)
∂(ξ,η,ζ)

∣∣∣∣,
Ê=(ξ̂xE+ ξ̂yF+ ξ̂zG) with ξ̂x = J−1ξx,

and etc. In the derivation, Leibniz formula is freely used and the theoretically zero-valued
term (Ê· Ix+ F̂ · Iy+Ĝ · Iz) has been dropped. In the dropped term, the so-called metric
identity Ixi is defined as Ixi =

(
ξ̂xi

)
ξ
+(η̂xi)η+

(
ζ̂xi

)
ζ
, where xi denotes x, y or z.

2.2 Reviews on difference schemes to achieve free-stream preservation

(1) Causes of violation of free-stream preservation.
From Eq. (2.2), it is commonplace that when the uniform flow is imposed as the ini-

tial condition in a field without bodies (abbreviated as free-stream condition below), Q̂
would keep constant theoretically. However, Q̂ might change in practical computations,
and the main causes lie in the use of inappropriate formula of grid metric [21,22] and in-
consistent implementation of partial differential operators in Eq. (2.2) [15,23]. Regarding
the latter, although derivatives such as ∂

∂ξ in ∂Ê
∂ξ and η̂xi of ∂F̂

∂η are mathematically indis-
tinguishable, their concrete implementations might be numerically different. Supposing
the following conservative forms of grid metric are employed and free-stream condition
are further casted, the spatial derivatives in Eq. (2.2) will be simplified and turned into
mixed partial derivatives such as ∂2xi

∂ξ∂η and ∂2xi
∂η∂ξ . As just mentioned, the derivatives might

be numerically different, or the so-called commutativity property would be lost. The loss
of commutativity will yield non-zero values of Ixi , which results in the violation of FSP
at last. It is proven in [23,24] that when subsequent ”conservative” formulae of grid met-
rics would be chosen and spatial derivatives to discretize metrics and fluxes in Eq. (2.2)
would keep consistent in each coordinate direction, FSP could be achieved when solving
Eq. (2.2). Concrete implementations will be reviewed next.

(2) Conservative formulae of grid metrics.
References [23, 24] have shown that under free-stream condition, the following two

forms of grid metric would make spatial derivatives in Eq. (2.2) degenerate into terms
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like ( ∂2xi
∂ξ∂η−

∂2xi
∂η∂ξ ), which would be cancelled out if the commutativity holds. From [21],

the conservative forms of grid metrics are:

ξ̂x =
(
yη ·z

)
ζ
−
(
yζ ·z

)
η

, ξ̂y =
(
zη ·x

)
ζ
−
(
zζ ·x

)
η

, ξ̂z =
(
xη ·y

)
ζ
−
(
xζ ·y

)
η

, (2.3a)

η̂x =
(
yζ ·z

)
ξ
−
(
yξ ·z

)
ζ
, η̂y =

(
zζ ·x

)
ξ
−
(
zξ ·x

)
ζ
, η̂z =

(
xζ ·y

)
ξ
−
(
xξ ·y

)
ζ
, (2.3b)

ζ̂x =
(
yξ ·z

)
η
−
(
yη ·z

)
ξ
, ζ̂y =

(
zξ ·x

)
η
−
(
zη ·x

)
ξ
, ζ̂z =

(
xξ ·y

)
η
−
(
xη ·y

)
ξ
. (2.3c)

Furthermore, the symmetric conservative forms [22] are

ξ̂x =
1
2

[ (
yη ·z

)
ζ
−
(
yζ ·z

)
η

+
(
zζ ·y

)
η
−
(
zη ·y

)
ζ

]
, ξ̂y =

1
2

[ (
zη ·x

)
ζ
−
(
zζ ·x

)
η

+
(
xζ ·z

)
η
−
(
xη ·z

)
ζ

]
, (2.4a)

ξ̂z =
1
2

[ (
xη ·y

)
ζ
−
(
xζ ·y

)
η

+
(
yζ ·x

)
η
−
(
yη ·x

)
ζ

]
, η̂x =

1
2

[ (
yζ ·z

)
ξ
−
(
yξ ·z

)
ζ

+
(
zξ ·y

)
ζ
−
(
zζ ·y

)
ξ

]
, (2.4b)

η̂y =
1
2

[ (
zζ ·x

)
ξ
−
(
zξ ·x

)
ζ

+
(
xξ ·z

)
ζ
−
(
xζ ·z

)
ξ

]
, η̂z =

1
2

[ (
xζ ·y

)
ξ
−
(
xξ ·y

)
ζ

+
(
yξ ·x

)
ζ
−
(
yζ ·x

)
ξ

]
, (2.4c)

ζ̂x =
1
2

[ (
yξ ·z

)
η
−
(
yη ·z

)
ξ

+
(
zη ·y

)
ξ
−
(
zξ ·y

)
η

]
, ζ̂y =

1
2

[ (
zξ ·x

)
η
−
(
zη ·x

)
ξ

+
(
xη ·z

)
ξ
−
(
xξ ·z

)
η

]
, (2.4d)

ζ̂z =
1
2

[ (
xξ ·y

)
η
−
(
xη ·y

)
ξ

+
(
yη ·x

)
ξ
−
(
yξ ·x

)
η

]
. (2.4e)

Although not theoretically being related to metric-caused errors, the evaluations of Jaco-
bian are suggested as [35]

J−1=
1
3

 ξ̂x ·xξ+ ξ̂y ·yξ+ ξ̂z ·zξ

+η̂x ·xh+ η̂y ·yη+ η̂z ·zη

+ζ̂x ·xζ+ ζ̂y ·yζ+ ζ̂z ·zζ

 (2.5)

or

J−1=
1
3


(
ξ̂x ·x

)
ξ
+
(
ξ̂y ·y

)
ξ
+
(
ξ̂z ·z

)
ξ

+(η̂x ·x)η+
(
η̂y ·y

)
η
+(η̂z ·z)η

+
(
ζ̂x ·x

)
ζ
+
(
ζ̂y ·y

)
ζ
+
(
ζ̂z ·z

)
ζ

. (2.6)

Besides, the derivations of grid metrics in J−1 are suggested to use Eq. (2.3) or (2.4).
(3) Achieving free-stream preservation by linear schemes with flux splitting.

As mentioned above, the cancellation such as ∂2xi
∂ξ∂η−

∂2xi
∂η∂ξ requires the commutativity

of operators to be established, which entails the consistent implementation of ∂
∂ξ and

∂
∂η [15, 23]. In Eq. (2.2), the appearance of operator like ∂

∂ξ has two origins: the one
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comes from the flux derivative (e.g., ∂Ê
∂ξ ) and the other comes from the metric evalua-

tion. Regarding the former, there are two basic types of discretization when flux splitting
is considered, i.e., the central and upwind scheme. For central schemes, the presence of
flux splitting will not bring about difficulty to the consistent implementation because the
scheme can keep constant during discretization. Moreover, when midpoints are included
in schemes, WENO interpolation can be applied to derive function values on them. By
this means, the flux splitting can be introduced naturally and necessary dissipations will
be invoked when shock waves are encountered [17, 18]. However, the concrete form of
upwind scheme would vary depending on the windward characteristics of the splitting
flux, and therefore the consistent implementation could not be easily realized.

In [25], a method was proposed by re-arranging the canonical fifth-order WENO
schemes (WENO5) into one consistent central part plus two nonlinear dissipation parts.
In the latter metric linearization is used for flux splitting; besides, the central part is used
for metric evaluation. In [26], investigations are carried out independently as well. It
reads that [26], if a r-th-order linear upwind scheme δ+ for ∂ f at xj is considered where
∂ denotes the differential operator for simplicity and δ denotes its difference approxi-
mation, its downwind counterpart δ− will be defined symmetrically. Hence a central
difference scheme δc,(1) can be derived as(

δc,(1) f
)
=
[(

δ+ f j
)
+
(
δ− f j

)]/
2. (2.7)

From the equation, another central discretization of ∂(2br/2c+2) f naturally comes out
through

δc,(2br/2c+2)=
(

δc,(1) f
)

j
−
(
δ+ f

)
j,

where the number in superscript bracket such as 2br/2c+2 denotes the derivative order.
By way of the above procedure, the following decompositions are straightforward

(
δ+ f j

)
=
(

δc,(1) f
)
−
(

δc,(2br/2c+2) f
)

,(
δ− f j

)
=
(

δc,(1) f
)
+
(

δc,(2br/2c+2) f
)

,
(2.8)

which is referred as central scheme decomposition in [26]. Similar practice has been
observed in previous studies [27–31], and the decomposition of linear counterpart of
WENO5 as two central schemes was also available there.

In [26], the derived δc,(1) is used to discretize derivatives in grid metrics, while the
original δ+ and δ− will be normally used in discretizing flux derivatives as usual. Be-
sides the above manipulations regarding spatial discretization, another requirement re-
garding the flux splitting is proposed in [26], which is necessary for the achievement of
FSP. Considering that the flux splitting with the form as

Ê±=
1
2
(
Ê± Â·Q

)
or Ê±=

1
2
(
Ê± Êre f

)
,
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one sufficient condition is: when the uniform flow condition is imposed, Â and Êre f

should be locally constant at least over the dependent grid stencil of δc,(2br/2c+2). Details
of the analysis can be found in [26], and the form of Â used in this paper is:

Â=α·MAX(Û+c|k̂|),

where α= 1.1∼ 1.2, Û = k̂xu+ k̂yv+ k̂zw and k̂ = (k̂2
x+ k̂2

y+ k̂2
z)

1/2
with k denoting certain

curvilinear coordinate, and where MAX runs over the whole range of the k direction.
Analyses were made and validations were given in [26] to show that above manipula-
tions would make arbitrary linear scheme to achieve FSP with the presence of flux split-
ting.
(4) Requirements for interpolations when cell midpoints are included in difference
schemes.

When cell midpoints are employed in difference schemes, two types of interpola-
tions will be invoked in order to derive unknowns on them. The first type regards the
derivation of function values on midpoints. In this aspect, WENO interpolations can be
applied, e.g., WCNS series schemes [17] are established in this way. In the interpola-
tions, the following types of variable are observed to use, i.e., the primitive, conservative,
characteristic variables [36] and the flux [37]. For WCNS, the first three types have been
tested to achieve FSP [17, 18] on distorted grids such as randomized ones. For the last
variable type, successful computations have been made on typical 2-D problems on uni-
form Cartesian grids; however, FSP may not be guaranteed on distorted grids because
grid metrics are included in flux during interpolation. Hence, in order to achieve FSP, the
first three types of variables are suggested to use.

The second type of interpolation regards grid metrics at cell midpoints. Required by
difference schemes [17, 18] including midpoints, grid metrics therein should be acquired
by interpolation. The most convenient way for acquisition is that: evaluate the function
values on nodes firstly by following the instructions in (2) and (3), then interpolate them
to the midpoints. In [26], a sufficient requirement to achieve FSP has been proposed as:
the consistent linear interpolation should be casted in each coordinate direction (so-called
directionally consistent interpolation) in the evaluation of metrics and metrics in fluxes at
midpoints; besides, the interpolations could be different in different directions. In [26], a
proof of this requirement has been given and numerical validations have been provided.
Specifically, a fourth-order interpolation is employed in this study as:

fi+1/2≈
1

16
(− fi−1+9 fi+9 fi+1− fi+2). (2.9)

(5) Short summary.
By means of the above methodologies, the linear upwind schemes with flux splitting

can achieve FSP. However, such schemes can only be applicable for problems without
shock waves because of the linearity. Although the method in [25] is nonlinear, it poses
specific implementation of flux splitting, which is almost the same as Lax-Friedrichs
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scheme with the little difference on the use of linearized grid metrics. On the one hand
Lax-Friedrichs scheme is found to be dissipative, on the other hand recent schemes such
as AUSM series and etc. cannot be applied in the method. To overcome the above insuffi-
ciencies, new upwind-biased nonlinear schemes are proposed next with the achievement
of shock-capturing together with FSP.

2.3 WENO interpolation-based and upwind-biased scheme with free-stream
preservation

Based on the understandings in Section 2.2, new series of third-, fifth- and seventh-order
upwind-biased conservative schemes (WENOIU) are proposed with the nonlinearity in-
troduced by WENO interpolation. In the schemes, the number of grid points (nodes and
midpoints) in upwind direction is one more than that in downwind direction with respect
to xj+1/2. With the help of nonlinearity, WENOIU schemes will not only achieve FSP, but
also can solve problems with shock waves even on randomized grids. Such performance
implies application capability for engineering.
(1) Construction of difference schemes.

Consider the following one-dimensional hyperbolic conservative law for illustration,

ut+ f (u)x =0. (2.10)

Supposing the grid is discretized as xi= i·∆x, where ∆x is the uniform space interval, the
semi-discretized conservative formula at xj holds

(ut)j =−
(
hj+1/2−hj−1/2

)
/∆x, (2.11)

where h(u) is implicitly defined by

f (x)=
1

∆x

∫ x+∆x/2

x−∆x/2
h
(
x′
)

dx′.

The formula in [34] to derive h(u) is chosen here to further develop WENOIU schemes
as

hj+1/2= f j+1/2−
1
24

∆x2
(

∂2 f
∂x2

)
j+1/2

+
7

5760
∆x4

(
∂4 f
∂x4

)
j+1/2

− 31
967680

∆x6
(

∂6 f
∂x6

)
j+1/2

+O
(
∆x8). (2.12)

Considering similar difference schemes involving cell midpoints such as that in [14],
high-order upwind schemes are available through discretizing

(
∂n f
∂xn

)
j+1/2

.

When derivatives such as ( ∂n f
∂xn )j+1/2 in Eq. (2.12) are discretized linearly, combina-

tions of f on grid points would be used. Two types of grid points can be employed, i.e.,
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nodes and cell midpoints. As previously mentioned, when f on midpoints are involved,
interpolations should be invoked. If WENO interpolation is further adopted, the nonlin-
earity will be introduced accordingly. By this way, on the one hand the linear form of
an upwind difference scheme can keep unchanged seemingly, which is favored by the
requirement of FSP [26], on the other hand the nonlinearity would therefore be imple-
mented. By this means, the third-, fifth- and seventh-order schemes are constructed with
various midpoints included.

Prior to further analysis, additional narration will be made regarding flux splitting.
When flux splitting is considered, the flux at cell nodes and midpoints will be split as
f = f++ f−, and so does hj+1/2 (i.e., hj+1/2=h+ j+1/2+h− j+1/2). Accordingly, the upwind
scheme will be related with corresponding splitting flux. In the following, the construc-
tion of upwind-biased schemes ( f̂+j+1/2) is illustrated by the one regarding f+, and for
simplicity the superscript + will be dropped also. The counterpart of the scheme re-
garding f−, i.e., f̂−j+1/2 will have the symmetric form of f̂+j+1/2 with respect to xj+1/2 as
usual [2].
(2) Third-order WENOIU schemes (WENOIU3).

Considering Eq. (2.12), it is obvious that only ( ∂2 f
∂x2 )j+1/2 needs to be discretized, and

corresponding schemes are categorized according to the number of midpoints included.

(a) Scheme with only one midpoint xj+1/2 included.

Using Taylor series expansion, the approximation of hj+1/2 or f̂ j+1/2 can be obtained
as

f̂ j+1/2= f j+1/2+
1
24
(
− f j−1+2 f j− f j+1

)
. (2.13)

Considering the upwind-biased nature, the number of nodes to approximate hj+1/2
should be 2m+1 with m≥ 1, therefore the total number of points including that
of xj+1/2 will be 2m+2. Hence, the above scheme should have one free parameter.
Based on the understanding, the more general third-order form can be derived as

f̂ j+1/2=α f j+1/2+

(
1
8

α− 1
6

)
f j−1+

(
−3

4
α+

5
6

)
f j+

(
−3

8
α+

1
3

)
f j+1. (2.14)

When α= 8/9 in the equation, the non-upwind-biased scheme with the minimum
points can be obtained as

f̂ j+1/2=
8
9

f j+1/2−
1
18

f j−1+
1
6

f j. (2.15)

The accuracy relation of Eq. (2.14) is:

f j+1/2−
1

24
∆x2

(
∂2 f
∂x2

)
j+1/2

+

(
1
16

α− 1
12

)
∆x3

(
∂3 f
∂x3

)
j+1/2

+

(
3

128
α− 37

1152

)
∆x4

(
∂4 f
∂x4

)
j+1/2

+O(∆x5).
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Taking the order and number of midpoints as indicators, the scheme by Eq. (2.14)
is referred as WENOIU3-1MP. The general terminology is like ”WENOIUn-mMP”,
where n denotes the scheme order and m denotes the midpoint number. In this
study, only Eq. (2.13) is tested. The use of Eq. (2.14) will be further discussed in
other investigations.

According to Eq. (2.7), δc,(1) of Eq. (2.13), which is derived to compute grid metrics,
is

δc,(1)x=
1

∆x

[(
xj+1/2−xj−1/2

)
+

1
48
(
−xj+2+2xj+1−2xj−1+xj−2

)]
, (2.16)

which is a fourth-order central difference scheme and where x denotes coordinate
x, y or z.

(b) Scheme with two midpoints included (WENOIU3-2MP).

Similarly, corresponding scheme can be derived as

f̂ j+1/2= f j+1/2+
1
6
(
− f j−1/2+2 f j− f j+1/2

)
. (2.17)

Its accuracy relation is

f j+1/2−
1
24

∆x2
(

∂2 f
∂x2

)
j+1/2

+
1

48
∆x3

(
∂3 f
∂x3

)
j+1/2

− 7
1152

∆x4
(

∂4 f
∂x4

)
j+1/2

+O(∆x5).

Similarly, the scheme by Eq. (2.17) is referred as WENOIU3-2MP. It is worthwhile
to mention that the overall scheme for (∂ f /∂x)j from Eq. (2.17) has been referred
in [26].

According to Eq. (2.7), the fourth-order δc,(1) of Eq. (2.17) to compute grid metrics is

δc,(1)x=
1

12∆x
[
2
(
xj+1−xj−1

)
+
(
−xj+3/2+11xj+1/2−11xj−1/2+xj−3/2

)]
, (2.18)

where x denotes coordinates as before.

(c) WENO interpolation [32].

In Eqs. (2.13)-(2.15) and (2.17), unknown fluxes on midpoints should be acquired
by interpolation of u, and through which the implementation of scheme could be
accomplished. From [32], the third-order WENO interpolation is

uj+1/2=
r−1

∑
k=0

ωk pr
k, (2.19)
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Table 1: Coefficients br
k,l and Cr

k in interpolation schemes.

r k Cr
k

br
k,l

l=0 l=1 l=2

2 0 1/4 -1/2 3/2 –
1 3/4 1/2 1/2 -

3
0 1/16 3/8 -10/8 15/8
1 10/16 -1/8 6/8 3/8
2 5/16 3/8 6/8 -1/8

where r denotes the grid number of stencil of candidate scheme pr
k or r = 2 here.

The form of pr
k is

pr
k =

r−1

∑
l=0

br
k,luj−r+k+l+1. (2.20)

The coefficients br
k,l in Eq. (2.20) are given in Table 1 [32]. ωk is the nonlinear weight

derived from its linear counterpart Cr
k which is shown in Table 1 as well. The canon-

ical weighting procedure is

ωk =αk/∑r−1
l=0 αl , (2.21)

where

αk =Cr
k/(ε+ ISk)

2 (2.22)

and from [2], ISk is suggested as

ISk =
(
uj+k−uj+k−1

)2. (2.23)

It is known that at critical points, order degradation of standard WENO interpola-
tion will occur. If such occurrence is quite concerned, methods such as the mapping
function [5] can be applied, and a specific one named as the piecewise polynomial
mapping function (abbreviated as PPM) [7] is chosen in this study. In case of third-
order schemes, the second-order PPM can be used with the form as

g(ω)=


Ck

[
1−
(

ω

Ck
−1
)2
]

, ω≤Ck,

Ck−
1

Ck−1
(ω−Ck)

2, ω>Ck.

(2.24)

Besides, some special treatment should be imposed regarding ISk, which will be
explained later in Section 4.1. For clarity, the remedy is summarized as: after initial
evaluation of ω by Eqs. (2.21)-(2.22), Eq. (2.24) is invoked for ω; afterwards the
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normalization is carried out on mapped values to yield the final ω. From [5, 7], ε
can have a very small quantity such as 10−40 when Eq. (2.24) is used, otherwise it
takes the value 10−6 in the computation.

At last, it can be testified that Eq. (2.14) and Eq. (2.17) are all the possible upwind-
biased schemes which contain midpoints.

(d) Flux splitting.

In (3) in Section 2.2, the flux splitting method is described regarding upwind
schemes, which will be applied to WENOIU3 and WENOIU5 next accordingly. One
particularity exists regarding WENOIU3-1MP, i.e., f j+1/2 takes a special role analo-
gous to a central scheme locally. Considering discussions in (3) in Section 2.2 and
conclusions in [24,26], the flux splitting of f j+1/2 can employ either aforementioned
method or other schemes such as Steger-Warming scheme, AUSM series and etc.
The split scheme of the rest fluxes in WENOIU3-1MP should still take that in (3) in
Section 2.2.

(3) Fifth-order WENOIU schemes (WENOIU5).
From Eq. (2.12), both ( ∂2 f

∂x2 )j+1/2 and ( ∂4 f
∂x4 )j+1/2 need to be discretized, and correspond-

ing schemes are categorized according to the number of midpoints included as well.

(a) Scheme with only one midpoint xj+1/2 included (WENOIU5-1MP).

By discretizing the second- and fourth-order derivatives, the following fifth-order
scheme can be obtained as

f̂ j+1/2= f j+1/2+
19

1920
f j−2−

29
480

f j−1+
77
960

f j−
3

160
f j+1−

7
640

f j+2. (2.25)

As mentioned before, the more general form which has one free parameter is

f̂ j+1/2=α f j+1/2+

(
− 3

128
α+

1
30

)
f j−2+

(
5
32

α− 13
60

)
f j−1+

(
−45

64
α+

47
60

)
f j

+

(
−15

32
α+

9
20

)
f j+1+

(
5

128
α− 1

20

)
f j+2. (2.26)

When α=32/25, the non-upwind-biased scheme with one point less is obtained as:

f̂ j+1/2=
32
25

f j+1/2+
1

300
f j−2−

1
60

f j−1+
7189
24000

f j−
3
20

f j+1. (2.27)

The accuracy relation of Eq. (2.26) can be derived as

f j+1/2−
1
24

∆x2
(

∂2 f
∂x2

)
j+1/2

+
7

5760
∆x4

(
∂4 f
∂x4

)
j+1/2

+
1

3840
(45α−64)∆x5

(
∂5 f
∂x5

)
j+1/2

− 1
138240

(675α−983)∆x6
(

∂6 f
∂x6

)
j+1/2

+O(∆x7).
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The scheme by Eq. (2.26) is referred as WENOIU5-1MP. Similarly, only Eq. (2.25) is
tested in current study.

According to Eq. (2.7), the sixth-order δc,(1) of Eq. (2.25) to compute grid metrics is

δc,(1)x=
1

∆x

(
xj+1/2−xj−1/2

)
+

1
∆x

[ 19
3840

(
xj+3−xj−3

)
− 13

320

(
xj+2−xj−2

)
+

17
256

(
xj+1−xj−1

)]
, (2.28)

where x denotes coordinates as before.

(b) Scheme with two midpoints included.

The scheme can be derived as

f̂ j+1/2= f j+1/2+
1
30
[(
−4 f j+1+ f j+ f j−1

)
+
(
6 f j+1/2− f j−1/2

)]
(2.29)

with the accuracy relation as

f j+1/2−
1

24
∆x2

(
∂2 f
∂x2

)
j+1/2

+
7

5760
∆x4

(
∂4 f
∂x4

)
j+1/2

− 1
960

∆x5
(

∂5 f
∂x5

)
j+1/2

+
47

138240
∆x6

(
∂6 f
∂x6

)
j+1/2

+O(∆x7).

Similarly, the scheme by Eq. (2.29) is denoted as WENOIU5-2MP. Corresponding
sixth-order δc,(1) by Eq. (2.7) to compute grid metrics is

δc,(1)x=
1

60∆x
(
xi+2−4xj+1+4xj−1−xj−2

)
+

1
15∆x

(
−xj+3/2+19xj+1/2−19xj−1/2+xj−3/2

)
. (2.30)

(c) WENO interpolation [32].

The function values at cell midpoints are derived through WENO interpolation as
that in ”(2)” of this section but with r=3. The coefficients in Eq. (2.20) are shown in
Table 1 as well. The smoothness indicators in Eq. (2.22) are [32]

IS0=
1
3

(
4u2

j−2−19uj−2uj−1+25u2
j−1+11uj−2uj−31uj−1uj+10u2

j

)
,

IS1=
1
3

(
4u2

j−1−13uj−1uj+13u2
j +5uj−1uj+1−13ujuj+1+4u2

j+1

)
,

IS2=
1
3

(
10u2

j−31ujuj+1+25u2
j+1+11ujuj+2−19uj+1uj+2+4u2

j+2

)
.

(2.31)
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Taylor series expansion of Eq. (2.31) is:(
∂u
∂x

)2

j
∆x2+

(
a

∂u
∂x

∂3u
∂x3 +

13
12

(
∂2u
∂x2

)2
)

j

∆x4+O(∆x5),

where α = −2/3,1/3 and −2/3, respectively. When (∂u/∂x)j = 0, the residual
O(∆x5) is not zero usually, therefore Eq. (2.31) still suffers from order degradation
at critical points. If such situation is quite concerned, the mapping function of [5]
or the following third-order PPM can be used [7]

g(ω)=


Ck

[
1+
(

ω

Ck
−1
)3
]

, ω≤Ck,

Ck+

(
1

Ck−1

)2

(ω−Ck)
3, ω>Ck.

(2.32)

At last, it can be testified as well that Eq. (2.26) and Eq. (2.29) are all the possible
upwind-biased schemes which contain midpoints.

(d) Flux splitting.

Similarly, the flux splitting scheme regarding upwind schemes in (3) in Section 2.2
should be applied for; in addition, the flux splitting of f j+1/2 in WENOIU5-1MP can
also adopt other schemes as that in WENOIU3-1MP.

(4) Variables used in WENO interpolation.
As mentioned in (4) in Section 2.2, the primitive, conservative and characteristic vari-

ables can be chosen in WENO interpolations. From literatures [17, 36], the last type was
supposed to yield results with comparatively less oscillations usually. The key issue in
the use of characteristic variables is to define proper flux, afterwards the left and right
eigenvectors of its Jacobian can be acquired accordingly. Using the left eigenvectors,
characteristic variables can be obtained by projecting conservative vectors from com-
ponent space into characteristic field. After interpolations by characteristic variables,
the results will be projected back by using the right eigenvectors. On consideration
of FSP, the following procedure is chosen to construct aforementioned flux at xj+1/2
as: the variables and metrics are acquired separately at xj+1/2 as explained next, after-
wards they are combined to form the flux required. Take the discretization of ∂Ê/∂ξ in
Eq. (2.2) as an example. Aforementioned flux to generate eigenvectors at j+1/2 would be
ξ̂ ′x,j+1/2E(Q′ j+1/2)+ ξ̂ ′y,j+1/2F(Q′ j+1/2)+ ξ̂ ′z,j+1/2G(Q′ j+1/2), where Q′ j+1/2 =Qj for h+j+1/2

and Q′ j+1/2=Qj+1 for h−j+1/2, and where ξ̂ ′x,j+1/2=
(
ξ̂x,j+ ξ̂x,j+1

)
/2 for simplicity. Practices

show that such implementation will yield more smooth results when solving problems
with shock waves, in the meanwhile FSP will not be affected. With regard to the variables
to be projected [17, 36], both primitive and conservative variables can be used, and the
latter is chosen in this study.
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Thus far, the constructions of WENOIU3 and WENOIU5 are accomplished. For com-
pleteness, the construction of the seventh-order WENOIU schemes are given in the Ap-
pendix A.
(5) Short summary on numerical implementations.

For clarity, a summary is given on numerical implementations of proposed schemes:

(a) Given upwind-biased scheme WENOIU3 (or WENOIU5), corresponding central
scheme δc,(1) is derived by Eqs. (2.16) and (2.18) (or (2.28) and (2.30)). The function
of δc,(1) is to compute grid metrics as following.

(b) Evaluate grid metrics such as ξ̂xi on nodes and midpoints. Firstly, metrics on nodes
are acquired by Eq. (2.3) or (2.4) and δc,(1) for discretization. Next, grid metrics on
midpoints are obtained by using directionally consistent interpolation, or Eq. (2.9)
here.

(c) After the acquisition of grid metrics, the Jacobian J−1 is computed by Eq. (2.5) or
(2.6), and the latter is employed in this study.

(d) Evaluate flux derivatives in Eq. (2.2) by using WENOIU3 or WENOIU5.

Firstly, the splitting fluxes on nodes are computed by the method described in (3) in
Section 2.2.

Next, the variables are used to interpolate the function values at midpoints by using
Eqs. (2.19)-(2.24) for WENOIU3, or Eqs. (2.20)-(2.22) and (2.31)-(2.32) for WENOIU5. The
variables can be of the primitive, conservative and characteristic type, and their details
are referred to (4) in Section 2.3.

Afterwards, the grid metrics and flow variables on midpoints which are acquired in
”(c)” are integrated to form the splitting flux, where aforementioned flux splitting scheme
is employed for simplicity. As discussed in Section 2.3, for f̂±j+1/2 in WENOIU3- and
WENOIU5-1MP, its flux splitting scheme can adopt other methods than Lax-Friedrichs-
like ones.

At last, WENOIU3 or WENOIU5 are implemented to evaluate the flux derivatives.

2.4 Discussions on proposed schemes, alternative formulation of WENO [42,
43] and hybrid WCNS [18, 44]

In [42], an alternative formulation of WENO (abbreviated as AF-WENO) was proposed
by taking advantage of Eq. (2.12) and WENO interpolation. Later, further efforts were
put to make AF-WENO achieve FSP [43]. One would expect the discussion on the rele-
vance between current schemes and AF-WENO. In the meanwhile, it is well known that
center-typed WCNS schemes [17] which are built on midpoints already have WENO-like
interpolation employed and FSP achieved [24]. Furthermore, robust explicit formulation
of WCNS in [44] and subsequent hybrid WCNS schemes in [18] were developed, where
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variables on midpoints and nodes were both employed. Hence, it would be valuable to
extend the discussion to above schemes. For convenience, variants of WCNS in [18, 44]
with both midpoints and nodes included are referred as H-WCNS where ”H” denotes
”hybrid”.

Because of the relevance with the discussion, the following understandings are worth
mentioning:
(1) The linear conservative scheme is convertible to its overall counterpart and vice visa.
For example, the fourth-order center scheme of ( ∂ f

∂x )j can be either ( f̂ j+1/2− f̂ j−1/2)/∆x
with

f̂ j+1/2=
1

12∆x
(
− f j+2+7 f j+1+7 f j+ f j−1

)
or

1
12∆x

(
− f j+2+8 f j+1−8 f j−1+ f j−2

)
.

(2) When the flux f is split as f = f++ f−, different but related upwind schemes should
be casted for ( ∂ f±

∂x )j in order to ensure stability. For example, the third-order scheme for

( ∂ f+
∂x )j would be

1
6∆x

(
2 f+j+1+3 f+j −6 f+j−1+ f+j−2

)
while that for ( ∂ f−

∂x )j would be

−1
6∆x

(
2 f−j−1+3 f−j −6 f−j+1+ f−j+2

)
.

(3) In construction of difference scheme, not only variables on nodes but also that on
midpoints can be used for discretization. For example, in Eq. (2.17), variables on j+1/2,
j−1/2 and j are used to discretize ( ∂2 f

∂x2 )j+1/2.
Still use Eq. (2.10) for discussion. Making use of Eq. (2.12) but taking the truncation

order as 6, the sixth-order formulation of AF-WENO in [42] is illustrated as:

f̂ j+1/2= f j+1/2−
1
24

∆x2( f ′′(u)ux
2+ f ′(u)uxx

)
j+1/2−

7
5760

∆x4

×
(

f (4)(u)ux
4+6 f (3)(u)ux

2uxx+4 f (2)(u)uxuxxx

+3 f (2)(u)uxxx
2+ f ′(u)uxxxx

)
j+1/2

, (2.33)

where f j+1/2 is evaluated by two-argument flux function hj+1/2 = h(uL
j+1/2,uR

j+1/2), e.g.,

hj+1/2 = f+j+1/2(u
L
j+1/2)+ f−j+1/2(u

R
j+1/2) and etc. [43], uL,R

j+1/2 are derived by WENO inter-

polation, and f (n)(u) denotes the Jacobian ∂n f /∂un. In [42], ∂ku/∂xk are acquired by in-
terpolation on points

{
xj−2,··· ,xj+3

}
. Hence the final formulation will be accomplished
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only when the interpolation is fulfilled, and it has the order as the minimum of that of
interpolation and 6. If Eq. (2.33) is applied for curvilinear coordinates as described in
Section 2.1, it is conceivable that u should be replaced by Q̂, f should correspond to
transformed flux F̂ with grid metrics included, and ∆x be replaced by grid interval of
curvilinear coordinates such as ∆ξ.

From the above, ∂ku/∂xk in AF-WENO is supposed to be approximated by center
schemes in [42]. Hence its implementation is different from the upwind-biased manner
of WENOIU, not to mention the employment of midpoints in the latter (see Eqs. (2.14),
(2.17), (2.26) and (2.29)). Besides, in AF-WENO, combinations of high-order Jacobians
∂n f /∂un and powers of ∂ku/∂xk are suspected to increase complexity in computation.
The former will get even worse when viscosity and source terms are included. Although
the authors in [42] mentioned the possibility of one-point upwind-biased scheme to ap-
proximate ∂ku/∂xk, whether flux split is considered is not known and no more details
are available. According to former understandings, the approximation of ∂kQ̂/∂xk in
curvilinear coordinate system, the counterpart of ∂ku/∂xk, might either yield numerical
instability in the use of same formula, or it might fail to achieve FSP if flux split takes
place due to the metrics in Q̂. In fact, one can find that there is neither analysis on FSP
achievement nor necessary numerical validation in [42].

In [43], a new revision of AF-WENO was proposed with FSP achieved under curvilin-
ear coordinates, where careful analysis and numerical validations were provided. In the

reference,
(

∂2l f
∂ξ2l

)
j+1/2

with l=1,··· , was directly discretized by center schemes rather than

its expansion as functions of Jacobians and ∂kQ̂/∂ξk. For instance, still consider Eq. (2.12)
with the truncation order of 6. In [43], the new sixth-order formulation is derived by

discretizing
(

∂2 f
∂ξ2

)
j+1/2

and
(

∂4 f
∂ξ4

)
j+1/2

on
{

xj−2,··· ,xj+3
}

as:(
∂2 f
∂ξ2

)
j+1/2

≈ 1
48∆ξ2

(
−5 f j+3+39 f j+2−34 f j+1−34 f j+39 f j−1−5 f j−2

)
,(

∂4 f
∂ξ4

)
j+1/2

≈ 1
2∆ξ4

(
f j+3−3 f j+2+2 f j+1+2 f j−3 f j−1+ f j−2

)
.

Substituting the two above into Eq. (2.12), the final sixth-order AF-WENO is acquired as

f̂ j+1/2= f j+1/2+
1

3840
(
19 f j+3−137 f j+2+118 f j+1+118 f j−137 f j−1+19 f j−2

)
. (2.34)

In the reference, the authors re-cited the mention in [42] about possibility of one-point
upwind-biased approximation but with no other information. As described in Section
2.2, the achievement of FSP by upwind scheme with the presence of flux splitting needs
careful analysis and specific treatments, and such studies are not referred in [43].

One can see that the main difference of WENOIU schemes from Eq. (2.34) is the up-
wind nature of the former. Considering the linear way of approximation of

(
∂2k F̂
∂ξ2k

)
j+1/2

,

the upwind recipe is supposed to favor the computational stability.
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As previously mentioned, [44] and [18] have also proposed sixth-order WCNS
schemes in overall form by employing midpoints and nodes. According to previous
understanding, it is easy to re-formulate them in conservative form respectively as:

f̂ j+1/2=
23
15

f j+1/2+
1
30
(

f j+3/2+ f j−1/2
)
− 3

10
(

f j+1+ f j
)
(see [44]), (2.35a)

f̂ j+1/2=
64
45

f j+1/2+
1

180
(

f j+2−39 f j+1−39 f j− f j−1
)
(see [18]). (2.35b)

It can be seen that Eqs. (2.34)-(2.35b) are quite similar to each other, especially in case of
Eqs. (2.34) and (2.35b). Hence further analysis is preferred.

Under the framework of Eq. (2.12), heuristic analysis shows that: In case of the for-

mulation with the order r = 2n, the discretization of
(

∂2k f
∂x2k

)
j+1/2

should take the order

r= 2(n−k). Taking aforementioned sixth-order AF-WENO as an example, the approxi-

mation of
(

∂2 f
∂x2

)
j+1/2

should take fourth-order and that of
(

∂4 f
∂x4

)
j+1/2

should take second-

order. If the derivatives are approximated by variables on nodes, the total number of
points should be r+1 considering the inclusion of xj+1/2, while the accuracy requirement
from Eq. (2.12) only offers r conditions. Hence one free parameter would exist in the
formulation. Realizing this fact, the general formulation with the order r = 2n can be
proposed as:

f̂ j+1/2=α f j+1/2+
n

∑
l=1

al
(

f j+l+ f j−l+1
)
, (2.36)

where α serves as the free parameter. In case of r=6, coefficients are derived as:

a1=−
75
128

α+
37
60

, a2=
25
256

α− 2
15

and a3=−
3

256
α+

1
60

and when α=1, Eq. (2.34) is recovered.

In Section 2.3, variables on midpoints are manifested to discretize
(

∂2k f
∂x2k

)
j+1/2

. There-

fore, if f j+1/2 be employed in the discretization through α 6=1 in Eq. (2.36), less grid points
would be available, and through which H-WCNS in [18] can be acquired accordingly.
Specifically, in case of r=6 and taking α= 64

45 , Eq. (2.35b) can be obtained from Eq. (2.36).
More generally, more variables on midpoints can be employed to approximate f̂ j+1/2

together with that on nodes in centered manner. It is trivial the number of midpoints
should be odd and that of nodes should be even. For convenience, the odd number is
denoted as n0 and the even number is denoted as ne. Under the framework of Eq. (2.12)
with the order r=2n, if the sum of no and ne satisfies: ne+no=r+1, then one free param-
eter exits. The general center formulation of conservative form can be further expressed
as :

f̂ j+1/2=α f j+1/2+
(no−1)/2

∑
l1=1

bl1
(

f j+1/2+l1+ f j+1/2−l1
)
+

ne/2

∑
l2=1

al2
(

f j−l2+1+ f j+l2
)
, (2.37)
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Table 2: Combinations of (no,ne) and corresponding accuracy order r.

r
ne =2 ne =4 ne =6 ne =8

no =1 2 4†,∗ 6∗ 8∗

no =3 4† 6 8 10
no =5 6 8† 10 12
no =7 8 10 12† 14

where α is the free parameter. For completeness, al and bl at the order r from 4 to 8 are
derived and summarized in Appendix B. In order to recover Eq. (2.35a), one can consider
the case at (r,no,ne)=(6,3,4), where coefficients are:

b1=
3

10
α− 32

75
, a1=−

3
4

α+
17
20

and a2=−
1
20

α+
23
300

.

One can see that when α= 23
15 , Eq. (2.35a) is acquired. Based on above practice, possible

combinations of (no,ne) at given r=2n can be ascertained and vice visa. For convenience,
some results regarding r vs (no,ne) are exemplified in Table 2. In the table, the super-
scripts on the order indicate: ∗ means Eq. (2.37) with (no,ne) would contain AF-WENO
by taking α = 1 and H-WCNS [18] by choosing certain α, and † means corresponding
formulation would contain H-WCNS in [44] by taking appropriate α.

The above studies indicate that given order r=2n, the formulations of H-WCNS [18,
44] by Eq. (2.37) have the least grid stencil, while AF-WENO has relatively larger stencil
by taking α=1. One may wonder what function α can serve. According to [13, 14], α can
at least be used to optimize the dispersion relation. In order to facilitate such practice,
the dispersion relation of Eq. (2.37) is derived and summarized in Appendix B.

In short, detailed discussions are made regarding proposed schemes, AF-WENO [42,
43] and H-WCNS [18, 44]. Furthermore, a general center formulation in conservative
form is acquired with the inclusion of midpoints and nodes, in which AF-WENO and
H-WCNS are included. Besides, schemes rather than the latter two can be naturally sup-
plemented as shown in Appendix B. Along with the results in Section 2.3, the complete
upwind-biased and center formulations are achieved thereby with co-existence of mid-
points and nodes.

3 Spectral features of WENOIU schemes

Prior to numerical explorations of proposed schemes, their mathematical characteristics
are investigated first. Two analyses are carried out, i.e., the standard Fourier analysis and
that of Approximate Dispersion Relation (ADR) [40].
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3.1 Fourier analysis

In [38], Fourier transformation was employed to show the spectral characteristics of a
difference scheme. Consider the following generalized form of scheme:(

∂ f (x)
∂x

)
j
≈ 1

∆x

(
M1

∑
l1=−N1

al1 f j+l1+
M2

∑
l2=−N2

bl2 f j+1/2+l2

)
. (3.1)

When xj is thought as the continuous variable x, Fourier transformation can be applied
through

f̃ (k)=
1

2π

∫ ∞

−∞
f (x)e−ikxdx,

where k is the wave number. Usually, the scaled wave number κ=k∆x is used in analysis
rather than the original k, and a modified κ′ with regard to Eq. (3.1) can be derived as [38]

κ′=−i

(
M1

∑
l1=−N1

al1 eil1κ+
M2

∑
l2=−N2

bl2 ei(l2+1/2)κ

)
. (3.2)

By Eq. (3.2), the real and imaginary parts of κ′ of above schemes can be obtained and are
summarized in Table 3. Because the interpolation algorithms are relatively independent
from the schemes, they are not incorporated into spectral relations therein. According
to [38], the real part of κ′ indicates the dispersion relation of scheme, while the imagi-
nary part reflects the dissipation characteristics. For comparison, two additional central
schemes (CS) based on midpoints by [14] are also considered for reference, i.e., the fourth-
order scheme

f ′ j =
1

∆x

[
9
8
(

f j+1/2− f j−1/2
)
− 1

24
(

f j+3/2− f j−3/2
)]

and the sixth-order scheme

f ′ j =
1

∆x

[
75
64
(

f j+1/2− f j−1/2
)
− 25

384
(

f j+3/2− f j−3/2
)
+

3
640

(
f j+5/2− f j−5/2

)]
.

Based on the formulas in Table 3, the spectral characteristics of discussed schemes in lin-
ear forms are shown in Fig. 1. The schemes are classified into two groups according to the
accuracy order, i.e., WENOIU3-1MP at α=1, WENOIU3-2MP and CS4 as the first group
in Fig. 1(a), and WENOIU5-1MP at α=1, WENOIU5-2MP and CS6 as the second group in
Fig. 1(b). In each group, results of schemes only and schemes with linear interpolations
incorporated (denoted by the tag ”-intp”) are shown. In the first group in Fig. 1(a), when
difference schemes only are concerned, CS4 shows the best performance in dispersion
relation while WENOIU3-2M behaves the most dissipative. When linear interpolations
are incorporated, the relative relationship of spectrum characteristics preserves within
WENOIU3 schemes, and the reference CS4 shows the least dissipative and reduced per-
formance on dispersion. In the second group in Fig. 1(b), when difference schemes only



Q. Li, D. Sun and F. Xu / Adv. Appl. Math. Mech., 13 (2021), pp. 1441-1484 1461

(a) WENOIU3-1MP, -2MP, CS4 and CS6 (b) WENOIU5-1MP, -2MP, CS4 and CS6

Figure 1: Dispersion and dissipation relations of difference schemes by Fourier transformation, where the suffix
”-intp” indicates the scheme is incorporated with linear interpolation.

are concerned, WENOIU5-2MP and CS6 show better dispersion performance than that
of WENOIU5-1MP. When linear interpolations are incorporated, all schemes show simi-
lar dispersion performance. Regarding the dissipation, CS6 indicates a dissipation larger
than that of WENOIU5-1MP and WENOIU5-2MP behaves the most dissipative. The re-
lationship of spectrum distributions among schemes with interpolation incorporated ap-
pears different from those in absence of interpolations. Such interpolation-caused phe-
nomenon might need further analysis. Overall, the proposed schemes indicate certain
amount of dissipation which is favorable for numerical stability.

Table 3: Dispersion and dissipation relations of difference schemes.

Scheme Spectral relation

WENOIU3-1MP Dispersion 2αsin( 1
2 κ)+( 4

3−
5
4 α)sin(κ)+(− 1

6 +
1
8 α)sin(2κ)

Dissipation (− 1
3 +

1
4 α)cos2(κ)+( 2

3−
1
2 α)cos(κ)+(− 1

3 +
1
4 α)

WENOIU3-2MP Dispersion 11
6 sin( 1

2 κ)− 1
6 sin( 3

2 κ)+ 1
3 sin(κ)

Dissipation 2
3 sin( 1

2 κ)
2
(cos( 1

2 κ)−1)

WENOIU5-1MP

Dispersion 2αsin( 1
2 κ)+( 3

2−
175
128 α)sin(κ)

+(− 3
10 +

7
32 α)sin(2κ)+( 1

30−
3

128 α)sin(3κ)
Dissipation ( 2

15−
3

32 α)cos3(κ)+(− 2
5 +

9
32 α)cos2(κ)

+( 2
5−

9
32 α)cos(κ)+(− 2

15 +
3

32 α)

WENOIU5-2MP Dispersion 38
15 sin( 1

2 κ)− 2
15 sin( 3

2 κ)− 2
15 sin(κ)+ 1

30 sin(2κ)

Dissipation − 4
15 sin( 1

2 κ)
2
(cos( 1

2 κ)−1)
2

CS4 Dispersion 9
4 sin( 1

2 κ)− 1
12 sin

( 3
2 κ
)

CS6 Dispersion 189
80 sin( 1

2 κ)− 25
192 sin

( 3
2 κ
)
+ 3

320 sin
( 5

2 κ
)



1462 Q. Li, D. Sun and F. Xu / Adv. Appl. Math. Mech., 13 (2021), pp. 1441-1484

3.2 ADR analysis

It is known that the spectral properties of nonlinear schemes differ from their linear coun-
terparts. In order to shed some light in this regard, the Approximate Dispersion Relation
method (ADR) was proposed in [40]. In ADR, the spectral characteristics of schemes were
numerically derived by means of solving advection problems. Specifically, the linear ad-
vection problem in Section 4.1 is usually chosen for analysis. The initial distribution at
the domain [0,1] with periodic boundary is:

u(x,t=0)=0.01eiκn ,

where κn = (2πn)/N with n= 0,··· ,N/2 and N = 122. The computation advances over
a tiny period as t = 4.0×10−6. In the numerical analysis, the third-order TVD-RK3
scheme [2] is chosen for temporal discretization and aforementioned PPM techniques
are employed for interpolations in WENOIUs. The results of the dispersion and dissipa-
tion relations are shown in Fig. 2, which are classified into two groups similar to that in
Section 3.1. In addition, the dispersion relation of CS6 is added in the first group.

From Fig. 2(a), WENOIU3 schemes show dissipations larger than that of CS4, where
WENOIU3-2MP behaves the most dissipative. Regarding the dispersion, WENOIU3-
1MP shows the similar performance as that of CS4, while WENOIU3-2MP demonstrates
an enhanced one which is comparable to that of CS6.

From Fig. 2(b), the spectral distributions of WENOIU5 and CS6 show a trend which is
qualitatively similar to results with interpolations incorporated in Fig. 1(b), i.e., all disper-
sion relations are similar to each other and WENOIU5-1MP behaves the least dissipative.

(a) WENOIU3-1MP, -2MP, CS4 and CS6 (b) WENOIU5-1MP, -2MP and CS6

Figure 2: Dispersion and dissipation relations of difference schemes by ADR.
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4 Validations on convergence order and free-stream
preservation

4.1 Convergence order by computations of linear advection

In this study, the linear advection equation is chosen as

ut+ux =0,

where x∈ [−1,1] and uniform grids with different numbers are used. Standard fourth-
order Runge-Kutta scheme is used to discretize the temporal term, and the time step is
chosen with the level (∆x)5/4 to minimize possible influence of temporal errors. The
smooth initial distribution is chosen as

u(x,t=0)=sin(πx−sin(πx)/π).

The computation is advanced to t=2. In Table 4, numerical errors and corresponding or-
ders are shown regarding proposed schemes, namely, WENIOU3-1MP, WENIOU3-2MP,
WENIOU5-1MP, and WENIOU5-2MP. In computations, aforementioned PPM functions
are employed. A special treatment is chosen for WENOIU3 schemes similar to that in [39],
i.e., IS0 and IS1 in Eq. (2.31) on three-point stencils are employed in the same sequence
instead of that in Eq. (2.23). The reason to employ new ISs comes from the fact that, on
the one hand Eq. (2.23) fails to recover the third-order accuracy no matter what kinds of
mapping functions are used (e.g., the one in WENO-M [5], the third- and higher order
PPM functions [7]), on the other hand the linear counterpart of interpolation shown in Ta-
ble 1 is testified to be able to make the order achieved. The new use of ISs can be verified
easily to satisfy the accuracy requirement of weighted schemes, which manifests their
qualification as indicators in the weighting procedure. By way of above manipulations,
the designed orders are well established from Table 4.

Taking advantage of this case, the computation cost of WENOIU schemes is inves-
tigated to compare with that of WENO [2]. However, because in canonical WENO
schemes, the issue of critical points is not concerned and various techniques subse-
quent are not included, WENOIU schemes in cost estimation do not employ correspond-
ing treatments also. Concretely, smoothness indicators in WENOIU3 take the forms by

Table 4: Convergence properties of proposed schemes in linear advection problem with smooth initial condition.

N WENOIU3-1MP WENOIU3-2MP WENOIU5-1MP WENOIU5-2MP
L2 (order) L∞ (order) L2 (order) L∞ (order) L2 (order) L∞ (order) L2 (order) L∞ (order)

10 0.12 (—-) 0.20 (—-) 0.10 (—-) 0.19 (—-) 5.67E-02 (—-) 0.11 (—-) 5.31E-02 (—-) 0.11 (—-)
20 2.20E-02(2.46) 4.47E-02(2.18) 1.75E-02(2.56) 3.71E-02(2.36) 2.96E-03(4.26) 6.24E-03(4.16) 2.58E-03(4.36) 5.43-E03(4.29)
40 3.64E-03(2.59) 7.78E-03(2.52) 2.81E-03(2.64) 6.09E-03(2.61) 1.06E-04(4.81) 2.10E-04(4.89) 8.94E-05(4.84) 1.73-E04(4.97)
80 5.01E-04(2.86) 1.05E-03(2.88) 3.78E-04(2.89) 7.87E-04(2.95) 3.22E-06(5.03) 6.70E-06(4.97) 2.69E-06(5.05) 5.48-E06(4.98)
160 6.42E-05(2.96) 1.28E-04(3.03) 4.82E-05(2.97) 9.61E-05(3.03) 9.84E-08(5.03) 2.10E-07(5.00) 8.12E-08(5.05) 1.71-E07(5.00)
320 8.08E-06(2.99) 1.60E-05(3.00) 6.06E-06(2.99) 1.20E-05(3.00) 3.04E-09(5.01) 6.55E-09(5.00) 2.49E-09(5.02) 5.35-E09(5.00)
640 1.01E-06(3.00) 2.00E-06(3.00) 7.59E-07(3.00) 1.50E-06(3.00) 9.46E-11(5.01) 2.05E-10(5.00) 7.71E-11(5.02) 1.67-E10(5.00)
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Eq. (2.23), and mapping functions are not invoked for WENOIU schemes. The computa-
tions are carried out with the grid number 640 and run for 4000 steps. The consequences
are: WENOIU3 schemes will cost 107.69% CPU time as that of WENO3, and WENOIU5
schemes will cost 134.88% CPU time as that of WENO5. Among WENOIU3 schemes, the
interpolation is implemented and kept exclusively, therefore their time cost are almost
the same. Similar situation happens to WENOIU5 schemes.

In the following, IS0 and IS1 by Eq. (2.31) are used for WENOIU3 schemes instead of
Eq. (2.23) in order to achieve designed accuracy.

4.2 Free-stream preservation on randomized grids

In this case, an initial uniform flow condition is employed with the Mach number 0.5 and
the randomized grids described in (1) of Section 5.1 are used. Using the proposed third-
and fifth-order schemes, the computation advances until t= 10 with the time step ∆t=
0.01. L2 errors of velocity component v, which is theoretically zero, are chosen and shown
in Table 5 for illustration. In the computation, flux splitting uses the aforementioned Lax-
Friedrichs-type scheme for simplicity. From the table, the free-stream preservation is well
achieved by WENOIU schemes on randomized grids.

Table 5: L2 errors of v component in FSP test on randomized grids.

WENOIU3-1MP WENOIU3-2MP WENOIU5-1MP WENOIU5-2MP
L2(v) 1.820E-15 1.500E-15 2.401E-15 2.512E-15

5 Numerical examples

In all examples of the section, Euler equations are solved, PPM methods are employed
for interpolations in WENOIU, and the third-order TVD-RK3 method [2] is chosen for
temporal discretization. At first, grid generations of 2-D computations are described.

5.1 Grid generations in 2-D problems

(1) Grids for vortex preservation.
Two grids are employed, namely the uniform and randomized grids. The latter is

generated by:

xi,j =−
L
2
+

L
Imax−1

[
(i−1)+2Ai,j (Rand(0,1)−0.5)Rand(0|1)

]
,

yi,j =−
L
2
+

L
Jmax−1

[
(j−1)+2Ai,j (Rand(0,1)−0.5)(1−Rand(0|1))

]
,

where L=16, Aij=0.45 at i=5,··· , Imax−4 or j=5,··· , Jmax−4 otherwise Aij=0, Rand(0,1)
is a random function ranging from 0 to 1, and Rand(0|1) is one having the value 0 or
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Figure 3: 81×81 Randomized grids of vortex preservation with background by initial vorticity contours.

1. In this study, (Imax× Jmax) = (81×81). The grids are shown in Fig. 3 with the initial
vorticity contours as the background. It is worth mentioning that the grid randomization
is so serious that further increase of Aij will generate negative grid-cell area. Besides
being used in vortex preservation, the randomized grids are also applied in the test of
free-stream preservation in Section 4.2. The uniform grids have the same dimensions
and physical range as that of the randomized ones.

It should be mentioned that the use of randomized grids does not indicate their prac-
ticability in applications. The only purpose is to provide circumstance to test the capabil-
ity of proposed schemes on seriously distorted grids, and to check if the schemes could
achieve FSP there.

(2) Grids for supersonic flow around inviscid cylinder.
A cylinder with the diameter as one is considered. Similarly, the smooth grids and

the randomized ones are generated. The grid dimension (Imax× Jmax) is 121×41, which
corresponds the streamwise and normal-wise directions. The smooth grids are gener-
ated by ordinary transfinite interpolation, while the randomized ones are acquired by
randomizing the grids in a window of the former as that in (1). The indices of window
is (6, Imax−5)×(7, Jmax−6), and the randomizing factor Aij is 0.2. In Fig. 4, the half of re-
ferred window together with grids are shown with the background by pressure contours.
From the figure, it can be seen that the shock wave and some flows behind are contained
in the region with randomized grids.

(3) Grids for Riemann problem and shock-vortex interaction.
The physical domains are both rectangular in two cases. The one in Riemann prob-

lem is [0,1]×[0,1] with 400×400 grids, and that in shock-vortex interaction is [−20,10]×
[−15,15] with 600×600 grids. Two types of grids are chosen, i.e., the uniform grids and
the randomized ones. For the latter, the grids are generated just as that in (1), where the
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Figure 4: 121×41 grids of cylinder with background by pressure contours, where randomization is imposed in
a local window of the domain.

factor Aij for inner randomized grids is 0.2, and where four and nine layers of uniform
grids are included in boundaries respectively in Riemann problem and shock-vortex in-
teraction.

5.2 One-dimensional problems

The purpose of tests is to check the qualification of shock capturing of proposed schemes,
and therefore validates the nonlinear implementation by WENO interpolation. In subse-
quent figures, the results of WENO3 and WENO5 are shown as well.
(1) Sod problem.

The initial distributions of the problem at the range [−5,5] are

(ρ,u,p)=
{

(1.000,0,1.0), −5≤ x<0,
(0.125,0,0.1), 0≤ x≤5,

and the computation is advanced to t = 2.0 on 200 uniform grids with ∆t = 0.01.
On checking, WENOIU3 schemes yield results quite similar to each other, and so do
WENOIU5 schemes. Hence for brevity, only the density distribution of WENOIU3-1MP
and WENOIU5-2MP in proposed schemes are shown as representatives in Figs. 5 and
6. From the figures, the fifth-order scheme indicates slightly better performance at the
corners of contact discontinuity than that of the third-order scheme. In the meanwhile,
the difference between results of WENOIU3-1MP and WENO3 is quite small, and similar
situation exists between that of WENOIU5-2MP and WENO5.
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Figure 5: Density distribution of Sod problem by WENOIU3-1MP.

Figure 6: Density distribution of Sod problem by WENOIU5-2MP.

(2) Shu-Osher problem.
The initial distributions of the problem at the range [−5,5] are

(ρ,u,p)=

{
(3.857143,2.629369,10.3333) x<−4,
(1+0.2sin(5x),0,1), x≥−4,

and the computation is advanced to t = 1.8 on 400 uniform grids with ∆t = 0.001.
WENOIU3 schemes show similar results to each other again and only that of WENOIU3-
2MP is shown in Fig. 7 for brevity. One can check that better resolution is acquired
by WENOIU3-2MP if compared with that of canonical WENO3, and the improvement
should be attributed to the new use of IS discussed before. In Fig. 8, WENOIU5-1MP
shows well resolutions on the small-scale structures after the shock if compared with
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Figure 7: Density distribution of WENOIU3-2MP for Shu-Osher problem with the comparison of WENO3.

Figure 8: Density distribution of WENOIU5-1MP for Shu-Osher problem with the comparison of WENO5.

that of WENOIU3-2MP, and the result of WENOIU5-2MP is omitted for brevity again be-
cause of its similarity to that of WENOIU5-1MP. Besides, the difference between results
of WENOIU5-1MP and WENO5 is quite small.

5.3 Two-dimensional problems

(1) Vortex preservation.
This problem is to check if a moving vortex could preserve its shape in grids intro-

duced in Section 5.1 with periodic boundaries, especially on distorted grids by random-
ization. The flow is non-dimensionalized by the density and the speed of sound, and the
free-stream Mach number is 1.
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(a) Results on uniform grids (b) Results on randomized grids

Figure 9: Vorticity contours of vortex preservation problem on two 81×81 grids by using WENOIU3-1MP
(Contours from 0 to 0.7 with number 21).

An isentropic vortex is initially superimposed on the uniform flow at~r0=(0,0) as [24]
(δu,δv)= εr̃eα(1−r̃2) (sinθ,−cosθ),

δT=− (γ−1)ε2

4αγ
e2α(1−r̃2),

δS=δ(p/ργ)=0,

where r̃ = |~r−~r0|/rc, rc = 1, α = 0.204, ε = 0.3, and γ = 1.4. The computation runs from
the initial conditions at ∆t=0.01 till t=16, which corresponds to one movement circle of
vortex to return to its initial place through the periodic boundary.

WENOIU3 and WENOIU5 schemes are respectively tested in uniform and random-
ized grids. In the tests of WENOIU3 schemes, WENOIU3-2MP shows quite similar result
to that of WENOIU3-1MP, therefore the vorticity contours of the former are omitted here.
Similarly, only the contours of WENOIU5-2MP are shown for representative.

On the uniform grids, WENOIU3-1MP yields a result with quite smooth appear-
ance and well circular shape as shown in Fig. 9(a). The quantitative comparison of
WENOIU3 with the exact solution is fairly well as shown in Fig. 10(a). On randomized
grids (Fig. 9(b)), WENOIU3-1MP yields a result with reasonable preservation of vortex,
which is comparable to that in [24]. The preservation is also confirmed by the quantita-
tive distributions in Fig. 10(b). It is worthwhile to mention that the vorticity contours are
especially chosen for visualization rather than isobar contours, because the latter usu-
ally show smoother appearance and might conceal potential problems. As shown in
Fig. 3, even the initial vorticity contours on randomized grids do not distribute smoothly
enough due to the bad grid quality.
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(a) Results on uniform grids (b) Results on randomized grids

Figure 10: Distributions of v-component along the line at j=(Jmax/2)+1 of vortex preservation problem on
two 81×81 grids by using WENOIU3 schemes.

(a) Results on uniform grids (b) Results on randomized grids

Figure 11: Vorticity contours of vortex preservation problem on two 81×81 grids by using WENOIU5-2MP
(Contours from 0 to 0.7 with number 21).

The results of WENOIU5-2MP are shown in Figs. 11 and 12. From the figures, the
structure of vortex appears qualitatively similar to that of WENOIU3-1MP. Quantita-
tively, WENOIU5-2MP performs less dissipatively and shows slightly better agreement
with the exact distribution.

One may be interested in the performances of WENO schemes. In this regard, the re-
sults by WENO5 are shown for demonstration. Because such computations on uniform
and randomized grids are already made in [16, 25, 43], it ought to be objective and per-
suasive to quote corresponding results for discussion, and regarding vorticity contours
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(a) Results on uniform grids (b) Results on randomized grids

Figure 12: Distributions of v-component along the line at j=(Jmax/2)+1 of vortex preservation problem on
two 81×81 grids by using WENOIU5 schemes.

(a) Results on uniform grids with the cour-
tesy from [43]

(b) Results on randomized grids with the
courtesy from [16]

Figure 13: Vorticity contours of vortex preservation problem on uniform and randomized grids by WENO5 with
the courtesy from [16, 43].

are shown in Fig. 13 with the courtesy from the references. It is apparent that although
WENO5 can well perform on uniform grids, it yields vortex out of shape on randomized
grids because of dissatisfaction of FSP.

(2) Supersonic inviscid flow around the cylinder at M∞ =4.
Although this case may not be quite noticed by fundamental researches, it is con-

cerned by engineering due to its application background in aircrafts. Despite the com-
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(a) Results of WENOIU3-1MP on uniform grids (b) Results of WENOIU3-2MP on randomized grids

Figure 14: Pressure contours of supersonic cylinder flow on two 121×41 grids by using WENOIU3 schemes
(Contours from 1.2 to 5.2 with number 21; Dots: solution from Lyubinov& Rusanov [41]).

putation fulfillment by second-order TVD schemes, simulations on randomized meshes
are seldom tested by high-order schemes. The computation is carried out at ∆t= 0.001
and advanced till t=400. First, the proposed third-order WENOIU3 schemes are tested.
On both grids, the schemes produce qualitatively similar results, therefore the results
are selectively shown in Fig. 14. From the figure, the capability of proposed methods is
manifested to resolve shock wave on grids with bad quality.

Next, WENOIU5 schemes are tested as well. In Fig. 15, similar characteristics are
observed as that in computations by using WENOIU3. Qualitatively, the contours on
randomized grids in Fig. 15(b) appear relatively unsmooth than that in Fig. 15(b), which
might arise from the less dissipation with the increase of order.

In order to check quantitatively, the pressure distributions along body surface of
WENOIU3-2MP and WENOIU5-1MP on randomized grids are displayed as representa-
tives in Fig. 16. The results are compared with the asymptotic solution by Lyubinov and
Rusanov [41]. From the figure, well agreements are obtained between the computations
and the asymptotic solution.

One may also wonder how WENO would perform, and in this respect similar investi-
gation by WENO5 are known to explore already. Concretely in [25, 43], supersonic flows
around cylinder by WENO5 have been simulated on smooth and randomized grids, and
corresponding results are cited in Fig. 17 similarly with the courtesy from the references.
The figure indicates again that although WENO5 can well resolve shocks on smooth
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(a) Results of WENOIU5-2MP on uniform grids (b) Results of WENOIU5-1MP on randomized grids

Figure 15: Pressure contours of supersonic cylinder flow on two 121×41 grids by using WENOIU5 schemes
(Contours from 1.2 to 5.2 with number 21; Dots: solution from Lyubinov& Rusanov [41]).

(a) Results of WENOIU3-2MP on uniform grids (b) Results of WENOIU5-1MP on randomized grids

Figure 16: Pressure distributions along wall surface of supersonic cylinder flow on 121×41 randomized grids by
WENOIU3-2MP and WENOIU5-1MP (Dots: solution from Lyubinov and Rusanov [41]).

grids, it engenders a result with large oscillations on randomized grids with little ap-
plication value, which indicates the significance of FSP achievement in computations on
distorted grids.
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(a) Results on smooth grids with the courtesy from [43] (b) Results on randomized grids with the courtesy from [25]

Figure 17: Pressure contours of supersonic cylinder flow by using WENO5 schemes from the courtesy from [25,
43].

(3) Riemann problem.
This problem illustrates the capability of proposed schemes for resolving shock wave

and slip line, especially under tough circumstance where randomized grids are used. The
following initial condition is used for four sub-divisions of the domain [0,1]2 as:

[0.5,1]×[0.5,1] : ρ1=1, p1=1, u1=0, v1=−0.3,
[0,0.5]×[0.5,1] : ρ2=2, p2=1, u2=0, v2=0.3,
[0,0.5]×[0,0.5] : ρ3=1.0625, p3=0.4, u3=0, v3=0.8145,
[0.5,1]×[0,0.5] : ρ4=0.5313, p4=0.4, u4=0, v4=0.4276.

The Euler equations are solved on 400×400 grids described previously, and the compu-
tations proceed to t=0.3. Two time steps are employed, i.e., ∆t=0.001 for uniform grids
and ∆t=0.0001 for randomized grids. The reduction of time step in the latter is due to the
decreased numerical stability. The results of WENOIU3 schemes are first discussed. On
uniform grids, the result of WENOIU3-1MP is quite similar to that of WENOIU3-2MP,
therefore only the latter is shown in Fig. 18(a) for representative. On randomized grids,
WENOIU3-1MP fulfills the computation with the result shown in Fig. 18(b), and the ful-
fillment manifests its capability to resolve shock and slip line on grids with bad quality.
However, WENOIU3-2MP fails to accomplish the test even if Dt is largely decreased,
which implies its relatively weaker numerical stability.

Next, the results of WENOIU5 schemes are checked and shown in Fig. 19. On uni-
form grids, WENOIU5-1MP yields quite smooth result while WENOIU5-2MP generates
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(a) Results of WENOIU3-2MP on uniform grids (b) Results of WENOIU3-1MP on randomized grids

Figure 18: Density contours of Riemann problem on two 401×401 grids by using WENOIU3 schemes (Contours
from 0.6 to 2.3 with number 14).

a result with some oscillations. Such performance of WENOIU5-2MP might contribute
to the generation of subtle structures at the slip line. On randomized grids, both schemes
accomplish the computations and yield similar results. If compared with the results by
WENOIU3 schemes, WENOIU5 schemes indicate better resolutions on the description of
the slip line.

Similarly, in this case WENO schemes can accomplish satisfactory computations on
smooth grids but yields unsuccessful results with oscillations on randomized grids,
which indicates the importance of FSP achievement once again. For illustration, results
on smooth grids are shown in Fig. 20, while results on randomized grids are of oscilla-
tions similar to Fig. 17(b) and therefore are omitted for brevity.

(4) Shock-vortex interaction.
The case describes a strong shock with Ms=3 interacting with a strong vortex, where

complex flow structures are generated along with the interaction. The computational
domain is: [−20,10]×[−15,15], where a shock wave is initially located at x=0. The upper
and lower boundaries are periodic. The initial flow field after the shock can be defined
by Rankine–Hugoniot relations. An isentropic vortex is initially superimposed ahead of
the shock wave as:

uθ =Γ|~r−~r0|/rce[(1−|~r−~r0|2)/2],

p(r)=
1

γM∞
2

[
1− γ−1

2
Γ2exp(1−|~r−~r0|2)

]γ/(γ−1)

,

ρ(r)=
[

1− γ−1
2

Γ2exp(1−|~r−~r0|2)
]1/(γ−1)

,
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(a) Results of WENOIU5-1MP on uniform grids (b) Results of WENOIU5-2MP on uniform grids

(c) Results of WENOIU5-1MP on randomized grids (b) Results of WENOIU5-2MP on randomized grids

Figure 19: Density contours of Riemann problem on two 401×401 grids by using WENOIU5 schemes (Contours
from 0.6 to 2.3 with number 14).

where uθ denotes the tangential velocity of the vortex, ~r0 = (4,0) represents the initial
position of the vortex, and G is the vortex strength with the value 0.4. The computation
runs to t=15 with ∆t=0.01.

The results of WENOIU3 schemes are checked first. On uniform grids, both
WENOIU3-1MP and -2MP schemes yield results with no qualitative difference, there-
fore only the density contours of WENOIU3-2MP are drawn in Fig. 21(a) for represen-
tative. On randomized grids, WENOIU3-1MP works normally with the result shown
in Fig. 21(b), however WENOIU3-2MP fails even if ∆t is largely decreased. This result
seems to indicate again that WENOIU3-2MP would be less stable or robust when the
grids are of poor quality.
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(a) Results of WENO3 (b) Results of WENO5

Figure 20: Density contours of Riemann problem on two 401×401 grids by using WENO schemes (Contours
from 0.6 to 2.3 with number 14).

(a) Results of WENOIU3-2MP on uniform grids (b) Results of WENOIU3-1MP on randomized grids

Figure 21: Density contours of shock-vortex interaction on two 601×601 grids by using WENOIU3 schemes
(Contours from 0.6 to 2.3 with number 14).

The density contours of WENOIU5 schemes are shown in Fig. 22. Because the results
of WENOIU5-1MP and -2MP schemes show no qualitative difference on uniform grids,
only that of WENOIU5-2MP are displayed. On randomized grids, both schemes accom-
plish the computations, and the result of WENOIU5-1MP is shown in Fig. 22(b) for rep-
resentative. From Fig. 22, although the structures on randomized grids resemble to that
on uniform grids, tiny oscillations in the former result are observed after the shock. Fur-
ther investigation in more detail indicates that, the contours by WENOIU5-2MP appear
relatively more oscillatory than that of WENOIU5-1MP. Hence, WENOIU5-2MP might
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(a) Results of WENOIU5-2MP on uniform grids (b) Results of WENOIU5-1MP on randomized grids

Figure 22: Density contours of shock-vortex interaction on two 601×601 grids by using WENOIU5 schemes
(Contours from 0.6 to 2.3 with number 14).

be relatively less stable or robust when the grids are distorted.

6 Concluding remarks and discussions

With understandings on linear upwind schemes with flux splitting to achieve FSP, new
series of nonlinear upwind-biased schemes are developed and abbreviated as WENOIU.
In the schemes, the nonlinearity is introduced by the inclusion of midpoints and WENO
interpolations. The third- and fifth-order WENOIU schemes are tested by typical exam-
ples. The following conclusions are drawn:

(1) The development of WENOIU schemes contributes to methodology to make high-
order, upwind nonlinear scheme to achieve FSP. Through the study, the complete
third-, fifth- and seventh-order upwind-biased schemes are devised and the first
two are investigated in detail. The constructions indicate the successful integra-
tion of requirements of FSP and nonlinearity by WENO interpolation under the
framework of upwind scheme. Besides, discussions are made regarding proposed
schemes, AF-WENO and h-WCNS, in which a general formulation of center scheme
with midpoint and nodes included is obtained as a byproduct.

(2) Two of main characteristics of WENOIU schemes, i.e., the accuracy order and
achievement of FSP, are validated by numerical tests. Specifically, in order to ac-
quire designed order at first-order critical points, PPM should be casted in nonlin-
ear interpolations, and in addition, the smoothness indicators in WENOIU3 should
choose the ones on three-point stencils rather than those on two-point stencils.
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(3) The performances of WENOIU3 and WENOIU5 schemes for applications with
shock waves are manifested by three problems. In the problems random-
ized/locally randomized grids besides uniform/smooth ones are used. On two
types of grids, all schemes accomplish the test of supersonic cylinder flow and
nearly all of them complete that of Riemann problem and shock-vortex interac-
tion. The only exception is that WENOIU3-2MP fails on randomized grids. On
the one hand the results manifest the capability of WENOIU3-1MP and WENOIU5
schemes for solving problems on grids with bad quality, on the other hand the rel-
atively weaker stability of WENOIU3-2MP is also indicated. Generally speaking,
WENOIU schemes with two midpoints seems to be less robust or more oscillatory
than ones with one midpoint.

One can see from Eqs. (2.13), (2.17), (2.26) and (2.29) that f j+1/2 takes a special role in pro-
posed schemes. Actually for the computation of f j+1/2, different flux splitting schemes
can be employed, which will not influence the achievement of FSP. Hence the frequently-
used schemes with low dissipation can be employed, e.g., Steger-Warming scheme, Van
Leer scheme, AUSM and etc. In the meanwhile, the recent advances in WENO-Z schemes
can be applied in interpolations as well. Such issues should deserve attentions in further
studies.

It is noticed as well that the tests included in this study are limited. The considera-
tion for test selection is that current study targets to validate the achievement of FSP of
proposed nonlinear schemes, and to indicate their capability for solving problems with
shock waves and/or vortices on distorted grids. More tests and further explorations are
planned in other investigations.

Appendix A

For completeness, formulas of all possible seventh-order WENOIU schemes are given
in a similar way to that in Section 2.3. Likewise, only upwind-biased schemes are con-
cerned.

(1) Scheme with only one midpoint xj+1/2 included.
The general form of the scheme with one free parameter is

f̂ j+1/2=α f j+1/2+

(
5

1024
α− 1

140

)
f j−3+

(
− 21

512
α+

5
84

)
f j−2+

(
175

1024
α− 101

420

)
f j−1

+

(
−175

256
α+

319
420

)
f j+

(
− 525

1024
α+

107
210

)
f j+1+

(
35
512

α− 19
210

)
f j+2

+

(
− 7

1024
α+

1
105

)
f j+3.
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When α=1, the scheme becomes

f̂ j+1/2= f j+1/2+
1

107520

(
−243 f j−3+1990 f j−2−7481 f j−1+8164 f j

−341 f j+1−2378 f j+2+289 f j+3

)
.

The corresponding eighth-order δc,(1) f is

δc,(1) f =
1

∆x
(

f j+1/2− f j−1/2
)
+

1
107520∆x

 −243
2
(

f j+4− f j−4
)
+1261

(
f j+3− f j−3

)
−6069

(
f j+2− f j−2

)
+8841

(
f j+1− f j−1

)
.

(2) Scheme with two midpoints included.
The scheme can be derived as

f̂ j+1/2= f j+1/2+
1

1260

[ (
−128 f j−1/2+404 f j+1/2

)
+
(
−2 f j−2+47 f j−1−92 f j−233 f j+1+5 f j+2

) ].

The corresponding eighth-order δc,(1) f is

δc,(1) f =
1

315∆x
[
−16

(
f j+3/2− f j−3/2

)
+432

(
f j+1/2− f j−1/2

)]
+

1
1260∆x

[
−
(

f j+3− f j−3
)
+27

(
f j+2− f j−2

)
−189

(
f j+1− f j−1

)]
.

(3) Scheme with four midpoints included.
The scheme can be derived as

f̂ j+1/2= f j+1/2+
1

420

[ (
18 f j−1−66 f j−108 f j+1

)
+
(
−3 f j−3/2−31 f j−1/2+179 f j+1/2+11 f j+3/2

) ].

The corresponding δc,(1) f is

δc,(1) f =
1

140∆x
[
3
(

f j+2− fi−2
)
−32

(
f j+1− f j−1

)]
+

1
840∆x

[
−3
(

f j+5/2− fi−5/2
)
−17

(
f j+3/2− f j−3/2

)
+1218

(
f j+1/2− f j−1/2

)]
.

(4) Scheme with six midpoints included.
The scheme can be derived as

f̂ j+1/2= f j+1/2+
1

26880

[
3840 f j−1+

(
−45 f j−5/2+501 f j−3/2−3874 f j−1/2

+746 f j+1/2−1249 f j+3/2+81 f j+5/2

)]
.

The corresponding δc,(1) f is

δc,(1) f =
1

14∆x
(

f j+1− f j−1
)
+

1
∆x

 − 3
3584

(
f j+7/2− f j−7/2

)
+

209
17920

(
f j+5/2− f j−5/2

)
− 163

1536
(

f j+3/2− f j−3/2
)
+

575
512

(
f j+1/2− f j−1/2

)
.
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Table 6: Coefficients br
k,l and Cr

k in interpolation schemes [32].

r k Cr
k

br
k,l

l=0 l=1 l=2 l=3

4

0 1/64 -5/16 21/16 -35/16 35/16
1 21/64 1/16 -5/16 15/16 5/16
2 35/64 -1/16 9/16 9/16 -1/16
3 7/64 5/16 15/16 -5/16 1/16

WENO interpolations by Eqs. (2.19)-(2.20) are integrated to evaluate variables on mid-
points, where the coefficients in the equations are shown in Table 6.

When order degradation at the first-order critical point is concerned, the following
fourth-order PPM can be employed [7] to exert on the nonlinear weights in interpolation

g(ω)=


Ck

[
1−
(

ω

Ck
−1
)4
]

, ω≤Ck,

Ck−
(

1
Ck−1

)3

(ω−Ck)
4, ω>Ck,

Appendix B

Consider the center formulation of Eq. (2.37). Given the accuracy order r = 2n, the co-
efficients al and bl can be either derived by means of Eq. (2.12) or overall center form
according to (r,nε,no) with r=nε+no−1, and the consequences are summarized in Table
7.

As mentioned in Section 2.4, the formulation by Eq. (2.37) at (r= 2n,2n,1) and with
α= 1 will result in AF-WENO [43], and it will yield form with less grid points possibly
such as H-WCNS [18, 44] and even WCNS [17] by specific choice of α. The latter results
are summarized in Table 8, where the superscript of α indicates the reference that has

Table 7: Coefficients al and bl according to (r,nε,no) in Eq. (2.37).

(r,nε,no) al a2 a3 a4 bl b2 b3

(4,4,1) − 9
16 α+ 7

12
1

16 α− 1
12 – – – – –

(4,2,3) − 2
3 α+ 13

18 – – – 1
6 α− 2

9 – –
(6,6,1) − 75

128 α+ 37
60

25
256 α− 2

15 − 3
256 α+ 1

60 – – – –
(6,4,3) − 3

4 α+ 17
20 − 1

20 α+ 23
300 – – 3

10 α− 32
75 – –

(6,2,5) − 32
45 α+ 1067

1350 – – – 2
9 α− 83

270 − 1
90 α+ 23

1350 –
(8,8,1) − 1225

2048 α+ 533
840

245
2048 α− 139

840 − 49
2048 α− 29

840
5

2048 α− 1
280 – – –

(8,6,3) − 25
32 α+ 379

420 − 5
64 α+ 13

105
1

448 α− 11
2940 – 5

14 α− 128
245 – –

(8,4,5) − 4
5 α− 1961

2100 − 4
35 α− 2711

14700 – – 2
5 α− 104

175
1
70 α− 88

3675 –
(8,2,7) − 128

175 α+ 30251
36750 – – – 1

4 α− 789
2240 − 1

50 α+ 659
21000

1
700 α− 2711

1176000
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Table 8: Dispersion relation of Eq. (2.37) at (r,nε,no) and α for less grids formulation.

(r,nε,no) Dispersion relation α for less grids

(4,4,1) (− 5
4 α+ 4

3 )sin(κ)+( 1
8 α− 1

6 )sin(2κ)+2αsin( 1
2 κ) 4

3
[18]

(4,2,3)
[
( 4

3 α− 16
9 )cos( 1

2 κ)
2
+(− 8

3 α+ 26
9 )cos( 1

2 κ)+ 4
3 α+ 8

9

]
sin( 1

2 κ) 4
3

[18]
, 13

12
[17]

(6,6,1) (− 175
128 α+ 3

2 )sin(κ)+( 7
32 α- 3

10 )sin(2κ)+(− 3
128 α+ 1

30 )sin(3κ)+2αsin( 1
2 κ) 64

45
[18]

(6,4,3)

[
(− 4

5 α+ 92
75 )cos( 1

2 κ)
3
+( 12

5 α− 256
75 )cos( 1

2 κ)
2

+(− 12
5 α+ 62

25 )cos( 1
2 κ)+ 4

5 α+ 128
75

]
sin( 1

2 κ) 64
45

[18]
, 23

15
[44]

(6,2,5)

[
(− 16

45 α+ 368
675 )cos( 1

2 κ)
4
+( 32

15 α− 676
225 )cos( 1

2 κ)
2

+(− 128
45 α+ 2134

675 )cos( 1
2 κ)+ 16

15 α+ 292
225

]
sin( 1

2 κ) 23
15

[44]
, 1067

960
[17]

(8,8,1) (− 735
512 α+ 8

5 )sin(κ)+( 147
512 α- 2

5 )sin(2κ)+(− 27
512 α+ 8

105 )sin(3κ)
+( 5

1024 α− 1
140 )sin(4κ)+2αsin( 1

2 κ)
256
175

(8,6,3) (− 45
32 α+ 109

70 )sin(κ)+(− 9
56 α+ 25

98 )sin(2κ)+( 1
224 α− 11

1470 )sin(3κ)
+( 9

7 α+ 256
245 )sin( 1

2 κ)+( 5
7 α− 256

245 )sin( 3
2 κ)

256
175 , 176

105
[44]

(8,4,5)

[
( 16

35 α− 2816
3675 )cos( 1

2 κ)
4
+(− 64

35 α+ 10844
3675 )cos( 1

2 κ)
3

+( 96
35 α− 14656

3675 )cos( 1
2 κ)

2
+(− 64

35 α+ 5594
3675 )cos( 1

2 κ)+ 16
35 α+ 8384

3675

]
sin( 1

2 κ) 176
105

[44]
, 2711

1680

(8,2,7)

[
( 32

175 α− 5422
18375 )cos( 1

2 κ)
6
+(− 32

35 α+ 5317
3675 )cos( 1

2 κ)
4

+( 96
35 α− 14656

3675 )cos( 1
2 κ)

2
+(− 512

175 α+ 60502
18375 )cos( 1

2 κ)+ 32
35 α+ 1891

1225

]
sin( 1

2 κ) 2711
1680 , 30251

26880
[44]

proposed the same scheme. In case of r = 8, the choice of α, which makes the resulted
scheme have the 10th-order accuracy is not included.

To facilitate potential optimization attempt on dispersion relations of Eq. (2.37), the
analytic expressions of relations are derived and shown in Table 8 as well.
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