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Abstract. Consider the inverse scattering problem in terms of Helmholtz equation.
We study a simply connected domain with oblique derivative boundary condition.
In the case of constant λ, given a finite number of incident wave, the shape of the
scatterer is reconstructed from the measured far-field data. We propose a Newton
method which is based on the nonlinear boundary integral equation. After computing
the Fréchet derivatives with respect to the unknown boundary, the nonlinear equation
is transformed to its linear form, then we show the iteration scheme for the inverse
problem. We conclude our paper by presenting several numerical examples for shape
reconstruction to show the validity of the method we presented.
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1 Introduction

The theory of wave field scattering plays a very important role in the field of mathe-
matical physics. For example, the research of electromagnetic wave and acoustic wave
scattering has a wide application prospect in radar remote control, space remote sens-
ing, nondestructive testing, target stealth, medical imaging and other technologies. In a
broad sense, the theory of scattering studies the relationship between medium and scat-
tering wave. Specifically, if the total field is regarded as the sum of incident field and
scattering field, the forward scattering problem is to determine the far-field mode of scat-
tering field or scattering wave by the information and differential equation of incident
field. Its mathematical essence is to solve the problem of definite solution of partial dif-
ferential equation in unbounded domain. The inverse scattering problem of wave field is
an important kind of inverse problem. It uses the measurement information outside the
medium to detect the properties of the medium, which can not be measured directly.
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A lot of work has been done on the scattering problem of Dirichlet and Neumann
boundary conditions. For the existence and uniqueness of the solution to the direct prob-
lem, see [8, 9, 12]. The authors used boundary integral equation method in [8, 12](and
references therein). In [1, 9, 11, 20] the inverse problem with Dirichlet and Neumann
bounday conditions were considered. The diffraction of tidal waves by an island and bar-
riers on water of constant finite depth are modelized by the two dimensional Helmholtz
equation in the free space with oblique derivative boundary conditions. The research of
the problem with oblique derivative boundary is still relatively few, mainly because the
boundary equation contains the tangential derivative term, which makes it difficult to
deal with, but the model is suitable for any wave dynamic description, it is necessary
to study it. For the scattering problem with oblique derivative boundary condition, nu-
merical methods were given by the single-layer potential and the angular potential to the
positive problem of the open curve in [14–16]. In [18], the author proved the uniqueness
of the solution, then used polynomial to approximate the density function and gave the
method for solving the solution, but no specific numerical examples were given. In [24],
the authors considered the exterior boundary value problem for the two-dimensional
Helmholtz equation with generalized oblique derivative boundary condition. They es-
tablished the linear sampling method (LSM) for reconstructing the boundary of the ob-
stacle from the far-field data.

There are many numerical methods for reconstructing the shape of scatterers, such as
linear sampling method, detection method, factor decomposition method, etc. Since the
inverse scattering problem is a typical nonlinear ill-posed problem, Newton method and
integral equation method are often used to solve it. Newton method is to use Fréchet
derivatives to transform the nonlinear equation into its linear form, then use Tikhonov
regularization method to deal with the ill-posed problem, see [2, 4, 6, 7, 13, 17, 19, 22].
In [6, 7] the authors applied Fréchet derivatives in Newton method to reconstruct the
impedance boundary shape of the corrosion problems. In [4, 22] the authors used full
linearization and just linearized one of the equations to solve the inverse problems. The
integral equation method has been used widely in [3, 5].

This paper is devoted to the numerical study of the oblique inverse scattering problem
with Helmholtz equation by Newton method. More explicitly, we note that the inverse
problem can be reformulated as an operator equation with respect to the boundary of the
obstacle. By linearizing this operator equation, we solve the inverse problem by New-
ton method. First, we give an initial boundary and compute the corresponding far-field
pattern. Then, after considering Fréchet differentiability of the far-field operator, we cal-
culate the Fréchet derivatives with respect to the boundary. Finally, using regularization
technique, we solve the linearized operator equation to update the boundary. Several
numerical examples are presented to show the feasibility of the reconstruction scheme.

The rest of this paper is organized as follows. In Section 2, we show the inverse prob-
lem with oblique derivative boundary. Then the inverse problem of reconstructing the
shape is transformed into solving the nonlinear boundary integral equation. In Section 3,
we consider Fréchet differentiability of the far-field operator as the theoretical foundation
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of Newton method. In Section 4, Newton method is proposed to reconstruct the shape
of the boundary. Firstly, the Fréchet derivatives of the unknown boundary is obtained,
and the original nonlinear integral equation is transformed into linear integral equation.
In addition, the regularized Newton method is used to solve the linear equation which is
equivalent to the inverse problem. We end the paper with various numerical examples of
reconstructing the boundary shape, showing the validity and efficiency of our method.

2 Integral equation

Assume that sound wave propagates in isotropic homogeneous medium. Outside
the scatterer, the total field is the superposition of incident wave and scattered wave.
Suppose that the incident wave is time harmonic, let the scatterer D⊂R2 be a bounded
and impenetrable domain with C2-smooth boundary ∂D. The external medium of D is
homogeneous and isotropic. Denote by ui(x)=eikx·d the incident wave with wavenumber
k> 0 and with a unit vector d, us the corresponding scattered wave, then the total field
u=ui+us satisfies Helmholtz equation out of D, i.e.,

∆u+k2u=0, x∈R2\D̄. (2.1)

In this paper, consider the scattering problem of ocean wave. Under some assumptions,
the scattering problem can be summarized as the boundary value problem of Helmholtz
equation on the horizontal plane. Suppose that the earth rotation is considered, the total
field satisfies the boundary condition with oblique derivative

∂u
∂ν

(x)+iλ
∂u
∂τ

(x)=0, x∈∂D, (2.2)

where ν is the unit outward normal to ∂D, τ is the unit tangent vector of ∂D, obtained by
turning ν counter clockwise for π/2, and the impedance coefficient |λ|<1 [18]. Specially,
λ=0 without the earth’s rotation. Helmholtz equation (2.1) and (2.2) consist of a bound-
ary value problem. In order to ensure the uniqueness of the boundary value problem, for
the scattered wave us, we demand that the Sommerfeld radiation condition

lim
r→∞

√
r
(

∂us

∂r
−ikus

)
=0, r= |x|, (2.3)

holds uniformly in all directions x̂= x/|x| and x̂∈Ω, where Ω is the unit circle in R2. In
particular, we are interested in the computation of the far-field pattern u∞ of the scattered
wave. The far-field pattern describes the behaviour of the scattered wave at infinity

u(x)=
eik|x|√
|x|

{
u∞(x̂)+O

(
1
|x|

)}
, |x|→∞, (2.4)

uniformly for all directions x̂= x/|x|.
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Thus, the inverse problem is: reconstruct the shape of the scatterer from the measured
far-field data based on (2.1)-(2.3).

From the oblique derivative problem (2.1)-(2.3), we know the scattered wave us satis-
fies 

∆us+k2us =0, x∈R2\D̄,
∂us

∂ν
+iλ

∂us

∂τ
= f , x∈∂D,

lim
r→∞

√
r
(

∂us

∂r
−ikus

)
=0, r= |x|,

(2.5)

where the function f can be written as

f =−
(

∂ui

∂ν
+iλ

∂ui

∂τ

)
,

for the given incident wave ui, with |λ|<1 [18].
Assume λ is a nonzero constant, by the jump relation of single layer potential and the

boundary condition, we can come to a conclusion that if−k2 is not a Dirichlet eigenvalue
of the Laplacian in D and |λ|<1, then the system (2.5) has a unique solution [25].

The uniqueness of this inverse scattering problem has been established in [23]. This
section is devoted to the mathematical justification of the integral equation method in
our setting.

Define the following boundary integral operators

S[ϕ](x) :=2
∫

∂D
Φ(x,y)ϕ(y)ds(y), x∈∂D,

K′[ϕ](x) :=2
∫

∂D

∂Φ(x,y)
∂ν(x)

ϕ(y)ds(y), x∈∂D,

H′[ϕ](x) :=2
∫

∂D

∂Φ(x,y)
∂τ(x)

ϕ(y)ds(y), x∈∂D,

where

Φ(x,y) :=
i
4

H(1)
0 (k|x−y|), x,y∈R2, x 6=y,

denotes the fundamental solution of the Helmholtz equation in R2 in terms of the Hankel
function H(1)

0 of the first kind and order zero. In fact, let ∂D ∈ C2,α, then the operator
K′ : L2(∂D)→L2(∂D) is compact, the operator H′ : L2(∂D)→L2(∂D) is bounded.

The corresponding inverse problem consists in determining the shape of the scatterer
from the knowledge of the far-field pattern, i.e., in solving the ill-posed and nonlinear
equation

F(∂D)=u∞ (2.6)
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for the unknown boundary ∂D where F denotes the operator which for the fixed incident
field ui maps the boundary curve ∂D onto the far-field pattern u∞ of the scattered wave
us. We parameterize the boundary ∂D as

γ(t) :=q(t)(cost,sint), t∈ [0,2π],

where q(t) is a 2π-periodic real function. For simplicity of calculation, we assume that
q(t) to have the form of a trigonometric polynomial of degree J, in particular,

q(t)=
J

∑
j=0

αj cos(jt)+
J

∑
j=1

β j sin(jt), αj,β j∈R. (2.7)

Definition 2.1. Let X be normed space, Y be Banach space, U⊂X be an open set, if there exists
an element r0∈U, a bounded linear operator ∂F

∂r ∈L(X,Y) and a neighborhood of r0 in X, such
that

F(r0+h)=F(r0)+
∂F
∂r

h+o(‖h‖), h∈V,

then the operator F :U→Y is differentiable.

We can see that Fréchet derivative is a extension of general derivative. To make com-
puting efficient, we combine the original density function and the term which only de-
pends on the shape of the boundary to a new density function. Denote

ψ(t) := ϕ(x(t))|x′(t)|,

by this kind of variable substitution, the Fréchet derivative of |x′(t)|, which respect to the
boundary doesn’t need to be computed.

Define F(∂D)=Fγ, where γ is a regular parametrization of ∂D. Throughout this paper,
we consider the linearized form

F′γh+Fγ =u∞ (2.8)

of the nonlinear equation (2.6) to apply Newton method, where h is the iterative update
value of the unknown boundary.

The solution of the system (2.5) can be expressed in the form of single-layer potential

us(x)=
∫

∂D
Φ(x,y)ϕ(y)ds(y), x∈R2\D̄, (2.9)

where ϕ∈L2(∂D) is the unknown density. Using the jump relation of single-layer poten-
tial and the boundary condition of (2.5), we obtain

−ϕ(x)+K′[ϕ](x)+iλH′[ϕ](x)=2 f (x), x∈∂D. (2.10)
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By the parametric representation of the boundary, Eq. (2.10) can be transformed into

−ϕ(γ(t))|γ′(t)|+2
∫ 2π

0

∂Φ(γ(t),γ(σ))
∂ν(γ(t))

ϕ(γ(σ))|γ′(t)||γ′(σ)|dσ

+iλ·2
∫ 2π

0

∂Φ(γ(t),γ(σ))
∂τ(γ(t))

ϕ(γ(σ))|γ′(t)||γ′(σ)|dσ

=2 f (γ(t))|γ′(t)|, (2.11)

for t∈ [0,2π]. Denote ψ(t) := ϕ(γ(t))|γ′(t)|, g(t) :=2 f (γ(t))|γ′(t)|, then we obtain

K̃[ψ](t)=2
∫ 2π

0

∂Φ(γ(t),γ(σ))
∂ν(γ(t))

ψ(σ)|γ′(t)|dσ, t∈ [0,2π],

H̃[ψ](t)=2
∫ 2π

0

∂Φ(γ(t),γ(σ))
∂τ(γ(t))

ψ(σ)|γ′(t)|dσ, t∈ [0,2π].

Consequently, Eq. (2.11) can be written as

(−I+K̃+iλH̃)[ψ](t)= g(t). (2.12)

The inverse operator of −I+K̃+iλH̃ exists [25], so we have

ψ(t)=(−I+K̃+iλH̃)−1g(t).

Our inverse problem is given the measurable far-field data u∞ to solve the nonlinear ill-
posed equation (2.6) by Newton method. Now based on the above discussion, an initial
boundary is given, we get Fγ from the direct problem, then compute h from the linear
integral equation (2.8), the updated boundary γ̃=γ+h is obtained. At last the updated
boundary is substituted into Eq. (2.11) as the initial boundary to continue the iteration.

3 Fréchet differentiability of the far-field operator

In order to use Newton-type method to solve this inverse scattering problem we have
to study Fréchet differentiability of the far-field operator with respect to the parametriza-
tion γ of the boundary ∂D. For this we first study the differentiability of the scattered
wave us with respect to γ. Later we obtain from the far-field representation the Fréchet
differentiability of F. In the following analysis we denote by Ck[0,2π] the space of 2π-
periodic k-times continuously differentiable functions over [0,2π].

By single-layer potential, scattering wave can be expressed as below

us(x)=
∫

∂D
Φ(x,y)ϕ(y)ds(y), x∈R2\D, y∈∂D,

the parameter form can be written as

S(ψ;γ)(x) :=us(x)=
∫ 2π

0
Φ(x,γ(σ))ψ(σ)dσ, x∈R2\D. (3.1)
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We compute the Fréchet derivative of the operator (−I+K̃+iλH̃)−1 respect to the bound-
ary γ [19]

[(−I+K̃+iλH̃)−1]′γ =−(−I+K̃+iλH̃)−1(−I+K̃+iλH̃)′γ(−I+K̃+iλH̃)−1

=−(−I+K̃+iλH̃)−1([K̃]′γ+iλ[H̃]′γ)(−I+K̃+iλH̃)−1.

We denote S̃′γ(ψ;γ)[h] as the Fréchet derivative of S(ψ;γ) respect to the boundary γ. Us-
ing the chain rule of Fréchet derivative, we have

S̃′γ(ψ;γ)[h]={S((−I+K̃+iλH̃)−1[γ]·g[γ];γ)}′γ
=S′γ((−I+K̃+iλH̃)−1[γ]·g[γ];γ)[h]

+S(−(−I+K̃+iλH̃)−1([K̃]′γ+iλ[H̃]′γ)(−I+K̃+iλH̃)−1 ·g[γ];γ)[h]
+S(−(−I+K̃+iλH̃)−1 ·g′γ;γ)[h]

=S′γ(ψ;γ)[h]+S(−(−I+K̃+iλH̃)−1([K̃]′γ+iλ[H̃]′γ)(ψ;γ)[h]

+(−I+K̃+iλH̃)−1 ·g′γ(γ)[h]).

Theorem 3.1. The integral operators S, K̃ and H̃ are Fréchet differentiable. The Fréchet deriva-
tives are obtained by differentiation of their kernels, respectively [21].

From Definition 2.1 and Theorem 3.1, we get the scattered wave us is differentiable
with respect to γ. Then we are able to obtain the main result of this section.

Theorem 3.2. The far-field operator F : γ→ u∞ is Fréchet differentiable from C2[0,2π] into
L2(Ω).

Proof. Let D̃ be a domain of R2 with the property ¯̃D∩D̄=∅. By applying Fréchet differ-
entiability of the scattered wave us we get the existence of a constant C with

||S(ψ;r+h)−S(ψ;r)−S̃′γ(ψ;γ)[h]||C2(D̃)≤C||h||2C2[0,2π]

for sufficiently small h. From Green’s representation theorem we have

u∞(x̂)=
1

4π

∫
∂D

{
us(y)

∂ui(y,−x̂)
∂ν(y)

−ui(y,−x̂)
∂us(y)

∂ν

}
ds(y), x̂∈Ω. (3.2)

From this, using the Cauchy-Schwarz inequality we derive that

||u∞(ψ;r+h)−u∞(ψ;r)−ũ′γ,∞(ψ;γ)[h]||L2(Ω)≤C||h||2C2[0,2π]

for all sufficiently small h.
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4 The iterative method of the inverse problem

In this section, under the frame of Newton method, we establish a numerical method
for shape reconstruction of the scatterer. The problem of shape reconstruction is using
the measurable far-field data u∞ to solve a nonlinear ill-posed equation F(∂D)=u∞ with
respect to the unknown boundary ∂D. First, the linearized form F′γh+Fγ = u∞ of the
nonlinear equation is obtained by using the Fréchet derivatives, where h is the iterative
update value of the unknown boundary, γ is the parameter of the boundary. Then New-
ton method is used to solve the problem. Given an initial boundary γ, the corresponding
density function is obtained by solving the boundary condition equation. The far-field
model Fγ and the Fréchet derivatives of far-field, which are related to the boundary can
be calculated. The inverse problem is ill-posed, we use Tikhonov regularization to solve
the equation and use Projection method to solve the inverse problem. After solving the
above linear problem, we get the boundary update value h, finally we obtain the new
boundary γ̃=γ+h. Continue iterating until stop criteria is met.

To get F′γh is actually to compute the far-field data of S̃′γ(ψ;γ)[h]. Our result is stated
as follows.

Theorem 4.1. The Fréchet derivative of the far-field operator is given by

F′γh=

√
k

8π
e−iπ/4

∫ 2π

0
e−ikx̂(t)·γ(σ)〈x̂(t),h(σ)〉ψ(σ)dσ+

eiπ/4
√

8kπ

∫ 2π

0
e−ikx̂(t)·γ(σ)Ψ(σ)dσ,

where ψ is a solution of the integral equation (2.12), and Ψ has the following representation

−(−I+K̃+iλH̃)−1([K̃]′γ+iλ[H̃]′γ)(ψ;γ)[h]+(−I+K̃+iλH̃)−1 ·g′γ(γ)[h].

Proof. Due to the chain rule of Fréchet derivative we discussed above,

S̃′γ(ψ;γ)[h]=S′γ(ψ;γ)[h]+S(−(−I+K̃+iλH̃)−1([K̃]′γ+iλ[H̃]′γ)(ψ;γ)[h]

+(−I+K̃+iλH̃)−1 ·g′γ(γ)[h]).

Denote by

V ′γ(ψ;γ)[h] :=S(−(−I+K̃+iλH̃)−1([K̃]′γ+iλ[H̃]′γ)(ψ;γ)[h]

+(−I+K̃+iλH̃)−1 ·g′γ(γ)[h]),

then S̃′γ(ψ;γ)[h] can be written as

S̃′γ(ψ;γ)[h]=S′γ(ψ;γ)[h]+V ′γ(ψ;γ)[h].

By using (3.1),we get

S′γ(ψ;γ)[h]=
∫ 2π

0
−〈gradΦ(x,γ(σ)),h(σ)〉ψ(σ)dσ.
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Based on the relationship between scattering wave and far field, we have

S′γ,∞(ψ;γ)[h](x̂)=

√
k

8π
e−iπ/4

∫ 2π

0
e−ikx̂(t)·γ(σ)〈x̂(t),h(σ)〉ψ(σ)dσ.

Now we deal with V ′γ(ψ;γ)[h], we find that

V ′γ(ψ;γ)[h]=S(Ψ),

which yields to

V ′γ,∞(ψ;γ)[h]=S∞(Ψ)=
eiπ/4
√

8kπ

∫ 2π

0
e−ikx̂(t)·γ(σ)Ψ(σ)dσ.

We can conclude

F′γh=S̃′γ,∞(ψ;γ)[h]=S′γ,∞(ψ;γ)[h]+V ′γ,∞(ψ;γ)[h]

=

√
k

8π
e−iπ/4

∫ 2π

0
e−ikx̂(t)·γ(σ)〈x̂(t),h(σ)〉ψ(σ)dσ

+
eiπ/4
√

8kπ

∫ 2π

0
e−ikx̂(t)·γ(σ)Ψ(σ)dσ.

Thus, we complete the proof.

By using

K̃[ψ,γ](t)=2
∫ 2π

0

∂Φ(γ(t),γ(σ))
∂ν(γ(t))

ψ(σ)|γ′(t)|dσ

=2
∫ 2π

0
〈gradΦ(γ(t),γ(σ)),n(γ(t))〉ψ(σ)dσ,

where 〈x,y〉= x ·y denotes the inner product of x and y,

n(γ(t))= |γ′(t)|ν(γ(t))=(γ′2(t),−γ′1(t)),

we derive the Fréchet derivative of the operator K̃ as below [19, 21],

[K̃]′γ(ψ;γ)[h](t)=2
∫ 2π

0
〈grad〈gradΦ(γ(t),γ(σ)),h(t)−h(σ)〉,n(γ(t))〉ψ(σ)dσ

+2
∫ 2π

0
〈gradΦ(γ(t),γ(σ)),n(h(t))〉ψ(σ)dσ

=
∫ 2π

0
Q(t,σ)ψ(σ)dσ,
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where

Q(t,σ)=− ik
2

H(1)
1 (k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),n(h(t))〉

|γ(t)−γ(σ)|

− ik2

2
H(1)

0 (k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),h(t)−h(σ)〉
|γ(t)−γ(σ)|2 (〈γ(t)−γ(σ),n(γ(t))〉)

+ikH(1)
1 (k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),h(t)−h(σ)〉

|γ(t)−γ(σ)|2
〈γ(t)−γ(σ),n(γ(t))〉
|γ(t)−γ(σ)|

− ik
2

H(1)
1 (k|γ(t)−γ(σ)|) 〈h(t)−h(σ),n(γ(t))〉

|γ(t)−γ(σ)| .

The singular kernel decomposition of Q(t,σ) can be established as follows

(1) for t 6=σ, we get

Q1(t,σ)=−
1

2π

{
−kJ1(k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),n(h(t))〉

|γ(t)−γ(σ)|

−k2 J0(k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),h(t)−h(σ)〉
|γ(t)−γ(σ)|2 (〈γ(t)−γ(σ),n(γ(t))〉)

+2kJ1(k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),h(t)−h(σ)〉
|γ(t)−γ(σ)|2

〈γ(t)−γ(σ),n(γ(t))〉
|γ(t)−γ(σ)|

−kJ1(k|γ(t)−γ(σ)|) 〈h(t)−h(σ),n(γ(t))〉
|γ(t)−γ(σ)|

}
,

Q2(t,σ)=Q(t,σ)−Q1(t,σ)ln
(

4sin2 t−σ

2

)
.

(2) for t=σ, we have

Q1(t,t)=0,

Q2(t,t)=
1

2π

[ 〈γ′′(t),n(h(t))〉+〈h′′(t),n(γ(t))〉
|γ′(t)|2 −2

〈γ′′(t),n(γ(t))〉〈γ′(t),h′(t)〉
|γ′(t)|4

]
.

Based on

H̃[ψ,γ](t)=2
∫ 2π

0

∂Φ(γ(t),γ(σ))
∂τ(γ(t))

ψ(σ)|γ′(t)|dσ

=2
∫ 2π

0
〈gradΦ(γ(t),γ(σ)),p(γ(t))〉ψ(σ)dσ,

where 〈x,y〉= x ·y denotes the inner product of x and y,

p(γ(t))= |γ′(t)|τ(γ(t))=(γ′1(t),γ
′
2(t)),
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the Fréchet derivative of the operator H̃ is given by

[H̃]′γ(ψ;γ)[h](t)=2
∫ 2π

0
〈grad〈gradΦ(γ(t),γ(σ)),h(t)−h(σ)〉,p(γ(t))〉ψ(σ)dσ

+2
∫ 2π

0
〈gradΦ(γ(t),γ(σ)),p(h(t))〉ψ(σ)dσ

=
∫ 2π

0
G(t,σ)ψ(σ)dσ,

where

G(t,σ)=− ik
2

H(1)
1 (k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),p(h(t))〉

|γ(t)−γ(σ)|

− ik2

2
H(1)

0 (k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),h(t)−h(σ)〉
|γ(t)−γ(σ)|2 (〈γ(t)−γ(σ),p(γ(t))〉)

+ikH(1)
1 (k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),h(t)−h(σ)〉

|γ(t)−γ(σ)|2
〈γ(t)−γ(σ),p(γ(t))〉
|γ(t)−γ(σ)|

− ik
2

H(1)
1 (k|γ(t)−γ(σ)|) 〈h(t)−h(σ),p(γ(t))〉

|γ(t)−γ(σ)| .

The singular kernel decomposition of G(t,σ) can be shown as follows

(1) for t 6=σ, we get

G1(t,σ)=−
1

2π

{
−kJ1(k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),p(h(t))〉

|γ(t)−γ(σ)|

−k2 J0(k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),h(t)−h(σ)〉
|γ(t)−γ(σ)|2 (〈γ(t)−γ(σ),p(γ(t))〉)

+2kJ1(k|γ(t)−γ(σ)|) 〈γ(t)−γ(σ),h(t)−h(σ)〉
|γ(t)−γ(σ)|2

〈γ(t)−γ(σ),p(γ(t))〉
|γ(t)−γ(σ)|

−kJ1(k|γ(t)−γ(σ)|) 〈h(t)−h(σ),p(γ(t))〉
|γ(t)−γ(σ)|

}
,

G2(t,σ)=G(t,σ)−G1(t,σ)ln
(

4sin2 t−σ

2

)
− 1

2π
cot

σ−t
2

.

(2) for t=σ, we have

G1(t,t)=0,

G2(t,t)=−
1

2π

[ 〈γ′′(t),p(h(t))〉+〈h′′(t),p(γ(t))〉
|γ′(t)|2 −2

〈γ′′(t),p(γ(t))〉〈γ′(t),h′(t)〉
|γ′(t)|4

]
.
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When the incident wave ui = eikγ·d, we obtain

g(t)=−2
( ∂ui

∂ν(γ)
|γ′(t)|+iλ

∂ui

∂τ(γ)
|γ′(t)|

)
=−2

(∂eikγ·d

∂ν(γ)
|γ′(t)|+iλ

∂eikγ·d

∂τ(γ)
|γ′(t)|

)
=−2(〈gradeikγ·d,ν(γ(t))〉|γ′(t)|+iλ〈gradeikγ·d,τ(γ(t))〉|γ′(t)|)
=−2(〈gradeikγ·d,n(γ(t))〉+iλ〈gradeikγ·d,p(γ(t))〉)
=−2(g1(t)+iλg2(t)).

Then the Fréchet derivative of g1(t) is given by

g′1(γ)[h](t)=〈gradeikγ·d,n(h(t))〉+〈grad〈gradeikγ·d,h(t)〉,n(γ(t))〉
=ikeikγ·d〈d,n(h(t))〉+〈grad〈eikγ·dikd,h(t)〉,n(γ(t))〉
=ikeikγ·d〈d,n(h(t))〉+〈eikγ·dikd,h(t)〉〈ikd,n(γ(t))〉
=ikeikγ·d〈d,n(h(t))〉−k2eikγ·d〈d,h(t)〉〈d,n(γ(t))〉,

while the Fréchet derivative of g2(t) can be established as

g′2(γ)[h](t)= ikeikγ·d〈d,p(h(t))〉−k2eikγ·d〈d,h(t)〉〈d,p(γ(t))〉.

Thus, we derive the Fréchet derivative of g(t)

g′γ(γ)[h](t)=−2(g′1(γ)[h](t)+iλg′2(γ)[h](t)).

We note both the update value h and the boundary are 2π-period functions, so we can
use trigonometric interpolation polynomials to approximate h, i.e.,

h(t)=
2m

∑
l=0

χl pl(t),

where χl is an unknown coefficient, pl(t)=B(lt)(cos(t),sin(t)), with

B(lt)=

{
cos(lt), l=0,··· ,m,
sin((l−m)t), l=m+1,··· ,2m.

By the linearity of the operator F′γ, Eq. (2.8) can be rewritten as

2m

∑
l=0

χl F′γ(pl(t))+Fγ(x̂(t))=u∞(x̂(t)). (4.1)
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From

S′γ,∞(ψ;γ)[h](x̂)=
2m

∑
l=0

χlS′γ,∞(ψ;γ)[pl ](x̂),

V ′γ,∞(ψ;γ)[h](x̂)=
2m

∑
l=0

χlV ′γ,∞(ψ;γ)[pl ](x̂),

with

S′γ,∞(ψ;γ)[pl ](x̂)=

√
k

8π
e−iπ/4

∫ 2π

0
e−ikx̂(t)·γ(σ)〈x̂(t),pl(σ)〉ψ(σ)dσ, (4.2a)

V ′γ,∞(ψ;γ)[pl ]=S∞((−I+K̃+iλH̃)−1([K̃]′γ+iλ ˜[H]′γ)(ψ;γ)[pl ]

+(−I+K̃+iλH̃)−1(g)′γ(γ)[pl ]), (4.2b)

we obtain

2m

∑
l=0

χl F′γ(pl(t))=
2m

∑
l=0

χlS′γ,∞(ψ;γ)[pl ](t)+
2m

∑
l=0

χlV ′γ,∞(ψ;γ)[pl ](t). (4.3)

Therefor, based on (4.2a) and (4.2b) we can get S′γ,∞(ψ;γ)[pl ] and V ′γ,∞(ψ;γ)[pl ], then
F′γ(pl) can be computed by (4.3).

Given u∞, Fγ, F′γ(pl(t)), we get χl by solving Eq. (4.1). However, because the equa-
tion is ill-posed, Tikhonov regularization is needed. We transform solving Eq. (4.1) into
minimizing the functional

W :=
2n−1

∑
j=0

∣∣∣ 2m

∑
l=0

χl F′γ(pl(tj))+Fγ(x̂j)−u∞(x̂j)
∣∣∣2+α

2m

∑
l=0
|χl |2, (4.4)

where α is the regularization parameter. That is, to solve the unknown coefficient χl , such
that (4.4) is minimized.

5 Numerical examples of inverse problem

In this section, some numerical examples are given to verify the feasibility of the Newton
method we proposed above. In the numerical examples, we get the unknown coefficient
χl from (4.4) by Newton method.

This method can be summarized as four steps:

Step 1 Given the initial boundary γ, after obtaining the density function ψ, compute the
far-field model Fγ which corresponding to the initial boundary.

Step 2 Compute S′γ,∞(ψ;γ)[pl ], V ′γ,∞(ψ;γ)[pl ]. We note the density function ψ is the same
as in Step 1, so plug ψ into (4.3) to obtain F′γ(pl).
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Step 3 By using the regularization method, the unknown coefficient χl is solved accord-
ing to u∞ and Fγ, F′γ, which are calculated in the first two steps. Then, it is sub-
stituted into h = ∑2m

l=0 χl pl to get the incremental h of the boundary γ, and the
updated boundary γ̃=γ+h is obtained.

Step 4 Repeat the above steps until the stop iteration criterion is satisfied.

Using the far-field data of an incident wave to reconstruct the closed region, the direction
is d=(1,0), the wave number is k=1, the number of configuration points is n=32. The
regularization parameters are selected by the general deviation principle in [10]. The
error data is given by the following formula

uδ
∞ :=u∞+δ

‖u∞‖L2

‖η‖L2
η,

where η is normal distribution variable, δ is the relative noise level. In all the examples,
We choose the circle (cos(t),sin(t)) as the initial value of the boundary, λ = 0.05 as the
impedance coefficient. All the numerical examples show the results of 10 steps of itera-
tion.

Example 5.1. We consider the parametric form of pear-shaped boundary,

∂D={x|x(t)=(1.2+0.25cos(t))(cos(t),sin(t)), t∈ [0,2π]}.

The expansion number of the boundary increment h is m= 3. Using the exact data u∞
and the noisy data with δ=0.05, 10 steps iteration, the reconstruction of the pear-shaped
are established in Fig. 1.
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Figure 1: Reconstruction of pear-shaped with exact data on the left and with 5% noisy data on the right.
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Example 5.2. We consider the parametric form of heart-shaped boundary,

∂D=
{

x|x(t)=
(

1.2− 1
3

sin(t)− 1
7

sin(3t)
)
(cos(t),sin(t)

)
, t∈ [0,2π]

}
.

The expansion number of the boundary increment h is m= 2. Using the exact data u∞
and the noisy data with δ=0.05, 10 steps iteration, the reconstruction of the heart-shaped
are established in Fig. 2.
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Figure 2: Reconstruction of heart-shaped with exact data on the left and with 5% noisy data on the right.

Example 5.3. We consider the parametric form of peanut-shaped boundary,

∂D=
{

x|x(t)=0.8
√

cos2(t)+0.25sin2(t)(cos(t),sin(t)), t∈ [0,2π]
}

.

The expansion number of the boundary increment h is m=3. Using the exact data u∞ and
the noisy data with δ= 0.05, 10 steps iteration, the reconstruction of the peanut-shaped
are established in Fig. 3.

Reconstructions of pear and heart are better than peanut, mainly because the para-
metric representation of the peanut-shaped boundary cannot be written as q(t) in (2.7).

Acknowledgements

The research of Y. Q. Hu is supported by PhD research startup foundation of Jinling
Institute of Technology (No. jit-b-201524) and the Science Foundation of Jinling Institute
of Technology (No. Jit-fhxm-201809). The author would like to thank the referees for the
helpful suggestions.



Y. Hu / Adv. Appl. Math. Mech., 13 (2021), pp. 1558-1574 1573

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

initial guess

exact boundary

reconstructed boundary

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

initial guess

exact boundary

reconstructed boundary

(a) (b)

Figure 3: Reconstruction of peanut-shaped with exact data on the left and with 5% noisy data on the right.
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