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Abstract. The hard thresholding regularised logistic regression in high dimensions with

larger number of features than samples is considered. The sharp oracle inequality for

the global solution is established. If the target signal is detectable, it is proven that with

a high probability the estimated and true supports coincide. Starting with the KKT condi-

tion, we introduce the primal and dual active sets algorithm for fitting and also consider

a sequential version of this algorithm with a warm-start strategy. Simulations and a real

data analysis show that SPDAS outperforms LASSO, MCP and SCAD methods in terms

of computational efficiency, estimation accuracy, support recovery and classification.
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1. Introduction

Let y ∈ {0,1} be the binary response variable, x ∈ Rp the covariate vector and β∗ ∈ Rp

the underlying regression coefficients vector in the logistic regression model

P
�

y = 1|x
�
=

exp
�
xTβ∗
�

1+ exp
�
xTβ∗
� ,

cf. [10, 11]. Logistic regression is an important generalised linear model (GLM) widely

used in statistics, machine learning, social and medical sciences, finance industry and so

on. In this work, we focus on the variable estimation and selection in high-dimensional

and sparse settings — i.e. if n≪ p and ‖β∗‖0 < n, where n is the sample size and ‖β∗‖0
the cardinality of the set of nonzero elements in β∗.
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To obtain the estimator of β∗ in high-dimensional and sparse cases, many regularised

methods have been proposed. In particular, works [13,17] extend the least absolute shrink-

age and selection operator method (LASSO) [16] from the linear regression to GLMs. Fried-

man et al. [4] used the coordinate descent to solve the elastic net penalised GLMs [21]. In

Refs. [8, 19], the path following proximal gradient descent method [12] has been applied

to variable estimation in GLMs with smoothly clipped absolute deviation (SCAD) and min-

imax concave (MC) penalties [3]. Besides, Li et al. [7] introduced a DC proximal Newton

(DCPN) method for GLMs with sparsity promoting non-convex penalties such as MC and

SCAD ones.

In this paper, we consider the hard thresholding regulariser

ρλ(t) =






−t2

2
+λ|t|, if |t| < λ,

λ2

2
, if |t| ≥ λ,

(1.1)

where a non-convex and non-smooth function ρλ admits the hard thresholding operator

(3.2), cf. [1]. The hard thresholding regularised estimator leads to the problem

min
β
Ln(β) +

p∑

i=1

ρλ(βi), (1.2)

where

Ln(β) =
1

n

n∑

i=1

log
�
1+ exp
�
xT

i β
��
−

YT Xβ

n

is the negative logarithmic likelihood function and λ > 0 the tuning parameter.

The ideas of [8, 20] can be used to determine the sharp upper bound for the errors

of the estimator (1.2). Nevertheless, since (1.2) is a non-convex non-smooth optimisation

problem, it is difficult to develop a stable efficient computational algorithm for its solution,

especially in high-dimensional and sparse settings. Inspired by [5,15], we construct a pri-

mal and dual active set (PDAS) algorithm for solving the minimisation problem (1.2). Our

approach is motivated by the KKT conditions of the hard thresholding regularised problem.

In PDAS, the active set of a relatively small size is first determined via summation of

primal and dual variables generated by the previous iteration. The primal variable is then

updated by solving a minimisation problem on the active set, whereas the dual variable

is updated by using the gradient information. Further, in order to make PDAS more ap-

plicable, we consider a sequential version of PDAS (SPDAS), which combines PDAS with

a continuation strategy on the regularisation parameter λ. Thus, by SPDAS algorithm we

generate a solution path with a different regularisation parameter λ. Then we can chose

one data-driven method such as the modified Bayesian information criteria [6, 18] or the

voting method [5] to chose the optimal solution.

The main results of this work are as follows. Using regularity assumptions on the loss

function and the covariance matrix, we establish a sharp oracle inequality of the global
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solution and prove that for detectable target signals the estimated and true supports co-

incide with a high probability. After that, we exploit the KKT conditions of the minimiser

and construct a primal and dual active sets algorithm (PDAS) for fitting. In PDAS, active

sets with small size are identified iteratively via the primal and dual variables in the pre-

vious iteration, and the primal variable is updated by the maximum likelihood estimation

restricted to the active set. The dual variable is updated explicitly with the gradient infor-

mation. Furthermore, we consider a sequential PDAS (SPDAS) with a warm-start strategy

to provide good initial values for PDAS automatically. Extensive numerical simulations and

real data analysis demonstrate the superiority of the method over LASSO, MCP and SCAD

in terms of the estimation accuracy, support recovery, computational speed and prediction

accuracy in classification.

The rest of this paper is organised as follows. In Section 2, we present the theoretical

analysis for the global solution. Under certain conditions we establish non-asymptotic ℓ1
and ℓ2-norm error bounds for the global solution and show that its support set coincides

with the target support set with a high probability. The PDAS and SPDAS algorithms are

introduced in Section 3. Section 4 deals with the simulations aimed to evaluate the per-

formance of SPDAS and illustrate its application. Our conclusion is in Section 5 and the

proofs of Theorem 2.1 and Lemma 3.1 are moved to Appendix A.

2. Theoretical Properties of Global Solutions

We first introduce the notations used in this paper. Let ‖β‖q, q ∈ [1,∞] be the usual

q-norm on Rp, i.e.

‖β‖q :=

�
p∑

i=1

|βi|
q

� 1
q

, β = (β1, . . . ,βp)
T ∈ Rp.

Set

ρλ(β) =

p∑

i=1

ρλ(βi),

and let ‖β‖min be the minimal absolute value of β . Consider the set S = {1, . . . , p} and for

any subset A⊆ S of the size |A| let βA (XA ∈ R
n×|A|) refer to a subvector (a submatrix) whose

entries (columns) are listed in A. If X is covariance matrix, then XAB denotes a submatrix

of X whose rows and columns are respectively listed in A and B. Besides, the support

{i ∈ S : zi 6= 0} of the vector z is denoted by supp (z) and A∗ := supp (β∗) and I∗ := (A∗)c.

The hard thresholding ρλ in (1.1) satisfies [8, Assumption 1] and general assumptions

of [20], where a class of regularisation functions is studied. Thus if λ is fixed, then ρλ
is a one-symmetric function about the ordinate axis, which vanishes at t = 0. Moreover,

it is a subadditive nondecreasing function on (0,∞), differentiable for all t 6= 0 and such

that limt→0+ ρλ(t)
′

= λ. It indicates that ρλ is λ-Lipschitz continuous. Moreover, ρλ,µ(t) =

ρλ(t)+µt2/2 is convex for anyµ ≥ 1 [8,20]. Therefore, we can use [8] in order to derive an

oracle nonasymptotic error bound for the global solution and to study the support recovery

property.
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Following [8], we also consider the feasible set Ω= {β : g(β)< R}, where

g(β) =
ρλ(β) + (µ/2)‖β‖

2

λ
,

R is a positive constant such that β∗ ∈ Ω and µ ≥ 1. Let β⋄ denote the global solution

of the optimisation problem (1.2) restricted to Ω. According to [8], the restricted strong

convexity (RSC) condition has the form



∇Ln (β

∗ +∆)−∇Ln (β
∗) ,∆
�
≥






α1‖∆‖
2
2 −τ1

log p

n
‖∆‖21, ∀ ‖∆‖2 ≤ 1,

α2‖∆‖2 −τ2

log p

n
‖∆‖1, ∀ ‖∆‖2 ≥ 1,

(2.1)

where α1, α2 are strictly positive constants and τ1, τ2 nonnegative constants. This RSC

inequality implies that the set Ln(β) is strong convex over the cone of the form
�
‖∆‖1

‖∆‖2
≤ c

√√ n

log p

�
.

Theorem 2.1. Let Ln(β) satisfy the RSC condition (2.1) with 3µ/4 < α1 and µ ≥ 1. If λ

satisfies the inequality

4 max
¦
‖∇Ln (β

∗)‖∞ ,α2

Æ
log(p)/n
©
≤ λ≤

α2

6R

and

n≥
�
16R2 max
�
τ2

1
,τ2

2

�
/α2

2

�
log(p),

then

‖β⋄ −β∗‖1 ≤
24λ|A∗|

4α1 − 3µ
, ‖β⋄ −β∗‖2 ≤

6λ
p
|A∗|

4α1 − 3µ
.

Moreover, if the entries of X are i.i.d. sub-Gaussian, then there exist universal constants

{c1, c2, c3} with 0< ci <∞, i = 1,2,3, such that

‖β⋄ − β∗‖1 ≤
96|A∗|(c1 +α2)
p

log(p)/n

4α1 − 3µ
,

‖β⋄ − β∗‖2 ≤
24(c1 +α2)
p
|A∗| log(p)/n

4α1 − 3µ

with probability at least 1− c2 exp(−c3 log(p)).

Our next goal is to study the support recovery property of the minimiser β⋄. To do this,

we need a condition that would guaranty the detectability of the signal.

Condition 2.1. The term ‖β∗A∗‖min satisfies the inequality

‖β∗A∗‖min >
96|A∗|(c1 + α2)
p

log(p)/n

4α1 − 3µ
,

where µ, c1,α2 are defined in Theorem 2.1.
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Theorem 2.2. If the conditions of Theorem 2.1 and Condition 2.1 hold, then

A∗ ⊆ supp(β⋄)

with the probability at least 1− c2 exp(−c3 log(p)).

Proof. The Condition 2.1 shows that

‖β∗ −β⋄‖∞ < ‖β
∗
A∗‖min.

It implies that A∗ ⊆ supp (β⋄).

3. PDAS and SPDAS

According to the above analysis, the global solution β⋄ is the oracle estimator of the

target regression coefficients β∗. But (1.2) is a non-convex non-smooth optimisation prob-

lem. This creates various difficulties in construction of iterative computational algorithms

in finding this oracle estimator. Following the ideas of [5, 15], we develop a primal and

dual active sets algorithm (PDAS) for computations. After that we introduce the sequential

version of PDAS algorithm with a warm-start strategy.

3.1. PDAS Algorithm

Based on the KKT condition of the hard thresholding regularised problem (1.2), we can

determine a minimiser on Rp as the following lemma shows.

Lemma 3.1. If β⋄ is the minimiser of the problem (1.2), then β⋄ satisfies the equations

d⋄ = −∇Ln(β),

β⋄ = Γλ(β
⋄ + d⋄),

(3.1)

where the i-th element of Γλ is defined by

�
Γλ(β)
�

i
=

¨
0, |βi| ≤ λ,

βi, |βi| > λ.
(3.2)

Conversely, if β⋄ and d⋄ satisfy the Eqs. (3.1), then β⋄ is a stationary point of (1.2).

Lemma 3.1 provides an implicit expression of the minimiser of β⋄ and it is a base for

the PDAS algorithm. Note that Γλ in (3.2) is the hard thresholding operator corresponding

to the regularisation ρλ. Writing A⋄ = supp (β⋄), I⋄ = (A⋄)c and using the definition of Γλ
and the Eqs. (3.1) yields

A⋄ =
¦

i ∈ S :
��β⋄i + d⋄i

�� > λ
©

, I⋄ =
¦

i ∈ S :
��β⋄i + d⋄i

�� ≤ λ
©

,
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and

β⋄I⋄ = 0, d⋄A⋄ = 0, β⋄A⋄ ∈ argmin
βA⋄

fLn(βA⋄), d⋄I⋄ =
�
−∇Ln(β

⋄)
�

I⋄
,

where

fLn(βA⋄) =Ln(β |A⋄) = −
1

n

n∑

i=1

�
yix

T
i(A⋄)
βA⋄ − log
�
1+ exp
�
xT

i(A⋄)
βA⋄

���
.

For a fixed λ, let {β k,dk} be the values in the k-th iteration in PDAS algorithm. We denote

by {Ak, Ik} the active and inactive sets corresponding to {β k,dk}. More precisely, we have

Ak =
¦

i ∈ S :
��β k

i + dk
i

�� > λ
©

, Ik =
¦

i ∈ S :
��β k

i + dk
i

�� ≤ λ
©

.

This leads to the new approximation pair {β k+1
I k ,dk+1

Ak ,β k+1
Ak ,dk+1

I k } with the terms

β k+1
I k = 0, dk+1

Ak = 0, β k+1
Ak = argmin

β
Ak

fLn(βAk), dk+1
I k =
�
−∇Ln

�
β k+1
��

I k ,

where

fLn(βAk) = −
1

n

n∑

i=1

�
yix

T
i(Ak)
βAk − log
�
1+ exp
�
xT

i(Ak)
βAk

���
.

The proposed PDAS algorithm is formulated as Algorithm 3.1.

Remark 3.1. Algorithm 3.1 terminates computation when the sequential estimated support

coincides with each other or the maximum iteration number exceeds a given number K . The

step 3 of the algorithm distinguishes the active set by combining primal and dual variables.

The minimisation problem restricted to the selected active set Ak is then solved as described

in step 6.

Algorithm 3.1 PDAS algorithm

1: Input: β0, d0, λ, k = 0, K .

2: for k = 0,1, . . . , K , do

3: Ak =
�

j ∈ S :
��β k

j
+ dk

j

�� > λ
	
, Ik = (Ak)c;

4: β k+1
I k = 0;

5: dk+1
Ak = 0;

6: β k+1
Ak = argmin

β
Ak

fLn(βAk);

7: dk+1
I k =
�
−∇Ln(β

k+1)
�

I k ;

8: if Ak = Ak+1 or k ≥ K then

9: Stop and denote the last iteration β Â, β Î , dÂ, dÎ ;

10: else

11: k = k + 1;

12: end if

13: end for

14: Output: β̂(λ) = (βT

Â
, βT

Î
)T and d̂(λ) = (dT

Â
, dT

Î
)T as the estimators at λ.
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3.2. SPDAS algorithm

PDAS algorithm (Algorithm 3.1) only solves the minimisation problem (1.2) with fixed

tuning parameter λ. However, we are more interested in the solution path. Here, we

propose a sequential PDAS algorithm (SPDAS), which combines PDAS and a continuation

strategy thus providing good initial guesses and determines a solution path. Consider the

decreasing sequence of regularisation parameters λm = λ0α
m, α ∈ (0,1).

According to Lemma 3.1, the vector 0 is the minimiser of the problem (1.2) if λ ≥

‖∇Ln(0)‖∞. Therefore, we set λ0 = ‖∇Ln(0)‖∞ so that

β̂(λ0) = 0 and d̂(λ0) = −∇Ln(0).

Then we apply Algorithm 3.1 to the sequence {λm}m with the solution {β̂(λm), d̂(λm)} as

the initial guess for the λm+1-problem. We can terminate the SPDAS algorithm and obtain

the solution path up to
β̂(λm)


0
>

�
n

log p

�

for an m. After that, we can employ a data-driven method — e.g. the modified Bayesian

information criteria [6,18] or the voting method [5] to choose the optimal solution without

any extra computational overhead. The pseudocode of SPDAS algorithm is described by

Algorithm 3.2.

Algorithm 3.2 SPDAS algorithm

1: Input: β̂(λ0) = 0, d̂(λ0) = −∇Ln(0), λ0 = ‖∇Ln(0)‖∞, M , α.

2: for m= 1, . . . , M do

3: λ= λm = λ0α
m, β0 = β̂(λm−1), d0 = d̂(λm−1);

4: Run Algorithm 3.1 to get β̂(λm) and d̂(λm);

5: if ‖β̂(λm)‖0 > ⌊
n

log p ⌋ then

6: Stop;

7: end if

8: end for

9: Output:
�
β̂(λ0), β̂(λ1), . . . , β̂(λM )

	
.

4. Simulation Studies

Here, we carry out simulations to illustrate the effectiveness of the SPDAS algorithm.

We also use four real data sets to compare this algorithm with LASSO, MCP and SCAD. Note

that LASSO, MCP and SCAD are implemented in R package ncvreg [2]. In all experiments,

the n× p covariates matrix X is generated according to the following procedure.

(I) We first generate an n×p random Gaussian matrix eX whose entries are i.i.d.∼ N (0,1).

Then the covariates matrix X is generated with x1 = ex1, xp = exp, and x j = ex j +

ρ(ex j+1 + ex j−1), j = 2, . . . , p − 1, where ρ is the measure of the correlation between

the covariates.
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(II) The rows of X are i.i.d ∼ N (0,Σ), where

Σi, j = ρ
|i− j|, 1≤ i, j ≤ p,

and ρ is the correlation parameter.

The support A∗ is chosen uniformly from S with |A∗| = T < n. The nonzero entries are

generated as β∗
i
= θiR

κi , i ∈ A∗, where θi are i.i.d. Bernoulli random variables with the

parameter 0.5, κi i.i.d. uniform random variables in [0,1], and R > 1. Then the response

yi is equivalent to Binomial(1, pi) for

pi =
exp
�
xT

i
β∗
�

1+ exp
�
xT

i
β∗
� , i = 1, . . . , n.

4.1. Accuracy and efficiency

We now randomly choose 80% of the samples as the training set and the rest as the test

set in calculating the classification accuracy rate for predicting. Then we compare SPDAS

with LASSO, MCP and SCAD in terms of the average ℓ2 relative error (RE), the average

CPU time in seconds (Time), and the average classification accuracy rate by prediction

(ACRP). Besides, we compare the performance of the support recovery for all four methods,

evaluating the mean size of the estimated support (MSES), the average positive discovery

rate (APDR), the average false discovery rate (AFDR) and the average combined discovery

rate (ADR) [9]. Let J denote the number of independent replications. Then above criteria

are defined

RE :=
1

J

J∑

j=1

β̂ ( j) −β∗


‖β∗‖
, MSES :=

1

J

J∑

j=1

|Â( j)|,

APDR :=
1

J

J∑

j=1

��Â( j)
⋂

A∗
��

|A∗|
, AFDR :=

1

J

J∑

j=1

��Â( j)
⋂

A∗c
��

|Â( j)|
,

ADR := APDR+ (1−AFDR), Time :=
1

J

J∑

j=1

t( j),

where β̂
( j)

is the estimator at j-th simulation, Â( j) the estimated support, and t( j) the j-th

running time. We observe that for small RE the corresponding method performs well in

variable estimation. If APDR and ADR are close to 1 and 2, respectively, AFDR close to 0,

and MSES takes values approximating the target sparse levels, then the target support can

be estimated. The smaller values the Time takes, the faster computational speed the associ-

ated methods have. Meanwhile, high values of ACRP yield excellent prediction results. Let

X be the matrix obtained according to method (I) and let n = 1000, p = 10000, T = 20,

R= 10, ρ = 0.2 : 0.2 : 0.8.

The results presented in Table 1 are based on 100 independent replications. Note that

SPDAS has a better relative error and it is about 2-5 times faster than LASSO, MCP and
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Table 1: Numerical results. X obtained by (I), n= 1000, p = 10000, T = 20, R= 10, ρ = 0.2 : 0.2 : 0.8.

ρ Method RE Time(s) APDR AFDR DR MSES ACRP

0.2 LASSO 0.86 35.07 0.90 0.93 0.97 236.26 89.64%

MCP 0.43 71.67 0.91 0.33 1.58 28.01 94.69%

SCAD 0.43 50.96 0.94 0.64 1.30 55.82 94.33%

SPDAS 0.27 14.28 0.87 0.04 1.83 18.21 95.00%

0.4 LASSO 0.87 35.60 0.90 0.92 0.98 228.84 90.21%

MCP 0.47 75.55 0.92 0.30 1.62 26.87 94.84%

SCAD 0.45 52.62 0.94 0.63 1.31 53.54 94.56%

SPDAS 0.28 13.67 0.86 0.04 1.82 17.85 94.91%

0.6 LASSO 0.88 37.78 0.90 0.92 0.98 226.99 90.58%

MCP 0.47 74.16 0.91 0.28 1.63 25.84 95.40%

SCAD 0.46 56.77 0.94 0.58 1.36 48.14 95.28%

SPDAS 0.38 20.57 0.85 0.05 1.80 17.63 94.92%

0.8 LASSO 0.90 37.77 0.89 0.92 0.97 224.73 90.32%

MCP 0.51 66.64 0.90 0.26 1.64 25.04 95.50%

SCAD 0.52 53.67 0.93 0.58 1.35 48.43 95.24%

SPDAS 0.50 15.23 0.84 0.05 1.79 17.32 94.85%

SCAD. In term of the support recovery, SPDAS is similar to APDR, and takes lowest values

on AFDR and highest values on DR. Moreover, SPDAS takes values closest to the target

sparse level on MSES. It means that SPDAS can avoid selecting the erroneous variable while

choosing as many relevant variables as possible into the model. Besides, SPDAS has the

higher classification accuracy rate for ρ ≤ 0.4, but for ρ > 0.4 MCP and SCAD are slightly

better. In summary, SPDAS performs better or is comparable with LASSO, MCP and SCAD

in estimation errors, computational speed, support recovery and classification accuracy.

4.2. Influence of the model parameters

In this subsection, we consider the influence of the model parameters such as sample

size n, ambient dimension p and correlation ρ on the performance of SPDAS and other

methods on the computational speed and on the support recovery terms APDR, AFDR,

ADR and MSES. Let X be the matrix generated according to method (II). The sample size

n, the covariates dimension p, the correlation ρ and others are set as following:

• n= 200 : 50 : 500, p = 600, T = 10, R= 5, ρ = 0.5.

• n= 200, p = 500 : 200 : 1700, T = 10, R= 5, ρ = 0.5.

• n= 200, p = 600, T = 10, R= 5, ρ = 0.1 : 0.1 : 0.9.

The respective results are presented in Tables 2-4. Note that SPDAS is fastest of the methods

considered. On support recovery, SPDAS takes values comparable to others on APDR, and
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Table 2: Numerical results (APDR, AFDR, ADR), p = 600, T = 10, R= 5, ρ = 0.5, n= 200 : 50 : 500.

n Method Times(s) APDR AFDR ADR MSES

200 LASSO 2.18 0.91 0.83 1.08 57.61

MCP 10.47 0.83 0.35 1.48 13.08

SCAD 18.38 0.88 0.61 1.27 23.5

SPDAS 0.85 0.79 0.22 1.57 10.29

250 LASSO 2.82 0.96 0.85 1.11 67.99

MCP 13.46 0.90 0.32 1.58 13.59

SCAD 21.48 0.93 0.58 1.35 23.57

SPDAS 1.02 0.86 0.19 1.67 11.12

300 LASSO 3.39 0.98 0.86 1.12 73.8

MCP 18.07 0.93 0.29 1.64 13.52

SCAD 24.69 0.96 0.58 1.38 24.26

SPDAS 1.08 0.93 0.13 1.80 10.96

350 LASSO 3.75 0.99 0.87 1.12 77.25

MCP 22.05 0.96 0.28 1.68 14.05

SCAD 21.83 0.98 0.57 1.41 24.41

SPDAS 1.19 0.96 0.10 1.86 10.82

400 LASSO 4.05 0.99 0.87 1.12 79.5

MCP 25.94 0.98 0.25 1.73 13.59

SCAD 19.45 0.99 0.56 1.43 24.20

SPDAS 1.14 0.96 0.08 1.88 10.61

450 LASSO 4.47 0.99 0.87 1.12 80.61

MCP 32.29 0.99 0.26 1.74 13.95

SCAD 18.26 0.99 0.55 1.44 24.03

SPDAS 1.39 0.98 0.07 1.91 10.68

500 LASSO 4.88 0.99 0.88 1.11 83.83

MCP 32.23 0.99 0.24 1.75 13.5

SCAD 15.78 0.99 0.55 1.44 23.85

SPDAS 1.44 0.99 0.05 1.94 10.55

takes lowest and highest values on APDR and ADR respectively, and SPDAS takes values

about 10 on MSES for all settings considered here. Overall, SPDAS can simultaneously

selects relevant variables and avoid the irrelevant variables for a wide spectrum of the

values of n, p,ρ.

4.3. Real data analysis

We apply SPDAS to four data sets — viz. duke breast-cancer, gisette, leukemia and splice

described in Table 5. These data sets are available at https://www.csie.ntu.edu.tw/
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Table 3: Numerical results (APDR, AFDR, ADR), n= 200, T = 10, R= 5, ρ = 0.5, p = 500 : 200 : 1700.

p Method Times(s) APDR AFDR ADR MSES

500 LASSO 2.01 0.93 0.82 1.11 55.09

MCP 10.03 0.86 0.33 1.53 13.23

SCAD 16.70 0.90 0.59 1.31 23.11

SPDAS 0.61 0.82 0.23 1.59 10.92

700 LASSO 2.24 0.91 0.84 1.07 58.51

MCP 10.31 0.83 0.34 1.49 12.96

SCAD 17.46 0.88 0.61 1.27 23.84

SPDAS 0.69 0.79 0.24 1.55 10.57

900 LASSO 2.52 0.89 0.85 1.04 62.28

MCP 10.89 0.82 0.40 1.42 14.17

SCAD 20.12 0.87 0.66 1.21 27.17

SPDAS 0.74 0.74 0.24 1.50 10.13

1100 LASSO 2.76 0.87 0.86 1.01 65.57

MCP 10.84 0.82 0.39 1.43 14.01

SCAD 21.01 0.87 0.67 1.20 27.80

SPDAS 0.81 0.74 0.22 1.52 9.86

1300 LASSO 2.85 0.87 0.86 1.01 65.57

MCP 12.36 0.80 0.42 1.38 14.37

SCAD 23.09 0.87 0.69 1.18 29.95

SPDAS 0.94 0.71 0.25 1.46 9.8

1500 LASSO 3.05 0.87 0.87 1.00 68.59

MCP 13.05 0.80 0.44 1.36 14.65

SCAD 23.79 0.86 0.70 1.16 29.83

SPDAS 1.03 0.72 0.24 1.48 9.95

1700 LASSO 3.22 0.84 0.85 0.99 64.88

MCP 11.96 0.78 0.46 1.32 15.03

SCAD 23.68 0.85 0.72 1.13 31.93

SPDAS 1.16 0.71 0.21 1.50 9.48

cjlin/libsvmtools/datasets/. The duke breast-cancer and leukemia data sets have

been standardised such that the mean of each predictor is 0 and variance is 1. The response

variable takes the value y = 1 if the subject has the disease and y = 0 otherwise. We fit

these data sets with the logistic regression model and compare the classification accuracy

rate of the SPDAS algorithm with LASSO, MCP and SCAD. Table 6 shows that the classi-

fication accuracy rates of SPDAS are comparable with those of LASSO, MCP and SCAD.

Moreover, Table 7 demonstrates that for every data set, the number of selected variables T̂

for SPDAS is similar to other methods.
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Table 4: Numerical results (APDR, AFDR, ADR), n= 200, p = 600, T = 10, R= 5, ρ = 0.1 : 0.1 : 0.9.

ρ Method Times(s) APDR AFDR ADR MSES

0.1 LASSO 2.13 0.90 0.83 1.07 57.62

MCP 10.53 0.86 0.35 1.51 13.8

SCAD 19.93 0.90 0.62 1.28 24.28

SPDAS 0.63 0.79 0.21 1.58 10.24

0.2 LASSO 2.15 0.92 0.84 1.08 59.61

MCP 10.66 0.87 0.37 1.50 14.24

SCAD 19.04 0.91 0.62 1.29 24.87

SPDAS 0.61 0.81 0.24 1.57 11.05

0.3 LASSO 2.14 0.93 0.84 1.09 62.32

MCP 10.39 0.85 0.35 1.50 13.54

SCAD 18.54 0.92 0.60 1.32 24

SPDAS 0.61 0.81 0.21 1.60 10.63

0.4 LASSO 2.07 0.92 0.84 1.08 58.9

MCP 10.80 0.85 0.35 1.50 13.39

SCAD 18.87 0.91 0.62 1.29 24.65

SPDAS 0.60 0.77 0.22 1.55 10.34

0.5 LASSO 2.17 0.91 0.84 1.07 57.61

MCP 10.36 0.83 0.34 1.49 13.08

SCAD 19.56 0.89 0.60 1.29 23.12

SPDAS 0.61 0.79 0.23 1.56 10.60

0.6 LASSO 2.31 0.90 0.83 1.07 55.92

MCP 10.43 0.81 0.36 1.45 12.95

SCAD 19.96 0.88 0.60 1.28 22.89

SPDAS 0.59 0.76 0.23 1.53 10.25

0.7 LASSO 2.49 0.89 0.84 1.05 57.49

MCP 10.32 0.79 0.33 1.46 12.06

SCAD 19.79 0.85 0.61 1.24 22.66

SPDAS 0.57 0.74 0.26 1.48 10.27

0.8 LASSO 2.94 0.86 0.83 1.03 51.73

MCP 10.86 0.68 0.40 1.28 11.72

SCAD 20.57 0.80 0.62 1.18 21.44

SPDAS 0.50 0.67 0.33 1.34 10.39

0.9 LASSO 3.78 0.77 0.84 0.93 48.19

MCP 11.45 0.51 0.52 0.99 10.75

SCAD 19.33 0.63 0.64 0.99 18.03

SPDAS 0.40 0.51 0.47 1.04 10.12
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Table 5: Description of four real data sets.

Data name n samples p features training size n1 testing set n2

duke breast-cancer 42 7129 38 4

gisette 7000 5000 6000 1000

leukemia 72 7129 38 34

splice 3175 60 1000 2175

Table 6: Classification accuracy rate.

Data name SPDAS LASSO MCP SCAD

duke breast-cancer 75% 1 25% 75%

gisette 54.70% 51.30% 59.90% 57.10%

leukemia 94.12% 91.17% 94.11% 91.17%

splice 84.18% 85.70% 84.91% 85.01%

Table 7: The number of selected variables (T̂).

Data name SPDAS LASSO MCP SCAD

duke breast-cancer 14 23 5 17

gisette 47 507 49 121

leukemia 14 13 4 11

splice 22 40 26 33

5. Conclusion

Using the hard thresholding regularisation [1], we introduce the primal and dual active

sets algorithm for variable estimation and selection in high-dimensional and sparse logistic

regression models. In addition, we propose a sequential version of this algorithm (abbrevi-

ated as SPDAS) with a warm-start strategy. We also obtain the sharp nonasymptotic error

bounds in ℓ1- and ℓ2-norms for the global solution of the hard thresholding regularisa-

tion problem and study its support recovery property. Simulations and real data analysis

show that SPDAS outperforms LASSO, MCP and SCAD methods in terms of computational

efficiency, estimation accuracy, support recovery and classification.

Appendix A

Let us recall auxiliary results needed for the proofs of Theorem 2.1 and Lemma 3.1.

Lemma A.1 (cf. Van de Geer [8, Lemma 5]). Let v ∈ Rp, and let A denote the index set of

the T largest elements of v in magnitude. Suppose ξ > 0 such that ξρλ (vA)−ρλ (vAc) ≥ 0.

Then

ξρλ (vA)−ρλ (vAc)≤ λ
�
ξ‖vA‖1 − ‖vAc‖1

�
.
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Moreover, if β∗ ∈ Rp is T -sparse, that is |A∗| = T, then for any β ∈ Rp satisfying ξρλ (β
∗)−

ρλ(β) > 0 with ξ ≥ 1, we have

ξρλ (β
∗)−ρλ(β)≤ λ

�
ξ‖νA‖1 − ‖νAc‖1

�
,

where ν = β −β∗ and A is the index set of the T largest elements of ν in absolute values.

Lemma A.2 (cf. Van de Geer [8, Corollary 2]). Assume the entries of X are sub-Gaussian

and n ¦ log(p), then there exists universal constants (c1, c2, c3) with 0 < ci <∞, i = 1,2,3

such that

P

�
‖∇Ln(β

∗)‖∞ ≥ c1

√√ log(p)

n

�
≤ c2 exp
�
− c3 log(p)
�
.

Now we can proceed with the proofs of main results.

A.1 Proof of Theorem 2.1

Denote ∆̂ = β⋄ − β∗. We first show that ‖∆̂‖2 ≤ 1. Otherwise, if ‖∆̂‖2 > 1, the RSC

condition implies



∇Ln(β

⋄)−∇Ln (β
∗) , ∆̂
�
≥ α2‖∆̂‖2 −τ2

√√ log(p)

n
‖∆̂‖1.

Therefore,



−∇ρλ(β

⋄)−∇Ln (β
∗) , ∆̂
�
≥ α2‖∆̂‖2 −τ2

√√ log(p)

n
‖∆̂‖1. (A.1)

It follows from the Hölder and triangle inequalities that



−∇ρλ(β

⋄)−∇Ln (β
∗) , ∆̂
�
≤
�
‖∇ρλ(β

⋄)‖∞ + ‖∇Ln (β
∗)‖∞
�
‖∆̂‖1.

Since

4 max

¨
‖∇Ln (β

∗)‖∞ ,α2

√√ log(p)

n

«
≤ λ,

we have ‖∇Ln(β
∗)‖∞ ≤ λ/2. Taking into account the estimate ‖∇ρλ(β

⋄)‖∞ ≤ λ, we

obtain 

−∇ρλ(β

⋄)−∇Ln (β
∗) , ∆̂
�
≤

3λ

2
‖∆̂‖1, (A.2)

and the inequalities (A.1) and (A.2) show that

‖∆̂‖2 ≤
‖∆̂‖1

α2

�
3λ

2
+τ2

√√ log(p)

n

�
≤

2R

α2

�
3λ

2
+τ2

√√ log(p)

n

�
. (A.3)

Since

4 max

¨
‖∇Ln (β

∗)‖∞ ,α2

√√ log(p)

n

«
≤ λ≤

α2

6R
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and

n≥

�
16R2

α2
2

max
�
τ2

1
,τ2

2

��
log(p),

the right-hand side of (A.3) does not exceed 1, so that ‖∆̂‖2 ≤ 1. The RSC condition then

implies


∇Ln(β

⋄)−∇Ln (β
∗) , ∆̂
�
≥ α1‖∆̂‖

2
2 −τ1

log(p)

n
‖∆̂‖21. (A.4)

The convexity of ρλ,µ(β) yields

ρλ,µ (β
∗)−ρλ,µ(β

⋄) ≥


∇ρλ,µ(β

⋄),β∗ −β⋄
�
=


∇ρλ(β

⋄) +µβ⋄,β∗ −β⋄
�
.

Therefore, 

∇ρλ(β

⋄),β∗ −β⋄
�
≤ ρλ (β

∗)−ρλ(β
⋄) +

µ

2
‖β⋄ −β∗‖2 . (A.5)

Combining (A.4) and (A.5), we write

α1‖∆̂‖
2
2
−τ1

log(p)

n
‖∆̂‖2

1
≤ −


∇Ln (β

∗) , ∆̂
�
+ρλ (β

∗)−ρλ(β
⋄) +

µ

2
‖∆̂‖2

2
.

Hence,

�
α1 −

µ

2

�
‖∆̂‖22 ≤ ρλ (β

∗)−ρλ(β
⋄) + ‖∇Ln (β

∗)‖∞ · ‖∆̂‖1 +τ1

log(p)

n
‖∆̂‖21

≤ ρλ (β
∗)−ρλ(β

⋄) +

�
‖∇Ln (β

∗)‖∞ + 4Rτ1

log(p)

n

�
‖∆̂‖1. (A.6)

The assumption

4 max

¨
‖∇Ln (β

∗)‖∞ ,α2

√√ log(p)

n

«
≤ λ≤

α2

6R

gives

‖∇Ln (β
∗)‖∞ + 4Rτ1

log(p)

n
≤
λ

4
+α2

√√ log(p)

n
≤
λ

2
. (A.7)

Using (A.6), (A.7) and the subadditivity of ρλ(·), we arrive at the estimate

�
α1 −

µ

2

�
‖∆̂‖22 ≤ ρλ (β

∗)−ρλ(β
⋄) +

λ

2
·

�
ρλ(∆̂)

λ
+
µ

2λ
‖∆̂‖22

�

≤ ρλ (β
∗)−ρλ(β

⋄) +
1

2

�
ρλ (β

∗) +ρλ(β
⋄)
�
+
µ

4
‖∆̂‖22.

Therefore,

0≤

�
α1 −

3µ

4

�
‖∆̂‖22 ≤

3

2
ρλ (β

∗)−
1

2
ρλ(β

⋄).
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In particular, if ξ= 3, then ξρλ(β
∗)−ρλ(β

⋄) ≥ 0. Recalling Lemma A.1, we write

3ρλ (β
∗)−ρλ(β

⋄) ≤ 3λ‖∆̂A‖1 −λ‖∆̂Ac‖1, (A.8)

where A refers to the index set of the T largest elements of β⋄−β∗ in absolute values with

T = |A∗|. Then we have the cone condition

‖∆̂Ac‖1 ≤ 3‖∆̂A‖1. (A.9)

Substituting (A.9) into (A.8) yields

�
2α1 −

3µ

2

�
‖∆̂‖22 ≤ 3λ‖∆̂A‖1 −λ‖∆̂Ac‖1 ≤ 3λ‖∆̂A‖1 ≤ 3λ

Æ
|A∗|‖∆̂‖2,

so that

‖∆̂‖2 ≤
6λ
p
|A∗|

4α1 − 3µ
.

It follows from (A.9) that

‖∆̂‖1 ≤ 4‖∆̂A‖1 ≤ 4
Æ
|A∗|‖∆̂‖2.

Therefore,

‖∆̂‖1 ≤
24λ|A∗|

4α1 − 3µ
.

Besides, if the entries of X are sub-Gaussian, then according to Lemma A.2, there are uni-

versal finite and positive constants (c1, c2, c3) such that

‖∇Ln(β
∗)‖∞ ≤ c1

√√ log(p)

n

with the probability at least 1− c2 exp(−c3 log(p)).

Choosing α2 and R such that

4(c1 +α2)

√√ log p

n
≤
α2

6R

and setting

λ= 4(c1 +α2)

√√ log p

n
,

we obtain that

‖β⋄ − β∗‖1 ≤
96|A∗|(c1 +α2)
p

log(p)/n

4α1 − 3µ
,

‖β⋄ − β∗‖2 ≤
24(c1 +α2)
p
|A∗| log(p)/n

4α1 − 3µ

with the probability at least 1− c2 exp(−c3 log(p)). Theorem 2.1 is proven.
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A.2 Proof of Lemma 3.1

Let

Lλ(β) =Ln(β) +

p∑

i=1

ρλ(βi) =
1

n

n∑

i=1

log
�
1+ exp(xT

i β)
�
−

YT Xβ

n
+

p∑

i=1

ρλ(βi)

and β⋄ = (β⋄
1
, . . . ,β⋄

p
) ∈ Rp be a minimiser of the function Lλ. According to [14, Theo-

rem 10.1], we have

0 ∈ ∇Ln(β
⋄) +

p∑

i=1

∂ ρλ(β
⋄
i ), (A.10)

where ∂ ρλ(β
⋄
i
) denotes the limiting subdifferential of ρλ at β⋄

i
. Let d⋄ = −∇Ln(β

⋄),

cf. [14, Definition 8.3]. Define

G(β) =
1

2
‖β − (β⋄ + d⋄)‖2 +

p∑

i=1

∂ ρλ(β
⋄
i )

and note that the relation (A.10) is equivalent to

0 ∈ β⋄ − (β⋄ + d⋄) +

p∑

i=1

∂ ρλ(β
⋄
i ).

Moreover, eβ is the minimiser of G(β) if and only if 0 ∈ ∂ G(eβ). Obviously, 0 ∈ ∂ G(β⋄).

Therefore, β⋄ is a KKT point of G(β). Consequently, β⋄ = Γλ(β
⋄+d⋄), since the KKT points

of G(β) coincide with its coordinate-wise minimisers [5].

On the other hand, assuming that β⋄ and d⋄ satisfy (3.1), we show that β⋄ is a stationary

point of (1.2). Indeed, let

A⋄ :=
�

i : |β⋄
i
+ d⋄

i
| ≥ λ
	
, I⋄ :=
�

i : |β⋄
i
+ d⋄

i
|< λ
	
.

By the definition of Γλ(·) in (3.2) and (3.1), we conclude that |β⋄
i
| ≥ λ when i ∈ A⋄ and

β⋄I⋄ = 0. It follows that supp(β⋄) = A⋄. In addition, we have d⋄A⋄ = [−∇Ln(β
⋄)]A⋄ = 0,

which is equivalent to β⋄A⋄ ∈ argminβA⋄
fLn(βA⋄). Hence β⋄ and d⋄ satisfy (A.10), so that

β⋄ is a stationary point of (1.2).
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