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Abstract. Ultrasound is a low-cost, non-invasive and real-time imaging modality that
has proved popular for many medical applications. Unfortunately, the acquired ultra-
sound images are often corrupted by speckle noise from scatterers smaller than ultra-
sound beam wavelength. The signal-dependent speckle noise makes visual observa-
tion difficult. In this paper, we propose a patch-based low-rank approach for reducing
the speckle noise in ultrasound images. After constructing the patch group of the ultra-
sound images by the block-matching scheme, we establish a variational model using
the weighted nuclear norm as a regularizer for the patch group. The alternating direc-
tion method of multipliers (ADMM) is applied for solving the established nonconvex
model. We return all the approximate patches to their original locations and get the
final restored ultrasound images. Experimental results are given to demonstrate that
the proposed method outperforms some existing state-of-the-art methods in terms of
visual quality and quantitative measures.

AMS subject classifications: 68U10, 15A29, 65K05

Key words: Ultrasound images, patch, speckle noise, low-rank, weighted nuclear norm mini-
mization.

1 Introduction

Ultrasound images provide the clinician with low-cost, non-invasive, and real-time im-
ages of the internal structure of the body that can help them detect deadly diseases or
abnormal tissues [1–4]. As a portable and fast imaging modality, ultrasound has proved
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popular for many medical applications [5–8]. However, ultrasound images usually suf-
fer from the signal-dependent speckle noise, limiting the contrast resolution and making
it generally difficult for human interpretation and diagnosis. Therefore, speckle noise
reduction is an important issue in medical ultrasound image processing [9, 10].

The ultrasound images corrupted with the signal-dependent noise can be modeled as
the following form:

g=u+
√

uη, (1.1)

where g is the corrupted ultrasound image, u is the original image, η is a zero-mean
Gaussian noise with standard deviation δ. To restore u from the corrupted ultrasound
image g is the main task of speckle noise reduction.

Several variational methods have been proposed to reduce the speckle noise in ultra-
sound images in recent decades [11]. In [12], Jin and Yang studied the following total
variation based model for dealing with the speckle noise in ultrasound images:

min
u

∫
Ω

(u−g)2

u
dx+λ

∫
Ω
|∇u|dx, (1.2)

where Ω⊂R2 is a bounded set, λ is the regularization parameter for measuring the trade-
off between the fidelity term and the regularized term, and the regularization term is the
total variation of u. They proved the existence and uniqueness of the minimizer for the
variational problem and derived the existence and uniqueness of weak solutions for the
associated evolution equation. In [13], Huang and Yang proposed a convex variational
model to deal with the speckle noise in real ultrasound images where the data-fitting
term is the generalized Kullback–Leibler distance and the regularization term is the total
variation of the estimated image.

It is widely known that the classic total variation based model usually suffers from the
staircase effect. Some high-order total variation, total generalized variation, and hybrid
regularization based models are proposed to overcome this shortcoming and preserve
edges in the restored images well [14,15]. In [16], Wang et al. proposed a variation model
for speckle noise removal in ultrasound images where the regularization term is repre-
sented by a combination of total variation and high-order total variation (HTV) and the
data fidelity term is depicted by a generalized Kullback-Leibler divergence. They solved
the first-order and second-order total variation based model using the alternating direc-
tion method with multipliers (ADMM). In [17], Mei et al. investigated a second-order to-
tal generalized variation regularization to solve the problem of speckle noise reduction in
ultrasound images. Numerical experiments have shown that the second-order total gen-
eralized variation based model outperforms some state-of-the-art methods in terms of
visual quality, peak signal-to-noise ration (PSNR) and structural similarity (SSIM) index.
In [18], Abrahim and Kadah presented a combined technique using wavelet shrinkage
and total variation for speckle noise removal in clinical ultrasound images. The hybrid
method takes full advantage of total variation based method to denoise the low frequency
subbands without losing textures, and uses the wavelet shrinkage method based on local
variance information to extract textures from noise in the high frequency subbands.
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Although the variational methods have many desirable properties, they fail to con-
sider the structural sparsity of images. Usually, a local patch of natural images has many
similar patches to it. In recent years, image restoration using the similarity of nonlocal
patches for exploiting the structural sparsity of natural images has drawn much atten-
tion [19–23]. The patch-based methods succeed in suppressing most of the noise with
good preservation of texture and removal of the coherent aliasing artifacts. A typical ex-
ample is the so-called block matching and 3D filtering (BM3D) denoising method [24].
The BM3D method achieves remarkable results by applying the collaborative filtering in
the transformed domain on the stack of nonlocal similar patches. The low-rank approxi-
mation of the patch group has been studied and applied to image denoising in [25]. They
used the weighted nuclear norm term as the self-similarity prior for the patch group
and solved the weighted nuclear norm minimization (WNNM) problem with the soft
thresholding operator. Experimental results were given to demonstrate that the WNNM
method can achieve better performance than some state-of-the-art denoising methods.

Motivated by the idea of the patch-based methods, we use a patch-based low-rank
minimization approach for speckle noise reduction in ultrasound images. Firstly, we di-
vide the whole noisy image into several overlapped key patches and construct the patch
group for each key patch by the block matching technique. Secondly, we propose a low-
rank minimization model for the patch groups based on the weighted nuclear norm. We
employ the ADMM for solving the proposed low-rank minimization model and get the
low-rank approximation of all patch groups. We give the weak convergence result of the
nonconvex ADMM. At last, we aggregate all the resulting patches for getting the whole
estimated image. Numerical experiments are given to show that the proposed method
outperforms some existing state-of-the-art methods in terms of visual quality and quan-
titative measures.

The main contributions of this paper are summarized as follows:

(i) We use the patch-based low-rank minimization approach for speckle noise re-
duction in ultrasound images. The proposed patch-based low-rank minimization
method makes full use of the distinctive structural characteristics of the processed
images. It can reduce the speckle noise in ultrasound images very well.

(ii) We use the ADMM to solve the proposed patch-based low-rank minimization prob-
lem by introducing an auxiliary variable. The resulting subproblems are simple and
easy to be solved. The first subproblem can be solved by the Newton’s method. The
second subproblem has a closed-form solution.

(iii) We show the numerical experiments on simulated images and real ultrasound im-
ages. It can be seen from the experiments that the proposed method outperforms
some existing state-of-the-art methods in terms of visual quality and quantitative
measures.
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2 Related work

In this section, we recall some results about the WNNM model and briefly describe the
block matching technique.

2.1 WNNM

The low-rank term has been emerged as an important prior knowledge of the processed
images. Methods based on the weighted nuclear norm term have been widely studied
in image processing [25–28]. The weighted nuclear norm of a matrix X is defined as a
weighted sum of its singular value:

‖X‖w,∗=
n

∑
j=1

wjσj(X),

where w=(w1,··· ,wn)T, σj(X) means the jth singular value of matrix X, wj≥0 is a weight
assigned to the jth singular value and n is the number of singular values of matrix X.
In [25], Gu et al. have proposed the following WNNM model for image denoising:

min
X
‖X‖w,∗+

1
2
‖X−Y‖2

F, (2.1)

where ‖·‖F is the Frobenius norm. Let Y =UΣVT be the singular value decomposition
of matrix Y. Then the solution X̂ of the optimization problem (2.1) can be expressed as
X̂=UΛ̂VT, where Λ̂ is the solution of the following minimization problem:

min
Λ
‖Λ‖w,∗+

1
2
‖Λ−Σ‖2

F. (2.2)

Especially, if the weights are in a non-descending order (0≤w1≤ ··· ≤wn), the optimal
solution of the WNNM problem (2.1) is X̂=UΛ̂VT where the diagonal matrix Λ̂=Sw(Σ)
with Sw(Σ)jj =max(Σjj−wj,0) for all j.

2.2 Block matching

The success of any patch-based noise reduction method relies greatly on the ability to
find similar patches in the noisy image and operate on the gathering patch groups [24,29,
30]. The goal of block-matching is to gather a group of image patches containing similar
image structures. Usually, the block-matching procedure contains three steps. At the first
step, divide the noisy image into overlapped patches of relatively small size and choose
some appropriate image patches as the key patches. For each key patch y, consider all
the overlapped patches contained in its nonlocal neighborhood. At the second step, find
the patch yi similar to each given key patch in the nonlocal neighborhood. The Euclidean
distance ‖y−yi‖F is used to measure the similarity between the key patch and the patch
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Figure 1: Overview of block matching.

extracted from the nonlocal neighborhood. A smaller distance indicates higher similarity.
At the last step, choose the K most similar patches to the key patch among the patches
contained in the nonlocal neighborhood. By stacking the columns of the K most similar
patches, construct the patch group matrix Y. In Fig. 1, we show the overall process of the
block matching technique. For the sake of a clear presentation, we take a color image for
example in Fig. 1.

3 The proposed model and algorithm

We use the patch-based low-rank minimization approach for speckle noise reduction in
ultrasound images. The proposed patch-based low-rank method contains three steps: (i)
Extract the key patches and construct the patch group for each key patch by the block-
matching scheme; (ii) For each patch group, establish the variational low-rank model
by using the weighted nuclear norm as a regularizer and solve the proposed variational
model with the ADMM; (iii) Compute the final estimated ultrasound image by averaging
all approximate patch groups.

The core of the proposed patch-based method is to operate the patch-based low-rank
minimization on the patch groups. Let Y be any patch group of the input noisy image.
For the patch group Y, we want to solve the following optimization problem:

min
X

∑
i,j

(Xi,j−Yi,j)
2

Xi,j
+‖X‖w,∗. (3.1)

The splitting iteration algorithms such as ADMM, split-Bregman algorithm and modulus
splitting iteration [31, 32] can be employed to solve the proposed minimization problem
(3.1). In this paper, we apply the effective ADMM for solving the nonconvex patch group
minimization problem (3.1). By introducing an auxiliary variable Z, the problem (3.1) can
be reformulated as the following constrained optimization problem:

min
X,Z

∑
i,j

(Xi,j−Yi,j)
2

Xi,j
+‖Z‖w,∗, s.t. X=Z. (3.2)
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The augmented Lagrangian function of (3.2) can be written as the following form:

L(X,Z,W,ρ)=∑
i,j

(Xi,j−Yi,j)
2

Xi,j
+‖Z‖w,∗+〈W,X−Z〉+ ρ

2
‖X−Z‖2

F, (3.3)

where W is the Lagrange multiplier and ρ is a penalty parameter. The idea of the ADMM
is to solve the following subproblems iteratively:

Xk+1=argminXL(X,Zk,Wk,ρk),
Zk+1=argminZL(Xk+1,Z,Wk,ρk),
Wk+1=Wk+ρk(Xk+1−Zk+1),
ρk+1=µρk,

(3.4)

where µ>1 is a given parameter.
To minimize L with respect to X, we solve the subproblem

min
X

∑
i,j

(Xi,j−Yi,j)
2

Xi,j
+

ρk

2

∥∥∥X−Zk+
1
ρk Wk

∥∥∥2

F
. (3.5)

It is obvious that the minimizations with respect to X can be solved separately, since they
are decoupled. Hence, the minimizer of the problem (3.5) is equivalent to solving the
following nonlinear systems:

1−
Y2

i,j

X2
i,j
+ρk(Xi,j−Zk

i,j)+Wk
i,j =0. (3.6)

The solution of (3.6) can be determined very efficiently by using the Newton’s method.
As for Z, the subproblem is

min
Z
‖Z‖w,∗+

ρk

2

∥∥∥Z−
(

Xk+1+
1
ρk Wk

)∥∥∥2

F
. (3.7)

Suppose that

Xk+1+
1
ρk Wk =UkΣk(Vk)T

is the singular value decomposition of Xk+1+ 1
ρk Wk. For the weights in a non-descending

order, the closed-form solution of the problem (3.7) is given by

Zk+1=UkSw/ρk(Σk)(Vk)T, (3.8)

where
Sw/ρk(Σk)jj =max(Σk

jj−wj/ρk,0)
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Algorithm 3.1 ADMM for the low-rank approximation problem (3.1).

1. Initialization: X0, Z0, W0, µ, ρ0.

2. for k=0,1,···, do

(1) compute Xk+1 by (3.6) with the Newton’s method;

(2) compute Zk+1 by (3.8);

(3) Wk+1=Wk+ρk(Xk+1−Zk+1);

(4) ρk+1=µρk;

(5) if Xk+1 satisfies the stopping rule then
exit with an approximate solution Xk+1.

end if

end for

for all j.
To sum up, we obtain the following algorithm for solving the patch group minimiza-

tion problem.
There are many convergence results for ADMM discussed in the literature [32–34].

However, the convergence of Algorithm 3.1 is difficult to analyze due to the nonconvexity
of the weighted nuclear norm. We give the following weak convergence result to facilitate
the construction of a rational termination condition for Algorithm 3.1.

Theorem 3.1. If the weights are sorted in a nondescending order, the sequences {Xk}, {Uk} and
{Zk} generated by Algorithm 3.1 satisfy:

(i) lim
k→∞
‖Xk+1−Zk+1‖F =0, (3.9a)

(ii) lim
k→∞
‖Xk+1−Xk‖F =0, (3.9b)

(iii) lim
k→∞
‖Zk+1−Zk‖F =0. (3.9c)

Proof. (i) Suppose that

Xk+1+
1
ρk Wk =UkΣk(Vk)T

is the singular value decomposition of Xk+1+ 1
ρk Wk. Then we have

Zk+1=UkSw/ρk(Σ)(Vk)T,

where
Sw/ρk(Σk)jj =max(Σk

jj−wj/ρk,0)
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for all j. Firstly, we show the bounded property of {Wk}

‖Wk+1‖F =‖Wk+ρk(Xk+1−Zk+1)‖F

=ρk
∥∥∥Xk+1+

1
ρk Wk−Zk+1

)∥∥∥
F

=ρk‖Uk(Sw/ρk(Σk)−Σk)(Vk)T‖F

=ρk‖(Sw/ρk(Σk)−Σk)‖F

≤ρk‖w/ρk‖2=‖w‖2. (3.10)

It is obvious that

L(Xk+1,Zk+1,Wk,ρk)≤L(Xk+1,Zk,Wk,ρk)≤L(Xk,Zk,Wk,ρk). (3.11)

By straightforward calculations, we have the following equality:

L(Xk,Zk,Wk,ρk)−L(Xk,Zk,Wk−1,ρk−1)

=〈Wk−Wk−1,Xk−Zk〉+ ρk−ρk−1

2
‖Xk−Zk‖F

=
ρk+ρk−1

2(ρk−1)2 ‖W
k−Wk−1‖F. (3.12)

Thus, we may immediately obtain that

L(Xk+1,Zk+1,Wk,ρk)≤L(Xk,Zk,Wk−1,ρk−1)+
ρk+ρk−1

2(ρk−1)2 ‖W
k−Wk−1‖F. (3.13)

We denote by M the upper bound of ‖Wk−Wk−1‖F for all k, since {Wk} is bounded.
Hence, we have

L(Xk+1,Zk+1,Wk,ρk)≤L(X1,Z1,W0,ρ0)+M
∞

∑
k

ρk+ρk−1

2(ρk−1)2 . (3.14)

Since ρk+1=µρk, we obtain that

M
∞

∑
k

ρk+ρk−1

2(ρk−1)2 =
Mµ(µ+1)

2ρ0

∞

∑
k

µ−k <∞. (3.15)

Therefore, L(Xk+1,Zk+1,Wk,ρk) is upper bounded. The boundedness of {Xk} and {Zk}
can be easily deduced by

L(Xk+1,Zk+1,Wk,ρk)+
1

2ρk ‖W
k‖2

F

=∑
i,j

(Xk+1
i,j −Yi,j)

2

Xk+1
i,j

+‖Zk+1‖w,∗+
ρk

2

∥∥∥Xk+1−Zk+1+
1
ρk Wk

∥∥∥2

F
. (3.16)
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Based on the fact that ρk→∞ as k→∞, we get

lim
k→∞
‖Xk+1−Zk+1‖F = lim

k→∞

1
ρk ‖W

k+1−Wk‖F =0. (3.17)

(ii) Consider the following optimization problem:

Xk+1=argmin
X

f (X)+
ρk

2

∥∥∥X−Zk+
1
ρk Wk

∥∥∥2

F
, (3.18)

where

f (X)=∑
i,j

(Xi,j−Yi,j)
2

Xi,j
.

The first-order optimality of this problem is given by

−∇ f (Xk+1)

ρk =Xk+1−Zk+
1
ρk Wk. (3.19)

According to Wk =Wk−1+ρk−1(Xk−Zk), we may obtain

Xk+1−Xk =−∇ f (Xk+1)

ρk − 1
ρk−1 (W

k−Wk−1)− 1
ρk Wk, (3.20)

where

∇ f (Xk+1)=∑
i,j

(
1−

(Yk+1
i,j )2

(Xk+1
i,j )2

)
.

Numerically, we add a small number ε>0 to avoid dividing by zero, that is, we let

∇ f (Xk+1)=∑
i,j

(
1−

(Yk+1
i,j )2

(Xk+1
i,j )2+ε

)
.

Hence, ∇ f (Xk+1) is bounded, since Xk+1 is bounded. Then, we get

lim
k→∞
‖Xk+1−Xk‖F = lim

k→∞

(∥∥∥∇ f (Xk+1)

ρk +
1

ρk−1 (W
k−Wk−1)+

1
ρk Wk

∥∥∥
F

)
≤ lim

k→∞

(‖∇ f (Xk+1)‖F

ρk +
‖Wk−Wk−1‖F

ρk−1 +
‖Wk‖F

ρk

)
=0. (3.21)
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(iii) Based on the updating rule of X and W, we have

lim
k→∞
‖Zk+1−Zk‖F = lim

k→∞

∥∥∥Xk+1− 1
ρk Wk+1+

1
ρk Wk−Zk

∥∥∥
F

= lim
k→∞

∥∥∥(Xk+1−Xk)+
(

Xk+
1

ρk−1 Wk−1−Zk
)
+
( 1

ρk Wk− 1
ρk−1 Wk−1− 1

ρk Wk+1
)∥∥∥

F

≤ lim
k→∞

(
‖Xk+1−Xk‖F+

∥∥∥Xk+
1

ρk−1 Wk−1−Zk
∥∥∥

F
+
∥∥∥ 1

ρk Wk− 1
ρk−1 Wk−1− 1

ρk Wk+1
∥∥∥

F

)
≤ lim

k→∞

∥∥∥Xk+
1

ρk−1 Wk−1−Zk
∥∥∥

F
= lim

k→∞

∥∥∥Uk−1(Sw/ρk−1(Σk−1)−Σk)(Vk−1)T
∥∥∥

F

= lim
k→∞

∥∥∥(Sw/ρk−1(Σk−1)−Σk))
∥∥∥

F
≤ lim

k→∞

1
ρk−1 ‖w‖2=0. (3.22)

Thus, we complete the proof.

By Algorithm 3.1, we may compute the low-rank approximation of all key patch
group and obtain all approximate patches. Then we return all the approximate patches
to their original locations. Since the patches are overlapped, every pixel is finally esti-
mated as the average of repeated estimates. Therefore, we have the following algorithm
for speckle noise reduction in ultrasound images.

Algorithm 3.2 Patch-based algorithm for the speckle noise reduction problem.

1. Input: Noisy image g.

2. for k=0,1,··· ,M, do

(1) for each key patch Y do

i. Find similar patches and construct the patch group;
ii. Apply Algorithm 3.1 for solving the low-rank approximation problem

(3.1).

end for

(2) Aggregate all the resulting approximate patches and form the restored image.

end for

3. Output: Restored image ũ.

In Fig. 2, we show the overall process of the proposed speckle noise reduction algo-
rithm. For the sake of clear presentation, we take a color image for example in Fig. 2. In
the inner iteration, we use the ADMM for each key patch low-rank approximation. In
the outer iteration, we update the resulting image formed by the inner iteration. When
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Figure 2: Overview of the proposed speckle noise reduction algorithm.

the maximum outer iteration number is reached or the relative error between two succes-
sive outer iterations satisfies the stopping criterion, we get the final approximate restored
image.

4 Numerical experiments

In this section, we give some numerical experiments to illustrate the effectiveness of the
proposed patch-based low-rank minimization method for speckle noise reduction in ul-
trasound images. We compare the proposed method with some existing speckle noise
reduction methods including TV [12], HTV [16], TGV [17] BM3D [29] and denoising con-
volutional neural network (DnCNN) [35] on both synthetic images and real ultrasound
images. All of the numerical experiments were carried out in Matlab R2018a. The re-
sults were obtained by running the Matlab codes on an Intel(R) Core(TM) i7-8700 CPU
(3.70GHz, 3.70GHz) computer with RAM of 16GB.

To evaluate the quality of the restoration results quantitatively, we use the PSNR and
SSIM results. The definition of PSNR is given by

PSNR=10log10

(
mn·max2

u

‖ũ−u‖2
2

)
,

where u and ũ are the m×n ideal image and the restored image respectively, and maxu
is the maximum possible pixel value of the image u. For example, when the pixels are
represented by 8 bits per sample, the value of maxu is 255. The SSIM is defined as the
mean of local similarity indexes:

SSIM=
1
N

N

∑
i=1

ssim(xi, x̃i),

where

ssim(xi, x̃i)=
(2µxi µx̃i +C1)(2σxi x̃i +C2)

(µ2
xi
+µ2

x̃i
+C1)(σ2

xi
+σ2

x̃i
+C2)

.
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Here xi and x̃i are corresponding windows of u and ũ indexed by i respectively and N is
the number of windows. µxi and µx̃i are averages of xi and x̃i, respectively. σxi and σx̃i are
the variances of xi and x̃i, respectively. σxi x̃i is the covariance of xi and x̃i. The positive
constants C1 and C2 can be thought of as stabilizing constants for near-zero denominator
values. We refer the reader to [36] for further details on SSIM. In the experiments, we will
use the SSIM value to reveal areas of high or low similarities between two images. It is
noted that the closer the SSIM value is to 1, the stronger the structural similarity between
the restored image and the original image is.

As is done in [25], we choose the weight for the key patch group by using

wj = δ̃2∗min

{
C
√

K√
max{σ2

j (Y)−Kδ̃2,0}+ε
,1

}
,

where δ̃ is the noise standard deviation of the patch group, K is the number of patches
in a patch group. σj is the jth singular value of matrix Y and ε=10−16 is to avoid divid-
ing by zero. The values of the parameters δ̃ and C are related to the noise level of the
speckle noise. We determine the best values of δ̃ and C such that the PSNR value of such
a restored image with respect to such an original image is the smallest. In the ADMM
for the low-rank approximation problem (3.1), we set the parameter µ=1.05. According
to Theorem 1 in [37], we know that the ADMM converges for any choice of the penalty
parameter. However, this parameter does influence the speed of the algorithms. In ex-
periments, we choose the best penalty parameter for a satisfactory speed. In the ADMM
for the low-rank approximation problem (3.1), we choose the noisy patch group as the
initialization. In addition, the iteration number of Newton’s method is equal to 5 in the
X-subproblem. We terminate the iterations for the proposed method when the maximum
number of outer iterations M=20 has been carried out or the relative error between two
successive iterations satisfies

‖uk+1−uk‖2

‖uk+1‖2
<10−3.

For TV [12], HTV [16] and TGV [17], the quality of the restored images is highly de-
pendent on the regularization parameters. We use the regularization parameter setting
and the initialization following the original papers. For the BM3D method in [29], we
apply the optimal regularization parameter for the highest PSNR of the restored image
among all tested values of the regularization parameter. The DnCNN method in [35] is a
state-of-the-art denoising algorithm based on deep learning for additive white Gaussian
noise reduction. Since the DnCNN model is capable of handling Gaussian denoising
with unknown noise level, the DnCNN method can be employed to reduce the noise in
the ultrasound images g=u+

√
uη, where η is a zero-mean Gaussian noise with standard

deviation δ. For the DnCNN method, we use the implementation function DnCNN and
the default parameter settings from Matlab.
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4.1 Experiments on simulated images

In this section, we use eight gray-scale test images of size 256×256 for our experiments.
The original images u are shown in Fig. 3. The noisy images g are generated by the
degradation model (1.1), where the noise level is δ=1,2,3, respectively.

To display how the patch size, step length between the consecutive key patches, non-
local window size and number of patches in a group impact the performance of the pro-
posed method, we carry out some experiments to search for the optimal parameters. In
the first test, we use the first three images in Fig. 3 corrupted by the noise with the noise
level δ=1. In Fig. 4, we plot the PSNR value by the proposed method as a function with
respect to the patch size, step length between the consecutive key patches, nonlocal win-
dow size and number of patches in a group, respectively. From the results of Fig. 4, the
basic parameter setting of the proposed patch-based method is as follows. The patch size
is set as 6×6. We extract the key patch in every 4 pixels along with both horizontal and
vertical directions. The nonlocal window size of searching similar patches is set as 30.
The number of similar patches in each group is chosen as K=70.

In Table 1, we show the values of PSNR and SSIM for the different test images by
TV [12], HTV [16], TGV [17], BM3D [29], DnCNN [35] and the proposed method. The
highest PSNR and SSIM values for each case are highlighted in bold. As can be seen
from Table 1, our proposed method is averagely better than the other five methods for

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Test images. (a) Girl, (b) Couple, (c) Mandrill, (d) Monarch, (e) Starfish, (f) House, (g) Goldhill,
(h) Airplane.
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Figure 4: Parameter test. (a) Patch size, (b) Step size, (c) Window size, (d) Number of patches.

different noise levels with respect to PSNR and SSIM. Our proposed method achieves
about 1.78dB, 1.15dB, 1.40dB, 0.84dB and 0.7dB improvements in average over TV [12],
HTV [16], TGV [17], BM3D [29] and DnCNN [35] respectively for the noise level δ= 1,
while 1.74dB, 1.16dB, 1.43dB, 0.46dB and 0.42dB improvements in average for the noise
level δ= 2 and 1.59dB, 0.96dB, 1.22dB, 0.29dB and 0.11dB improvements in average for
the noise level δ=3. It is not difficult to see from Table 1 that the deep learning method
such as DnCNN [35] and the proposed method produce higher SSIM values in aver-
age than the patch-based method such as BM3D [29] and those methods without using
patches such as TV [12], HTV [16] and TGV [17] for the three noise levels. Moreover,
our proposed method performs better than DnCNN [35] with respect to the SSIM val-
ues on all test images for the noise level δ = 1. Our proposed method achieves higher
SSIM values than DnCNN [35] for 2 out of 8 images under the noise levels δ = 2 and
3 out of 8 images under the noise levels δ = 3, respectively. In conclusion, compared
with TV [12], HTV [16], TGV [17], BM3D [29] and DnCNN [35], our proposed method
has achieved highly competitive restoration performance for different noise levels with
respect to PSNR and SSIM.
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Table 1: Comparison of the performance of five speckle noise reduction methods.

Mothed TV HTV TGV BM3D DnCNN Ours
Image PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Noise level δ=1
Girl 33.08/0.8988 34.35/0.9207 33.68/0.9085 33.73/0.8972 34.29/0.9141 34.94/0.9232

Couple 30.95/0.8739 31.18/0.8774 31.34/0.8833 32.76/0.9169 32.36/0.9051 32.88/0.9177
Mandrill 28.76/0.8375 29.29/0.8596 28.89/0.8428 30.02/0.8851 29.61/0.8670 30.48/0.8899
Monarch 32.33/0.9361 33.26/0.9475 32.80/0.9363 33.28/0.9393 33.22/0.9381 34.05/0.9508
Starfish 30.41/0.8982 31.46/0.9175 31.30/0.9142 31.24/0.9071 31.78/0.9189 32.56/0.9231
House 33.83/0.8781 33.96/0.8756 33.72/0.8792 35.13/0.8869 34.64/0.8866 36.05/0.9116

Goldhill 31.76/0.8669 32.12/0.8778 32.20/0.8862 32.91/0.8913 32.89/0.9000 33.07/0.9021
Airplane 31.74/0.9124 32.27/0.9170 32.01/0.9142 31.43/0.8421 32.71/0.9172 33.05/0.9241
Average 31.61/0.8877 32.24/0.8991 31.99/0.8956 32.56/0.8957 32.69/0.9059 33.39/0.9178

Noise level δ=2
Girl 29.41/0.8313 30.83/0.8709 29.92/0.8253 30.79/0.8411 30.98/0.8490 31.43/0.8743

Couple 27.30/0.7640 27.50/0.7679 27.80/0.7786 29.11/0.8307 28.86/0.8184 29.15/0.8334
Mandrill 25.37/0.6703 25.68/0.7245 25.66/0.7011 26.37/0.7400 26.14/0.7290 26.65/0.7585
Monarch 28.25/0.8802 29.11/0.9009 28.13/0.8418 29.74/0.8975 29.91/0.8868 29.87/0.9114
Starfish 26.34/0.7973 27.39/0.8341 27.30/0.8152 27.89/0.8368 28.50/0.8558 28.63/0.8478
House 30.57/0.8358 30.71/0.8319 30.58/0.8358 32.27/0.8182 31.90/0.8337 32.96/0.8547

Goldhill 28.42/0.7632 28.70/0.7768 28.64/0.7816 29.50/0.7954 29.70/0.8158 29.62/0.7993
Airplane 28.00/0.8511 28.36/0.8559 28.13/0.8418 28.24/0.7522 29.23/0.8501 29.30/0.8760
Average 27.96/0.7992 28.54/0.8204 28.27/0.8025 29.24/0.8140 29.28/0.8298 29.70/0.8444

Noise level δ=3
Girl 27.13/0.7782 28.74/0.8309 28.21/0.8116 29.02/0.8203 28.83/0.7473 29.23/0.8238

Couple 25.16/0.6769 25.78/0.6961 25.73/0.6964 26.12/0.7126 26.88/0.7426 26.18/0.7174
Mandrill 23.84/0.5583 23.54/0.5264 23.65/0.5396 23.59/0.5117 24.52/0.6179 24.10/0.5683
Monarch 25.84/0.8308 26.84/0.8596 26.63/0.8517 27.12/0.8600 27.78/0.8412 27.83/0.8697
Starfish 24.53/0.7298 25.38/0.7711 24.76/0.7423 26.36/0.7880 26.28/0.7947 26.50/0.7883
House 28.42/0.8074 28.77/0.8021 28.46/0.7987 31.16/0.8356 29.89/0.7849 31.24/0.8360

Goldhill 26.56/0.6864 26.99/0.7116 26.91/0.7113 27.36/0.7131 27.80/0.7473 27.70/0.7805
Airplane 25.91/0.8030 26.39/0.8091 25.96/0.8053 27.06/0.8263 27.18/0.7927 27.31/0.8357
Average 25.92/0.7339 26.55/0.7509 26.29/0.7446 27.22/0.7584 27.40/0.7586 27.51/0.7774

In Figs. 5 and 6, we show the speckle noise reduction ability of our proposed method
over the other five methods by recovering the images “Girl” and “Couple” for the noise
level δ = 1. We show the restored images by TV [12], HTV [16], TGV [17], BM3D [29],
DnCNN [35] and our proposed method in Figs. 5(c)-(h) and 6(c)-(h) respectively. We
observe from the figures that our proposed method yields more satisfactory results in
terms of visual performance. Our proposed method is able to avoid the artifact effect
and achieves effective preservation of details. As can be seen from Table 1, our proposed
method achieves the highest PSNR and SSIM values among the six speckle noise reduc-
tion methods. For a better comparison, we enlarge some details of the restored images
and display them in the bottom left corner. As can be seen from the zoomed part, the
restored images in Figs. 5(h) and 6(h) by our proposed method look more natural, and
they match the original image in Figs. 5(a) and 6(a) respectively in a better way.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Restoration results for the “Girl” image. (a) True, (b) Noisy, (c) TV, (d) HTV, (e) GTV, (f) BM3D,
(g) DnCNN, (h) Ours.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Restoration results for the “Couple” image. (a) True (b) Noisy, (c) TV, (d) HTV, (e) GTV, (f)
BM3D, (g) DnCNN, (h) Ours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Restoration results for the “Mandrill” image. (a) True, (b) Noisy, (c) TV, (d) HTV, (e) GTV, (f)
BM3D, (g) DnCNN, (h) Ours.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Restoration results for the “Starfish” image. (a) True, (b) Noisy, (c) TV, (d) HTV, (e) GTV, (f)
BM3D, (g) DnCNN, (h) Ours.
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We give the restoration results for the images “Mandrill” and “Starfish” under the
noise level δ= 2 in Figs. 7 and 8. The restored images by TV [12], HTV [16], TGV [17],
BM3D [29], DnCNN [35] and our proposed method are displayed in Figs. 7(c)-(h) and
8(c)-(h) respectively. It is clear from Figs. 7 and 8 that our proposed method outperforms
the other five methods. The images recovered by the proposed method have more details
than those recovered by TV [12], HTV [16], TGV [17], BM3D [29] and DnCNN [35], and at
the same time, the edges can be preserved as well. Table 1 shows that compared with the
other four methods, DnCNN [35] and our proposed method perform better for restoring
images with respect to the PSNR and SSIM values. In order to gain further insight into
the performance of our proposed method, the zoomed-in parts of the restored images are
shown in the bottom right corner. It is easy to see that our proposed method exhibits
sharp edges and preserves detailed features in the restored images while removing the
speckle noise well.

In Figs. 9 and 10, we compare the restored images produced by our proposed method
with those produced by TV [12], HTV [16], TGV [17], BM3D [29] and DnCNN [35] for
the images “House” and “Airplane”. The original images in Figs. 9(a) and 10(a) are cor-
rupted by the speckle noise with the noise level δ=3 and the noisy images are displayed
in Figs. 9(b) and 10(b). In Figs. 9(c)-(h) and 10(c)-(h), we show the restored images by
TV [12], HTV [16], TGV [17], BM3D [29], DnCNN [35] and our proposed method. It can
be seen from these figures that the performance of our proposed method is quite good
and is comparable to the other five restoration methods. From Table 1, we know that
our proposed method has higher PSNR and SSIM values than the other five methods.
For better visualization, we zoom in on small parts of the recovered images and display
them in the lower right corner. It is obvious that our method obtains better results than
the other five methods in terms of visual quality.

4.2 Experiments on real ultrasound images

In this section, we test the performance of the proposed method on four real ultrasound
images and compare with TV [12], HTV [16], TGV [17], BM3D [29] and DnCNN [35].
Four real noisy ultrasound images are displayed in Figs. 11(a), 12(a), 13(a) and 14(a) re-
spectively. The restored images by TV [12], HTV [16], TGV [17], BM3D [29], DnCNN [35]
and the proposed method are shown in Figs. 11(b)-(g), 12(b)-(g), 13(b)-(g) and 14(b)-(g),
respectively. It is not difficult to see from the figures that the five methods such as TV [12],
HTV [16], TGV [17], BM3D [29] and the proposed method have speckle noise reduction
ability for real ultrasound images. The DnCNN method in [35] almost doesn’t detect the
noise in real ultrasound images. We don’t see obvious noise reduction in Figs. 11(f), 12(f),
13(f) and 14(f) for real ultrasound images. The enlarged parts of the recovered ultrasound
images are given for better visual comparison. From the enlarged parts in Figs. 11(b)-
14(b), the staircase effect can be detected in the restored images by TV [12]. The restored
images by HTV [16], TGV [17], BM3D [29] and the proposed method are much better
than the restored images by TV [12] in terms of the staircase effect. Visually, BM3D [29]
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Restoration results for the “House” image. (a) True, (b) Noisy, (c) TV, (d) HTV, (e) GTV, (f)
BM3D, (g) DnCNN, (h) Ours.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Restoration results for the “Airplane” image. (a) True, (b) Noisy, (c) TV, (d) HTV, (e) GTV, (f)
BM3D, (g) DnCNN, (h) Ours.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 11: Restoration results. (a) Real ultrasound image, (b) TV, (c) HTV, (d) GTV, (e) BM3D, (f) DnCNN,
(g) Ours.

has a strong detail-preserving ability. However, BM3D [29] cannot suppress the speckle
noise adequately and may introduce some undesired artifacts. Compared with TV [12],
HTV [16], TGV [17], BM3D [29] and DnCNN [35], the proposed method can provide
better restoration results with effective speckle noise reduction and without artifacts. At
the same time, detailed features in the restored images by the proposed method can be
preserved very well.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 12: Restored results. (a) Real ultrasound image, (b) TV, (c) HTV, (d) GTV, (e) BM3D, (f) DnCNN,
(g) Ours.

5 Conclusions

We investigate a patch-based low-rank approach for reducing the speckle noise in ul-
trasound images in this paper. Firstly, some similar patches are selected for each key
patch to construct a patch group. Then a nonconvex variational model is proposed by
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 13: Restored results. (a) Real ultrasound image, (b) TV, (c) HTV, (d) GTV, (e) BM3D, (f) DnCNN,
(g) Ours.

using the weighted nuclear norm as a regularizer for the patch group. We employ the ef-
fective ADMM method for the approximate solution of the proposed nonconvex model.
Finally, all the approximate patches are returned to their original locations to generate the
noise reduction ultrasound images. Experimental results on both simulated and real ul-
trasound images are given to demonstrate that the proposed method outperforms some
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 14: Restored results. (a) Real ultrasound image, (b) TV, (c) HTV, (d) GTV, (e) BM3D, (f) DnCNN,
(g) Ours.

existing state-of-the-art methods such as TV [12], HTV [16], TGV [17] BM3D [29] and
DnCNN [35] in terms of visual quality, PSNR and SSIM measures.

The main running time consuming in the proposed method is the finding of similar
patches and the computations of SVD. The SVD computations needed in the WNNM
problem are very expensive, which bring down the efficiency of the proposed method.



178 X-G. Lv, F. Li, J. Liu and S-T. Lu / Adv. Appl. Math. Mech., 14 (2022), pp. 155-180

Our proposed method is more time-consuming than TV [12], HTV [16], TGV [17],
BM3D [29] and DnCNN [35]; however, this drawback is compensated by its outstanding
performance. In the next step, we consider how to speed up the proposed method by con-
verting the code to C/C++ and GPU implementation with parallelization. On the other
hand, we consider employing the fast randomized singular value thresholding method
to reduce the computational time of the WNNM problem without losing accuracy and
hurting convergence behavior. In the future work, we will investigate the acceleration of
the proposed method.

Acknowledgements

The authors would like to express their great thankfulness to the referees for
much constructive, detailed and helpful advice regarding revising this manuscript.
This work was supported by NSF of Jiangsu Province (No. BK20181483), NSFC
(Nos. 11671002, 11701079, 61731009), the Fundamental Research Funds for the Cen-
tral Universities, and Science and Technology Commission of Shanghai Municipality
(Nos. 19JC1420102, 18dz2271000), Hai Yan project, Lianyungang 521 project and NSF
of HHIT (No. Z2017004).

References

[1] K. DJEMAL, Speckle reduction in ultrasound images by minimization of total variation, in IEEE
International Conference on Image Processing, 2005.

[2] H. LIM AND T. M. WILLIAMS, A non-standard anisotropic diffusion for speckle noise removal, J.
Syst. Cybernetics Inform., 5(2) (2007), pp. 12–17.

[3] K. KRISSIAN, R. KIKINIS, C. F. WESTIN, AND K. G. VOSBURGH, Speckle-constrained filtering
of ultrasound images, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

[4] A. GARG AND V. KHANDELWAL, Speckle noise reduction in medical ultrasound images using
coefficient of dispersion, in International Conference on Signal Processing & Communication,
2016.

[5] M. HACINI, F. HACHOUF, AND K. DJEMAL, A new speckle filtering method for ultrasound im-
ages based on a weighted multiplicative total variation, Signal Process., 103 (2014), pp. 214–229.

[6] M. G. SHAMA, T. Z. HUANG, J. LIU, AND S. WANG, A convex total generalized variation
regularized model for multiplicative noise and blur removal, Appl. Math. Comput., 276 (2016),
pp. 109–121.

[7] C. LIU, M. NG, AND T. ZENG, Weighted variational model for selective image segmentation with
application to medical images, Pattern Recognition, 76 (2018), pp. 367–379.

[8] N. CHUMCHOB AND I. PRAKIT, An improved variational model and its numerical solutions for
speckle noise removal from real ultrasound images, J. Comput. Math., 37(2) (2019), pp. 201–239.

[9] F. FONTES, G. BARROSO, P. COUPE, AND P. HELLIER, Real time ultrasound image denoising, J.
Real Time Image Process., 6(1) (2011), pp. 15–22.



X-G. Lv, F. Li, J. Liu and S-T. Lu / Adv. Appl. Math. Mech., 14 (2022), pp. 155-180 179

[10] CELIA A. Z. BARCELOS AND LUCIANA E. S. R. VIEIRA, Ultrasound speckle noise reduction via
an adaptive edge-controlled variational method, in IEEE International Conference on Systems,
Man and Cybernetics (SMC), 2014.

[11] C. P. LOIZOU AND C. S. PATTICHIS, Despeckle Filtering Algorithms and Software for Ultra-
sound Imaging, Morgan & Claypool, 2015.

[12] Z. M. JIN AND X. P. YANG, A variational model to remove the multiplicative noise in ultrasound
images, J. Math. Imag. Vision, 39(1) (2011), pp. 62–74.

[13] H. JIE AND X. P. YANG, Fast reduction of speckle noise in real ultrasound images, Signal Process.,
93(4) (2013), pp. 684–694.

[14] Y. L. WU AND X. C. FENG, Speckle noise reduction via nonconvex high total variation approach,
Math. Problems Eng., 2015(2) (2015), pp. 1–11.

[15] M. KANG, M. KANG, AND M. JUNG, Total generalized variation based denoising models for
ultrasound images, J. Sci. Comput., 72(1) (2017), pp. 172–197.

[16] S. WANG, T. Z. HUANG, X. L. ZHAO, J. J. MEI, AND J. HUANG, Speckle noise removal in
ultrasound images by first- and second-order total variation, Numer. Algorithms, 78 (2018), pp.
513–533.

[17] J. J. MEI, T. Z. HUANG, S. WANG, AND X. L. ZHAO, Second order total generalized variation
for speckle reduction in ultrasound images, J. Franklin Institute, 355 (2018), pp. 574–595.

[18] B. A. ABRAHIM AND Y. KADAH, Speckle noise reduction method combining total variation
and wavelet shrinkage for clinical ultrasound imaging, in IEEE 1st Middle East Conference on
Biomedical Engineering, pages 80–83, 2011.

[19] Y. XIAO, T. ZENG, J. YU, AND M. K. NG, Restoration of images corrupted by mixed Gaussian-
impulse noise via l1-l0 minimization, Pattern Recognition, 44(8) (2011), pp. 1708–1720.

[20] Y. M. HUANG, L. MOISAN, M. K. NG, AND T. Y. ZENG, Multiplicative noise removal via a
learned dictionary, IEEE Trans. Image Process., 21(11) (2012), pp. 4534–4543.

[21] L. MA, L. MOISAN, J. YU, AND T. ZENG, A dictionary learning approach for poisson image
deblurring, IEEE Trans. Medical Imag., 32(7) (2013), pp. 1277–1289.

[22] L. SUN, J. CHEN, D. ZENG, AND X. DING, A novel nonlocal MRI reconstruction algorithm
with patch-based low rank regularization, in IEEE Global Conference on Signal and Information
Processing (GlobalSIP), 2015.

[23] H. HU, J. FROMENT, AND Q. LIU, A note on patch-based low-rank minimization for fast image
denoising, J. Visual Commun. Image Representation, 50 (2018), pp. 100–110.

[24] K. DABOV, A. FOI, V. KATKOVNIK, AND K. EGIAZARIAN, Image denoising by sparse 3d
transform-domain collaborative filtering, IEEE Trans. Image Process., 16(8) (2007), pp. 2080–
2095.

[25] S. GU, L. ZHANG, W. ZUO, AND X. FENG, Weighted nuclear norm minimization with appli-
cation to image denoising, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2862–2869, 2014.

[26] L. MA, L. XU, AND T. ZENG, Low rank prior and total variation regularization for image deblur-
ring, J. Sci. Comput., 70 (2017), pp. 1336–135721.

[27] D. GUAN, D. XIANG, X. TANG, AND G. KUANG, SAR image despeckling based on nonlocal
low-rank regularization, IEEE Transactions on Geoscience and Remote Sensing, pages 1–18,
2018.

[28] G. KIM, J. CHO, AND M. KANG, Cauchy noise removal by weighted nuclear norm minimization,
J. Sci. Comput., 83(15) (2020), pp. 1–21.

[29] Y. GAN, E. ANGELINI, A. LAINE, AND C. HENDON, BM3D-based ultrasound image denois-
ing via brushlet thresholding, in IEEE 12th International Symposium on Biomedical Imaging,



180 X-G. Lv, F. Li, J. Liu and S-T. Lu / Adv. Appl. Math. Mech., 14 (2022), pp. 155-180

pages 667–670, 2015.
[30] X. LV AND F. LI, An iterative decoupled method with weighted nuclear norm minimization for

image restoration, Int. J. Comput. Math., 15(3) (2020), pp. 602–623.
[31] X. YANG AND Y. HUANG, A modulus iteration method for SPSD linear complementarity problem

arising in image retinex, Adv. Appl. Math. Mech., 12(2) (2020), pp. 579–598.
[32] S. BOYD, N. PARIKH, E. CHU, B. PELEATO, AND J. ECKSTEIN, Distributed optimization and

statistical learning via the alternating direction method of multipliers, Foundations and Trends in
Machine Learning, 3(1) (2011), pp. 1–122.

[33] T. WU AND J. SHAO, Non-convex and convex coupling image segmentation via TGpV regulariza-
tion and thresholding, Adv. Appl. Math. Mech., 12(3) (2020), pp. 849–878.

[34] T. WU, Z. PANG, Y. WANG, AND Y. YANG, CS-MRI reconstruction based on the constrained
TGV-shearlet scheme, Int. J. Numer. Anal. Model., 17 (2020), pp. 316–331.

[35] K. ZHANG, W. ZUO, Y. CHEN, D. MENG, AND L. ZHANG, Beyond a gaussian denoiser: Resid-
ual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26(7) (2017), pp.
3142–3155.

[36] Z. WANG, A. C. BOVIK, H. R. SHEIKH, AND E. P. SIMONCELLI, Image quality assessment:
from error visibility to structural similarity, IEEE Trans. Image Process., 13(4) (2004), pp. 600–
612.

[37] M. A. T. FIGUEIREDO AND J. M. BIOUCAS-DIAS, Restoration of poissonian images using alter-
nating direction optimization, IEEE Trans. Image Process., 19(12) (2010), pp. 3133–3145.


