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Abstract. We consider the Dirichlet problem for a quasilinear degenerate para-
bolic stochastic partial differential equation with multiplicative noise and non-
homogeneous Dirichlet boundary condition. We introduce the definition of
kinetic solution for this problem and prove existence and uniqueness of so-
lutions. For the uniqueness of kinetic solutions we prove a new version of
the doubling of variables method and use it to deduce a comparison princi-
ple between solutions. The proof requires a delicate analysis of the boundary
values of the solutions for which we develop some techniques that enable the
usage of the existence of normal weak traces for divergence measure fields in
this stochastic setting. The existence of solutions, as usual, is obtained through
a two-level approximation scheme consisting of nondegenerate regularizations
of the equations which we show to be consistent with our definition of solu-
tions. In particular, the regularity conditions that give meaning to the bound-
ary values of the solutions are shown to be inherited by limits of nondegenerate
parabolic approximations provided by the vanishing viscosity method.
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1 Introduction

Let O be a bounded smooth open subset of R
d. We consider the Dirichlet problem

for a quasilinear degenerate parabolic stochastic partial differential equation

du+div
(
A(u)

)
dt=D2 : B(u)dt+Φ(u)dW, x∈O, t∈ (0,T), (1.1)

u(0)=u0 , (1.2)

u(t)
∣∣

∂O=ub(t), (1.3)

where, A :R→Rd and B :R→Md are smooth maps, Md denote the space of d×d
matrices. For R = (Rij),S = (Sij) ∈ Md we denote R : S := ∑i,j RijSij and, by ex-

trapolation, D2 :B :=∑i,j∂
2
xixj

Bij . The matrix B(u) is symmetric and its derivative

b(u)=B′(u) is a symmetric nonnegative d×d matrix. W is a cylindrical Wiener
process.

1.1 Hypotheses

The flux function A= (A1,··· ,Ad) : R →Rd is assumed to be of class C2 and we
denote its derivative by a=(a1,··· ,ad). The diffusion matrix b=(bij)

d
i,j=1 :R→Md

is symmetric and positive semidefinite. Its square-root matrix, also symmetric
and positive semidefinite, is denoted by σ, which is assumed to be bounded and
locally γ-Hölder continuous for some γ>1/2, that is,

|σ(ξ)−σ(ζ)|≤C(R)|ξ−ζ|γ for all ξ,ζ∈R, |ξ−ζ|<R. (1.4)

Moreover, we assume that, for some b∈C1(R) with b′(u)≥ 0 for all u∈R, and
a constant Λ>1 we have

b′(u)2|ξ|2 ≤∑
i,j

bij(u)ξiξ j ≤Λb′(u)2|ξ|2. (1.5)
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As it was observed in [19], (1.5) implies that the Bij are locally Lipschitz functions

of b(u), that is, there exists a locally Lipschitz continuous functions B̃ij such that

Bij(u)= B̃ij(b(u)) for all i, j=1,.. .,d. Relation (1.5) immediately implies

b′(u)|ξ|2 ≤∑
i,j

σij(u)ξiξ j ≤Λ
1
2 b′(u)|ξ|2 , (1.6)

and similarly to B, we deduce that

Σ(u)=
∫ u

0
σ(ζ)dζ (1.7)

is a locally Lipschitz function of b(u), i.e. there is a locally Lipschitz function Σ̃

such that Σ(u)= Σ̃(b(u)).
Further, we require a nondegeneracy condition for the symbol L associated to

the kinetic form of (1.1). In order to have spatial regularity of kinetic solutions
we localise the χ-function associated to such solution and so, for ℓ>0 sufficiently
large, we may view our localised χ-functions as periodic with period ℓ. The sym-
bol is given by

L(iτ,in,ξ) := i
(

u+a(ξ)·n
)
+n∗b(ξ)n,

where n∈ℓZd . For a certain L0>0 and any J,δ>0 let

ΩL(u,n;δ) :=
{

ξ∈ (−L0,L0) : |L(iτ,in,ξ)|≤δ
}

,

ωL(J;δ) := sup
τ ∈R,n∈ ℓZd

|n|∼ J

|ΩL(τ,in;δ)|

and Lξ :=∂ξL. We suppose that there exist α∈ (0,1) and β>0 such that

ωL(J;δ).

(
δ

Jβ

)α

,

sup
τ∈R,n∈Zd

|n|∼ J

sup
ξ∈(−L0,L0)

|Lξ(iτ,in;ξ)|. Jβ , ∀δ>0, J&1,
(1.8)

where we employ the usual notation x. y, if x≤Cy, for some absolute constant
C>0, and x∼y, if x.y and y.x.

The following example in the case where d=2, corresponds to the one in [42,
Corollary 4.5] where conditions (1.8) are verified

du+∂x1

(
1

l+1
ul+1

)
dt=∂2

x2

(
1

n+1
|u|nu

)
dt+Φ(u)dW,
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where l,n∈N satisfy n≥2l. The same argument as in [42, Corollary 4.5] applies to
the corresponding equation in any space dimension d, replacing ∂2

x2
in the above

equation by ∂2
x2
+···+∂2

xd
. Clearly, many other similar examples may be given.

As to the stochastic term, we adopt a framework similar to that in [14, 15, 21].
Let (Ω,F ,P,(Ft)t≥0) be a stochastic basis, where (Ω,F ,P) is a probability space
and (Ft)t≥0 is a complete right-continuous filtration. We assume that the ini-
tial datum u0 is F0-measurable and that W is a cylindrical Wiener process W =
∑k≥1 βkek, where βk are independent Brownian processes and (ek)k≥1 is a com-

plete orthonormal basis in a Hilbert space U. For each u∈L2(O), Φ(u) :U→L2(O)
is defined by Φ(u)ek = gk(·,u(·)), where gk(·,u(·)) is a regular function on O. In
this setting, we may assume, without loss of generality, that (Ft)t≥0 is the filtra-
tion generated by the Wiener process and the initial condition.

We assume that gk are smooth functions defined on (Ō×R) with the bounds

|gk(x,0)|+ ∑
|α|+j≤2

∣∣∂α
x∂

j
ξ gk(x,ξ)

∣∣≤αk, ∀x∈O, ξ∈R, (1.9)

where (αk)k≥1 is a sequence of positive numbers satisfying D := 4∑k≥1α2
k < ∞.

Observe that (1.9) implies

G2(x,u)= ∑
k≥1

|gk(x,u)|2 ≤D
(
1+|u|2

)
, (1.10)

∑
k≥1

|gk(x,u)−gk(y,v)|2≤D
(
|x−y|2+|u−v|2

)
(1.11)

for all x,y∈O, u,v∈R.
In addition, we assume that, for some δ0>0,

∇xgk(x,u)=0, if dist(x,∂O)<δ0 for all k≥1. (1.12)

The conditions on Φ imply that Φ : L2(O)→L2(U;L2(O)), where the latter de-
notes the space of Hilbert-Schmidt operators from U to L2(O). In particular, given
a predictable process u∈L2(Ω×[0,T];L2(O)), the stochastic integral is a well de-
fined process taking values in L2(O). Indeed, for u∈L2(O), from (1.9), it follows

∑
k≥1

‖gk(·,u(·))‖2
L2(O)≤D

(
1+‖u‖2

L2(O)

)
.

Since, clearly, the series defining W does not converge in U, in order to have
W properly defined as a Hilbert space valued Wiener process, one usually intro-
duces an auxiliary space U0⊃U such as

U0 :=

{
v= ∑

k≥1

akek : ∑
k≥1

a2
k

k2
<∞

}
,
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endowed with the norm

‖v‖2
U0
= ∑

k≥1

a2
k

k2
, v= ∑

k≥1

akek.

In this way, one may check that the trajectories of W are P-a.s. in C([0,T],U0)
(see [13]).

We look for bounded solutions of the initial-boundary value problem (1.1)-
(1.3) which assume values in an interval, say [umin,umax]. Accordingly we assume
that [umin,umax]⊂ (−L0 ,L0), where L0 is as in the nondegeneracy condition (1.8).
Moreover, we assume that

gk(x,umin)= gk(x,umax)=0, x∈O, k=1,2,.. . . (1.13)

We also assume that u0 ∈ L∞(O) is deterministic (for simplicity) and satisfies
umin≤u0≤umax. Let us point out that u0 may be random, in which case it should
be assumed that it is F0-measurable. The extension to this more general setting is
straightforward and follows the arguments below line by line just by adding an
expectation where integration in the random parameter takes place. The condi-
tions on ub are given below (see (1.18)).

1.2 Definitions and main result

We will work with the notion of kinetic solutions of Eq. (1.1). This notion of so-
lution is consistent with the one introduced by Debussche and Vovelle [15], in
the context of stochastic conservation laws, where they extended to the stochastic
setting the concept of kinetic solutions originally introduced by Lions et al. [34]
for deterministic conservation laws. The methods in [15] were later extended to
degenerated parabolic problems by Debussche et al. [14] and by Gess and Hof-
manová [21], both of them in the periodic case. Essentially, a function u is a ki-
netic solution of Eq. (1.1) if it satisfies certain regularity requirements and if there
exists a kinetic measure m such that the pair ( f ,m) satisfies a certain kinetic equa-
tion related to (1.1), where f (t,x,ξ)=1u(t,x)>ξ (see Definition 1.1 and parts (i) and
(ii) of Definition 1.2 below). Note that if we ignore the boundary condition (1.3)
we may easily construct kinetic solutions by applying the theory from [14, 21].
Indeed it suffices to put the domain O inside a d-cell U =(−R,R)d large enough
and extend the initial data to Rd in any way so that we may assume that it is
periodic (for instance, we may extend u0 to a function with compact support in
U and extend it periodically to Rd). In this case, the results from [14, 21] guar-
antee the existence of solutions, which we may then restrict to O. Here, we are
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going to introduce a set of conditions that will allow us to give meaning to the
boundary condition and will characterize uniquely, among all possible solutions,
a particular kinetic solution of (1.1), (1.2) satisfying (1.3).

Definition 1.1 (Kinetic measure). A mapping m from Ω to M+
b ([0,T]×O×R), the

set of nonnegative bounded measures over [0,T]×O×R, is said to be a kinetic measure

if the following holds:

(i) m is measurable, in the sense that for each ψ ∈ C0([0,T]×O×R) the mapping

m(ψ) : Ω→R is measurable, where by C0 we denote the space of continuous func-

tions vanishing at the boundary or when the norm of the argument goes to infinity;

(ii) m vanishes for large ξ: if Bc
R={ξ∈R : |ξ|≥R}, then

lim
R→∞

Em
(
[0,T]×O×Bc

R

)
=0;

(iii) for any ψ∈C0(O×R)
∫

[0,t]×O×R

ψ(x,ξ)dm(s,x,ξ)∈L2(Ω×[0,T])

admits a predictable representative.

Concerning the Dirichlet condition in the next definition we make the follow-
ing comments and further assumptions. First, we assume that B(u) is diagonal,
i.e.

Bij(u)≡0 for i 6= j. (1.14)

Second, we introduce the functions

F(u,v) :=sgn(u−v)
(

A(u)−A(v)
)

,

B(u,v)=
(

sgn(u−v)(Bij(u)−Bij(v))
)d

i,j=1
,

Kx(u,v) :=∇x ·B(u,v)−F(u,v),

Hx(u,v,w) :=Kx(u,v)+Kx(u,w)−Kx(w,v),

G(u,v) :=sgn(u−v)
(

Φ(u)−Φ(v)
)

,

(1.15)

where ∇x ·B(u,v) is the d-vector with components

(
∇x ·B(u,v)

)
j
=

d

∑
i=d

∂xi

(
sgn(u−v)(Bij(u)−Bij(v))

)
,

and G : L2(O)2→L2(U;L2(O2)) is given by
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G(u,v)ek =sgn(u−v)
(

gk(x,u)−gk(x,v)
)
, k≥1.

Henceforth, whenever dealing with the Dirichlet boundary conditions, we will
omit the dependence of gk on x, because of (1.12).

Similarly, we also define F+, B+ and G+ as their counterparts in (1.15) with
sgn(·)+ instead of sgn(·). Furthermore, let

A(u,v,w)= |u−v|+|u−w|−|w−v|. (1.16)

Third, in order to take advantage of the fact that ∂O is locally the graph of a C2

function, we introduce a system of balls B with the following property. For each
B=B(x0,r)∈B, a ball with center at an arbitrary x0∈∂O with radius 0<r<δ0 (cf.
(1.12)), we have that for some γ∈C2(Rd−1),

B∩O=
{
(ȳ,yd)∈B : yd<γ(ȳ), ȳ=(y1,··· ,yd−1)∈R

d−1
}

, (1.17)

where the coordinate system (y1,··· ,yd) is obtained from the original (x1,··· ,xd)
by relabelling, reorienting and performing a translation. By relabelling we mean
a permutation of the coordinates, by reorienting we mean changing the orienta-
tion of one of the coordinate axes, and the translation changes the origin of the
coordinate system if necessary.

Fourth, we assume that

ub∈L2
(
Ω×[0,T];H4(∂O)

)
∩L2

(
Ω;H1(0,T;L2(∂O))

)

∩L4
(
Ω×[0,T];W1,4(O)

)
(1.18)

is predictable and satisfies umin ≤ ub(t,x)≤ umax, (t,x) ∈ (0,T)×∂O, and given
B∈B satisfying (1.17) we consider an extension uB ∈ L2(Ω×[0,T];H4(O)) of ub

satisfying the following problem:

duB =−∆2uBdt+Φ(uB)dW(t), x∈O, t∈ (0,T), (1.19)

uB(0)=uB0, (1.20)

uB(t)
∣∣
∂O=ub(t), (1.21)

∂uB

∂xd
(t)
∣∣
∂O∩B

=0, (1.22)

where ∆2 denotes the bi-Laplacian operator and uB0 is a smooth extension of

ub(0,·) to B such that ∂uB0
∂xd

|∂O∩B=0.
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Remark 1.1. Actually, we only need to assume that, for each B∈B, ub|∂O∩B is

the restriction to ∂O∩B of a strong solution of a stochastic equation whose noise

term is given by Φ(uB)dW, also satisfying (1.22). It is possible to show that under

the hypotheses (1.9)-(1.12) and assuming (1.18), then there are strong solutions to

(1.19)-(1.22), in particular (see Appendix A). In the deterministic setting, that is,

when Φ=0, uB may simply be obtained using (1.17) by setting uB(x̄,xd)=ub(x̄),
for x=(x̄,xd)∈ B∩O (cf. [19, 36]). We will comment further on the extension of

the boundary data satisfying (1.19)-(1.22) in Subsection 1.4 below.

Definition 1.2. A predictable function u ∈ L∞(Ω×[0,T]×O) is a kinetic solution of

(1.1), (1.2) if the following conditions are satisfied:

(i) Regularity:

∇b(u)∈L2(Ω×[0,T]×O). (1.23)

In particular, div
∫ u

0 σ(ξ)dξ∈L2(Ω×[0,T]×O).

(ii) Kinetic equation: There exists a kinetic measure m≥n1, P-a.s., such that the pair

( f =1u>ξ ,m) satisfies, for all ϕ∈C∞
c ([0,T)×O×R), P-a.s.,

∫ T

0

〈
f (t),∂t ϕ(t)

〉
dt+

〈
f0,ϕ(0)

〉
+
∫ T

0

〈
f (t),a·∇ϕ(t)

〉
dt

+
∫ T

0

〈
f (t),b : D2 ϕ(t)

〉
dt

=−∑
k≥1

∫ T

0

∫

O
gk

(
x,u(t,x)

)
ϕ
(
t,x,u(t,x)

)
dxdβk(t)

− 1

2

∫ T

0

∫

O
G2
(

x,u(t,x)
)

∂ξ ϕ
(
t,x,u(t,x)

)
dxdt+m(∂ξ ϕ), (1.24)

where n1 :Ω→M+([0,T]×O), called the parabolic dissipation measure, is defined

by

n1(ϕ)=
∫ T

0

∫

O

∫

R

ϕ(t,x,ξ)

∣∣∣∣div
∫ u

0
σ(ζ)dζ

∣∣∣∣
2

dδu(s,x)(ξ)dxdt.

Additionally, among all possible functions that satisfy (i) and (ii), item (iii) below will

characterize uniquely the one that satisfies the boundary condition (1.3).

(iii) Dirichlet condition on ∂O: We say that u satisfies (1.3) if the following conditions

hold. For each B∈B, and some random constant C∗> 0 with finite expectation,
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depending only on A,B and ub, we have a.s. and for all 0≤ ϕ̃∈C∞
c ((0,T)×B) that

∫ T

0

∫

O

{
|u(t,x)−uB(t,x)|∂t ϕ̃−Kx(u(t,x),uB(t,x))·∇ϕ̃

}
dxdt

+∑
k≥1

∫ T

0

∫

O
Gk

(
u(t,x),uB(t,x)

)
ϕ̃dxdβk(t)≥−C∗‖ϕ̃‖L2(O×[0,T]). (1.25)

Also, if v is any other kinetic solution of Eq. (1.1) (possibly with different initial

data v0) and ζδ is any boundary layer sequence (for whose precise definition we

refer to Section 2), then for all 0≤ φ̃∈C∞
c (B×O) and 0≤ t≤T, we have that

liminf
δ→0

E

∫ t

0

∫

O2
Hx

(
u(s,x),v(s,y),uB(s,x)

)
·∇xζδ(x)φ̃(x,y)dxdyds≥0. (1.26)

Moreover, for all B∈B and for all φ∈C1
c (B), a.s. we have

b
(
u(t,x)

)
=b
(
ub(t,x)

)
on ∂O×(0,T) (1.27)

in the sense of traces in L2(0,T;H1(B∩O)).

Remark 1.2. Note that in the deterministic setting, that is, when gk≡0 for all k≥1,

the constants are solutions of Eq. (1.1) and the condition (1.26) is only necessary

to hold for constant solutions v(t,y)= k (cf. [19, 36]). In the present setting, this is

no longer the case.

Remark 1.3 (Chain rule). Since Σ(u) in (1.7) is a locally Lipschitz function of b(u)
(see (1.5)), condition (1.23) implies that ∇Σ(u)∈L2(Ω×[0,T]×O). Consequently,

for any 0≤ϑ∈Cb(R) the following chain rule formula holds in L2(Ω×[0,T]×O)
(see the appendix in [12]):

div
∫ u

0
ϑ(ξ)σ(ξ)dξ=ϑ(u)div

∫ u

0
σ(ξ)dξ in D′(O), a.e. (ω,t). (1.28)

We now state the main theorem of this paper.

Theorem 1.1. Let u0∈L∞(Ω×O) with umin≤u0≤umax and assume that (1.4)-(1.14)

hold. Then, there is a unique kinetic solution u of (1.1)-(1.3). Moreover, u has almost

surely continuous trajectories in Lp(O), for all p∈ [1,∞) and satisfies umin≤u≤umax .

Furthermore, if u and v are two kinetic solutions with initial data u0,v0, we have

E

∫

O
|u(t,x)−v(t,x)|dx≤

∫

O
|u0(x)−v0(x)|dx. (1.29)
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It is important to have also at hand the notion of entropy solution.

Definition 1.3. A bounded measurable function u∈L∞(Ω×[0,T]×O) is a weak entropy

solution of (1.1)-(1.3) if u∈Lp(Ω×[0,T],P ,dP⊗dt;Lp(O))∩Lp(Ω;L∞(0,T;Lp(O)))
for all p≥1 and it satisfies conditions (i) and (iii) of Definition 1.2 and

(ii’) For all η∈C2(R) with Aη ,Bη such that A′
η =η′A′, B′

η =η′B′ and for all 0≤ ϕ∈
C∞

c ([0,T)×O)

∫ T

0

〈
η(u(t)),∂t ϕ

〉
dt+

〈
η(u0),ϕ(0)

〉
+
∫ T

0

〈
Aη(u(t)),∇ϕ

〉
dt

+
∫ T

0

〈
div(Bη(u(t))),∇ϕ

〉
dt

≥
∫ T

0

∫

O
η′′(u)

d

∑
k=d′+1

(
d

∑
i=d′+1

∂xi
σik(u)

)2

ϕdxdt

−∑
k≥1

∫ T

0

〈
gk(x,u(t))η′(u(t)),ϕ

〉
dβk(t)

− 1

2

∫ T

0

〈
G2(x,u(t))η′′(u(t)),ϕ

〉
dt, (1.30)

a.s. where 〈·,·〉 represents the inner product of L2(O) or L2(O;Rd).

The following proposition establishes the equivalence between the notions of
kinetic and weak entropy solutions, in the context of L∞ solutions.

Proposition 1.1. Let ub∈L2(Ω×[0,T];H2(∂O))∩L2(Ω;H1((0,T);L2(∂O))) and u0∈
L∞(Ω×O). For a measurable function u : Ω×[0,T]×O → R it is equivalent to be

a kinetic solution of (1.1)-(1.3) and a weak entropy solution of (1.1)-(1.3).

1.3 Earlier works

In the deterministic case, i.e. in the absence of the stochastic term Φ(u)dW, the
problem (1.1)-(1.3) in the hyperbolic case B≡ 0 has a well known history begin-
ning with Bardos et al. [1], where BV solutions are addressed, then Otto [38] (see
also [35]) where L∞ solutions are considered. Still in the deterministic case, for
degenerate parabolic-hyperbolic equations, Mascia et al. [36] proved the unique-
ness and consistency for their notion of solution, and Michel and Vovelle [37]
proved the existence of such solutions, both works in the isotropic case. For the
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anisotropic case we mention the papers by Kobayasi and Owha [30] and Frid and
Li [19].

On the other hand, stochastic conservation laws have a recent yet intense his-
tory. For the sake of examples, we mention Kim [28] for the first result of ex-
istence and uniqueness of entropy solutions of the Cauchy problem for a one-
dimensional stochastic conservation law, in the additive case, that is, Φ does not
depend on u. Feng and Nualart [17], where a notion of strong entropy solu-
tion is introduced, which is more restrictive than that of entropy solution, and
for which the uniqueness is established in the class of entropy solutions in any
space dimension, in the multiplicative case, i.e., Φ depending on u; existence of
such strong entropy solutions is proven only in the one-dimensional case. Chen
et al. [7], where the result in [17] was improved and existence in any dimension
was proven in the context of the functions of bounded variation. Debussche and
Vovelle [15], where a major step in the development of this theory was made
with the extension of the concept of kinetic solution, originally introduced by
Lions et al. [34], for deterministic conservation laws, to the context of stochastic
conservation laws, for which the well-posedness of the Cauchy problem was es-
tablished in the periodic setting in any space dimension. Bauzet et al. [2], where
the existence and uniqueness of entropy solutions for the general Cauchy prob-
lem was proved in any space dimension (see also [27]). Concerning boundary
value problems, in the hyperbolic case, Vallet and Wittbold [44], in the additive
case, and Bauzet et al. [3], in the multiplicative case, obtain existence and unique-
ness of entropy solutions to the homogeneous Dirichlet problem, i.e., null bound-
ary condition. Kobayasi and Noboriguchi [29], address the well-posedness of
the non-homogeneous Dirichlet problem. As for stochastic degenerate parabolic-
hyperbolic equations, we recall that the concept of kinetic solution introduced
in [15] together with its well-posedness was achieved also for such equations
(in the general non-isotropic case) by Debussche et al. [14] and Gess and Hof-
manová [21] (see also [2], for entropy solutions of such equations, in the isotropic
case, and, more recently, [11] in the non-isotropic case).

1.4 Outline of the content

The Dirichlet problem for stochastic degenerated parabolic-hyperbolic equations
is addressed here for the first time. In this paper, we introduce the definition
of kinetic solution for the Dirichlet problem (1.1)-(1.3) and prove existence and
uniqueness of solutions. For the uniqueness of kinetic solutions we prove a new
version of the doubling of variables method and use it to deduce a comparison
principle between solutions. The proof of uniqueness requires a delicate analysis
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of the boundary values of the solutions for which we develop some techniques
that enable the usage of the existence of normal weak traces for divergence mea-
sure fields in the present stochastic setting.

The existence of kinetic solutions for (1.1)-(1.3) will be obtained through a two-
level approximation scheme consisting of solutions to adequate regularizations of
the equations by the introduction of higher order terms. The notion of kinetic so-
lutions of Definition 1.2 is shown to be consistent with the limit of non-degenerate
parabolic approximations provided by the vanishing viscosity method. In partic-
ular, the regularity conditions that give meaning to the boundary values of the
solutions are inherited from such approximations.

In order to deal with the boundary condition we rely on the theory of diver-
gence measure fields and the normal trace formula (see [8,36]). A key observation

is to write a stochastic term of the form Ψ(v(t))dW(t) as ∂t(
∫ t

0 Ψ(v(s))dW(s)), a.s.
in the sense of distributions, so that it can be incorporated to the partial deriva-
tive with respect to t of the first coordinate of the corresponding field. This kind
of reasoning will allow us to apply the normal trace formula from [8, 36] in our
present stochastic setting. This is particularly important in the proof of unique-
ness, as any comparison principle between kinetic solutions requires a delicate
analysis of the boundary values.

The extension of the boundary values to the interior of the spatial domain
that we choose plays a key role in the analysis at the boundary developed in the
proof of uniqueness. On the one hand, condition (1.20), satisfied by the extension
uB on ∂O∩B is essential to control the values of the solution near the boundary.
On the other hand, in order to deduce the consistency of the definition of kinetic
solutions to (1.1)-(1.3) with limits obtained from the vanishing viscosity method,
we are bound to impose that uB be a strong solution to a stochastic equation
whose noise term is given by Φ(uB)dW, in order to avoid infinite quadratic vari-
ation in the limit when comparing a solution with the boundary data near the
boundary. This imposition precludes us from using the trivial extension given by
ũB(x̄,xd)=ub(x̄) considered in the deterministic case treated in [19, 36].

Let us point out that the non-degeneracy condition (1.8) plays a crucial role in
the proof of the compactness of the sequence of approximate solutions. Indeed, it
guarantees certain uniform regularity of the sequence of solutions, provided by
the averaging lemma by Gess and Hofmanová [21], which guarantees the tight-
ness of the sequence of laws. After this, having uniqueness of solutions of the
limit problem as well as the consistency of the definition of kinetic solutions with
the pointwise limit of non-degenerate parabolic regularizations, the usual argu-
ment involving Skorohod’s representation together with Gyöngy-Krylov’s crite-
rion yields the existence of solutions to the original problem.
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The rest of the paper is organized as follows. In Section 2 we recall some
results on the theory of divergence measure fields and the existence of normal
weak traces. We also show an extension of this theory that allows us to apply
the existence of normal traces to certain divergence measure random fields in
connection with inequality (1.25) that concern us. In Section 3 we prove a ver-
sion of the doubling of variables for kinetic solutions of (1.1)-(1.3) and use it to
prove a comparison principle, which, in turn, yields uniqueness. In Section 4
we prove the consistency of Definition 1.2 with limits of solutions to regularized
non-degenerate parabolic approximations of (1.1)-(1.3). More precisely, we show
that a pointwise limit of solutions to a convenient viscous approximation of (1.1)-
(1.3) inherits the conditions from item (iii) of Definition 1.2 that give meaning to
the boundary conditions (1.3). Finally, in Section 5 we prove the existence part
of Theorem 1.1 through a two-level approximation scheme. We also include an
Appendix containing some results that we use throughout the text.

2 Divergence measure fields and normal traces for

kinetic solutions

Let us first recall some definitions and results from the theory of divergence mea-
sure fields on domains with deformable boundary.

Definition 2.1. Let U ⊂RN be open. For F∈Lp(U ;RN), 1≤ p≤∞ set

|divF|(U ) :=sup

{∫

U
∇ϕ·Fdx : ϕ∈C1

0 (U ), |ϕ(x)|≤1, x∈U
}

.

For 1≤p≤∞ we say that F is an Lp-divergence-measure field over U , i.e., F∈DMp(U )
if F∈Lp(U ;RN) and

‖F‖DMp(U ) :=‖F‖Lp(U )+|divF|(U )<∞.

The following result, first proved in [9, 10] and later extended by Silhavý
in [41] establishes the Gauss-Green formula and, in particular, the existence of
normal weak traces for general divergence-measure fields. Let us point out that
we will only apply these results on bounded domains and fields belonging to Lp.

Thus, it is enough to consider only DM1-fields.

Theorem 2.1 (Chen & Frid [9, 10], Silhavý [41]). Let U ⊂RN be an open set and let

F∈DM1(U ). Then, there exists a linear functional F·ν :Lip(∂U )→R such that

F·ν(g|∂U )=
∫

U
∇g·F+

∫

U
gdivF (2.1)
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for every g∈Lip(RN)∩L∞(RN). Moreover,

|F·ν(h)|≤ |F|DM(U )|h|Lip(∂U ) (2.2)

for all h∈Lip(∂U ), where we use the notation

|g|Lip(C) :=sup
x∈C

|g(x)|+LipC(g).

Furthermore, let m:RN→R be a nonnegative Lipschitz function with suppm⊂U, which

is strictly positive on U, and for each ε>0 let Lε ={x∈U : 0<m(x)< ε}. Then

(i) (cf. [9, 10] and [41]) If g∈Lip(RN)∩L∞(RN), we have

F·ν(g|∂U )=−lim
ε→0

ε−1
∫

Lε

g∇m·Fdx; (2.3)

(ii) (cf. [41]) If

liminf
ε→0

ε−1
∫

Lε

|∇m·F|dx<∞, (2.4)

then F·ν is a measure over U .

A particular example of a function m for which (2.3) holds is given by a level
set boundary layer sequence, provided that the domain has a Lipschitz defor-
mable boundary; concepts whose definitions we recall subsequently.

Definition 2.2. Let U ⊂RN be an open set. We say that ∂U is a Lipschitz deformable

boundary if the following conditions hold:

(i) For each x∈∂U , there exist r>0 and a Lipschitz mapping γ :RN−1→R such that,

upon relabelling, reorienting and translation,

U∩Q(x,r)=
{

y∈R
N−1 : γ(y1,··· ,yN−1)<yN

}
∩Q(x,r),

where

Q(x,r)=
{

y∈R
N : |yi−xi|≤ r, i=1,.. .,N

}
.

We denote by γ̂ the map ŷ 7→ (ŷ,γ(ŷ)), ŷ=(y1,··· ,yN−1).

(ii) There exists a map Ψ :[0,1]×∂U→Ū such that Ψ is a bi-Lipschitz homeomorphism

over its image and Ψ(0,x)= x for all x∈ ∂U . For s∈ [0,1], we denote by Ψs the

mapping from ∂U to Ū given by Ψs(x)=Ψ(s,x), and set ∂Us :=Ψs(∂U ). We call

such map a Lipschitz deformation for ∂U .
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Definition 2.3. Let U ⊂RN be an open set with a Lipschitz deformable boundary and

Ψ : [0,1]×∂U→Ū a Lipschitz deformation for ∂U . The Lipschitz deformation is said to

be regular over Γ⊂ ∂U , if DΨs → Id, as s→ 0, in L1(Γ,HN−1). It is simply said to be

regular if it is regular over ∂U . The Lipschitz deformation is said to be strongly regular

over Γ⊂∂U , if it is regular over Γ and the Jacobian determinants J[Ψs], 0≤s≤1, defined

through a convenient parametrization for Γ, belong to Lip (Γ) and J[Ψs]→ 1 in Lip (Γ)
as s→0.

The following theorem from [18], provides a formula for the normal weak
trace of Lp-divergence measure fields, similar to the one for L∞-divergence mea-
sure fields established in [8], whose advantage is that it renders clear that the
referred trace depends only on the part of the boundary where it is being evalu-
ated on which the deformation is strongly regular and not on the whole boundary
(see also [19]).

Theorem 2.2 (cf. [18]). Let F∈DM1(U), where U⊂RN+1 is a bounded open set with

a Lipschitz deformable boundary and Lipschitz deformation Ψ:[0,1]×∂U→Ū. Denoting

by F·ν|∂U the continuous linear functional Lip (∂U)→R given by the normal trace of F

at ∂U, we have the formula

F·ν|∂U =esslim
s→0

F◦Ψs(·)·νs

(
Ψs(·)

)
J[Ψs] (2.5)

with equality in the sense of (Lip (∂U))∗ , where on the right-hand side the functionals

are given by ordinary functions in L1(∂U). In particular, if Ψ is strongly regular over

Γ⊂∂U then, for all ϕ∈Lip (∂U) with suppϕ⊂Γ, we have

〈F·ν|∂U ,ϕ〉=esslim
s→0

∫

Γ
F◦Ψs(ω)·νs

(
Ψs(ω)

)
ϕ(ω)dHN(ω). (2.6)

We also recall the following definition of boundary layer sequence (cf. [19,36]).

Definition 2.4. Let U ⊂Rd be a smooth open set. We say that ζδ is a boundary layer

sequence if for each δ> 0, ζδ ∈Lip (U ), 0≤ ζδ ≤ 1, ζδ(x)→ 1 for every x∈U , as δ→ 0

and ζδ =0 on ∂U .

Let us also recall that if O has a Lipschitz deformable boundary and given
a Lipschitz deformation for ∂O, Ψ:[0,1]×∂O→O, the associated level set function
h:O→[0,1] is given by h(x)=s for x∈Ψ(s,∂O) and h(x)=1 for x∈O\Ψ([0,1]×∂O).
Then we can also define an associated boundary layer sequence by

ζδ(x)=
1

δ
min{δ,h(x)}, 0<δ<1,
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which we call the level set boundary layer sequence associated with the deforma-
tion Ψ. In this case, as in [19], we note that if Ψ is of class C1,1, we have that

∇ζδ(x)=−1

δ
χ{0<ζδ(x)<1}(x)N(x),

D2ζδ(x)=−N(x)⊗ν(x)

δ
dHd−1(x)

∣∣Ψ(δ,∂O)− 1

δ
χ0<ζδ(x)<1∇N(x),

(2.7)

where N(x)=λ(x)ν(x), ν is the outward unit normal vector to Ψ(δ,∂O), λ(x) is
a positive Lipschitz function and Hd−1(x)|Ψ(δ,∂O) denotes the (d−1)-dimensio-
nal Hausdorff measure restricted to the hyper-surface Ψ(δ,∂O).

Remark 2.1. Let U be endowed with a Lipschitz boundary and Γ⊂∂U be an open

subset of ∂U. Let o∈Γ and Ro :RN+1→RN+1 be a rigid motion in RN+1 such that,

for some Lipschitz function γ : RN →R, denoting y=Rox, ŷ = (y1,··· ,yN), and

defining γ̂(ŷ) :=(γ(ŷ),ŷ), we have that γ̂(D)=Γ, for some open set D⊂RN. Let

also Ũ={y∈RN+1 :γ(ŷ)<y0} and suppose U∩Ũ 6=∅. If F∈DM1(U)∩DM1(Ũ),
it is immediate to check, using the Gauss-Green formula, that F·ν|∂U and F·ν|∂Ũ

coincide over Γ, that is,

〈F·ν|∂U ,ϕ〉= 〈F·ν|∂Ũ ,ϕ〉
for all ϕ ∈ Lip c(Γ), where Lip c(Γ) denotes the subspace of functions in Lip (Γ)
with compact support in Γ. Also recall that, to define F·ν|∂U , it is not necessary

that ∂U be Lipschitz deformable. In such cases, restricted to functions ϕ∈Lip c(Γ)
we will always view 〈F·ν|∂U ,ϕ〉 as obtained, after possible translation, relabelling

and reorienting coordinates, through (2.6) by using the canonical deformation

of ∂Ũ, defined as (s,(γ(ŷ),ŷ)) 7→ (γ(ŷ)+s,ŷ), evidently strongly regular over Γ,

which is legitimate for Ũ; we call that a local canonical deformation of ∂U. In

agreement with this terminology, we will call the corresponding level set bound-

ary layer sequence a local canonical boundary layer sequence.

Coming back to the main subject of the paper, we will use Theorem 2.1 to deal
with the boundary values of kinetic solutions of Eqs. (1.1)-(1.3), which is essential
to guarantee their uniqueness. In particular, we will now apply Theorem 2.1 in
combination with (1.25) in order to guarantee the existence of the normal traces
on ∂O for the field Kx(u(t,x),uB(t,x)), where u is a kinetic solution of Eqs. (1.1)-
(1.3). More precisely, we have the following result.

Proposition 2.1. Let u∈ L∞(Ω×[0,T]×O) satisfy conditions (1.23) and (1.25) from

Definition 1.2 and let B∈B (that is, B as in (1.17)). Given 0≤ψ∈C∞
c (B), consider the

field (ψF0,ψF1), given by
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F0 := |u(t,x)−uB(t,x)|−
∫ t

0
G
(
u(s,x),uB(s,x)

)
dW(s),

F1 :=−Kx

(
u(t,x),uB(t,x)

)
,

where uB is any extension of ub to O∩B satisfying (1.19)-(1.22).

Then, we have a.s. that ∂t(ψF0)+∇·(ψF1) is a Radon measure with finite total

variation in (0,T)×O. Moreover,

E |divt,x(ψF0,ψF1)|
(
(0,T)×O

)
≤ C̃,

where C̃ is a finite constant that depends only on T, Ω, ‖u‖L∞ , ub, A, ‖∇b(u)‖L2

and ‖ψ,∇ψ‖L∞ . In particular, Kx(u(t,x),uB(t,x))ψ(x) has a.s. a normal weak trace

K(u(t),uB(t))·ν :Lip([0,T]×∂O)→R on ∂O (in the sense of Theorem 2.1) such that:

(i) for every g∈Lip(Rd+1), the map ω 7→K(u,uB)·ν(g|[0,T]×∂O) is measurable

and

E |K(u,uB)·ν(g|[0,T]×∂O)| dt≤C|g|Lip([0,T]×∂O) (2.8)

for some positive constant C which depends on C̃; and

(ii) for any g∈Lip(Rd+1) with suppg⊂ (0,T)×R
d and any non-negative Lipschitz

function m :Rd →R with suppm⊂ [0,T]×O, which is strictly positive on O, we

have a.s. that

K(u,uB)·ν(g|[0,T]×∂O)

=−lim
ε→0

ε−1
∫ T

0

∫

Lε

g∇m·Kx

(
u(t,x),uB(t,x)

)
dxds, (2.9)

where Lε ={x∈O : 0<m(t,x)< ε}.

Proof. Note that (ψF0,ψF1)∈ L2((0,T)×O;Rd+1) a.s.. We also observe that, in or-

der to show that div(t,x)(ψF0,ψF1) is a Radon measure, it is enough to show that

ℓ1 :=ψ(∂tF0+∇·F1) is a radon measure with a.s. finite total variation in (0,T)×O.

For this, we first note that we may write the term G(u(t,x),uB(t,x))dW(t) as

∂t

∫ t
0 G(u(s,x),uB(s,x))dW(s) in the sense of distributions (where G is given by

(1.15)). Then, we would like to replace ϕ̃(t,x) = ψ(x)(‖ϕ‖L∞ ±ϕ(t,x)) in (1.25),

where ϕ∈C∞((0,T)×B). However, we must first extend inequality (1.25) to func-

tions that do not vanish at t=0 and t=T.

Let ξh(t)∈C∞
c (0,T) with 0≤ ξ(t)≤1, such that ξh(t)→1 as h→0, everywhere

in (0,T), and let 0≤ ϕ∈C∞
c ([0,T]×B). Then, we may take ϕ̃(t,x)= ξh(t)ϕ(t,x) in
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(1.25) and let h→0 to obtain
∫ T

0

∫

O

{
|u(t,x)−uB(t,x)|∂t ϕ−Kx

(
u(t,x),uB(t,x)

)
·∇ϕ

}
dxdt

+∑
k≥1

∫ T

0

∫

O
Gk

(
u(t,x),uB(t,x)

)
ϕdxdβk(t)

≥−C(C∗,‖u‖L∞ ,‖ub‖L∞)

(
‖ϕ‖L∞+

∫

O

(
ϕ(0,x)+ϕ(T,x)

)
dx

)
. (2.10)

Then, we take any ϕ̄ ∈ C∞
c (0,T)×O and substitute ϕ = ψ(‖ϕ̄‖L∞± ϕ̄) in (2.10).

After some straightforward manipulation we have a.s. that

|〈ℓ1,ϕ〉|≤C
(
T,Ω,‖u‖L∞ ,‖ub‖L∞ ,‖∇b(u)‖L2 ,‖ψ,∇ψ‖L∞

)
‖ϕ̄‖L∞

+‖ϕ̄‖L∞


1+

(

∑
k≥1

∫ T

0

∫

O
Gk

(
u(t,x),uB(t,x)

)
ψdxdβk(t)

)2

.

Concerning the term multiplying ‖ϕ̄‖L∞ in the last line, we note that, by the

Itô isometry, its expectation is finite and, therefore, it is finite almost surely. Thus,

we conclude that |〈ℓ, ϕ̄〉|≤C1‖ϕ̄‖L∞ a.s. for some finite random constant C1 whose

expected value is finite.

At last, we note that we may apply Theorem 2.1 to deduce the existence of

the normal weak traces of Kx(u(t,x),ub(t,x)), denoted by K(u(t),ub(t))·ν, on ∂O
satisfying (i) and (ii) above due to (2.2) and (2.3).

3 Doubling of variables and uniqueness

Let us move on to the proof of the uniqueness part of Theorem 1.1. We start by
recalling the result establishing the existence of left- and right-continuous repre-
sentatives of a kinetic solution proved in [14, 15]. The same property holds here
also and the proof is exactly the same as in [14, 15] to which we refer.

Proposition 3.1 (Left- and right-continuous representatives). Let u be a kinetic so-

lution to (1.1)-(1.3). Then f =1u>ξ admits representatives f− and f+ which are almost

surely left- and right-continuous, respectively, at all points t∗∈ [0,T] in the sense of dis-

tributions over O×R. More precisely, for all t∗∈ [0,T] there exist kinetic functions f ∗,±

on Ω×O×R such that setting f±(t∗)= f ∗,± yields f±= f almost everywhere and
〈

f±(t∗±ε),ψ
〉
→
〈

f±(t∗),ψ
〉
, ε↓0, ∀ψ∈C2

c (O×R), P-a.s.

Moreover, f+= f− for all t∗∈ [0,T] except for some at most countable set.
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Remark 3.1. Let 0<τ≤t<T. Note that taking a test function of the form ϕ(s,x,ξ)=
θ(s)φ(x,ξ) in (1.24), with

θ(s)=





0, s≤τ−ε,
s+ε−τ

ε
, τ−ε≤ s≤τ,

1, τ≤ s≤ t,

1− s−t

ε
, t≤ s≤ t+ε,

1, t+ε≤ s,

and letting ε→0, we obtain that

−
〈

f+(t),φ
〉

dt+
〈

f−(τ),φ
〉
+
∫ t

τ

〈
f (s),a(ξ)·∇φ

〉
ds+

∫ t

τ

〈
f (s),b : D2φ

〉
ds

=−∑
k≥1

∫ t

τ

∫

O
gk

(
x,u(s,x)

)
φ
(

x,u(s,x)
)

dxdβk(s)

− 1

2

∫ t

τ

∫

O
G2
(

x,u(s,x)
)
∂ξφ
(

x,u(t,x)
)

dxdt+m(∂ξφ)([τ,t]). (3.1)

In order to prove the uniqueness of the kinetic solution, in view of the Dirich-
let condition and the fact that the noise coefficients may not vanish close to the
boundary, we need to split our comparison analysis in two different situations:

(i) one in which the test function has support far from the boundary, say, at
a distance ≥ δ0/2, in which case the analysis is standard and essentially
repeats that of [14] with slight adaptations;

(ii) another where the support of test function lies at a distance less than δ0 from
the boundary (cf. (1.12)). This splitting of cases is necessary, since in case
(ii) we need a doubling of variables result in the macroscopic variables in
order to deal with the boundary values of the solutions in the proof of the
comparison principle (cf. Theorem 3.3 below), unlike the doubling of vari-
ables from [14] (cf. [15, 21]) which takes place in the microscopic variables
(i.e. kinetic functions associated to the corresponding solutions).

For the situation (i) mentioned above, we have the following result whose
proof is similar to that of the corresponding result in [14] with slight adaptations
and so we omit it here.
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Theorem 3.1. Let u1,u2 be kinetic solutions of (1.1)-(1.3). Then, for 0 ≤ t ≤ T and

0≤φ∈C∞
c (O), we have

E

∫

O

∣∣u±
1 (t,x)−u±

2 (t,x)
∣∣φ(x)dx

≤−E

∫ t

0

∫

O
sgn(u1−u2)

(
A(u1)−A(u2)

)
·∇φ(x)dxdt

−E

∫ t

0

∫

O
B(u1,u2) : D2

xφ(x)dxdt+
∫

O
|u10(x)−u20(x)|φ(x)dx. (3.2)

For the situation (ii) mentioned above, we introduce the following version of
the doubling of variables for kinetic solutions of Eq. (1.1), which generalizes to
the stochastic case a corresponding comparison inequality from the deterministic
setting considered first by Carrillo [6] (see also [19, 36]). Such an extension will
allow us to extend the comparison inequality (3.2) to admit test functions that do
not necessarily vanish on the boundary (see Theorem 3.3 below).

Theorem 3.2 (Doubling of variables 1). Let u and v be kinetic solutions of (1.1)-(1.3)

with initial data u0 and v0, respectively. Denote ∇x+y=∇x+∇y. Then, for 0≤τ≤t≤T

and any non-negative test function φ∈C∞
c (O2), with support at a distance less than δ0

from the diagonal of ∂O×∂O, we have a.s. that
∫

O2

(
u±(t,x)−v±(t,y)

)
+φ(x,y)dxdy (3.3)

≤
∫

O2

(
u±(τ,x)−v±(τ,y)

)
+

φ(x,y)dxdy

+
∫ t

τ

∫

O2
F+
(
u(s,x),v(s,y)

)
·∇x+yφ(x,y)dxdyds

−
∫ t

τ

∫

O2
∇x+y ·B+

(
u(s,x),v(s,y)

)
∇x+yφ(x,y)dxdyds

+∑
k≥1

∫ t

τ

∫

O2
sgn
(
u(s,x)−v(s,x)

)
+

(
gk(u(s,x))−gk(v(s,y))

)
φ(x,y)dxdydβk(s).

Proof. The proof draws on that of the comparison principle in [14] (cf. [15,21,25]).

Let f1(t,x,ξ)= 1u(t,x)>ξ and f2(t,y,ζ)= 1v(t,y)>ζ and set f̄2 = 1− f2. Let us denote

〈〈·,·〉〉L2 , the scalar product in L2(Ox×Oy×Rξ×Rζ). Set G2
1(x,ξ)=∑k≥1 |gk(ξ)|2

and G2
2(x,ζ)=∑k≥1 |gk(ζ)|2 .

Proceeding as in [14,15,21,25] (but without taking the expectation), for 0≤τ≤
t≤T and any α∈C∞

c (O2×R2), we have a.s. that

〈〈
f+1 (t) f

+
2 (t),α

〉〉
L2 =

10

∑
j=1

Ij, (3.4)
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where

I1=
〈〈

f−1 (τ) f
−
2 (τ),α

〉〉
L2 ,

I2=
∫ t

τ

∫

O2

∫

R2
f1 f 2

(
a(ξ)·∇x+a(ζ)·∇y

)
αdξdζdxdyds,

I3=
∫ t

τ

∫

O2

∫

R2
f1 f 2

(
b(ξ) : D2

x+b(ζ) : D2
y

)
αdξdζdxdyds,

I4=
1

2

∫ t

τ

∫

O2

∫

R2
∂ξα f 2(s)G

2
1dν1

(x,s)(ξ)dζdxdyds,

I5=−1

2

∫ t

τ

∫

O2

∫

R2
∂ζα f1(s)G

2
2dν2

(y,s)(ζ)dξdydxds,

I6=−
∫ t

τ

∫

O2

∫

R2
G1,2αdν1

x,s(ξ)dν2
y,s(ζ)dxdyds,

I7=−
∫ t

τ

∫

O2

∫

R2
f
+
2 (s)∂ξαdm1(x,s,ξ)dζdy,

I8=
∫ t

τ

∫

O2

∫

R2
f−1 (s)∂ζαdm2(y,s,ζ)dξdx,

I9=−∑
k≥1

∫ t

τ

∫

O2

∫

R2
f1gk(ζ)αdν2

y,s(ζ)dξdxdydβk(s),

I10= ∑
k≥1

∫ t

τ

∫

O2

∫

R2
f 2gk(ξ)αdν1

x,s(ξ)dζdxdydβk (s),

and also ν1
x,s=δu(s,x), ν2

y,s=δv(s,y) and G1,2(ξ,ζ):=∑k≥1 gk(ξ)gk(ζ). Let ψδ be a stan-

dard mollifier in R, i.e.

ψδ(ξ)=
1

δ
ψ

(
ξ

δ

)

for some 0≤ψ∈C∞
c (R) such that

∫

R

ψ(ξ)dξ=1,

and let us take α(x,y,ξ,ζ)=φ(x,y)ψδ(ξ−ζ) in (3.4). In particular,

∂ξα=−∂ζα. (3.5)

As in [15], we note that

∂ξ f1=−ν1
x,s, ∂ζ f 2=ν2

y,s, (3.6)
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which together with (3.5) can be used to deduce that

I4+ I5+ I6=
1

2

∫ t

τ

∫

O2

∫

R2
α ∑

k≥1

|gk(ξ)−gk(ζ)|2dν1
x,s⊗δν2

y,s(ξ,ζ)dxdyds,

which, by (1.11), yields

|I4+ I5+ I6|≤Ctδ. (3.7)

Now, we write I3 as

I3= I3+ J− J, (3.8)

where, denoting [(∇x⊗∇y)α]i,j=∂xi
∂yj

α for i, j=1,.. .,d, we define

J :=2
∫ t

τ

∫

O2

∫

R2
f1 f 2σ(ξ)σ(ζ) : (∇x ⊗∇y)αdξdζdxdyds. (3.9)

We claim that

I7+ I8− J≤0. (3.10)

Indeed, proceeding similarly as in [14], using (3.5) once again, and recalling the

definition of the parabolic dissipation measure for u and v, we have that

I7+ I8≤−
∫ t

τ

∫

O2

∫

R2
αdν2

y,s(ζ)dnu
1 (s,x,ξ)−

∫ t

τ

∫

O2

∫

R2
αdν2

x,s(ξ)dnv
2(s,y,ζ)

=−
∫ t

τ

∫

O2
φ(x,y)ψδ(u−v)

∣∣∣∣divx

∫ u

0
σ(ζ)dζ

∣∣∣∣
2

dxdyds

−
∫ t

τ

∫

O2
φ(x,y)ψδ(u−v)

∣∣∣∣divy

∫ v

0
σ(ζ)dζ

∣∣∣∣
2

dxdyds.

On the other hand, integrating by parts in (3.9) and using the chain rule formula

(1.28), we have that

J=2
∫ t

τ

∫

O2
φ(x,y)divy

∫ v

0
σ(ζ)divx

∫ u

0
σ(ξ)ψδ(ξ−ζ)dξdζ dxdyds

=2
∫ t

τ

∫

O2
φ(x,y)ψδ(u−v)divx

∫ u

0
σ(ξ)dξdivy

∫ v

0
σ(ζ)dζdxdyds.

Thus,

I7+ I8− J

≤−
∫ t

τ

∫

O2
φ(x,y)ψδ(u−v)

∣∣∣∣divx

∫ u

0
σ(ξ)dξ−divy

∫ v

0
σ(ζ)dζ

∣∣∣∣
2

dxdyds≤0,

as claimed.
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In order to bound I9 and I10, we first observe that (3.5) and (3.6) yield

−
∫

R2
f1 gk(ζ)αdν2

y,s(ζ)dξ

=
∫

R2
f1 f 2g′k(ζ)αdξdζ+

∫

R2
f 1 f 2gk(ζ)∂ζ αdξdζ

=
∫

R2
f1 f 2g′k(ζ)αdξdζ−

∫

R2
f 1 f 2gk(ζ)∂ξ αdξdζ

=
∫

R2
f1 f 2g′k(ζ)αdξdζ−

∫

R2
f 2 gk(ζ)αdν1

x,s(ξ)dζ,

so that

I9+ I10= ∑
k≥1

∫ t

τ

∫

O2

∫

R2
f1 f 2g′k(ζ)αdξdζ dxdydβk(s)+ I11, (3.11)

where

I11= ∑
k≥1

∫ t

τ

∫

O2

∫

R2
f 2

(
gk(ξ)−gk(ζ)

)
αdν1

x,s(ξ)dζdxdydβk(s)

= ∑
k≥1

∫ t

τ

∫

O2

∫

R2
f 2

(
gk(ξ)−gk(ζ)

)
φ(x,y)ψδ(ξ−ζ)dν1

x,s(ξ)dζdxdydβk(s).

We claim that E(supτ≤t≤T(I11)
2)→ 0 as δ → 0. Indeed, using Doob’s maximal

inequality and Itô isometry we have that

E

(
sup

τ≤t≤T

(I11)
2
)

≤C
∫ T

0

∫

O2
φ(x,y)∑

k≥1

∣∣∣∣
∫

R2
|gk(ξ)−gk(ζ)|ψδ(ξ−ζ)dνx,s(ξ)dζ

∣∣∣∣
2

dxdyds.

Noting that ψδ(ξ−ζ)dνx,s(ξ)dζ is a probability measure on R2, we can apply

Jensen’s inequality in order to obtain that

∑
k≥1

∣∣∣∣
∫

R2
|gk(ξ)−gk(ζ)|ψδ(ξ−ζ)dνx,s(ξ)dζ

∣∣∣∣
2

≤
∫

R2
∑
k≥1

|gk(ξ)−gk(ζ)|2ψδ(ξ−ζ)dνx,s(ξ)dζ.

Thus, we can use (1.11) to conclude that

E

(
sup

τ≤t≤T

(I11)
2
)
≤CTδ2,

which converges to zero as δ→0, proving the claim.
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Since mean square convergence implies convergence in probability, which in

turn implies almost sure convergence along a subsequence, we may take a se-

quence δk→0 along, which I11→0 a.s. and for a.e. t. Consequently, we may take

δ=δk→0 in (3.4) and use (3.7), (3.10) and (3.11) to obtain that a.s. we have

∫

O2

∫

R

f+1 (t,x,ξ) f
+
2 (t,x,ξ)φ(x,y)dξ,dxdy

≤
∫

O2

∫

R

f−1 (τ,x,ξ) f
−
2 (τ,x,ξ)φ(x,y)dξ,dxdy

+
∫ t

τ

∫

O2

∫

R

f1 f 2a(ξ)·(∇x+∇y)φ(x,y)dξdxdyds

+
∫ t

τ

∫

O2

∫

R

f1 f 2b(ξ) :
(

D2
x+2∇x⊗∇y+D2

y

)
φ(x,y)dξdxdyds

+∑
k≥1

∫ t

τ

∫

O2

∫

R

f1 f 2g′k(ξ)φ(x,y)dξdxdydβk (s). (3.12)

Substituting τ by τ+1/n in (3.12) and letting n→∞, we conclude

∫

O2

∫

R

f+1 (t,x,ξ) f
+
2 (t,x,ξ)φ(x,y)dξdxdy

≤
∫

O2

∫

R

f+1 (τ,x,ξ) f
+
2 (τ,x,ξ)φ(x,y)dξdxdy

+
∫ t

τ

∫

O2

∫

R

f1 f 2a(ξ)·(∇x+∇y)φ(x,y)dξdxdyds

+
∫ t

τ

∫

O2

∫

R

f1 f 2b(ξ) :
(

D2
x+2∇x⊗∇y+D2

y

)
φ(x,y)dξdxdyds

+∑
k≥1

∫ t

τ

∫

O2

∫

R

f1 f 2g′k(ξ)φ(x,y)dξdxdydβk (s). (3.13)

Finally, we see that (3.13) is exactly (3.3), upon performing the integration in dξ

and integrating by parts in the resulting integral on the fourth line.

For the case of f−1 , f−2 , we take τn ↑ τ and tn ↑ t, write (3.3) for f+i (tn) and let

n→∞.

Remark 3.2. With the same hypotheses as in Theorem 3.2, the following inequal-

ity also holds: if u and v are kinetic solutions of (1.1)-(1.3), then for 0≤ τ≤ t≤T

and any non-negative test function φ∈C∞
c (O2), we have a.s. that

∫

O2

(
u±(t,x)−v±(t,y)

)
+

φ(x,y)dxdy (3.14)
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≤
∫

O2

(
u±(τ,x)−v±(τ,y)

)
+φ(x,y)dxdy

+
∫ t

τ

∫

O2
F+
(
u(s,x),v(s,y)

)
·∇x+yφ(x,y)dxdyds

+
∫ t

τ

∫

O2
B+
(
u(s,x),v(s,y)

)
:
(

D2
x+D2

y

)
φ(x,y)dxdyds

+∑
k≥1

∫ t

τ

∫

O2
sgn
(
u(s,x)−v(s,x)

)
+

(
gk(u(s,x))−gk(v(s,y))

)
φ(x,y)dxdydβk(s).

The difference between (3.3) and (3.14) is that the latter does not contain the

mixed terms ∇x ·B+(u(s,x),v(s,y))∇yφ(x,y) and ∇y ·B+(u(s,x),v(s,y))∇x φ(x,y)
in the integral on the third line. Indeed, the mixed terms, which are needed for

the proof of uniqueness, are added artificially in the proof of Theorem 3.2 above.

More precisely, they arise from the addition and subtraction of the term J in for-

mula (3.8). Note that if we do not add and subtract this term, we still have that

I7 ≤ 0 and I8 ≤ 0 and the rest of the proof can be carried out line by line to ob-

tain (3.14).

Corollary 3.1 (Doubling of variables 2). Let u and v be kinetic solutions of (1.1)-(1.3)

with initial data u0 and v0, respectively. Denote ∇x+y=∇x+∇y. Then, for 0≤t≤T and

nonnegative test functions θ ∈C∞
c ([0,T)) and φ∈C∞

c (O2) with support at a distance

less than δ0 from the diagonal of ∂O×∂O, we have a.s. that

−E

∫ T

0

∫

O2

(
u±(s,x)−v±(s,y)

)
+θ′(s)φ(x,y)dxdydt

≤E

∫

O2

(
u0(x)−v0(y)

)
+

θ(0)φ(x,y)dxdy

+E

∫ T

0

∫

O2
F+
(
u(s,x),v(s,y)

)
·θ(s)∇x+yφ(x,y)dxdyds

−E

∫ T

0

∫

O2
∇x+y ·B+

(
u(s,x),v(s,y)

)
θ(s)∇x+yφ(x,y)dxdyds. (3.15)

Proof. The method to obtain (3.15) from (3.3) is somewhat standard and goes as

follows. From (3.3) we have, for 0≤τ≤ t≤T, that

Eh(t)≤Eh(τ)+E

∫ t

τ
k(t)dt, (3.16)

where

h(t)=
∫

O2

(
u±(t,x)−v±(t,y)

)
+

φ(x,y)dxdy,
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and

k(t)=
∫

O2
F+
(
u(t,x),v(t,y)

)
·∇x+yφ(x,y)dxdy

+
∫

O2
B+
(
u(t,x),v(t,y)

)
:
(

D2
x+D2

y

)
φ(x,y)dxdyds.

Let θ∈C∞
c ([0,T)) and take 0= t0 < t1 < ···< tn+1 =T. Then, from (3.16), for each

i=1,.. .,n+1 we have that

Eh(ti)θ(ti−1)≤Eh(ti−1)θ(ti−1)+E

∫ ti

ti−1

k(t)θ(ti−1)dt.

Taking the sum over i=1,.. .,n+1 we have that

E

n

∑
i=1

h(ti)
(
−θ(ti)+θ(ti−1)

)
+h(T)θ(tn)

≤Eh(0)θ(0)+E

∫ T

0
k(t)

n+1

∑
i=1

θ(ti−1)1[ti−1,ti]
(t)dt. (3.17)

Noting that −θ(ti)+θ(ti−1)=−θ′(t∗i )(ti−ti−1) for some t∗i ∈ [ti−1,ti], we may take

the limit as n→∞ in (3.17) to conclude that

−E

∫ T

0
h(t)θ′(t)dt≤Eh(0)θ(0)+E

∫ T

0
k(t)θ(t)dt,

which proves the result.

Theorem 3.3 (Uniqueness). Let u and v be kinetic solutions to (1.1)-(1.3) with initial

data u0 and v0, respectively. Then for all t∈ [0,T] we have

E

∫

O

∣∣u±(t,x)−v±(t,x)
∣∣dx≤E

∫

O
|u0(x)−v0(x)|dx (3.18)

for some C>0 depending only on the data of the problem.

Proof. Our argument is inspired by the proof of uniqueness of the entropy solu-

tion given in [19] which in turn follows the lines of the proof of the corresponding

result in [36]. Both the latter and [19] deal with the deterministic case. The analy-

sis, as usual, is split into two cases, corresponding to situations (i) and (ii) above.

In case (i), we can use directly Theorem 3.1. So, it only remains to analyse case (ii).

With Theorem 3.2 at hand, combined with the existence of the normal weak traces
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for Kx(u(t,x),uB(t,x)) and Ky(v(t,y),uB(t,y)), established in Section 2, as well as

(1.26), the proof of Theorem 3.3 is performed by adapting the arguments of the

corresponding one in [19], with the following important exception. Since we are

bound to use as extension of the boundary data a solution of a stochastic equation

this precludes us to take advantage of the trivial extension used in [19] and forces

us to make a careful analysis of the behaviour of our specific extension near the

boundary. Let us indicate how to proceed.

Let u and v be two kinetic solutions to (1.1)-(1.3). Then, from Corollary 3.1, for

any non-negative test functions θ∈C∞
c ((0,T)) and φ∈C∞

c (O2), we have that

−E

∫ T

0

∫

O2

∣∣u±(t,x)−v±(t,y)
∣∣θ′(s)φ(x,y)dxdyds

≤E

∫ T

0

∫

O2
F
(

u(s,x),v(s,y)
)
·θ(s)∇x+yφ(x,y)dxdyds

−E

∫ T

0

∫

O2
∇x+y ·B

(
u(s,x),v(s,y)

)
θ(s)∇x+yφ(x,y)dxdyds. (3.19)

The strategy is to take a test function ϕ which is a product of a function that

converges to the characteristic function of O2 times a mollifier, which will force

y to be equal to x in the limit. Evidently, the difficulty lies in the analysis of the

convergence near the boundary. Now, using a partition of unity we see that we

may assume that the test function is supported in a ball B∈B satisfying (1.17).

With this in mind, we fix some ball B∈B centered at some point of the bound-

ary ∂O satisfying (1.17) and take smooth functions ψ1,ψ2∈C∞
c (B) with 0≤ψi ≤1,

i=1,2, such that ψ2(x)=1 for x∈ suppψ1. Then, we define ψ(x,y)=ψ1(x)ψ2(y).
Next, as in [19, 36] we consider our coordinates x = (x̄,xd) ∈ Rd−1×R already

relabelled so that ∂O∩B= {xd = λ(x̄)} and we take, by approximation, the test

function

ϕ(x,y)= ζδ(x)ζη(y)ρ(x−y)ψ(x,y),

where ζδ and ζη are canonical boundary layer sequences, ρ = ρm,n is given by

ρm,n = ρm(x̄− ȳ)ρn(xd−yd) and ρm and ρn are sequences of symmetric mollifiers

in Rd−1 and in R, respectively. Accordingly, by adding and subtracting a few

terms, from (3.19) we obtain

−E

∫ T

0

∫

O2

∣∣u±−v±
∣∣ζδζηρθ′(s)ψdxdyds

≤E

∫ T

0

∫

O2
F(u,v)·ζδζηρθ∇x+yψdxdyds
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−E

∫ T

0

∫

O2
∇x ·B(u,v)ζδζηρθ∇x+yψdxdyds

−E

∫ T

0

∫

O2
∇y ·B(u,v)ζδζηρθ∇x+yψdxdyds

−E

∫ T

0

∫

O2
Hx

(
u,v,uB(s,x)

)
∇xζδζηρθψdxdyds

−E

∫ T

0

∫

O2
Hy

(
v,u,uB(s,y)

)
ζδ∇yζηρθψdxdyds+

5

∑
j=1

Ij, (3.20)

where uB is any extension of ub to O∩B satisfying (1.19)-(1.22) and

5

∑
j=1

Ij=E

∫ T

0

∫

O2
Kx

(
u,uB(s,x)

)
·∇xζδζηρθψdxdyds

+E

∫ T

0

∫

O2
Ky

(
v,uB(s,y)

)
·ζδ∇yζηρθψdxdyds

+E

∫ T

0

∫

O2

{
F
(

uB(s,x),v
)
·∇xζδζη+F

(
uB(s,y),u

)
·ζδ∇yζη

}
ρθψdxdyds

−E

∫ T

0

∫

O2

{
∇x ·B(u,v)ζδ∇yζη+∇y ·B

(
uB(s,y),u

)
ζδ∇yζη

}
ρθψdxdyds

−E

∫ T

0

∫

O2

{
∇y ·B(u,v)∇xζδζη+∇x ·B

(
uB(s,x),v

)
∇xζδζη

}
ρθψdxdyds.

Note that, by virtue of (1.26) the liminf as δ→0 of the fifth integral on the right-

hand-side of (3.20) is non-positive. Similarly, the liminf as η → 0 of the sixth

integral on the right hand side is non-positive. Also, using Proposition 2.1 we see

that

lim
η→0

lim
δ→0

I1=−E

〈
K(u,uB)·ν,

∫ T

0

∫

O
ρ(x−y)θ(s)ψ2(y)dyds

〉
, (3.21)

where K1(u,uB)·ν denotes the normal trace of Kx(u,ub)ψ1. Likewise,

lim
η→0

lim
δ→0

I2=−E

〈
K2(v,uB)·ν,

∫ T

0

∫

O
ρ(x−y)θ(s)ψ1(x)dxds

〉
, (3.22)

where K2(v,uB)·ν denotes the normal trace of Ky(v,uB)ψ2.

Now, for I3, since in each term the boundary layer sequence is in the integral

of a smooth function, we immediately get

lim
η→0

lim
δ→0

I3=−E

∫ T

0

∫∫

(∂O)x×Oy

F
(
ub(s,x),v(s,y)

)
·ν(x)ρθψ ds
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−E

∫ T

0

∫∫

Ox×(∂O)y

F
(

ub(s,y),u(s,x)
)
·ν(y)ρθψ ds. (3.23)

Regarding I4, following the reasoning in [19, 36], we have

I4=E

∫ T

0

∫∫

O×O
B(u,v)∇xζδ∇yζηρθψ ds

+E

∫ T

0

∫∫

O×O
B(u,v)ζδ∇yζηρθ∇xψ ds

+E

∫ T

0

∫∫

O×O
B(u,v)ζδ∇yζη∇xρθψ ds

−E

∫ T

0

∫∫

O×O
∇y ·B

(
uB(s,y),u

)
ζδ∇yζηρθψ ds. (3.24)

We observe that, from (1.27), as δ,η → 0 the first two integrals in the right-hand

side of (3.24) converge to

E

∫ T

0

∫∫

(∂O)x×(∂O)y

B
(
ub(s,x),ub(s,y)

)
ρθψνxνy ds

−E

∫ T

0

∫∫

Ox×(∂O)y

B
(
u,ub(s,y)

)
ρθ∇xψνy ds,

both of which clearly converge to 0 when we make m→∞ and then n→∞.

Then, we only have to worry about the remaining two terms. Let us denote

them by

Ĩ4= Ĩ4,1+ Ĩ4,2 :=E

∫ T

0

∫∫

O×O
B(u,v)ζδ∇yζη∇xρθψ ds

−E

∫ T

0

∫∫

O×O
∇y ·B(uB(s,y),u)ζδ∇yζηρθψ ds.

Since ∂uB
∂yd

=0 on ∂O∩B and since suppψ⊂B we see that

lim
η→0

lim
δ→0

Ĩ4,2=E

∫ T

0

∫∫

Ox×(∂O)y

∇̃ȳ ·B
(
ub(s,y),u

)
νρθψ ds,
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where we employ the notation y=(ȳ,yd) and ∇̃ȳ=
(
∇ȳ

0

)
. Let Uy⊂Rd−1 such that

∂O∩B is the graph of γ(ȳ) over Uy. Then, we may rewrite the last integral as

lim
η→0

lim
δ→0

Ĩ4,2=−E

∫ T

0

∫∫

Ox×Uy

∇̃ȳ ·B
(
ub(s,ȳ,γ(ȳ),u)

)
Nρ
(

x̄− ȳ,xd−γ(ȳ)
)

θψ ds

with N = (−∇ȳγ,1) and we used the fact that the unit normal vector to ∂O is

ν= 1√
1+|∇ȳγ|2 N and the Jacobian is

√
1+|∇ȳγ|2.

Now, taking the limit as δ→0 and as η→0 in the term Ĩ4,1, changing coordi-

nates and noting that ∇̃ȳρ=−∇̃x̄ρ we have that

lim
η→0

lim
δ→0

Ĩ4,1=−E

∫ T

0

∫∫

Ox×Uy

B
(
u,ub(s,ȳ,γ(ȳ))

)
N∇̃ȳρ

(
x̄− ȳ,xd−γ(ȳ)

)
θψ ds

−E

∫ T

0

∫∫

Ox×Uy

B
(
u,ub(s,ȳ,γ(ȳ))

)
N⊗N

∂ρ

∂xd

(
x̄− ȳ,xd−γ(ȳ)

)
θψ ds.

Now, integrating by parts in the first term we get

lim
η→0

lim
δ→0

Ĩ4,1=− lim
η→0

lim
δ→0

Ĩ4,2

−E

∫ T

0

∫∫

Ox×Uy

B
(
u,ub(s,ȳ,γ(ȳ))

)
N⊗N

∂ρ

∂xd

(
x̄− ȳ,xd−γ(ȳ)

)
θψ ds.

Thus, we have that

lim
η→0

lim
δ→0

I4 (3.25)

=−E

∫ T

0

∫∫

Ox×Uy

B
(
u,ub(s,ȳ,γ(ȳ))

)
N⊗N

∂ρ

∂xd

(
x̄− ȳ,xd−γ(ȳ)

)
θψ ds+M4,m,n,

where limn→∞ limm→∞ M4,m,n=0.

By a similar reasoning, we also have

lim
η→0

lim
δ→0

I5 (3.26)

=−E

∫ T

0

∫∫

Ux×Oy

B
(
ub(s, x̄,γ(x̄)),v

)
N⊗N

∂ρ

∂yd

(
x̄− ȳ,γ(x̄)−yd

)
θψ ds+M5,m,n,

where limn→∞ limm→∞ M5,m,n=0.
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Taking (3.21)-(3.23), (3.25) and (3.26) into account, let us denote

L1 := lim
η→0

lim
δ→0

I1+ lim
η→0

lim
δ→0

I2,

L2 := lim
η→0

lim
δ→0

I3,

L3 := lim
η→0

lim
δ→0

I4−M4,m,n+ lim
η→0

lim
δ→0

I5−M5,m,n.

Our goal now is to show that

lim
n→∞

lim
m→∞

(L1+L2+L3)=0.

Term L1: Following [36] it is easy to prove that

lim
n→∞

lim
m→∞

L1=−1

2
E
〈
K(u,uB)·ν,θψ2

〉
− 1

2
E
〈
K(v,uB)·ν,θψ1

〉
. (3.27)

Term L2: Note that L2 is the sum of two terms, the first of which is

L2,1=−E

∫ T

0

∫∫

(∂O)x×Oy

F
(

ub(s,x),v(s,y)
)
·ν(x)ρθψ ds.

Changing variables and taking the limit as m→∞, we see that

lim
m→∞

L2,1

=−E

∫ T

0

∫

Uy

∫ γ(ȳ)

γ(ȳ)− 1
n

F
(
ub(s,ȳ,γ(ȳ)),v(s,ȳ,yd)

)
·N(ȳ)ρn

(
γ(ȳ)−yd

)
θψdyd dȳds

=−E

∫ T

0

∫

Uy

∫ γ(ȳ)

γ(ȳ)− 1
n

F
(
uB(s,ȳ,yd),v(s,ȳ,yd)

)
·N(ȳ)ρn

(
γ(ȳ)−yd

)
θψdyd dȳds+ L̃

(n)
2,1 ,

where

L̃
(n)
2,1 :=E

∫ T

0

∫

Uy

∫ γ(ȳ)

γ(ȳ)−1/n

(
F(uB(s,y),v(s,y))−F

(
ub(s,ȳ,γ(ȳ)),v(s,y))

)

×N(ȳ)ρn

(
γ(ȳ)−yd

)
θψdyd dȳds.
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Now,

∣∣L̃(n)
2,1

∣∣≤CE

∫ T

0

∫

Uy

∫ γ(ȳ)

γ(ȳ)−1/n
|uB(s,y)−ub(s,ȳ,γ(ȳ))|ρn

(
γ(ȳ)−yd

)
θψdyd dȳds,

and writing

uB(s,y)−ub

(
s,ȳ,γ(ȳ)

)
=
∫ γ(ȳ)

yd

∂uB

∂yd
(s,ȳ,τ)dτ,

we deduce that

∣∣L̃(n)
2,1

∣∣≤ C

n
E

∫ T

0

∫

Uy

∫ γ(ȳ)

γ(ȳ)−1/n

∣∣∣∣
∂uB

∂yd
(s,ȳ,yd)

∣∣∣∣ρn

(
γ(ȳ)−yd

)
θψdyd dȳds,

which tends to 0 as n→∞. A similar reasoning may be applied to the second term

integral of (3.23) and we conclude that

lim
m→∞

L2 (3.28)

=−E

∫ T

0

∫

Uy

∫ γ(ȳ)

γ(ȳ)− 1
n

F
(
uB(s,y),v(s,y)

)
·N(ȳ)ρn

(
γ(ȳ)−yd

)
θψdyd dȳds

−E

∫ T

0

∫

Ux

∫ γ(x̄)

γ(x̄)− 1
n

(
uB(s,x),u(s,x)

)
·N(x̄)ρn

(
xd−γ(x̄)

)
θψdxd dx̄ds+L2,n,

where limn→∞ L2,n =0.

Term L3: Let us denote

L4 := lim
η→0

lim
δ→0

I4−M4,m,n,

L5 := lim
η→0

lim
δ→0

I5−M5,m,n,

so that L3=L4+L5. Note that

lim
m→∞

L4

=−E

∫ T

0

∫

Ux

∫ γ(x̄)

γ(x̄)− 1
n

B
(
u(s,x),ub(s, x̄,γ(x̄))

)
N⊗Nρ′n

(
xd−γ(x̄)

)
θψdxd dx̄ds

=−E

∫ T

0

∫

Ux

∫ γ(x̄)

γ(x̄)− 1
n

B
(
u(s,x),uB(s,x)

)
N⊗Nρ′n

(
xd−γ(x̄)

)
θψdxd dx̄ds+ L̃

(n)
4 ,
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where

L̃
(n)
4 :=E

∫ T

0

∫

Ux

∫ γ(x̄)

γ(x̄)− 1
n

[
B(u(s,x),uB(s,x))−B(u(s,x),ub(s, x̄,γ(x̄)))

]

×N⊗Nρ′n
(

xd−γ(x̄)
)
θψdxd dx̄ds.

Reasoning as for L̃
(n)
2,1 , we note that

∣∣L̃(n)
4

∣∣≤CE

∫ T

0

∫

Ux

∫ γ(x̄)

γ(x̄)− 1
n

∣∣uB(s,x)−ub(s, x̄,γ(x̄))
∣∣ρ′n
(

xd−γ(x̄)
)
θψdxd dx̄ds

≤ C

n
E

∫ T

0

∫

Ux

∫ γ(x̄)

γ(x̄)− 1
n

∣∣∣∣
∂uB

∂xd
(s,x)

∣∣∣∣ρ
′
n

(
xd−γ(x̄)

)
θψdxd dx̄ds,

where the integral on the last line converges to 0 as n→∞ since ∂uB
∂xd

=0 on ∂∩B,

so that limn→∞ L̃4,n=0.

With a similar reasoning for the term L5 we conclude that

lim
m→∞

L3 (3.29)

=−E

∫ T

0

∫

Ux

∫ γ(x̄)

γ(x̄)− 1
n

B
(
u(s,x),uB(s,x)

)
N⊗Nρ′n

(
xd−γ(x̄)

)
θψdxd dx̄ds

−E

∫ T

0

∫

Uy

∫ γ(ȳ)

γ(ȳ)− 1
n

B
(
uB(s,y),v(s,y)

)
N⊗Nρ′n

(
γ(ȳ)−yd

)
θψdyd dȳds+L3,n,

where limn→∞ L3,n =0.

At this point, with (3.27)-(3.29) at hand, the arguments from the proof of

uniqueness of solutions for the deterministic case considered in [19] (see also [36])

may be carried out line by line to show that

lim
n→∞

(
lim

m→∞
L2+ lim

m→∞
L3

)
=− lim

m→∞
lim

m→∞
L1. (3.30)

More precisely, it can be shown that the function

wn :=2
∫ 0

xd−γ(x̄)
ρn(τ)dτ

is a boundary layer sequence and that we can write

lim
m→∞

L2+ lim
m→∞

L3

=
1

2

∫ T

0

∫

Ox

{
B(u,uB)·∇2wn+F(uB ,u)·∇wn

}
θψdxds

+
1

2

∫ T

0

∫

Oy

{
B(uB,v)·∇2wn+F(uB ,v)·∇wn

}
θψdyds+Nn,
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where limn→∞ Nn =0, which clearly implies (3.30). We omit the details.

Thus, taking the limit as δ,η→0 first and then as m,n→∞ in (3.20) we obtain

that

−E

∫ T

0

∫

O

∣∣u±(s,x)−v±(s,x)
∣∣θ′(s)ψ1(x)dxdy

≤E

∫ T

0

∫

O
F
(
u(s,x),v(s,x)

)
·∇xψ1(x)dxdyds

−E

∫ T

0

∫

O
∇x ·B

(
u(s,x),v(s,x)

)
∇xψ1(x)dxdyds. (3.31)

To conclude, we see that we may take a covering {Bj}N
j=0 of O, where Bj ∈B for

1≤ j≤N and B0 ⊂⊂O and a partition of unity {ψ̃j}N
j=0 subordinated, so that we

have the inequality (3.31) with ψ1 = ψ̃j, for each j = 1,.. .,N. Regarding ψ̃0, we

see that (3.31) may also be deduced to hold with ψ1 = ψ̃0 much more easily as

there is no boundary analysis in this case. Thus, adding the inequalities (3.31)

corresponding to each ψ̃j we obtain

−E

∫ T

0

∫

O

∣∣u±(s,x)−v±(s,x)
∣∣θ′(s)dxdy≤0,

and choosing θ(s)=θl (s) conveniently and letting l→∞ we finally deduce (3.18),

which concludes the proof.

As a consequence of Theorem 3.3 we have the following result whose proof
may be found in [25, Corollary 3.4].

Corollary 3.2 (Continuity in time). Let u be a kinetic solution to (1.1)-(1.3). Then there

exists a representative of u which has almost surely continuous trajectories in Lp(Ω) for

all p∈ [1,∞).

4 Consistency

As aforementioned, the existence of kinetic solutions of (1.1)-(1.3) will be obtained
as a limit of solutions of nondegenerate approximations, namely, as the limit of
the solutions uε of the regularized problem

duε+∇·A(uε)dt−D2 : B(uε)dt−ε∆uε dt=Φ(uε)dW(t), (4.1)

uε(0,x)=u0(x), x∈O, (4.2)

uε =ub(t,x), x∈∂O, t>0 (4.3)
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as ε→0. In this section we prove that if a predictable function u∈L∞(Ω×[0,T]×O)
is such that

uε →u a.s. and a.e. in [0,T]×O, (4.4)

then u satisfies the Dirichlet boundary condition (1.3) in the sense of Defini-
tion 1.2. Since our only concern in this section is the verification of the Dirichlet
boundary conditions, in view of (1.12), we omit the dependence of the gk with
respect to x.

In Section 5, we prove the existence and uniqueness of solutions of (4.1)-(4.3)
in the space L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H1(O)), satisfying the bound-
ary condition (4.2) in the sense of traces. In the process, we show that if umin ≤
u0,ub ≤ umax, then the unique weak solution uε satisfies the estimates umin ≤
uε(t,x)≤umax a.s. and a.e. in [0,T]×O and

E

∫ T

0

∫

O

(
|∇b(uε(t,x))|2+ε|∇u(t,x)|2

)
dxdt≤C,

where C>0 is independent of ε. In particular, there is a subsequence εn →0 such
that

εn∇uεn →0, a.s. in L2([0,T]×O).

Note, also, that εn may be taken so that b(uεn )−b(ũb) converges to b(u)−b(ũb)
weakly in L2(Ω×(0,T);H1

0(O)), where ũb is any H1 extension of ub to O (ũb may
be constructed using partition of unity and flattening out the boundary, for ex-
ample). In particular, u satisfies (1.27).

Proposition 4.1. Let uε be the solution of (4.1)-(4.3) and assume that (4.4) holds. Then

u satisfies (1.25).

Proof. Let B∈B satisfy (1.17) and let uB be an extension of ub to [0,T]×O satisfying

(1.19)-(1.22). Note that uε−uB satisfies a.s. the equation

d(uε−uB)+div
(
A(uε)−A(uB)

)
dt

=D2 :
(
Bε(uε)−Bε(uB)

)
dt+

(
Φ(uε)−Φ(uB)

)
dW(t)+Gεdt,

where

Bε(ξ)=B(ξ)+εξ Id, Gε=D2 : B(uB)+ε∆uB−divA(uB)+∆2uB.

Let Sθ(ξ) be a C2 convex approximation of |ξ|, such that S′
θ(ξ) is monotone non-

decreasing, S′
θ(ξ) = 1 for ξ > θ, and S′

θ(ξ) =−1 for ξ ≤−θ, so that S′′
θ (ξ)ξ con-

verges to 0 pointwise as θ → 0. Given any nonnegative test function ϕ(t,x) ∈
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C∞
c ((0,T)×(O∩B)), by the Itô formula (see [14]) we have a.s. that

∫ T

0

∫

O
Sθ(u

ε−uB)∂t ϕ+S′
θ(u

ε−uB)
(
A(uε)−A(uB)

)
·∇ϕdxdt

−
∫ T

0

∫

O
S′′

θ (u
ε−uB)(∇uε−∇uB)·∇

(
Bε(uε)−Bε(uB)

)
ϕdxdt

−
∫ T

0

∫

O
S′

θ(u
ε−uB)∇

(
Bε(uε)−Bε(uB)

)
·∇ϕdxdt

+∑
k≥1

∫ T

0

∫

O
S′

θ(u
ε−uB)

(
gk(u

ε(t))−gk(uB(t))
)

ϕdxdβk(t)

+
1

2

∫ T

0

∫

O
S′′

θ (u
ε−uB)∑

k≥1

|gk(u
ε)−gk(uB)|2 ϕdxdt

=−
∫ T

0

∫

O
S′

θ(u
ε−uB)Gε ϕdxdt. (4.5)

Concerning the second integral on the left hand side of (4.5), we have

∫ T

0

∫

O
S′′

θ (u
ε−uB)(∇uε−∇uB)·∇

(
Bε(uε)−Bε(uB)

)
ϕdxdt

=
∫ T

0

∫

O
S′′

θ (u
ε−uB)

(
(∇uε−∇uB)·(Bε)′(uε)

)
·(∇uε−∇uB)ϕdxdt

+
∫ T

0

∫

O
S′′

θ (u
ε−uB)

(
(∇uε−∇uB)·((Bε)′(uε)−(Bε)′(uB))

)
·∇uB ϕdxdt

≥
∫ T

0

∫

O
S′′

θ (u
ε−uB)

(
(∇uε−∇uB)·((Bε)′(uε)−(Bε)′(uB))

)
·∇uB ϕdxdt,

where the integral in the last line tends to 0 a.s. as θ→0, due to (1.4) and (1.14).

Similarly, in regards to the third integral on the left hand side of (4.5), we have

∫ T

0

∫

O
S′

θ(u
ε−uB)∇

(
Bε(uε)−Bε(uB)

)
·∇ϕdxdt

=−
∫ T

0

∫

O
S′′

θ (u
ε−uB)

(
(∇uε−∇uB)·(Bε(uε)−Bε(uB))

)
·∇ϕdxdt

−
∫ T

0

∫

O
S′

θ(u
ε−uB)

(
Bε(uε)−Bε(uB)

)
: D2ϕdxdt,

where

lim
θ→0

∫ T

0

∫

O
S′′

θ (u
ε−uB)

(
(∇uε−∇uB)·(Bε(uε)−Bε(uB))

)
·∇ϕdxdt=0,
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a.s. Finally, we also observe that, due to (1.11), a.s. we have

lim
θ→0

∫ T

0

∫

O
S′′

θ (u
ε−uB)∑

k≥1

|gk(u
ε)−gk(uB)|2 ϕdxdt=0.

Thus, taking the limit as θ → 0 in (4.5) we obtain the following inequality which

is satisfied a.s.

∫ T

0

∫

O
|uε−uB|∂t ϕdxdt+F

(
uε(t,x),uB(t,x)

)
·∇ϕdxdt

+
∫ T

0

∫

O

(
B(uε(t,x),uB(t,x)) : D2 ϕ+ε|uε−uB|∆ϕ

)
dxdt

+∑
k≥1

∫ T

0

∫

O
sgn(uε−uB)

(
gk(u

ε(t))−gk(uB(t))
)

ϕdxdβk(t)

≥−‖Gε‖L2([0,T]×O)‖ϕ‖L2([0,T]×O). (4.6)

Now, by approximation we take ϕ= ζδ(x)ϕ̃, where ζδ is a canonical local bound-

ary layer sequence and 0≤ ϕ̃∈C∞
c ((0,T)×B) to obtain

∫ T

0

∫

O
|uε−uB|ζδ∂t ϕ̃dxdt+F

(
uε(t,x),uB(t,x)

)
·ζδ∇ϕ̃dxdt

+
∫ T

0

∫

O

(
B(uε(t,x),uB(t,x)) : ζδ D2 ϕ̃+ε|uε−uB|ζδ∆ϕ̃

)
dxdt

+∑
k≥1

∫ T

0

∫

O
sgn(uε−uB)

(
gk(u

ε(t))−gk(uB(t))
)

ζδ ϕ̃dxdβk(t)+
3

∑
j=1

Ij

≥−‖Gε‖L2([0,T]×O)‖ζδ ϕ̃‖L2([0,T]×O), (4.7)

where

3

∑
j=1

Ij=
∫ T

0

∫

O
F
(

uε(t,x),uB(t,x)
)
·∇ζδ ϕ̃dxdt

+2
∫ T

0

∫

O

(
B(uε(t,x),uB(t,x))∇ζδ∇ϕ̃+ε|uε−uB|∇ζδ ·∇ϕ̃

)
dxdt

+
∫ T

0

∫

O

(
ϕ̃B
(
uε(t,x),uB(t,x)

)
: D2ζδ+ε|uε−uB|ϕ̃∆ζδ

)
dxdt.

In view of (2.7), we note that I1 and I2 tend to zero as δ → 0, since F(uε ,uB),
B(uε,uB) and |uε−uB| vanish on (0,T)×∂O. Also, as noted in [19], we observe
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that the first term in the integral I3 is the sum of two terms, the first one of which

is

− ϕ̃λ

δ
sgn(uε−uB)

(
B(uε)−B(uB)

)
: ν(x)⊗ν(x)dHd−1dt,

which is nonpositive, since B′(ξ) : ν⊗ν≥ 0, for any ξ ∈R; and the second term

which converges to zero as δ→0, as B(uε,uB) vanishes on (0,T)×∂O. Similarly,

using (2.7) once again, the second term in the integral I3 can also be decomposed

into the sum of a nonpositive term and a term which converges to zero as δ→0.

Thus, noting that Gε in bounded in L2([0,T]×O) uniformly with respect to ε,

we may take the limit as δ→0 in (4.7) in order to obtain that

∫ T

0

∫

O
|uε−uB|∂t ϕ̃dxdt+F

(
uε(t,x),uB(t,x)

)
·∇ϕ̃dxdt

+
∫ T

0

∫

O

(
B
(
uε(t,x),uB(t,x)

)
: D2 ϕ̃+ε|uε−uB|∆ϕ̃

)
dxdt

+∑
k≥1

∫ T

0

∫

O
sgn(uε−uB)

(
gk(u

ε(t))−gk(uB(t))
)

ϕ̃dxdβk(t)

≥−C∗‖ϕ̃‖L2([0,T]×O) (4.8)

for a certain constant C∗≥0, upon which, integrating by parts in the second inte-

gral on the left hand side and taking ε= εn →0 we obtain (1.25).

Proposition 4.2. Let uε be the solution of (4.1)-(4.3) and assume that (4.4) holds. Then,

u satisfies (1.26).

Proof. Let us first observe that the arguments of the doubling of variables that

lead to inequality (3.14) (proof of Theorem 3.2 may be easily adapted to the case

where u satisfies Eq. (1.1) with A=A1 and B=B1, and v satisfies Eq. (1.1) with

A=A2 and B=B2 such that, possibly, A1 6=A2 and B1 6=B2 (for instance B2(ξ)=
B1(ξ)+ξ Id). In this case, in the resulting inequality instead of F+(u(s,x),v(s,y))·
∇x+y we have

F1+

(
u(s,x),v(s,y)

)
·∇xφ(x,y)+F2+

(
u(s,x),v(s,y)

)
·∇yφ(x,y),

where F1+ and F2+ correspond to A1 and A2, respectively; and also instead of

B+(u(s,x),v(s,y)) : (D2
x+D2

y) we have

B1+

(
u(s,x),v(s,y)

)
: D2

xφ(x,y)+B2+

(
u(s,x),v(s,y)

)
: D2

yφ(x,y),
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where B1+ and B2+ correspond to B1 and B2, respectively. Moreover, the in-

equality obtained for (u±−v±)+ can be put together with the one for (v±−u±)+
in order to obtain the corresponding inequality for |u±−v±|.

Let uε be the solution of (4.1)-(4.3) and v be a kinetic solution of Eq. (1.1) in the

sense of Definition 1.2(ii). Since uε∈L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H1(O)),
it can be easily shown to be the entropy solution of Eq. (4.1), and consequently,

also a kinetic solution. Then we may use (the variant of) Theorem 3.2, as de-

scribed above, to conclude that for 0≤ t≤T and any 0≤φ∈C∞
c (O2) we have a.s.

that
∫

O2
|uε(t,x)−v±(t,y)|φ(x,y)dxdy≤

∫

O2
|u0(x)−v0(y)|φ(x,y)dxdy (4.9)

+
∫ t

0

∫

O2
F
(

uε(s,x),v(s,y)
)
·∇x+yφ(x,y)dxdyds

+
∫ t

0

∫

O2
B
(
uε(s,x),v(s,y)

)
:
(

D2
x+D2

y

)
φ(x,y)dxdyds

−ε
∫ t

0

∫

O2
|uε(s,x)−v(s,y)|∆xφ(x,y)dxdyds

+∑
k≥1

∫ t

0

∫

O2
sgn
(
uε(s,x)−v(s,y)

)(
gk(u

ε(s,x))−gk(v(s,y))
)

φ(x,y)dxdydβk(s).

Now, by a similar reasoning to the one leading to (4.6), but using a test function

of the form ϕ(x)=φ(x,y), with y∈O fixed, we have a.s. and for a.e. y∈O that

∫

O
|uε(t,x)−uB(t,x)|φ(x,y)dx

≤
∫

O
|u0(x)−uB0(x)|φ(x,y)dx+

∫ t

0

∫

O
F
(
uε(s,x),uB(s,x)

)
·∇xφ(x,y)dxds

+
∫ t

0

∫

O

(
B
(
uε(s,x),uB(s,x)

)
: D2

xφ(x,y)+ε|uε−uB|∆xφ(x,y)
)

dxds

+∑
k≥1

∫ t

0

∫

O
sgn
(
uε(s,x)−uB(s,x)

)(
gk(u

ε(s,x))−gk(uB(s,x))
)

φ(x,y)dxdβk(s)

+‖Gε‖L2([0,T]×O)‖φ(·,y)‖L2([0,T]×O). (4.10)

Let us recall the notations (1.15) and (1.16) and denote

F (uε,v,uB) :=F(uε ,v)+F(uε,uB)−F(uB ,v),

B
∗(uε,v,uB) :=B(uε ,v)+B(uε,uB)−B(uB,v).
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Then, integrating (4.10) over O with respect to y, adding the resulting inequality

to (4.9) and adding and subtracting a few terms, we obtain

∫

O2
A
(
uε(t,x),v(t,y),uB(t,x)

)
φ(x,y)dxdy (4.11)

≤
∫

O2
A
(
u0(x),v0(y),uB0(x)

)
φ(x,y)dxdy

+
∫ t

0

∫

O2
F
(
uε(s,x),v(s,y),uB(s,x)

)
·∇xφ(x,y)dxdyds [J1]

+
∫ t

0

∫

O2
B
∗(uε(s,x),v(s,y),uB(s,x)

)
: D2

xφ(x,y)dxdyds [J2]

+ε
∫ t

0

∫

O2
A
(
uε(s,x),v(s,y),uB(s,x)

)
∆xφ(x,y)dxdyds [J3]

+∑
k≥1

∫ t

0

∫

O2
sgn
(
uε(s,x)−v(s,y)

)(
gk(u

ε(s,x))−gk(v(s,y))
)

φ(x,y)dxdβk(s)

+∑
k≥1

∫ t

0

∫

O2
sgn
(
uε(s,x)−uB(s,x)

)(
gk(u

ε(s,x))−gk(uB(s,x))
)

φ(x,y)dxdβk(s)

+C
∫

O
‖φ(·,y)‖L2([0,T]×O)dy+

∫

O2
|uB(t,x)−v(t,y)|φ(x,y)dxdy

+
∫ t

0

∫

O2
φ(x,y)dµy(x)dyds

+
∫ t

0

∫

O2

(
F
(
uε(s,x),v(s,y)

)
·∇yφ(x,y)+B

(
uε(s,x),v(s,y)

)
: D2

yφ(x,y)
)

dxdyds,

where µy= |divKx(uB(s,x),v(s,y))|.
Having (4.11) at hand, the rest of the proof is as follows. Fix B∈B (that is, B

is a ball centered at some point in ∂O satisfying (1.17)). In (1.26) we need to be

able to take test functions in C∞
c (B×O), which possibly do not vanish at ∂O×O.

To achieve this, we take φ= ζ̃δ(x)ψ(x,y), where ζ̃δ is a canonical local boundary

layer sequence and ψ∈C∞
c (B×O), take δ→0 and perform an analysis similar to

that of the proof of Proposition 4.1 in order to get rid of some of the terms that

involve derivatives in x of the test function.

Then, from the resulting inequality we will prove (1.26) by first taking the

limit as ε→ 0 and then substituting ψ(x,y)= (1−ζδ(x))φ̃(x,y), where ζδ is now

any boundary layer sequence and, upon taking the limit as δ → 0, most of the

remaining terms vanish and we recover (1.26).

Let us, then, take φ= ζ̃δ(x)ψ(x,y) in (4.11) by approximation. Note that all of

the terms that do not involve derivatives in x of the test function converge nicely
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as δ→0. The remaining terms are the following:

J1+ J2+ J3 (4.12)

=
∫ t

0

∫

O2

(
F (uε,v,uB)·∇xψ(x,y)ζ̃δ(x)+B

∗(uε,v,uB) : D2
xψ(x,y)ζ̃δ(x)

)
dxdyds

+ε
∫ t

0

∫

O2
A(uε,v,uB)∆xψ(x,y)ζ̃δ(x)dxdyds

+
∫ t

0

∫

O2

(
F (uε,v,uB)·∇x ζ̃δψ(x,y)+2

(
B
∗(uε,v,uB)∇ζ̃δ(x)

)
·∇xψ(x,y)

)
dxdyds

+2ε
∫ t

0

∫

O2

(
A(uε,v,uB)∇x ζ̃δ(x)

)
·∇ψ(x,y)dxdyds

+
∫ t

0

∫

O2

(
ψ(x,y)B∗(uε,v,uB) : D2

x ζ̃δ(x)+ψ(x,y)A(uε ,v,uB)∆x ζ̃δ(x)
)

dxdyds.

Note that the first two integrals in (4.12) converge nicely as δ → 0. Recalling

(2.7), we see that the third and fourth integrals converge to 0 as δ → 0, since

F (uε(s,x),v(s,y),uB(s,x)), B∗(uε(s,x),v(s,y),uB(s,x)), A(uε(s,x),v(s,y),uB( s,x))
vanish on ∂O×O. Finally, using the same arguments as in the proof of Proposi-

tion 4.1, the integral on the fifth line of (4.12) can be written as a sum of a nonpos-

itive term and a term that tends to zero as δ→0. In this last argument, we use the

fact that B∗(u,v,w) is a positive definite matrix by virtue of (1.4), which is easy to

verify (see [19, Lemma 1.2]).

As a consequence, after taking the limit as δ→0 in (4.12) we get

∫

O2
A
(
uε(t,x),v(t,y)uB(t,x)

)
ψ(x,y)dxdy

≤
∫

O2
A
(
u0(x),v0(y),uB0(x)

)
ψ(x,y)dxdy

+
∫ t

0

∫

O2
F
(
uε(s,x),v(s,y),uB(s,x)

)
·∇xψ(x,y)dxdyds

+
∫ t

0

∫

O2
B
∗(uε(s,x),v(s,y),uB(s,x)

)
: D2

xψ(x,y)dxdyds

+ε
∫ t

0

∫

O2
A
(
uε(s,x),v(s,y),uB(s,x)

)
∆xψ(x,y)dxdyds

+∑
k≥1

∫ t

0

∫

O2
sgn
(
uε(s,x)−v(s,y)

)(
gk(u

ε(s,x))−gk(v(s,y))
)

ψ(x,y)dxdβk(s)

+∑
k≥1

∫ t

0

∫

O2
sgn
(
uε(s,x)−uB(s,x)

)(
gk(u

ε(s,x))−gk(uB(s,x))
)

ψ(x,y)dxdβk(s)
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+C
∫

O
‖ψ(·,y)‖L2([0,T]×O)dy+

∫

O2
|uB(t,x)−v(t,y)|ψ(x,y)dxdy

+
∫ t

0

∫

O2
ψ(x,y)dµy(x)dyds

+
∫ t

0

∫

O2

(
F
(

uε(s,x),v(s,y)
)
·∇yψ(x,y)+B

(
uε(s,x),v(s,y)

)
: D2

yψ(x,y)
)

dxdyds.

Now we integrate by parts in the integral on the third line and then take the limit

as ε→0 to arrive at
∫

O2
A
(
u(t,x),v(t,y)uB(t,x)

)
ψ(x,y)dxdy (4.13)

≤
∫

O2
A
(
u0(x),v0(y),uB0(x)

)
ψ(x,y)dxdy

−
∫ t

0

∫

O2
Hx

(
u(s,x),v(s,y),uB(s,x)

)
·∇xψ(x,y)dxdyds

+∑
k≥1

∫ t

0

∫

O2
sgn
(
u(s,x)−v(s,y)

)(
gk(u(s,x))−gk(v(s,y))

)
ψ(x,y)dxdβk(s)

+∑
k≥1

∫ t

0

∫

O2
sgn
(
u(s,x)−uB(s,x)

)(
gk(u(s,x))−gk(uB(s,x))

)
ψ(x,y)dxdβk(s)

+C
∫

O
‖ψ(·,y)‖L2([0,T]×O)dy+

∫

O2
|uB(t,x)−v(t,y)|ψ(x,y)dxdy

+
∫ t

0

∫

O2
ψ(x,y)dµy(x)dyds

+
∫ t

0

∫

O2

(
F
(

u(s,x),v(s,y)
)
·∇yψ(x,y)+B

(
u(s,x),v(s,y)

)
: D2

yψ(x,y)
)

dxdyds.

At last, we take ψ(x,y) = (1−ζδ(x))ϕ̃(x,y) in (4.13), where ζδ is any boundary

layer sequence and ϕ̃ ∈ C∞
c (B×O), take expectation and then take the limit as

δ→0 to conclude that

0≤ liminf
δ→0

E

∫ t

0

∫

O2
Hx

(
u(s,x),v(s,y),uB(s,x)

)
·∇xζδ(x)ϕ̃(x,y)dxdyds, (4.14)

which concludes the proof.

5 Existence part 1: nondegenerate case

In this section we solve the following approximation of problem (1.1)-(1.3):

duε+∇·Aε(uε)dt−D2 : Bε(uε)dt−ε∆uε dt=Φε(uε)dW(t), (5.1)
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uε(0,x)=uε
0(x), x∈O, (5.2)

uε =uε
b(t,x), x∈∂O, t>0, (5.3)

where uε
0 is a smooth approximation of u0, uε

0 ∈ L∞(Ω,C∞
c (O)), umin ≤uε

0 ≤umax,
a.s., uε

b is a smooth approximation of ub, Φε is a suitable Lipschitz approximation
of Φ satisfying (1.9) uniformly, as well as (1.13), with gε

k and Gε as in the case
ε=0, gε

k(x,ξ) smooth with compact support in ξ contained in (−M,M), for some

M > max{|umin|,|umax|}. Moreover, gε
k ≡ 0 for k ≥ 1/ε. Finally, Aε ∈ C2

c (R;Rd),

Bε ∈C2
c (R;Md), Aε(u)=A(u), Bε(u)=B(u) for u∈ [a,b]. The latter assumptions

will be justified later on when we prove that the solution of (5.1)-(5.3), uε(t,x),
satisfies umin≤uε(t,x)≤umax, (t,x)∈ (0,T)×O.

In order to solve (5.1)-(5.3), we will proceed as follows. First we consider the
following approximation for (5.1)-(5.3):

duε,µ+∇·Aε(uε,µ)dt−D2 : B̃ε(uε,µ)dt+µ∆2uε,µ dt=Φε(uε,µ)dW(t), (5.4)

uε,µ(0,x)=uε
0(x), x∈O, (5.5)

uε,µ=uε
b(t,x), x∈∂O, t>0, (5.6)

∂νuε,µ=0, x∈∂O, t>0, (5.7)

where B̃ε(u) = Bε(u)+εuI. Notice the additional boundary condition (5.7), in-
troduced due to the biharmonic operator ∆2. Once we prove the existence and
uniqueness of solutions of (5.4)-(5.7), we can pass to the limit µ→0 applying a rea-
soning similar to the one used in [23], thus solving the nondegenerated problem
(5.1)-(5.3).

5.1 Two-level approximations

We are going to solve problem (5.4)-(5.7) by a fixed point argument. To that end,
we consider the following functional

(Kv)(t)=(Kε,µv)(t)= S(t)(uε
0−w0)+

∫ t

0
S(t−s)D2 : Bε

(
v(s)

)
ds (5.8)

−
∫ t

0
S(t−s)∇·Aε

(
v(s)

)
ds+

∫ t

0
S(t−s)Φε

(
x,v(s)

)
dW(s)+ ũε

b(t).

Here, S(t) denotes the strongly continuous semigroup generated by the operator
A=Aµ,ε : D(A)⊂L2(O)→L2(O) given by






D(A)=H2
0(O)∩H4(O)

=
{

u∈H4(O); u=∂νu=0 (in the sense of traces) on ∂O
}

,

Au=−ε∆u+µ∆2u,
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which by Theorem B.5 is nonnegative and self-adjoint, thus S(t)=exp{−t A}. The
last term in (5.8) is the solution to the following initial-boundary value problem:






∂ũε
b

∂t
(t,x)+µ∆2ũε

b(t,x)−ε∆ũε
b(t,x)=0 in {0< t<T}×O,

ũε
b(0,x)=w0(x) on {t=0}×O,

ũε
b(t,x)=uε

b(t,x) on {0< t<T}×∂O,

∂ũε
b

∂ν
(t,x)=0 on {0< t<T}×∂O,

(5.9)

for some suitable w0, whose well-posedness is shown in Lemma 5.5 below.
In this fashion, we are able to prove the following theorem.

Theorem 5.1. Assume that u0 ∈ L2(Ω×O) and uε
b ∈ L2(Ω×[0,T];H2(∂O))∩L2(Ω;

H1((0,T);L2(∂O))) is predictable. Let also w0 ∈ L2(Ω,H2(O)) be an extension of

ub|t=0 to ∂O. If

E=L2
(
Ω;C([0,T];L2(O))

)
∩L2

(
Ω;L2(0,T;H2(O))

)
,

then K, defined in (5.8), can be understood as a continuous mapping from E into E , which

possesses a unique fixed point uε,µ. This fixed point uε,µ is the unique weak solution to

(5.4)-(5.7) in E and satisfies the following energy estimate:

E

{
sup

0≤t≤T

‖uε,µ(t)‖2
L2(O)+ε

∫ T

0
‖∇uε,µ(t)‖2

L2(O)dt

+µ
∫ T

0
‖∆uε,µ(t)‖2

L2(O)dt

}
≤C, (5.10)

where C depends on ε, uε
0 and ub, but otherwise remains bounded as µ→0.

Passing µ→ 0, we obtain the expected convergence of the uε,µ to the unique
solution uε to (5.1)-(5.3), as stated below.

Theorem 5.2. If µ → 0, then the functions uµ,ε converge in probability in the space

L2(0,T;L2(O))∩C([0,T];H−4(O)) to the unique weak solution uε ∈ L2(Ω;C([0,T];
L2(O)))∩L2(Ω×[0,T];H1(O)) to (5.1)-(5.3). Moreover, one has that





a≤uε(t,x)≤b, a.s., a.e. in (0,T)×O,

E

∫ T

0

∫

O
|∇bε(u

ε(t,x))|2 dxds≤C
(5.11)

for some constant C, which depends on a, b, ub, but not on 0< ε<1.

We will prove these two theorems in the next few subsections.
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5.2 Proof of Theorem 5.1.

5.2.1 The analysis of K :E→E .

Let us begin by showing that the operator K, given by (5.8) for v ∈ E , is well
defined and continuous. To that end, let us decompose K into five parts which
will be analyzed individually

(Kv)(t)=(K0 v)(t)+(K1v)(t)−(K2v)(t)+(K3v)(t)+(K4v)(t),

where 



(K0v)(t)=S(t)(uε
0−w0),

(K1v)(t)=
∫ t

0
S(t−s)D2 : Bε

(
v(s)

)
ds,

(K2v)(t)=
∫ t

0
S(t−s)∇·Aε

(
v(s)

)
ds,

(K3v)(t)=
∫ t

0
S(t−s)Φε

(
x,v(s)

)
dW(s),

(K4v)(t)= ũb(t).

In order to simplify the notation, in this subsection we drop the superindices
ε and µ.

5.2.2 On (K0v)(t).

Note that K0v is independent of v. Then, the following result may be easily de-
duced from the theory of semigroups of linear operators (see Appendix B).

Lemma 5.1. Let u0 ∈ L2(Ω;L2(O)), then the expression S(t)(u0−w0) defines an ele-

ment of E . Additionally, the correspondence u0 ∈ L2(Ω;L2(O)) 7→S(t)(u0−w0)∈E is

continuous.

5.2.3 On (K1v)(t).

Regarding the term K1v we can use the spectral analysis of the operator A (see
Section B.2) to deduce the following.

Lemma 5.2. The mapping K1 :E→E is well-defined and continuous.

Proof. Note that if h∈L2(Ω;L2(0,T;L2(O))), then, as distributions,

∂h

∂xj
∈L2

(
Ω;L2(0,T;H−1(O))

)
,

∂2h

∂xj∂xk
∈L2

(
Ω;L2(0,T;H−2(O))

)
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for 1≤ j,k≤d with

E

∫ T

0

∥∥∥∥
∂h

∂xj
(s)

∥∥∥∥
2

H−1(O)

ds≤E

∫ T

0
‖h(s)‖2

L2(O)ds,

E

∫ T

0

∥∥∥∥
∂2h

∂xj∂xk
(s)

∥∥∥∥
2

H−2(O)

ds≤E

∫ T

0
‖h(s)‖2

L2(O)ds.

In particular, given v∈E we have that D2 : B(v(s))∈H−1/2
A = H−2(O) (see Theo-

rem B.6). Consequently, using Theorem B.2 we have a.s. that

∥∥∥∥
∫ t

0
S(t−s)D2 : B(v(s))ds

∥∥∥∥
L2(O)

≤
∫ t

0
‖S(t−s)D2 : B(v(s))‖L2 (O)ds≤C

∫ t

0

(
1+

1

(t−s)1/2

)
‖B(v(s))‖L2 (O)ds

≤C sup
0≤s≤T

‖B(v(s))‖L2 (O), (5.12)

from which we conclude that (K1v)∈L2(Ω; C([0,T]; L2(O))), by taking the supre-

mum over 0≤ t≤T, squaring and taking the expectation.

Likewise, but now using Theorem B.3 with α=−1/2,

E

∫ T

0

∥∥∥∥
∫ t

0
S(t−s)D2 : B(v(s))ds

∥∥∥∥
2

H2
0(O)

dt

≤CE

∫ T

0
‖D2 : B(v(s))‖2

H−2 ds≤CE

∫ T

0
‖B(v(s))‖2

L2 (O)ds, (5.13)

thus again we see that (K1v)∈L2(Ω;L2(0,T;H2(O))).

Finally, minor modifications in the reasoning leading to the inequalities (5.12)-

(5.13) demonstrate that the mapping v∈E 7→K1v∈E is indeed continuous.

5.2.4 On (K2v)(t).

The analysis of K2v is similar to that of K1v. Indeed, note that for each v ∈ E ,

∇·A(v(s))∈H−1/4
A so we can use Theorems B.2 and B.3 to obtain the following.

Lemma 5.3. The mapping K2 :E→E is well-defined and continuous.
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5.2.5 On (K3v)(t).

Regarding the stochastic convolution operator K3, we may state the following
result.

Lemma 5.4. The mapping K3 :E→E is well-defined and continuous.

Proof. Let v∈E . Then, by the maximal estimate for stochastic convolutions [5,13,

24, 31, 32, 43], which asserts that

E sup
0≤t≤T

∥∥∥∥
∫ t

0
S(t−s)Φ(x,v(s))dW(s)

∥∥∥∥
2

L2(O)

≤CE

∫ T

0
‖Φ(x,v(s))‖2

L2 (U,L2(O))ds

for a constant C depending only on T>0, we have K3v∈L2(Ω;C([0,T];L2(O))).
Furthermore, by Theorem B.4 (with α=0), and Theorem B.6,

E

∫ T

0

∥∥∥∥
∫ t

0
S(t−s)Φ(x,v(s))dW(s)

∥∥∥∥
2

H2
0(O)

dt≤CE

∫ T

0
‖Φ(x,v(s))‖2

L2(U,L2(O))ds,

allowing us to argue that K5v∈ L2(Ω;L2(0,T;H2(O))). Finally, observe that, re-

placing Φ(x,v) with Φ(x,v1(s))−Φ(x,v2(s)) in the above inequalities also shows

that K3 :E→E is continuous.

5.2.6 On (K4v)(t)

Note that K4v is independent of v. So, we only have to show that Eq. (5.9) has a
unique solution in the space E .

Now, straightening out the boundary, using partition of unity, etc., one can
extend ub to some predictable h∈ L2(Ω×[0,T];H2(O))∩L2(Ω;H1((0,T);L2(O)))
in a way that a.s.

∂νh=0 on (0,T)×∂O.

Note that we may choose w0=h|t=0. Hence, z= ũε
b−h should satisfy

∂z

∂t
−ε∆z+µ∆2z=−

(
∂

∂t
−ε∆+µ∆2

)
h in (0,T)×O,

z(0,x)=0 on {t=0}×O,

z(t,x)=0 on (0,T)×O,

∂z

∂ν
(t,x)=0 on (0,T)×∂O.

(5.14)

Concerning the well-posedness of (5.14), we recall the following result by
J.-L. Lions, as stated in [4]. We refer to [33] for the proof.
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Theorem 5.3. Let H be a Hilbert space with scalar product (·,·) and norm ‖·‖H, and

identify H∗ with H. Let also V be another Hilbert space with norm ‖·‖V , for which

V⊂H with dense and continuous injection, so that we have the triplet

V⊂H⊂V∗.

Let T > 0 be fixed; and suppose that for a.e. 0< t< T we are given a bilinear form

a(t;u,z) :V×V→R satisfying the following properties:

1. For every u,z∈V, the function t 7→ a(t;u,z) is measurable;

2. |a(t;u,z)|≤M‖u‖V‖z‖V for a.e. 0< t<T, ∀u,z∈V, and where M is a constant;

3. a(t;u,u)≥ α‖u‖2
V−C‖u‖2

H for a.e. 0< t < T, ∀u ∈ V, and where α and C are

positive constants.

Then for every F∈L2(0,T;V∗) and u0∈H, there exists a unique function

u∈L2(0,T;V)∩C([0,T];H)∩H1(0,T;V∗),

such that u(0)=u0 and

〈
du

dt
(t),z

〉

V∗,V

+a(t;u(t),z)= 〈F(t),z〉V∗ ,V for a.e. 0< t<T, ∀z∈V. (5.15)

Lemma 5.5. Assume that uε
b ∈ L2(Ω×[0,T];H2(∂O))∩L2(Ω;H1((0,T);L2(∂O))) is

predictable. Then the problem (5.9) has a unique weak solution ũε
b∈L2(Ω×(0,T);H2(O))

∩L2(Ω;H1(0,T;H−2(O))). In particular, ũε
b∈E . Moreover, ũε

b is predictable.

Proof. We apply Theorem 5.3 as follows. Let H = L2(O), V = H1/2
A = H2

0(O) (cf.

Theorem B.6),

a(t;u,z)= ε
∫

O
∇u·∇zdx+µ

∫

O
∆u∆zdx,

and

〈F(t),ϕ〉
H

− 1
2

A ,H
1
2
A

:=

〈
−
(

∂

∂t
−ε∆+µ∆2

x′′

)
h,ϕ

〉

H−2(O),H2
0(O)

. (5.16)

For each fixed ω∈Ω, the conditions in Theorem 5.3 are immediately verified,

so existence and uniqueness of ũε
b for each fixed ω ∈Ω follows. Now the proof

of Theorem 5.3 can be made by the Galerkin method. So, since h is predictable,

F given by (5.16) is also predictable and so are its finite dimensional projections.
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Therefore, the Galerkin approximations, which are solutions of finite dimensional

ODEs obtained as projections of (5.15), are also predictable. The convergence of

the Galerkin approximations is obtained alongside a uniform estimate in L2(Ω×
(0,T),P ;H1/2

A ) so that in the limit we obtain a predictable weak solution.

Remark 5.1. Note that by virtue of (5.15) we have that the solution of (5.14) satis-

fies a.s. and for 0≤ t≤T the estimate

∫

O
|z(t,x)|2dx+

∫ t

0

∫

O

(
ε|∇z|2+µ|∆z|2

)
≤C‖h‖2

H1(0,T;L2(O))∩L2(0,T;H2(O)

for some C>0 independent of µ, which implies, in particular, that

∥∥ũε
b

∥∥
L2(Ω×(0,T);H2(O))∩L2(Ω;H1(0,T;H−2(O)))

≤ C̃ (5.17)

for some C̃>0 independent of µ.

5.2.7 Conclusion.

Gathering Lemmas 5.1-5.5 we have the following.

Theorem 5.4. The operator K :E→E is well-defined, continuous, depends continuously

on initial data u0∈L2(Ω;L2(O)) and on boundary data ub∈L2(Ω;H
3
8 , 7

4 ((0,T)×∂O)).

In order to prove that K has a unique fixed point, we will exhibit an equivalent
norm to E , under which K : E →E is a contraction. First we need the following
estimate.

Lemma 5.6. Given any u1 and u2∈E , it holds a.s. that, for all 0≤ t≤T,

∥∥(Ku1)(t)−(Ku2)(t)
∥∥2

L2(O)
dx+2µ

∫ t

0

∥∥∆(Ku1)(s)−∆(Ku2)(s)
∥∥2

L2(O)
dxds

=2
∫ t

0

∫

O

(
B̃(u1)−B̃(u2)

)
: D2

(
Ku1−Ku2

)
dxds

+2
∫ t

0

∫

O

(
A(u1)−A(u2)

)
·∇
(
Ku1−Ku2

)
dxds

+2
∞

∑
k=1

∫ t

0

∫

O

(
gk(x,u1)−gk(x,u2)

)(
Ku1−Ku2

)
dxdβk(s)

+
∞

∑
k=1

∫ t

0

∫

O

∣∣gk(x,u1(s,x))−gk(x,u2(s,x))
∣∣2dxds a.s. (5.18)
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Proof. Let us keep employing the notations of the Appendix B. First of all, let us

observe that Ku1−Ku2 lies in L2(Ω;C([0,T];L2(O))) ∩ L2(Ω×[0,T];H2
0(O)) and

obeys the equation

Ku1(t)−Ku2(t)

=−
∫ t

0
A
(
(Ku1)(s)−(Ku2)(s)

)
ds+

∫ t

0
D2 :

(
B(u1(s))−B(u1(s))

)
ds

−
∫ t

0
∇
(
A(u1(s))−A(u1(s))

)
ds+

∫ t

0

(
Φ(x,u1(s))−Φ(x,u2(s))

)
dW(s)

a.s. in H−2(O)=H−1/2
A .

The idea here would be to apply the usual Itô’s formula in the expression

above; however, given that the equation is only satisfied in a negative Sobolev

space, we are impeded to do so. To circumvent this difficulty, we introduce the

“approximations of the identity” Jλ=(I+λA)−1 for λ>0, so that

1. for any −∞<α<∞, Jλ∈L(Hα
A;Hα+1

A ) with norm ≤ 1
λ ;

2. for any −∞<α<∞ and h∈Hα
A, Jλh→h in Hα

A as λ→0.

With this in mind, we see that Jλ(Ku1−Ku2) satisfies

Jλ

(
Ku1(t)−Ku2(t)

)

=−
∫ t

0
AJλ

(
(Ku1)(s)−(Ku2)(s)

)
ds

+
∫ t

0
JλD2 :

(
B(u1(s))−B(u1(s))

)
ds−

∫ t

0
Jλ∇·

(
A(u1(s))−A(u1(s))

)
ds

+
∫ t

0
Jλ

(
Φ(x,u1(s))−Φ(x,u2(s))

)
dW(s) a.s. in H0

A=L2(O).

Hence, the usual Itô formula (with η(u)=‖u‖2
L2(O)

) combined with some integra-

tions by parts implies that

∫

O

∣∣Jλ

(
Ku1−Ku2

)
(t)
∣∣2dx+2µ

∫ t

0

∫

O

∣∣∆Jλ

(
Ku1−Ku2

)∣∣2dxds

+2ε
∫ t

0

∫

O

∣∣∇Jλ

(
Ku1−Ku2

)∣∣2dxds

=2
∫ t

0

∫

O

[
JλD2 :

(
B(u1)−B(u2)

)]
Jλ

(
Ku1−Ku2

)
dxds
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−2
∫ t

0

∫

O
Jλ

[
∇·
(
A(u1)−A(u2)

)]
Jλ

(
Ku1−Ku2

)
dxds

+2
∞

∑
k=1

∫ t

0

∫

O
Jλ

(
gk(x,u1)−gk(x,u2)

)
Jλ

(
Ku1−Ku2

)
dxdβk(s)

+
∞

∑
k=1

∫ t

0

∫

O

∣∣Jλ

(
gk(x,u1)−gk(x,u2)

)∣∣2dxds a.s.

Now we make λ→ 0 and, given the two properties (1) and (2) stated above, we

see that there is a subsequence along which all the terms converge almost surely

to their respective correspondents. Indeed, the convergence of the term involv-

ing the stochastic integral follows by the continuity of the stochastic integral as

an operator from the space of square integrable adapted processes to the space

of square integrable martingales, due to the Itô isometry, and the fact that mean

square convergence implies convergence in probability which, in turn, implies al-

most sure convergence along a subsequence. Now, fixed a subsequence {λk}k∈N

along which the term involving the stochastic integral converges almost surely,

the convergence of the remaining terms is straightforward, except maybe for

JλD2 : (B(u1)−B(u2)) (this is because B(uj) may not lie in L2(Ω×[0,T];H2(O))).
However, interpreting the parcel on which it appears as

2
∫ t

0

∫

O

[
JλD2 :

(
B(u1)−B(u2)

)]
Jλ

(
Ku1−Ku2

)
dxds

=2
∫ t

0

〈
JλD2 :

(
B(u1)−B(u2)

)
, Jλ

(
Ku1−Ku2

)〉

H−1/2
A ,H1/2

A

dxds,

this technicality is overcome. In any case, arranging the terms correctly (recall

that B̃=B+εI), (5.18) is readily established.

Lemma 5.7. K :E→E has a unique fixed-point u=uε,µ ∈E .

Proof. Let u1 and u2 ∈ E and 0 ≤ τ ≤ T. Taking the supremum of (5.18) in the

interval 0≤ t≤τ and subsequently integrating in ω∈Ω, we obtain

E sup
0≤t≤τ

(∥∥(Ku1)(t)−(Ku2)(t)
∥∥2

L2(O)
+2µ

∫ t

0

∥∥∆(Ku1)(s)−∆(Ku2)(s)
∥∥2

L2(O)
ds

)

≤CE

∫ τ

0

∥∥u1(s)−u2(s)
∥∥

L2(O)

∥∥(Ku1)(s)−(Ku2)(s)
∥∥

H2(O)
ds

+CE

∫ τ

0

∥∥u1(s)−u2(s)
∥∥2

L2(O)
ds
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+E sup
0≤t≤τ

∣∣∣∣
∞

∑
k=1

∫ t

0

∫

O

(
gk(x,u1(s))−gk(x,u2(s))

)

×
(
Ku1(s)−Ku2(s)

)
dxdβk(s)

∣∣∣∣. (5.19)

In the estimate above, the only terms on the right-hand side that pose some prob-

lem are the first and the last. We will treat them as follows.

To handle the term

E

∫ τ

0

∥∥u1(s)−u2(s)
∥∥

L2

∥∥(Ku1)(s)−(Ku2)(s)
∥∥

H2(O)
ds,

we notice that Ku1−Ku2∈L2(Ω;L2(0,T;H2
0(O))). Therefore, a joint application of

the identity
N

∑
i,j=1

∫

O

∣∣∣∣
∂2h

∂xi∂xj
(x)

∣∣∣∣
2

dx=
∫

O
|∆h(x)|2dx

(valid for functions h∈ H2
0 (O)) and the Poincaré and Young inequalities shows

that

E

∫ τ

0

∥∥u1(s)−u2(s)
∥∥

L2(O)

∥∥(Ku1)(s)−(Ku2)(s)
∥∥

H2(O)
ds

≤ 1

4
E sup

0≤t≤τ

(∥∥(Ku1)(t)−(Ku2)(t)
∥∥2

L2(O)

+2µ
∫ t

0

∥∥∆(Ku1)(s)−∆(Ku2)(s)
∥∥2

L2(O)
ds

)

+CE

∫ τ

0

∥∥u1(s)−u2(s)
∥∥2

L2(O)
ds. (5.20)

On the other hand, to deal with the last term of (5.19) we invoke Burkholder’s

inequality as to so obtain

E sup
0≤t≤τ

∣∣∣∣
∞

∑
k=1

∫ t

0

∫

O

(
gk(x,u1)−gk(x,u2))

)(
Ku1−Ku2

)
dxdβk(s)

∣∣∣∣

≤CE



(∫ τ

0

∞

∑
k=1

{∫

O

(
gk(x,u1)−gk(x,u2(s))

)(
Ku1−Ku2

)
dx

}2

ds

) 1
2




≤ 1

4
E sup

0≤t≤τ

(∥∥(Ku1)(t)−(Ku2)(t)
∥∥2

L2(O)
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+2µ
∫ t

0

∥∥∆(Ku1)(s)−∆(Ku2)(s)
∥∥2

L2(O)
dxds

)

+CE

∫ τ

0

∥∥u1(s)−u2(s)
∥∥2

L2(O)
ds. (5.21)

Consequently, inserting (5.20)-(5.21) into (5.19) gives

E sup
0≤t≤τ

(∥∥(Ku1)(t)−(Ku2)(t)
∥∥2

L2(O)
+2µ

∫ t

0

∥∥∆(Ku1)(s)−∆(Ku2)(s)
∥∥2

L2(O)
ds

)

≤C∗E

∫ τ

0

∥∥u1(s)−u2(s)
∥∥2

L2(O)
ds (5.22)

for some constant C∗>0 independent of u1 and u2. On the basis of (5.22), we will

introduce the equivalent norm in E given by

‖u‖2
∗E = sup

0≤τ≤T

e−C∗ t
α E sup

0≤t≤τ

(
‖u(t)‖2

L2(O)+2µ
∫ t

0
‖∆u(s)‖2

L2(O)ds

)
,

where 0<α<1 may be arbitrarily chosen. Since

C∗E

∫ τ

0

∥∥u1(s)−u2(s)
∥∥2

L2(O)
ds

≤C∗
∫ τ

0
eC∗ s

α e−C∗ s
α E sup

0≤t≤s

∥∥u1(t)−u2(t)
∥∥2

L2(O)
ds

≤αeC∗ τ
α
∥∥u1−u2

∥∥2

∗E ,

(5.22) implies that ∥∥Ku1−Ku2
∥∥2

∗E ≤α
∥∥u1−u2

∥∥2

∗E .

This proves that K is a contraction and thus the desired result.

At last, all is left to finish the proof of Theorem 5.1 is the energy estimate (5.10),
whose justification we provide below.

Lemma 5.8. Fixing ε> 0, denote by uε,µ ∈ E the solution given by Lemma 5.7. Then

there exists a constant C, independent of µ>0, for which (5.10) indeed holds.

Proof. Similar to the proof of Lemma 5.6, we note that the relation uε,µ− ũε
b ∈

L2(Ω×[0,T];H2
0(O)) guarantees that it holds a.s. and for all 0≤ t≤T

∫

O

∣∣uµ,ε(t,x)− ũε
b(t,x)

∣∣2dx+2µ
∫ t

0

∫

O

∣∣∆uµ,ε(s,x)−∆ũε
b(s,x)

∣∣2 dxds
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+2ε
∫ t

0

∫

O

∣∣∇uµ,ε(s,x)−∇ũε
b(s,x)

∣∣2dxds

+2
∫ t

0

∫

O
B′(uµ,ε(s,x)

)
∇
(
uµ,ε(s,x)− ũε

b(s,x)
)
·∇
(
uµ,ε(s,x)− ũε

b(s,x)
)

dxds

=−2
∫ t

0

∫

O
B′(uµ,ε(s,x)

)
∇ũε

b(s,x)·∇
(
uµ,ε(s,x)− ũε

b(s,x)
)

dxds

+2
∫ t

0

∫

O
A
(
uµ,ε(s,x)

)
·∇
(
uµ,ε(s,x)− ũε

b(s,x)
)

dxds

+2
∞

∑
k=1

∫ t

0

∫

O
gk

(
x,uµ,ε(s,x)

)(
uµ,ε(s,x)− ũε

b(s,x)
)

dxdβk(s)

+
∞

∑
k=1

∫ t

0

∫

O

∣∣gk(x,uµ,ε(s,x))
∣∣2dxds.

Recalling that A=Aε, B=Bε and gk=gε
k all have compact support in ξ, with gε

k≡0

for k> 1/ε, and taking into account (5.17), we see that (5.10) can be established

using Young inequality with ε and the Burkholder inequality, as it was done in the

proof of Lemma 5.7; also using the fact that B′(uµ,ε) is positive semi-definite.

5.3 Proof of Theorem 5.2.

Before we turn into the limit µ→ 0, let us first study the properties of solutions
u ∈ L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H1(O)) to the nondegenerate problem
(5.1)-(5.3). Let us begin by showing that this equation possesses an entropy, thus
also a kinetic formulation, and that a relative entropy estimate is available.

Proposition 5.1. Let ϕ∈C1
c (O) and η∈C2(R) with η′′∈L∞(R).

1. If u∈L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H1(O)) solves (5.1)-(5.3), then, a.s.

for all 0≤ t≤T,

∫

O
η
(
u(t,x)

)
ϕ(x)dx

=
∫

O
η(uε

0)ϕdx+
∫ t

0

∫

O
Aε(u)·∇

(
η′(u)ϕ

)
dxds

−
∫ t

0

∫

O
divBε(u)·∇

(
η′(u)ϕ

)
dxds+

∞

∑
k=1

∫ t

0

∫

O
η′(u)gk(x,u)ϕdxdβk(s)

+
1

2

∞

∑
k=1

∫ t

0

∫

O
η′′(u)gk(x,u)2 ϕdxds. (5.23)
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2. Assume that v∈L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H1(O)) solves (5.1)-(5.3)

but with possibly different initial v(0,x)=vε
0(x) and boundary v(t,x)|(0,T)×∂O=

vb(t,x) datum. Then, a.s. for all 0≤ t≤T,
∫

O
η
(
u(t,x)−v(t,x)

)
ϕ(x)dx=

∫

O
η
(
uε

0(x)−vε
0(x)

)
ϕ(x)dx

+
∫ t

0

∫

O

(
Aε(u)−Aε(v)

)
·∇
(
η′(u−v)ϕ

)
dxds

−
∫ t

0

∫

O
div
(
Bε(u)−Bε(v)

)
·∇
(
η′(u−v)ϕ

)
dxds

+
∞

∑
k=1

∫ t

0

∫

O
η′(u−v)

(
gk(x,u)−gk(x,v)

)
ϕdxdβk(s)

+
1

2

∞

∑
k=1

∫ t

0

∫

O
η′′(uε−vε)

(
gk(x,u)−gk(x,v)

)2
ϕdxds. (5.24)

Proof. This is nothing more than a localized version of the generalized Itô’s for-

mula proven in [14].

Remark 5.2. Let us point out that if η′(u−v)∈L2(Ω×[0,T]; L2(O′;H1
0(O))), then

in (5.24), ϕ can be chosen to be in C1(O). This can be shown by standard Sobolev

spaces arguments (see, e.g., the proof of [16, Theorem 2, Section 5.5]).

As a result, we can prove the following comparison principle.

Lemma 5.9. Let u and v ∈ L2(Ω;C([0,T];L2(O))) ∩ L2(Ω×[0,T];H1(O)) be two so-

lutions to (5.1)-(5.3) with possibly different initial u(0)=uε
0 and v(0)=vε

0∈L2(Ω;L2(O))
and boundary u|(0,T)×∂O = ub and v|(0,T)×∂O = vb ∈ L2(Ω×[0,T];H1/2(O)) datum.

Then, if ub ≤vb a.s. in the sense of the distributions,

E

∫

O

(
u(t,x)−v(t,x)

)
+

dx≤E

∫

O

(
uε

0(x)−vε
0(x)

)
+

dx (5.25)

for all 0≤ t≤T.

Proof. Consider ψ∈C∞
c (−∞,∞) to be such that ψ≥0, suppψ⊂ (−1,1) and

∫ ∞

−∞
ψ(t)dt=1.

If

ψδ(ξ)=
1

δ
ψ(δ−1ξ), δ>0,
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then put

sgn+
δ (ξ)=

∫ t

−∞
ψδ(ζ−δ)dζ=

∫ ξ

−∞
ψ

(
ζ−1

δ

)
dζ

δ
.

Define also

ηδ(ξ) :=
∫ ξ

−∞
sgn+

δ (ζ)dζ.

Notice that ηδ is a smooth convex approximation of the “positive part” function

ξ 7→ξ+ .

Since ub ≤ vb, it is not hard to see that η′
δ(u−v)∈ L2(Ω×[0,T]; H1

0(O)). Con-

sequently, as noted in Remark 5.2, we are allowed to choose ϕ≡1 on (5.24). The

proof of the lemma will be then completed by passing δ→0.

First of all, take the expected value in (5.24) to eliminate the term involving the

stochastic integrals. Next, let us consider the diffusive term featuring Bε. Notice

that it may be written as

−
∫ t

0

∫

O
η′′

δ (u−v)(∇u−∇v)·(Bε)′(u)(∇u−∇v)dxds

−
∫ t

0

∫

O
η′′

δ (u−v)(∇u−∇v)·
(
(Bε)′(u)−(Bε)′(v)

)
∇vdxds=−(i)+(ii)

(recall that ϕ≡1). Of course (i)≥0, whereas

(ii)≤‖(Bε)′‖∞

∫ t

0

∫

O
ψ

(
u−v−1

δ

)∣∣∣∣
u−v

δ

∣∣∣∣|∇u−∇v||∇v|dxds.

The integrand above is uniformly bounded by an L1–function and converges

pointwisely to 0. Hence E(ii)= o(1).
Likewise the hyperbolic term is o(1). Finally, for the last term, we notice that

1

2

∫ t

0

∫

O
η′′

δ (u−v)
∞

∑
k=1

|gk(x,u)−gk(x,v)|2 dxds

≤Dδ
∫ t

0

∫

O
ψ

(
u−v−1

δ

)(
u−v

δ

)2

dxds=O(δ).

Gathering all these remarks, we see that (5.25) is established letting δ → 0. The

lemma is proved.

With Lemma 5.9 at hand, we can deduce a maximum principle, a uniqueness
property, and an L∞–bound related to (5.1)-(5.3). The proof is immediate once we
notice that the constant functions umin and umax are solutions to (5.1)-(5.3).
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Theorem 5.5. Let u and v ∈ L2(Ω;C([0,T];L2(O))) ∩ L2(Ω×[0,T];H1(O)) be two

solutions to (5.1)-(5.3) with possibly different initial u(0)= uε
0 and v(0)= vε

0 ∈ L2(Ω;

L2(O)) and boundary u|(0,T)×∂O = ub and v|(0,T)×∂O = vb ∈ L2(Ω×[0,T];H1/2(O))
data. The following conclusions hold.

1. (Comparison principle). If ub≤vb and uε
0≤vε

0 a.s. in the sense of the distributions,

then u≤v a.s. in the sense of distributions in (0,T)×O.

2. (Uniqueness). If ub ≡vb and uε
0≡vε

0, then u≡v.

3. (L∞–bound). If umin≤ub,u0≤umax a.s. in the sense of distributions, then umin≤
u≤umax a.s. in the sense of distributions in (0,T)×O.

Furthermore, regarding the regularity properties claims in the statement of
Theorem 5.2, all that is left is the following energy estimate.

Lemma 5.10. Let uε ∈ L2(Ω;C([0,T];L2(O))) ∩ L2(Ω×[0,T];H1(O)) be a solution

to (5.1)-(5.3), where umin ≤u0, ub ≤umax a.s. and with ub ∈ L2(Ω×[0,T];H2(∂O))∩
L2(Ω;(H1((0,T));L2(∂O))) being predictable. Then

E

∫ T

0

∫

O
|∇bε(u

ε(t,x))|2 dxds≤C (5.26)

for some constant C, which depends on a, b, ub, but not on 0< ε<1.

Proof. The argument is quite similar to the proof of Lemma 5.8; we will only point

out the differences. Consider now z∈L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H2(O))
be the solution to






dz−∆zdt=Φ(z)dW(t) in {0< t<T}×O,

z(0,x)=w0(x) on {t=0}×∂O,

z(t,x)=ub(t,x) on {0< t<T}×∂O,

where w0∈L2(Ω;H2(O)) is a suitable extension of ub|t=0 to ∂O (see Appendix A).

Notice that umin≤w0≤umax and, thus, umin≤ f ≤umax a.s. as well.

Evidently, we can rewrite the heat equation observed by f as

dz−D2 : Bε(z)dt+∇·Aε(z)dt=Φ(z)dW(t)+Fε dt

with Fε =∆z−D2 : Bε(z)+∇·Aε(z), which is bounded in L2(Ω×[0,T];L2(O)) for

0<ε<1. Hence, reprising the arguments of the proof of Proposition 5.1 and using
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Remark 5.2, the fact that uε−z∈L2(Ω×[0,T];H1
0(O)) says that, choosing η(ξ)=ξ2

and ϕ≡1,

∫

O
|uε(t,x)−z(t,x)|2 dx+

∫ t

0

∫

O
div
(
Bε(uε)−Bε(z)

)
·∇(uε−z)dxds

=
∫

O
|uε

0(x)−w0(x)|2 dx+
∫ t

0

∫

O

(
Aε(uε)−Aε(z)

)
·∇(uε−z)dxds

+
∞

∑
k=1

∫ t

0

∫

O
(uε−z)

(
gk(x,uε)−gk(x,z)

)
dxdβk(s)

+
1

2

∞

∑
k=1

∫ t

0

∫

O
|gk(x,uε)−gk(x,z)|2 dxds

−
∫ t

0

∫

O
Fε (u

ε−z)dxds a.s. and for all 0≤ t≤T.

Because of (1.5), the L∞–bound for uε and f , and the fact that z ∈ L2(Ω×[0,T];
H2(O)), some algebraic manipulations and applications of the Gauss-Green the-

orem on the equation above provides an estimate for

E

∫ t

0
[(bε)

′(uε)]2|∇uε|2dxds=E

∫ t

0
|∇bε(u

ε)|2 dxds

which is uniform on 0< ε<1.

Finally, in order to obtain all ingredients necessary to prove Theorem 5.2, we
need just another technical proposition.

Proposition 5.2. If ub ∈ L2(Ω×[0,T];H2(∂O))∩L2(Ω;(H1((0,T));L2(∂O))) is pre-

dictable and u ∈ L2(Ω;L∞(0,T;L2(O)))∩L1(Ω;C([0,T];H−4(O)))∩L2(Ω×[0,T];
H1(O)) is a weak solution to (5.1)-(5.4), then u∈L2(Ω;C([0,T];L2(O))).

Proof. The line of reasoning will be sketched, as it closely follows the ideas we

expressed so far. By weak solution, we mean that, a.s.,

−
∫ T

0

∫

O
u

∂ϕ

∂t
dxdt+

∫

O
uε

0 ϕ(0)dx

=
∫ T

0

∫

O
Aε(u)·∇ϕdxdt−

∫ T

0

∫

O
divBε(u)·∇ϕdxdt+

∞

∑
k=1

∫ T

0
gk(x,u)ϕdxdβk(s)

for any ϕ ∈ C∞
c ((−∞,T)×O), and that u|(0,T)×∂O = ub in the sense of traces. If z

is as in the proof of the previous lemma, it is not hard to see that v = u−z has

a representative that can be expressed via the Duhamel formula (see, e.g., [13])
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v(t)=Z(t)(uε
0−w0)+(1−ε)

∫ t

0
Z(t−s)∆z(s)ds−

∫ t

0
Z(t−s)

(
divA(u(s))

)
ds

+
∫ t

0
Z(t−s)

(
divdivB(u(s))

)
ds+

∫ t

0
Z(t−s)

(
Φ(u)−Φ(z)

)
dW(s),

where Z(t)= exp{−Bt} is now the semigroup associated to the Dirichlet Lapla-

cian {
D(B)=H2(O)∩H1

0(O)⊂L2(O),

Bu=−ε∆u.

Maintaining the notations of the Appendix B, it is not hard to see that H1/2
B =

H1
0(O), so that H−1/2

B =H−1(O). As a result, identical arguments employed in the

last subsection yield that v∈L2(Ω;C([0,T];L2(O))). As z∈L2(Ω;C([0,T]; L2(O)))
and u=v+ f , the result now follows.

Proof of Theorem 5.2: Essentially, the proof is now indistinguishable from the one

in [14, Section 4.3]. Below is a brief summary of the most crucial ideas.

Per the energy estimate (5.10) and the Kolmogorov continuity criterion, one

can show that the laws of (uµ,ε)0<µ<1 (with 0 < ε < 1 kept fixed) are tight in

L2(0,T;L2(O))∩C([0,T];H−4(O))
def
= X. Thus, using the Prohorov and Skohorod

theorems, one can thus construct a weak martingale solution ũ ∈ L2(Ω̃;L∞(0,T;

L2(O)))∩L1(Ω̃;C([0,T];H−4(O)))∩L2(Ω̃×[0,T];H1(O)) to (5.1)-(5.3).

On the other hand, Proposition 5.2 asserts that ũ ∈ L2(Ω̃;C([0,T];L2(O))),
hence, according to Theorem 5.5, it is the unique martingale solution in the class

L2(Ω̃;C([0,T];L2(O)))∩L2(Ω̃×[0,T];H1(O)). As a byproduct of this method of

constructing martingale solutions and their a priori uniqueness, one can invoke

the Gyöngi-Krylov lemma to deduce that, as µ→0, uµ,ε converges in probability

in X to the unique weak solution uε∈L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H1(O))
to (5.1)-(5.3).

Once the (5.11) were verified in Theorem 5.5 and Lemma 5.10, the proof of

Theorem 5.2 is hereby concluded.

6 Existence part 2: degenerate case

We finally discuss the existence of a kinetic solution to problem (1.1)-(1.3). Here,
we follow the compactness argument in [25], with the decisive help of the space
regularity result established in [21]. We use the Yamada-Watanabe scheme [45],
with application of Gyöngy-Krylov’s criterion [22]. Concerning the latter, we
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recall that the uniqueness of the kinetic solution to problem (1.1)-(1.3) has been
established in Theorem 3.3. Now, let uε be the solution to the problem (5.1)-(5.3)
and let fε(t,x,ξ) := χε(t,x,ξ) = 1(−∞,uε(t,x))(ξ)−1(−∞,0)(ξ). We can prove, by an
argument similar to the one in [14], that fε satisfies

∂tf
ε+a(ξ)·∇xf

ε+bε(ξ) : D2
xf

ε

=

(
mε− 1

2
G2(x,ξ)δuε(t,x)(ξ)

)

ξ

+
∞

∑
k=1

gk(x,ξ)β̇k(t)δuε(t,x)(ξ)

=qε
ξ−

∞

∑
k=1

gk(x,ξ)(∂ξ f
ε)β̇k(t)+

∞

∑
k=1

δ0(ξ)gk(x,ξ)β̇k(t), (6.1)

where

bε(ξ) :=b(ξ)+εId×d ,

qε =mε− 1

2
G2(x,ξ)δuε(t,x)(ξ),

dmε(t,x,ξ)= |σε(uε)∇uε|2dδuε=ξ dxdξ,

and σε(u)∈Md is such that σε(u)2=b(u)+εId×d . Reasoning as in [21], we see that
the symbol

Lε
0(iτ,iκ,ξ) := i

(
τ+a(ξ)·κ

)
+κ⊤bε(ξ)κ,

(τ,κ)∈R×Rd satisfies condition (1.8), uniformly in ε. Moreover, given any V⋐O
and φ∈C∞

c (O), with φ(x)=1, for x∈V, we see that fφ,ε :=φfε satisfies

∂tf
φ,ε+a(ξ)·∇xf

φ,ε+bε(ξ) : D2
xf

φ,ε

=q
φ,ε
ξ +σε(ξ)∇xφ·σε(ξ)∇xf

ε+
∞

∑
k=1

φ(x)gk(x,ξ)(∂ξ f
ε)β̇k(t)

+
∞

∑
k=1

δ0(ξ)φ(x)gk(x,ξ)β̇k(t), (6.2)

where

qφ,ε=φ

(
mε− 1

2
G2(x,ξ)δuε(t,x)(ξ)

)
−fεa(ξ)·∇xφ.

Now, we also have that nφ,ε := σε(ξ)∇xφ·σε(ξ)∇xf
ε are a.s. finite total variation

measures on (0,T)×O×(−M,M) such that E|nφ,ε|≤C because of (1.6), (1.8) and
Lemma 5.10. After extending fφ,ε periodically in the space variable x with a period
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Π⊃ suppφ, we can apply the averaging lemma by Gess and Hofmanová in [21]
to deduce that

‖uε‖Lr(Ω×(−T0,T0);Ws,r(V))≤CV (6.3)

for some CV independent of ε and some 1< r<2, 0< s<1, for any V⋐O. Again,
using Kolmogorov’s continuity theorem as in [14, Proposition 4.4] we get that

E‖uε‖Cλ([0,T];H−2(O))≤C (6.4)

for any λ∈(0,1/2) for some C>0, independent of ε. Define, Xu=L2([0,T];L2(O))
∩C([0,T];H−3(O)), XW = C([0,T];U0) and X = Xu×XW . Let µuε be the law of
uε in Xu, µW be the law of W in XW , and µε be the joint law of (µuε ,µW) in X .
From (6.3) and (6.4), as in [20], we conclude the tightness of the µε in X , and so
the pre-compactness of these laws in X . Then one applies Skorokhod’s repre-
sentation theorem to obtain a new probability space (Ω̃;P̃) and a subsequence
of random variables (ũε j

,W̃) : Ω̃ →X , whose laws µ̃ε j
are equivalent to µε j

such

that ũε j
converges in measure to some ũ : Ω̃ →X . In particular, ũε j

converges

a.s. in L2((0,T)×O×(−M,M)) to a certain ũ : Ω̃ →Xu. We can then apply the
consistency results in Section 4, Proposition 4.1 and Proposition 4.2, to get that
the conditions in Definition 1.2 (iii) are satisfied by ũ. Then, one can reason as
in [20, 25], to prove that ũ is a martingale solution to (1.1)-(1.3), that is, ũ is a ki-
netic solution of (1.1)-(1.4), with Ω̃ and W̃ instead of Ω and W. Hence, because
of the uniqueness of the kinetic solution of (1.1)-(1.3) established by Theorem 3.3,
we may apply Gyönly-Krylov’s criterion to conclude that the whole sequence uε

converges to a kinetic solution of (1.1)-(1.3), which concludes the prove of the
existence of a kinetic solution to (1.1)-(1.3).

Appendix A. A boundary value problem for a fourth

order stochastic PDE

Let ub ∈ L2(Ω×[0,T];H4(∂O))∩L2(Ω;H1(0,T;L2(∂O)))∩L4(Ω×[0,T];W1,4(O)),
be predictable. We claim that for B∈B satisfying (1.17), the problem

duB =−∆2uBdt+Φ(uB)dW(t), x∈O, t∈ (0,T), (A.1)

uB(0)=uB0, (A.2)

uB(t)
∣∣
∂O=ub(t), (A.3)

∂uB

∂xd
(t)
∣∣
∂O∩B

=0, (A.4)
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where uB0 is a smooth extension of ub(0,·) to B such that ∂uB0
∂xd

|∂O∩B = 0, has a

strong solution uB∈L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H4(O)). In other words,
ub|∂O∩B is the restriction to the boundary of O of a solution of (A.1)-(A.4).

In order to show this, first, we extend ub to some ũB ∈ L2(Ω×[0,T];H4(O))∩
L2(Ω;H1((0,T);L2(O))) such that ∂ũB

∂xd
(t)|∂O∩B = 0 (by using partition of unity

and setting uB(x̄,xd) = ub(x̄), for x = (x̄,xd) ∈ B∩O). In particular, we choose
ub0= ũb(0,·). Then, we take a solution f of

∂t f =∆2 f , x∈O, t∈ (0,T),

f (0)=uB0 ,

f (t)
∣∣∂O=ub(t),

∂ f

∂xd
(t)
∣∣∂O∩B=0.

For instance, we may take f = f̃ + ũB, where f̃ satisfies the equation

∂t f̃ =∆2 f̃ −∂tũB+∆2ũB, x∈O, t∈ (0,T),

f̃ (0)=0,

f̃ (t)|∂O=0,

∂ f̃

∂ν
=0,

which has a solution f̃ ∈ L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H2
0(O)∩H4(O)),

since −∂tũB+∆2ũB ∈L2(Ω;L2([0,T]×O)).
Then, a solution uB of problem (A.1)-(A.4) can be found as a fixed point of the

operator

Kz(t)=
∫ t

0
S(t−s)Φ

(
z(s)

)
dW(s)+ f (t)

defined on the space

E := f +L2
(
Ω;C([0,T];L2(O))

)
∩L2

(
Ω×[0,T];H2

0(O)
)
,

where S(t) is the semigroup generated by the operator −∆2 with domain H2
0(O)∩

H4(O).
Indeed, the fact that the operator is well defined and continuous may be

shown as in the proof of Lemma 5.4. Also, as in the proof of Lemma 5.7 it is possi-
ble to define a convenient norm on L2(Ω;C([0,T];L2(O)))∩L2(Ω×[0,T];H2

0(O))
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so that the operator is contractive. This argument yields a weak solution of (A.1)-
(A.4). Since we are looking for a strong solution of we have to show that the
solution is more regular.

Assuming, additionally that ub∈L4(O;L2(0,T;W1,4(O))) we have that the so-
lution uB obtained above also belongs to the space L4(Ω;C([0,T]; W1,4(O))). In-
deed, this fact follows by the same lines as the proof of [26, Proposition 4.2], tak-
ing into account Theorem B.4.

Finally, we show that uB ∈ L2(O×[0,T];H2
0(O)∩H4(O)). It suffices to show

that ∫ t

0
S(t−s)Φ

(
uB(s)

)
dW(s)∈L2

(
O×[0,T];H2

0(O)∩H4(O)
)
.

As shown in Appendix B, we have that the operator A=∆2 with domain D(A)=
H2

0(O)∩H4(O) is a positive self-adjoint operator (in particular, 0 belongs to the

resolvent of A). Moreover, in the notations of Appendix B, we have that Aβ is

a linear isometry between its intermediate spaces Hα
A and H

α−β
A , for any α,β∈R.

Now, as shown in the proof of Theorem B.6 we have, in particular, that H1/2
A =

H2
0(O) and H−1/2

A =H−2(O). Now, given z∈E we have that
∫ t

0
S(t−s)Φ

(
z(s)

)
dW(s)=A− 1

2

∫ t

0
S(t−s)A

1
2 Φ(z)dW(s), (A.5)

where, we are considering A1/2 as an operator between the spaces H0
A and H−1/2

A ,

that is, between L2(O) and H−2(O). Now, by virtue of (1.9) and since uB ∈
L4(Ω;C([0,T]; W1,4(O)))∩L2(O×[0,T];H2

0(O)), we actually have that Φ(uB) ∈
L2(Ω×[0,T];L2(U;H2(O))) (cf. [26, Proposition 3.1]). In particular, A1/2Φ(uB)
may be represented by an element of L2(Ω×[0,T];L2(U;L2(O))). Thus, from (A.5)
and using Theorem B.4 we conclude that

∫ t

0
S(t−s)Φ

(
uB(s)

)
dW(s)∈L2

(
Ω;L2(0,T;H1

A)
)

:=L2
(
Ω;L2(0,T;H2

0(O)∩H4(O))
)
,

which proves the claim.
Note that the boundary conditions (A.3) and (A.4) are satisfied in the sense of

traces.

Appendix B. The diagonalization technique

In this supplementary paragraph, we discourse on the so-called “diagonaliza-
tion technique”, which is nothing more than the application of the spectral theo-
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rem to trivialize the action of some operators. This procedure, which is essential
for establishing the existence of solutions to the regularized problem (5.5)-(5.7),
is classical and most notably delved into in the classic work of J.-L. Lions and
E. Magenes [33].

B.1 On nonnegative self-adjoint operators and their semigroups

First of all, let us recall the celebrated spectral theorem in its multiplicative oper-
ator form, whose statement we reproduce from [39].

Theorem B.1. Let A be a self-adjoint operator on a separable Hilbert space H with do-

main D(A). Then there is a measure space (M,µ) with µ a finite measure, a unitary

operator U : H → L2(M,dµ), and a real-valued function f on M which is finite a.e. so

that

1. ψ∈D(A) if and only if f (·)(Uψ)(·)∈L2(M,dµ).

2. If ϕ∈U(D(A)), then (U AU−1ϕ)(m)= f (m)ϕ(m).

In the remainder of this section, we will preserve the notations and assump-
tions of this spectral theorem. Moreover, we will also assume that the operator
A is positive, allowing us to characterize its generated contraction semigroup
S(t)=exp{−tA} by means of the operational calculus as

(
U exp{−tA}ψ

)
(m)=exp

{
−t f (m)

}
(Uψ)(m).

The nonnegativity hypothesis also allows us to understand the “intermediate”
spaces Hα

A :=D(Aα) as

Hα
A=U−1

(
L2(M,(1+ f (m))2αdµ)

)
=:U−1(Vα)

provided that α≥0. We will endow these subspaces with the norm

‖u‖2
Hα

A
=
∫

M

(
1+ f (m)

)2α|(Uu)(m)|2dµ(m), (B.1)

which is evidently equivalent to the graph norm u 7→
√
‖u‖2

H+‖Aαu‖2
H . How-
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ever, if α < 0, we will put Hα
A = (H−α

A )∗, which may still be naturally identified

with Vα=L2(M,(1+ f (m))2αdµ) through the duality form

[u,v] 7→
∫

M
(Uu)(m)(Uv)(m)dµ(m).

To conclude this section, let us state some regularizing effects associated with
the propagator S(t)=exp{t A}.

Theorem B.2. For any real number s ≥ 0 and t > 0, the expression AsS(t) defines

a bounded linear operator in H. Moreover,

‖AsS(t)‖L (H)≤
cs

ts
. (B.2)

Consequently, for α< β and t> 0, S(t) is a bounded linear operator from Hα
A into H

β
A

whose norm may be majorized by

‖S(t)‖
L (Hα

A;H
β
A)
≤ cα,β

(
1+

1

tβ−α

)
.

Proof. Given u∈H, the spectral Theorem B.1 implies that

[U(S(t)u)](m)=exp{−t f (m)}(Uu)(m).

Thus, on account of the exponential decay of exp{−t f (m)}, and on the fact that

f ≥0, it follows that S(t)u∈Hs
A . Furthermore, for f (m)2s exp{−2t f (m)}≤ cs/t2s,

we have that

‖AsS(t)u‖2
H =

∫

M
f (m)2s exp{−2t f (m)}|(Uu)(m)|2dµ(m)

≤ cs

t2s

∫

M
|(Uu)(m)|2dµ(m)=

cs

t2s
‖u‖2

H .

This essentially proves the result.

The proof of the next two convolution inequalities may be found in a previous
work of ours [20].

Theorem B.3. For any −∞<α<∞, define the Duhamel convolution operator

(Ih)(t)=
∫ t

0
S(t−s)h(s)ds
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for h∈L2(0,T;Hα
A). Then I maps L2(0,T;Hα

A) into L2(0,T;Hα+1
A ) and

∫ T

0
‖Ih(s)‖2

Hα+1
A

ds≤C
∫ T

0
‖h(s)‖2

Hα
A

ds (B.3)

for some absolute constant C depending only on T.

For the next theorem, which is probabilistic in nature, (Ω,F ,(F )t≥0,P) will
denote stochastic basis with a complete and right-continuous filtration. More-
over, W will stand for a cylindrical Wiener process, i.e.,

W(t)=
∞

∑
k=1

βk(t)ek,

where the βk are mutually independent real-valued standard Wiener processes
relative to (Ft)t≥0, and (ek) is an orthonormal basis of another separable Hilbert
space U.

Theorem B.4. For some −∞ < α < ∞, assume that Ψ ∈ L2((0,T)×Ω;L2(U;Hα
A)) is

predictable. Then, if (IWΨ)(t) is the stochastic convolution

(IWΨ)(t)=
∫ t

0
S(t−s)Ψ(s)dW(s),

then IWΨ∈L2(Ω×[0,T];Hα+1/2
A ) and

‖IWΨ‖
L2(Ω;L2(0,T;Hα+1/2

A ))
≤C‖Ψ‖L2(Ω;L2(0,T;L2(U;Hα

A))
(B.4)

for some C>0 depending only on T.

B.2 The spectral analysis of an elliptic operator of fourth order

For µ>0 and ε≥0, let us consider the unbounded operator A : D(A)⊂ L2(O)→
L2(O) given by {

D(A)=H2
0(O)∩H4(O),

Au=µ∆2u−ε∆u.

Theorem B.5. The operator A is self-adjoint and nonnegative.
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Proof. Since C∞
c (O)⊂ D(A), one can see that A is densely defined. According

to [33, Vol. 1, Chapter 2], (more specifically Theorem 5.1 and Remark 1.3), there

exists a constant C>0 such that

‖u‖H4(O)≤C
(
‖Au‖L2(O)+‖u‖L2(O)

)
,

which immediately implies that A is closed. Moreover, a simple integration by

parts implies that A is symmetric, strictly positive and, thus, injective.

Consequently, since the surjectivity of A is equivalent to the solvability of

boundary problem

Given f ∈L2(O), find u∈H4(O) such that





µ∆2u−ε∆u= f in O,

u=
∂u

∂ν
=0 on ∂O,

a Fredholm alternative-type theorem (see [33, Vol. 1, Chapter 2, Theorem 5.2])

asserts that A : D(A)→ H is onto, since it is into. On the other hand, the bijec-

tiveness of A implies that 0∈ρ(A), i.e., a real number lies on the resolvent set of

A, hence the self-adjointness of A (see, e.g., the second corollary to [39, Vol. 2,

Theorem X.1] or [40, Theorem 13.11 (b)]).

We may then apply the theory discussed so far to further study A. For in-
stance, we have the following characterization of some of the intermediate spaces
Hα

A.

Theorem B.6. Let A be as in Theorem B.5 and let Hα
A be its interpolation spaces. Then,

with equivalent norms 



H
1
2
A=H2

0(O),

H
1
4
A=H1

0(O),

H
− 1

2
A =H−2(O),

H
− 1

4
A =H−1(O).

Proof. Let us substitute A with a more simpler operator B:D(B)⊂L2(O)→L2(O),
namely {

D(B)=H2
0(O)∩H4(O),

Bu=µ∆2u.
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Notice that, by the very same Theorem B.5, B is self-adjoint and nonnegative. Fur-

thermore, since, for 0<α<1, Hα
A=[L2(O),D(A)]α is independent of the “spectral

decomposition” (M,µ, f ) (cf. [33]),

Hα
A=

[
L2(O),D(A)

]
α
=
[
L2(O),D(B)

]
α
=Hα

B.

In particular, H1/2
A = H1/2

B and H1/4
A = H1/4

B (with equivalent norms); thus, by

duality, H−1/2
A = H−1/2

B and H−1/4
A = H−1/4

B (with equivalent norms). Hence, it

suffices to prove the theorem for B.

Step 1. We first will prove that H1/2
B = H2

0(O) with equivalent norms. Let us

define the unbounded operator T : D(T)⊂L2(O)→L2(O) by
{

D(T)=H2
0(O),

Tu=µ
1
2 ∆u.

In light of the fact that H2
0(O) may be regarded as the closed linear subspace of

the u’s in H2(Rd) whose supports (in the sense of the distributions) are contained

in O, an argument involving the Fourier transform deduces that T is a closed,

densely defined, symmetric operator. Moreover, if u∈D(B)=H1
B , we have that

(
B

1
2 u,B

1
2 u
)

L2
=µ

∫

O
∆2uudx=µ

∫

O
|∆u|2dx=(Tu,Tu)L2 . (B.5)

Thus, for

1. H1
B⊂H1/2

B with continuous and dense injection;

2. H1
B ⊂ D(T) with continuous and dense injection (due to H2

0(O) being the

closure of C∞
c (O) under the H2−norm),

the isometry relation (B.5) asserts that u∈H1/2
B ⇐⇒ u∈D(T). In this case, one has

that ‖B1/2u‖L2 =‖Tu‖L2 , corroborating the equality H1/2
B =H2

0(O).

Step 2. Next, let us show that H1/4
B = H1

0(O). Since the interpolation spaces

[L2(O),H1/2
B ]1/2 and H1/4

B are independent of (M,µ, f ), [33, Vol. 1, Chapter 1,

Theorem 11.6], asserts that

H
1
4
B =

[
L2(O),H

1
2
B

]
1
2

=
[
L2(O)H2

0(O)
]

1
2
=H1

0(O),

as we wanted to show.

Step 3. Finally, the last two equalities for the negative exponents s=− 1
2 and − 1

4
are unmistakable duality relations.

The proof is complete.
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