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Abstract. This paper is devoted to the study of the asymptotic stability of the
shock wave of the outflow problem governed by the one-dimensional radiative
Euler equations, which are a fundamental system in the radiative hydrodynam-
ics with many practical applications in astrophysical and nuclear phenomena.
The outflow problem means that the flow velocity on the boundary is negative.
Comparing with our previous work on the asymptotic stability of the rarefac-
tion wave of the outflow problem for the radiative Euler equations in [6], two
points should be pointed out. On one hand, boundary condition on velocity
is considered instead of boundary condition on temperature, which induces
a perfect boundary condition on anti-derivative perturbations so that bound-
ary estimates on perturbed unknowns are trickily and smoothly established.
On the other hand, the rarefaction wave is an expansive wave, while the shock
wave is a compressive wave. So we need take good advantages of properties
of the shock wave instead. Our investigation on the outflow problem provides
a good understanding on the radiative effect and boundary effect in the setting
of shock wave.
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1 Introduction

In this paper, we will continue to study the outflow problem governed by the
one-dimensional radiative Euler equations, which is the second one of our series
of papers on such kind of outflow problem, actually, the first one on the asymp-
totic stability of the shock wave for the radiative Euler equations with a bound-
ary. The radiative Euler equations are a fundamental system to describe the mo-
tion of the compressible gas with the radiative heat transfer phenomena, which
has many applications in astrophysics and nuclear explosions. Mathematically,
the one-dimensional radiative Euler equations in the Eulerian coordinates can be
modelled as a hyperbolic-elliptic coupled system of the following form:

(Pt'i' (ou)x =0,
(ou)e+ (ou*+p) =0,

42 12 (1.1)
{p(eJrE)} +{pu (e+7)+pu} +4x=0,
t b

| —xxtag+b (64)x=0,

where p, u, p, e and 6 are respectively the density, velocity, pressure, internal en-
ergy and absolute temperature of the gas, and g is the radiative heat flux. Positive
constants a and b depend only on the gas itself. Like the classic compressible Eu-
ler equations, the first three equations in (1.1) stand for the conservation of the
mass, momentum and energy respectively. The fourth equation in (1.1) is related
to the radiative heat transfer phenomenon, and one can refer [1,9,23,28, 39, 44]
for more details. System (1.1) can also be derived by the non-relativistic limit
(speed of light tending to +o0) from a hyperbolic-kinetic system, and rigorous
mathematical derivation can be found in [15].

Precisely speaking, we will investigate the initial-boundary value problem of
system (1.1) in the half space {(x,t)|0 <x,t < oo} with the initial data

(p,u,0)(x,0)=(po,u0,60)(x) for x>0, (1.2)
satisfying

inf (po,@o)(x)>0 (1.3)
x€[0,400)
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and the asymptotic boundary condition at the far field x = +co

(o,u,0,q9)(+00,t)=(p+,u+,04,0), t>0. (1.4)

In what follows, we give a roughly classification of the time-asymptotic states
of the solution (p,1,60,q)(x,t) based on the boundary data (p,u,6,q)(0,t). It is ex-
pected that as time tends to the infinity, the solution is asymptotically described
by one of the following waves, such as viscous shock wave, stationary wave, rar-
efaction wave or the superposition of stationary wave and rarefaction wave. As
shown in the Fig. 1, we state some cases which have been solved already or will
possibly be solved in the future.

o |u| = /R

supper

u

Figure 1:

Case I: inflow problems (u(0,t) >0).
If
(p+/u+19+)GQS—;pper::{(p’u’Q); u> ’)’RG}/

the boundary condition is given as
(p,u,0,9)(0,t)=(p—,u_,0_,0). (1.5)
Then

(i) If (o4, u4,0+) locates on the 3-rarefaction curve past through (p—,u_,0_),
then there exists a 3-rarefaction wave to the corresponding Riemann prob-
lem which connects (p—,u_,0_) and (p+,u+,0;+) and the 3-rarefaction wave
solution is asymptotic stable. It has been proved in [5].
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(i) If (o4,u+,04) locates on the contact discontinuity curve past through
(p—,u—,0_), then the asymptotic stability of the contact discontinuity wave,
under the restriction of the smallness of the wave strength, can be obtained.
It has been proved in [7].

Case II: outflow problems (u(0,t) <0).

(i) If .
(p4,uy,04)€ Qs_upperﬂ();ub :={(o,u,0); —/YRO<u<—-VRE},

the boundary condition can be given as
(6,9)(0,t)=(6-,0). (16)

Under this boundary condition, we can find proper numbers (p_,u_) =
(p,u)(0,t) to show the asymptotic stability of the rarefaction wave without
restrictions on the smallness of the wave strength, which has been proved
in [6].
(i) If
(p+,uy,04)€ Q= {(p,u,@); —VRO<u< O},

the boundary condition can be given as
u(0,t)=u_, q(0,t)=0. (1.7)

Moreover, the initial condition (1.2) and the boundary condition (1.7) satisfy the
compatibility condition that u((0) =u_ at the origin (0,0). Under this boundary
condition, we can find proper numbers (p—,0-) = (p,0)(0,f) to show the asymp-
totic stability of the 3-shock wave under some small assumptions, which is the
theme of this manuscript.

We need to emphasize that the classification of asymptotic states of the radia-
tive Euler equations is very complicated. For the other cases, especially on the
transonic region Ts_ub :={(p,u,0);|u| = v/RO}, the situation is more complicated.
They will be investigated in the future.

In this paper, we are interested in studying the asymptotic stability of the vis-
cous shock wave of the outflow problem (1.1)-(1.4) and (1.7). Our main results
will be stated in Section 2. Comparing with our previous work on the asymptotic
stability of the rarefaction wave to the outflow problem for the radiative Euler
equations in [6], two points should be pointed out. On one hand, the rarefac-
tion wave is an expansive wave, while the shock wave is a compressive wave.
They are different such that we have to develop a different approach to take good
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advantage of properties of the shock wave instead. On the other hand, we im-
pose a different boundary condition, that concerns velocity instead of tempera-
ture, which is a perfect boundary condition on the anti-derivative perturbations
so that boundary estimates on perturbed unknowns are trickily and smoothly
established. In particular, the boundary condition on temperature 6(0,t) =0_ is
frequently considered for the outflow problem governed by the Navier-Stokes
equations such as [14,26]. However, different from that boundary condition con-
cerns on temperature, boundary condition (1.7) is reasonable since system (1.1)
is of Euler-type. Finally, the determination of the shift is based on tedious and
tricky calculations.

Now let us review some related work. As far as we know, so far most of the
existing results concern the analysis of the global-in-time existence and stability
of the elementary waves for the one-dimensional case.

For the Cauchy problem, the global-in-time existence of solutions around a
constant state was shown in [16]. For the analysis of the rarefaction wave, if
the initial data is a small perturbation of a given rarefaction wave with small
strength, it was proved in [20] that the solutions converge to the rarefaction wave
as t—+o0. Then the authors in [11] showed that when the absorption coefficient «
tends to +oo, the solutions converge to the rarefaction wave with the convergence

rate a3 |Ina|?, where the absorption coefficient « is defined by the relationship
a=3a? and b=4ac for positive constants a,b and the Stefan-Boltzmann constant ¢.
The asymptotic stability of a single viscous contact wave was proved in [41,42].
The existence and stability for zero mass perturbation of the small amplitude
shock profile were respectively studied in [21,22]. The authors in [29] showed
the nonlinear orbital asymptotic stability of small amplitude shock profiles for
general hyperbolic-elliptic coupled systems of the type modeling the radiative
gas. Analysis of large amplitude shock profiles was given in [2,24]. Finally, for the
case of composite waves, the stability of the composite wave of rarefaction waves
and a viscous contact wave was investigated in [33,43]. Recently the authors
in [4] studied the unique global-in-time existence and the asymptotic stability of
the composite wave of two viscous shock waves by employing the anti-derivative
method.

For the initial-boundary value problem, the study of the inflow and outflow
problem is initiated by us recently and systematically to deal with the weak dis-
sipation of the radiative Euler system and the difficulties from boundary effect.
Our series of results on the inflow and outflow problem in [5-7] provide a good
understanding to radiative effect and boundary effect in the setting of elemen-
tary waves such as rarefaction wave and contact discontinuity wave. It is natural
that shock wave with boundary effect is considered in present paper, which will
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provide a good understanding to radiative effect and boundary effect in the set-
ting of shock wave. For the introduction of the inflow and outflow problems, one
can refer to the paper by Matsumura [25] for more details. There are also many
results on the study of the inflow or outflow problem governed by other systems
such as the Navier-Stokes system (see [12,13,18,26,30-32, 38, 40]).

We need to mention that we are also motivated by the related investigations
on the simplified model (Hamer model), which gives a good approximation to the
radiative Euler equations in a certain physical situation, c.f. [10,19]. The investiga-
tions on the simplified model provide a good understanding on the radiative ef-
fect. The exhaustive literature list is beyond the scope of the paper, and thus only
a few closely related results on wave patterns are mentioned, c.f. [3,8,17,34-37].
Interested readers can refer to them and references therein.

The rest of the paper is organized as follows. In Section 2, the viscous shock
wave is constructed based on the Riemann problem of the full Euler equations.
Properties of viscous shock wave which will be frequently used in this paper and
the main theorem of this paper are given. Then series of a priori estimates are
established in Sections 3-5 so that our main theorem are proved by combing the
local wellposedness theorem.

2 Mathematical formulation and main results

In this section, we construct the viscous shock wave for (1.1) and then state our
main results.

2.1 Viscous shock wave

It is well-known that for any given (o160 ) € Qq,p, there is a curved surface
in a small neighbourhood of (p4,u4,0+) for the solution (p—,u—_,0_) of a shock
structure with the shock speed s3 > 0, which satisfies the following Rankine-
Hugoniot conditions:

p——p+)+(p- ”——P+u+) 0,
o- u——p+u+) (o-u? +p-—pui —ps) =0,

—53 {P e + u ) 04 (e++%ui)} 2.1)

| o e

(55
—ss
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and the entropy condition

Uy ++/ Ryl <szg<u_++/Ry0_. (2.2)

Let
Oz ) :={(o,u,0)||(p—p+,u—us,0—0,)| <5}, (2.3)

where § is a positive constant depending only on (p,u+,0+). The correspond-
ing viscous 3-shock wave of (1.1) is expressed by z° := (p°,u°,6°,4°) (x —s3t), con-
necting the far field states (o°,u°,6°,4°)(d+00) = (p+,u+,0+,0). Substituting z° (&) =
(p°,u°,6°,4°) () (& =x—sat) into (1.1), one has

53(5) ( )’ 0,

—53{ <S+ uz)z ' { ( (u;)z)erSus}lJr(qs)’:O, (2.4)

|1 (=00 )—u_, (P 5,60°) (+00) = (04,144,64),

where ' = %, p’=p(p°,0°), ¢ =e(0°), p+ =p(p+,0+) and e+ =e(0+ ). Integrating
(2.4) with respect to ¢ over [¢,+00), we obtain

(—s3(0°—p1)+p U —pruty =0,
—s3 (01 —p14) +0° (u6)* 4+ p* —p4ud —ps =0,

52 2
—s3 {.05 [es-l-%} —p+ (€++u7+) } (2.5)

us)? u? b
\ +o°uw’ {es"'( 2) } —O+U+ (€++7+) +PS”5—P+”+—E [(95) }
which implies
o —pr=——H—(w—uy),
; RO (2.6)
R(95—9+):—<u5—s — )(us—u+),
Uy —S3

(6°)" = Hq(0°), 27

0°(—00)=0_, 6°(+00) =0, '
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where
HA(0%) = 657 | CoP ~ Ty s R (e —52) (0 =0)
B R0 8
and
) == ), () = ). @9)

By a straightforward computation, we get the following information on Hj(64)
from the entropy condition (2.2) and subsonic condition —+/Rf+ <u+ <O0:

p _a _ Rp+ _
H1(6+)_4b93_ [Cvp+ (u+—53)2—R9+} (u-i- 53)

__a [RP+_ Rzp+6+ }(u s )

C4be3 [v—1  (uy—s3)>—RO; o
aRp+ 1 R9+ :|

<— \/ R0 — <0. 2.10
o3 VT *[7—1 (s —s3)2— RO (2.10)

Therefore, by the theory of ordinary differential system, there exists a unique
solution to system (2.7). Therefore, we find the unique solution to system (2.4).
Now we introduce some properties of the solution to system (2.4) which will be
used later.

Lemma 2.1. For any fixed (o, u+,0+)€Q, ,, suppose y>1,0, <0_and (p_,u_,0_)€

Q(z+)ﬂﬁs_ub satisfies Rankine-Hugoniot condition (2.1). Then system (2.4) admits
a smooth solution (o°,u°,0°,9°)(x—sat), which is unique up to the spatial shift and sat-
isfies the following properties:

(1) (p°)' <0, ()’ <0, (6°) <0;
(2) There exists a positive constant c such that
(0" —p,° —1+,6° — 601 ) (x—s3t)| < ge—Olx—sat], (2.11)
(0 () (0 () (1) (6°)) (x—sst) | S e 0!,
where §:=|(uy —u_,04—6_)|.

The proof of Lemma 2.1 is omitted since the argument is standard. Actually,
one can follow the argument for the proof of [27, Lemma 1, pp. 85].
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2.2 Anti-derivative perturbation

The solution of (1.1) is expected to converge to the 3-viscous shock wave as
t — +o0o. Let us consider the case that the initial data (pg,u0,00)(x) is given in
a neighborhood of (p°,u*,0°)(x+a—p) for a large constant >0, where the shift «
will be determined later. Actually, we require that the viscous shock wave is far
from the boundary when ¢ =0. Then we should determine the shift a such that
the solution (p,u,0) is expected to tend to (p°,u®,0°)(x—s3t+a—p). To do this,
we denote the anti-derivative perturbations around the 3-viscous shock wave by
(®,¥,W,T) as

/oo (y—sat+a—p)—p(ty)|dy,
D= [ (o) —sat-+a—p)—(ou) ()] dy, 212)
xt:/w{ {C 05 + ”S)Z}(y syt +a—pB)— (CUG-I-u;)(t,y)}dy,
M0 = [l (—sst+a—p)—q(ty)]dy

and denote the perturbation of (p,u,0,q) around the 3-viscous shock wave by
(¢,¥,C,w), which satisfies

§:=p—p =Dy, ¢:=M—”S:%(‘T’x—us®x)f

1 [+ 1 (2.13)
PS5 — . 2 S, TS
(:=0-0 Cop (Wx zptp pu’p—E 4)),
w:=q—q° =Ty,
where E°=:C,0°+ 3 (u°)2. It is easy to see that (¢,,{,w) satisfies
(1 +upx+pipx=Q1, (2.14a)
RO

Pr+upx+REx+ 74’x =Qo, (2.14b)
Cvgt+CUqu+Relpx+wx: Q3, (2.14C)
| — W+ aw-+4b6°C, +-4b637 (6% +66° +(6°)%) = s (2.14d)

where

Q= (p5p+130) =0(1) |(03,13)1(9)], (2152)
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Qui= itz (2~ 19 ) =00 (55,5 (9.0,

Q3:=—Coblp— Rur{=O(1) [639 +ui{]

with
(¢,1¥,0)(x,0)=(¢0,%0,00)(x) —(0,0,0) as x— oo,
Y(0,f) =u_ —u’(—st+a—p),
w(0,t)=—q°(—st+a—p).

Introducing the new good unknowns

Yo¥ o, W=T L (WoEo-uy),

we get
pYp="x+u3 P,

1
CUPC =CoWy+ CUGJSCCI)—F u;‘:[f — Eplpzl
1
CoWy =Copl—Col, @ — 1Y + 5",
By a straightforward computation, we have

D+ (pu—p°u’) =0,
Fit (o —pu?) + (p—p*) =0,

B u? (us )2 s
Wit puleto | =00 | +-——| o+ (pu—p°u’) =4 —q,
which particularly implies that on the boundary x =0

D, (0,t)+u_¢(0,t)+ (0°)(0,) =0,
F1(0,8)+u ¢(0,t)+0° (u®+u_)p(0,t)+(p—p°) (0,t) =0.

Combining (2.20) and (2.21), we further get
(F—u_@):(0,t) +p"u"y(0,t) +(p—p°) (0,t) =0.

It follows from the third equation in (2.19) that

WH0,0)+3 [p1 = (1) 0.0+ 5 (pu—p) 0.0 =4°(0.).

121

(2.15b)

(2.15¢)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
(2.21)

(2.22)

(2.23)
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By the straightforward computation, it implies

Wi (0,t) +=u> ¢(0,) + Bps (U2 +u_us+ (u®)?) +r;y—fsl} ¥(0,t)

+——=u_(p—p°)(0,t)=4°(0,1).

Therefore,

Thus, we get

o Y- g v o1\, _ s
{W— ‘I’+(7_1—§) u_@]t(O,t)— (Jy)(0,t)+4°(0,t),
where ) .
e T AS5(4,8 2 Y S .S
Ji=5p" ()" + P+<2 o 1)puu—-

Integrating (2.26) over [0,t], we 1mmed1ate1y obtain

_ e v 1
{W v 1T+<7 1 2)” qj} (05

I G A A _/f i

—{W 7_1‘1’-1—(7_1 z)u_q)}(0,0) O(]v,b 7°)(0,7)dT.
We expect that as t — +oo,

< YU— 0% 1
W— ¥ D (0t .
{ po— +<7 1 2)u }(0,)%0

That is, if let

I(a):=W(0,0)— :y’f—qu(o,ow (%—%) 12 ®(0,0)

- [T Ue-a) 0 ap)r

then we require that
I(x)=0.

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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If (2.30) holds, then by (2.21)-(2.30), we can get the following boundary condition:

W(0,t)— %‘P(Ot)—l—(vlyl ;>u (0,1 = A(1), 2.31)

where

A() = /t " (Jw—°) (0,7,2,8)dT = O(1)e e

Now we will determine a such that (2.30) holds. In fact, we will compute the
derivative I'(«) of I(«x) such that the shift « can be determined. Up to now, we

have gotten that
iy
[ O8] w+amp-po( ot D) )

[ ) (y+a—B)—(pouo) (v)] dy

= L E)uz_/ooo[f) (y+a—p)=po(y)]dy

- [T 9= (-sst+a—pla 2.32)

Then it follows from direct calculations that,

o (C2,6++”22 ) (c 05+ 2) ]

—_

_|_

I'(a)=

2
_% o1y —(p°u )] + (Ll %) lo+—p°(a—p)]
L m-rlecs -

In order to simplify and obtain a good and useful expression on I'(«), let us
integrate (2.4) over [0,¢] to get

(p*u’ —p-u_=s3(0°—p-),
pP—p-=s3(p"u—p_u_)—[p*(u°)*—p_u? ],
u’)?

. O 0l I G e (2.34)
prl{e-+— | —F° 5 531 '
1 2 °)
\ 25{’)‘”—(“—”2)"’S“SF*%}*” " ’”‘}




124 L. Fan, L. Ruan and W. Xiang / Commun. Math. Anal. Appl., 1 (2022), pp. 112-151

Substituting (2.34) into (2.33), we further obtain

W2 2
P+ <C09++7> —pP- (Cve— +7)
_yu—

1
.0+M+ p—u— )+<L—§)MZ—(P+—P—)

I'(a)=

v—1
(c 0+ — ) [c 95+(”;)2] (a—ﬁ)}+%qs(a—/3)
Tl @)+ (253 -~ (a—p)]

_%{[Epsw) +7’”’1+<2 771>psusu_] (u_—us)}(tx—ﬁ), (2.35)

which is reduced to the following perfect equality by tedious and tricky calcula-
tions:

I'(a)= [p+ <C09+—|—%) —p- (CUO_ —i—%)]

u_ 1
—7_1(P+u+—p—u_)+(%—§) u? (or—p_):=m. (2.36)

Therefore, we get

I(a)—1(0)=ma.
Hence, (2.30) holds if and only if

N=—— (2.37)

2.3 Main theorem

Now, we are ready to introduce the main results of this paper. Define

Do (x) = /x [oo(y) —* (10,0.8) .

Folx)=— [ [(pou0) )~ (0°°) (1,0,0,8)dy, 239
12 us2

Po (Czﬂo+7°) ()= (Cv9s+—) (1,0,0 ﬁ)]

We derive the system satisfied by the anti-derivative unknowns (®,'¥,W,I’)
from the definitions in (2.12) and (2.17) that
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(O +u P+ ¥ +u,P=0, (2.39a)
ROS

Y+ 1Yy +ROFD, 4+ RWy+ (y—1DuS ¥ — Fpi@ =G, (2.39b)

9% - P5
CoWi+Cyti’ Wy +ROTY , — p—;fcp— p—;“iurrx =Gy, (2.39¢)
4b(6° 4b(6° 4p(6°)3
— Ty al +—— (6°)° W, + (6°)° — L D+ ép) ¥ =Gy (2.39d)
\ 0

with initial data
(O,Y,W)(x,0)=(Py,¥o,Wp)(x), (2.40)

and the boundary condition obtained from (2.31) that
W(0,t)— R —¥(0,t)+0_D(0,t) = A(t)=0(1)e “Fe=", (2.41)
Hereinafter, G;(i=1,2,3) are expressed by
-1
Gri=To—py? — 10—yt =O(1) (|92 + 130 + ¥ ),
=0) (Juz (D, ) [|¢[+[(Px, ¥, We) ||| +[TFx]),
4b(6°)°
Gae=as b2 (2 +46°0+6(6°)7) + Sy g o(1) (gl + 12P2).
(%

Define the solution space X, m, m(0,t) as

(2.42)

Xory o (0): = {<¢,T,w,r>|<d>,w,w>e Y K00 H(R, ),
k=0

4
re ) C([0;H " (Ry))d(p9,0) €L*(0,6H ' (Ry)),
k=0
fweL?(0,t;H7'(R4)) (i=0,1,2),
inf p(x,t)>mq, inf 0(x,t)>my,

[O t] xRy [O t] xRy
sup (2 | (oh,8%) |+ 2 Jokw ], k) < M} (.43)
0] xR \k=0
where my,my, M are positive constants and || ||g:=||-|| (R, )- Hereafter, we denote

-1 := 11+ llo-

Then the main theorem of this paper is stated as follows.
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Theorem 2.1. Assume the adiabatic exponent 7y € (1,2) and the states (0, u,0+ ) and
—u_,0_)arein Q_, withu, <u_ <0and (o—,u_,0_) being at the 3-shock curve
p sub P 8
passing through (o4 ,u+,0 ) with shock speed s3, i.e., (2.1)-(2.3) hold. If the initial data
satisfies
(Do, Yo, Wo) (x) € H*(R+), (2.44)
(pott0,60) (x) — (p°,14°,6°) (x,0,, B) € (H*NL) (R+)

and if there exist suitably small constants 5y > 0,e9 > 0 such that

5500, 1(@o,Fo, Wo)lls+ 1l (@4, C) (0) 1 +e ™ Seq, (2.45)

then there exist positive constants my, myp and M such that, the outflow problem (2.39)-
(2.41) admits a unique solution (®,'¥,W,T'), so that problem (1.1), (1.2) and (1.7) admits
a unique solution (p,u,0,q)(x,t), such that

(©,%,W,T) € Xn, my 11 (0,+00).
Here (p°,u®,0°,q9°)(t,x) is the shock wave defined in (2.4). Furthermore, it holds

sup|(p,u,0,9)(t,x)—(0°,u’,6°,4°) (x,t,0,B)| >0 as t— oo, (2.46)
x>0

where a =w(B) is defined in (2.34).

We will employ the anti-derivative unknowns (®,¥,W,I') to show the main
theorem by presenting two propositions concerned with local existence and a pri-
ori estimates respectively. First, the local existence of the solution to system (2.39)-
(2.41) is stated as follows.

Proposition 2.1 (Local existence). Under the conditions of Theorem 2.1, there exist
positive constants 0, & and C (Eéz <€) such that the following statements hold: For
any T >0, let

(D7, ¥, We)(x):=(D,F,W)(x,7) € H>(Ry) (2.47)

for any M € (0,&,), 5 <65(< 8) and B> 1. Assume that

(@, ¥, We)lls SM, sup{|A(t)|+]A"(1)]} Se P,
t>0

then there exists a positive constant to=ty(M,p) independent on T such that, problem
(2.39), (2.41) and (2.47) admits a unique solution (®,'¥,W,T) (x,t) €Xy mp, M (T, T+10).
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The proof of Proposition 2.1 is standard. Actually, one can follow the argu-
ment in the proof of [5, Proposition 3.1, pp.601-603] to show Proposition 2.1 sim-
ilarly. Therefore, we omit the proof for the shortness. Based on Proposition 2.1,
we can show Theorem 2.1 if the following proposition is proved.

Proposition 2.2 (A priori estimate). Under the conditions of Proposition 2.1, there
are constants 63(< 6) and €3(<€) such that, if (®,F,W,T)(x,t) € Xy m,m(0,T) for
some T >0 is a solution to the initial-boundary value problem (2.39)-(2.41). If 6 <43 and
for t€0,T]

sup {[[(®,¥,W,T)(7) I3+, e, Ge,wi) ()11 } <&,

T€[0,1]
then it holds that for t €[0,T|,
1@, ¥, W) (D12 +11(¢,4,0) (D13 +11 (¢, 96,8e) (1) |13 (2.48)

+ 11 (e, e, Cae) (D) 1P+ o (B) 15+ o ()3
t t
+/0](<I>,‘I’,W)|2(O,r)dr+/0/]R (1 1(¥, W) P +12) dxr

+ [ (10,2 @) 1B+ 0(x) B+ wr(2) B =

t
+/O ’((P/(Px/ll)xrgxrwxrfpxxrprxrgxx/wxx/wxxx/(,btx/ll)tx/gtx/wtx)IZ(O/T)dT
S 11(®o,¥o, Wo) 12+ 11 (po,90,50) 1T+ 1| (1,96, 5) (O) 1 + 1| (e, 11, Gt ) (0) || +e 2P

The a priori estimate (2.48) will be shown in the rest sections. Actually, once
Proposition 2.2 is obtained, the local solution (¢,,{,w)(x,t) obtained in Proposi-
tion 2.1 can be extended to f =oco. Moreover, estimate (2.48) implies that

© d
[ (o peo)@P+ Zlopi @ Jars o, @49

which together with the Sobolev inequality implies the asymptotic behavior (2.46).
This concludes the proof of Theorem 2.1.

3 Basic energy estimate on fluid dynamic
perturbations

In this and next two sections, we focus on proving Proposition 2.2. Firstly, we
prove basic energy estimates. Set
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N(t):= Sl[lp]{\I(CI>,‘P,W,F)(T)||3+H(4>t,¢t,€t,wt)(f)\|1}- (3.1)
7€ |0,t

For system (2.14) with (2.15) and (2.16), we get

Lemma 3.1. Under the assumption of Proposition 2.2, if N(t) and ¢ are suitably small,
it holds that

t
||(<PAP,C)(f)||2+/O (¢°+2%) (0,7)dt+ | (w,wx) (7)||PdT (3.2)
t
§||(cp0,¢0,§0)||2—|—e_5/3+(5—|—N(t))/0 ||((P,T,D,C,qu,lpx,gx,gxx,wxx)(T)||2d1'.

Proof. Multiplying the equations in (2.14) by %949, oY, %, ﬁ% respectively, we

ROu RO ROu
7) (5 0) rrom{(5) + (5) Jopean o3

(3
(P‘PZ) (_) +Royls ROy ={(5) +(5) Juwi+ppQs (34
(ar¢
{

have

) (20) nn e

Cop Copu 2, PG
o) () oot
Rwwy R Rw?  aRw? 0L«
456 ) +<4b94) Ot et T aper T g ¢
_ QSCW 2 s s quix
--= {02+00 +(6°) } + o (3.6)
Summing them up, we have
o2 Cvp ) R Rw? aRw?
— 3.7
( P g) <4b94) Wt gpprtgper TIa=h o G7)
where
RGu putp Copul? _ Rwwy  pf
4) + 0 +Roypl+ROpy 150 + R

fz=={(§—§)f(ii”) fred(ar), - () oo
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8

+ROpp+(5) gt ¢Q1+p¢Qz+ Qs
R6; R
- gf“’ {92+995+(95) b+ :;gj;% (3.8)
It is easy to see that
|| S 0+ NO) (@8 Cx, L) P+ | (3.9)

Moreover, it follows from the boundary condition #(0,t) =u_ <0 that

—Il(o,t)=—<R9”<p +pul/) ”’mgz+Rp¢§+Re¢¢—R“"”"+pg )(0 f)

20 400* " 0
>c(¢?+%)(0,) — C(¢* +w* + wwy ) (0,t)
> c(¢?+¢%)(0,¢) — CoePe (3.10)

where positive constants ¢ and C do not depend on (¢,9,{,w). Integrating (3.7)
over Ry x[0,t] and using (3.9)-(3.10), we get (3.2). This completes the proof of
Lemma 3.1. L

Next, in order to estimate fot | (¢,1,2)(7)||>d, we will derive the following
estimate on the anti-derivative functions (®,¥,W,T).

Lemma 3.2. Under the assumptions listed in Proposition 2.2, if N(t) and ¢ are suitably
small, and if y € (1,2), it holds that

t
(D%, W) t||2+/ (2, %, W)[2(0,7)dT

-1—/ / ul||(F,W) |2+1"2-|—1“2)(x,'r)dxd'r
||(¢0/‘I’0,W0)||2+||(<P0,1/J0/Co)||2+e o

HEENO) [ 1@ 0L botnloleown) @ @1

Proof. Multiplying the first three equations in (2.39) by %CI), % and 93;5 respec-
tively, we obtain the identities

c1>2) (us 2) 1
— ) 4+ —®?) + DY, =0, (3.12)
(295 fo\20t ), o0
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‘FZ) <u5 2) (1 ) RY
— )+ —9) +([—=D) Y+—W,
(2;?5 po\2p° « \P° /s p°

(r=2u; (=D \ g2 ¥G
+< 2p° 22 )N T G139
C’UWZ CUMSWZ R WFX
(219595 )f ( 2p°6° )x+ (Ew)xw+ 6°p?
Coy(—ui) 2 Rq; 2 Re; _ WG
+ Qsps w Qs(ps)zw (Ps)2T - gsps : (3‘14)

Summing (3.12)-(3.14) together, one has

P Y2 CW? (Y=2)u3 g2, Cor(=u3) o, WIk
<—2p5+2—p5+ 2p595>t+13"+27ps\1; + e W 6o ps
Y61 WG (v=Drgo, Ray o Ray
= ¥ W YW 1
P O EE R A 5 el G15

where X ) )

u'd- uwY- C,utW= OdY R
—YW. 1

ZPS + ZPS ZQSPS + pS +pS (3 6)

Finally, multiplying (2.39d) by ﬁ GSLPS yields

13::

| Ik [ 4 } p(T3+al?)
ap(6s)® p° | 460 Pl T ap(6) ps
I'Wwy 65T uS¥Yl pI'Gs
+ S 1S + S 1,5 5,5 3. 5"
Oops  0°p°  Cbp® ab(65) ps

(3.17)

Then it follows from (3.15) and (3.17) that

(32_1_‘{’_2 cvwz) p(T2+al?)
209 2p° 2p°0° ), 4b(65)ps

pITy WT [ 0 ] { 1 ]
+|I3— + || ITy—|—| WL
[ 4b(95)3p5 Qsps i 4b(95)3p5 . X GSPS .
n (7_2)u§c\F2+Cv7(_u§c)w2 03T | i ¥T
2 S 95 S 95 S C 95 S
p p pt - Gfp
=0(1)[¥G1+WGa+TGs|+0(1)|q3|[F>+ W +FW|. (3.18)
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Note that by boundary condition (2.41), we have

F(0,6) = (W-0_D)(0,£) +O(1)e Pec0t,

So

—u_Pd? (—u_)¥? o(—u_YW?
—13(0,1‘):( Zp_q’ . 2p_)T 4+ (2p_ GEW )(O,t)

—%(9 D+W)(0,t)+O(1)e Pecot

—u_ (®* Y2 C,W? Y wu_ o5
>z - e —céB ,—cot
b (2 +o g )(0 t)— T = Y01 +0(1)ePe
(—u_) (RG_CDZ 392 C,W?
= +—+
p_ 2 2 20_

) (0,£)+0(1)e@Pe=ct, (3.19)
So (3.19) implies that the boundary term —I3(0,) can be controlled.
Suppose 1 <y <2, then y—2 < 0. Then integrating (3.18) over R4 x (0,¢),
integrating by part, and using (3.19) and the Sobolev inequality, we obtain that
2, [ 2 2
(@, W) )P+ [ (I(@EWPO)+Ir@)})de
t
+/ / S| (P2 + W2)dxdT
0 /Ry
t
< (Do, ¥o, Wo) ||2+/ (T, +WT)| (0,7)dt
+/ / (us,05)||T( Fx+<1>+‘I’+W)|dxdT+5/ ~C0peC0T T
- / / 3] [Y2+ W2 YW + ]‘PG1+WG2+1"G3|> dxdr. (3.20)
0 /Ry

Note that

g = _%(95)39;, Iv(0,t)=—4°(0,t)=0(1)|65(0,t)|, Tx=w.

So we have
t t t
| s [Ir@ s [ Ir@iirs e s
1 rt t
1 [ Ir@ P [ o) R, @21)
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and then
t pt
/ / (T4 + WT)| (0,7)dt
0 J0
t t t
5% [ wWromar+ [ TE0mdr+ [ 1201
0 0 0
t t t
gi [wo0drs [(@20000d+ [ 100
0 0 0
1 rt t
S5 ) WD +IT@ P [ o) Pdrre . (3.22)
Therefore, it follows from (3.20) that
2 f 2 2
(@2, W) @)+ [ (1@, W)+ [T} e
t
—I—// || (2 +W?)dxdt
0 /R,
t
<10, ¥o,W0) P+~ [ o) 2w
t t
+ / / ¥ Gy + WGy +TGs|dxdt + / / 05 2dxdT.  (3.23)
0 JR, 0 JR,

Finally, the last two terms on the right-hand side of (3.24) can be estimated as
follows:

t
/ / ¥Gy+ WG, +TGsdxdt
0 JR,

§(25—|—N(t))/Ot/]RJuiH(‘I’,W)FdxdT

t t
N [ 1) () Pdxdr [ [ (03 Pdvdr (3.24)
0 JR, 0 JR,

and t t

/ / 105 [2dxdT < 6% 9 / / e~V e=0Tgagr < o=0b, (3.25)
0 JRy 0 JR

Therefore, substituting (3.24), (3.25) into (3.23) and using (3.2), we can get (3.11).
This completes the proof of Lemma 3.2. O

Remark 3.1. We see that from the last equation of (2.39)

Wy =—q°+al +b{(0+06°) (0*+00°+(6°)?). (3.26)
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By applying Lemmas 3.1 and 3.2, we can obtain the following estimate of w, on
the boundary

/ Ordr</ Ordr+/ (I2422)(0,7)d7
S1H(@o, o, Wo) |12+ | (o, 0, Z0) |+
t
+(5+N(t))/0 H((Prl/)rgr(l)x/l/)x/gx/gxx)("()HZdT (327)

4 High-order energy estimates on fluid dynamic
perturbations

In this section, we will focus on establishing the high-order energy estimates
in two steps. Firstly, the first-order energy estimates are established in Subsec-
tion 4.1. Then the second-order energy estimates are established in Subsection 4.2.

4.1 First-order energy estimates

To establish the first-order energy estimate, we will first establish the following
estimate on the time derivatives.

Lemma 4.1. Under the assumption of Proposition 2.2, if N(t) and ¢ are suitably small,
it holds that

et O+ [ (97+82) (0,0) + (woone) (2) P
< 1100,20) P+ | (911,20 O) e~
+(EN) [ (10D @ B+ @ (D) dr. @1)

Proof. Differentiating each equation in (2.14) with respect to t, then multiplying
them by %cpt, oY, ggt and ﬁwt respectively, and then adding all the resulting
equations together, we have

RO 2 02 Cob o Tt P apw _
<Z‘Pt+§¢t Ct 4b94+(4b94) Wit + o +I4x I5, (4.2)

where
R

P 2 ROt Rplope B o~ Py (0

Ou
(Pt + ¢t 4b94
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RO RO Co Co
s (3),+ () S (5) # (55°), oo
+Rpxgt¢’t+(Qlt_Ptlpx—ut¢x)R79¢t+ [ta—uﬂ,bx— (R?Q) (Px} P
t
+(Qar = Coml— ROy 58+ (5) i

w
+{q§xx—12b629t§x [4b65§(92+695 (GS)Z)L}ﬁ.

(4.4)

For the boundary term I4, we note that

_14(0,t):—<R_9u¢t+ ¢t2 CvP Ct+R9¢tht+RPCtht+ gtwt—fb94th)(0,t)

>c(¢7+7) (0,t) - (wt +wi +wfwtx) (0,t)
> c(¢7+¢7)(0,¢) — CoePe 0, (4.5)

Then integrating (4.2) over R x [0,t] and using (4.5), we obtain

@2 O+ [ (6F+2)0.0) + () (2)) e (4.6)
SI@pn )OI e+ [ (gt + ] ) 00)dt
+(0+N(1) /Ot [ @2t o ) P, )t
@2 O +e=B+ (6+N(®) [ (1040 (D) B+ lwrax()|2) dx

where for the last inequality, we employed the following boundary estimate:
b, o
/ (l[)t +wi+ ]wtxwt]) (0,7)dt
0
t
< / Je~Be T (1 4+ |wyy| (0,7)) dt
0
t
S [ e e (1t wral|H ot |2 ) dr
0
t
S5 [ (@i orsa) (7). 4.7)

By Lemmas 2.1, 3.1 and 3.2, we can get (4.1) from (4.6). O
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Based on the estimates on the time derivative, in order to derive the first order
energy estimates, we need to control boundary integral terms with respect to the
spatial derivatives first. Let us rewrite system (2.14) as follows:

Uupx+phx=0Q1—¢1,
upx+REx+ %94& =Qo—1y, (4.8)
Coufx + ROPx = Q3 — Colt — wy.

So

_u(Q—¢) RO(Qi—¢y) -1 _Cli—
ll)x— u2—R’)f@ p(u2—R’)’9) uZ—R’yG(Q3 Cvgt ZUx)

=0(1)[(Q1,Q2,Q3,¢t, 91,1, wx) | (4.9)

Therefore, based on the expressions in (2.15), estimate (3.27), Lemmas 2.1, 3.1, 3.2
and 4.1, we obtain

t t
/O lP%(O/T)dTS/O |(Q1/Q2/Q3/¢f/¢f/€f/wx)|2(0/T)dT
<10, o, Wo) [+ | (0,90, 20) 12+ | (e 2, 2) (0) [+~
t
+(0+N®) [ (16940 B+ e (D)]12) (+10)

t
| 19wz PO
< 1000 QPO+ [ 190800 (0, 0)d
~ 0 1,%3 ’ 0 (Pl’/ tr lepx ’

<1 (@o, %o, Wo) 2+ | (o, 0, 0) 12+ (9, 1,81) (0) |2+
t
+(0+N®) [ (194,00 @) B+ e (D)]12) (4.11)
[ @00 [ [P+ 8+ 657+ (g P 00
S (o, b0, Wo) |2+ | (o, o, 20) 2+ (9, 1,81 (0) 2
t
+e 4 (64ND) [ (100 D@3+ |wu(®))dr. @12

Now we are ready to establish the first-order energy estimate.
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Lemma 4.2. Under the assumption of Proposition 2.2, if N(t) and ¢ are suitably small,
it holds that

t
19502 D1+ [ (1@s0bx, L) POT) +[x (D)) d
<1 (@0, Yo, Wo) 2+ 11 (9o, 0, G0) I3+ | (91, 1,G1) (0) > +-e %

t

HEN®) [ (109,00 B+ ()2 d. (+13)

. . . . _R_G i _@ . PWix

Proof. Multiplying the equations in (2.14) by —~ ¢rx, —p¢xr, —5* and 5

one by one, respectively, we have
RO ¢ ROu ¢3
(v 2) (oo 2)
R6 ROu RO
= | = —— Q1 — | — % 414
W)~ (5) p e () o e

2
<p2&)t_ < ll)x +plptlpx> —RG(lepxx_Rprlpxx
= — P Qo — (p1)2 Y%, 19

Cop 2 Copt {2 Cyp Cxx
(Tf)f<77+ . étax) —ROGartpr—

— Cop . Copu C_;Zc_pgxx B Cop
_{< 0 )t ( 0 )x} 2 0 Q3 0 thCx/ (416)
owzx_ aApWwy apw,%+ ap _pr
ot~ Capgr ), e (apge) x5 om
S 2 S PWxx
= {46032 [02+00°+(0°)"] i } e (4.17)

Adding them together, we get

ROPE , pyz , Cop Q3 | pwiy | apwi  ( ap _
(505 ) i o (o) oo =t 19

where

e =R794>t4>x ¢x+pu&+p¢th+Re¢xwx



L. Fan, L. Ruan and W. Xiang / Commun. Math. Anal. Appl., 1 (2022), pp. 112-151 137

C 2
+Rp§x¢x S L B L

W (px, 9, Cx,CPt,lPt,Ct,w cUx)| ’
RO
{( )t ( u) }‘Px Rexlpx(l’x_Rngx‘Px_(P”)xl/}yzc

Cop Copit 72 Ro RO
+{< 6 ):(T)X}T—<”“Qf(—) P

—pPxx Q2 — O PP — ngxQ3 (CUP) Ct0x— ( ) Cxwy

S S w
+ {40035 [0 00+ (6°)°) — g | 5

§ (5+N(t)) ’((Pxx/prxrgxxzwxxrfpwl/)x/gX/wX/(P/lP/g/w) |2'

Therefore, integrating (4.18) over R, x [0,f] and using (4.10)-(4.12), we can get
4.13). 0

4.2 Second-order energy estimates

Now, we are going to derive the second-order energy estimates. First for the time
derivatives, differentiating (2.14) with respect to ¢, we get the system that

(ot +ugret+ o =01, (4.19)
i+ uthie+ RCix + R?Gfl?tx =0, (4.19b)
Coltt+CottQrx +ROPr +win = Q3, (4.19¢)

\—mxx+awt+4b9 Cox+4DOST (92+995 (6 ) ) =04, (4.19d)

where

Ql =Q1— (ut47x+PtL/Jx)/

Q2 = QZt_utLPx_ (R_Q) OPx,

_ P/t

Q3 =03t — Couslx — ROy,
Q4:q;x—4b(93)tgx—4b{9; [62+66° + (6°)2] }tg.

Then we have the following lemma on the estimates of the time derivatives.

(4.20)
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Lemma 4.3. Under the assumptions of Proposition 2.2, if N(t) and 6 are suitably small,
it holds that

| (pee, e, Cre ) (t) ||2+/0t [(‘P?H-C%t) (0,7) + || (wrt, wrx ) (T) ||2] dt

SIH(®o, Yo, Wo)lI*+ 1 (@0, %0, Co) I3+ 1| (9,1, 2) (0) 17
11 (e, e, Cor) (0) 12+ 6| (wre o) (1) 2

+E+N) [ (10D @I+ lwn(0)I})dr (421)

Proof. Differentiating the equations in (4.19) with respect to t, then multiplying
the resulted equations one by one by R?"qm, oY, ggﬁ and ﬁwtt respectively,
and adding them together, we get

RO 2 P2, CoPpa | W (P apwy
<$¢tt+§¢tt gtt 4bg4 +(W) WHWytt + — =0 4hos +Nx=l, (422)

where
RGu C
Ji= <Ptt ¢t2t Up —O 72 4+ ROPu e+ Ropudu
+§Cttwtt— 4594 WitWxtt, (4.23)
RO ROu RO
]2::{<$>t+< 20 ) }‘Ptt (Qlt_Pt¢’tx_ut(Ptx)?(Ptt

+ [QZt—Mtlptx_ <R?9> thx] O+ ROy s hst — Rox Prrl
t
+ { <C';vgp) t_|_ (C;§u>x}ﬁt+ (Qst— Courlx — ROsiry) %Ctt

+ { O — 126020, 1 — [41995 7 (0%+06° + (95)2)} t} 4;%.

(4.24)

In particular, one has

t
J1(0,7) > c(¢5+ %) (0,7) — C (¢ +wh) (0,7) — 45—5{/0 wywy(0,7)dT,  (4.25)

12| SO) (6+N () (Pet, 911, ot Pt Pres Ctes P P s b0, 0) . (4.26)
Integrating (4.22) over R, we obtain

d
7 (e et Cet) (D) |12+ (97 +C7) (0,8) + || (wie, wre ) (£) ||
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S (Wh+wip) (0,6) + 4gjwtthtt (0,t)

+O0(1) (6+N (1)) [|(Pee, Yrt, et P, Prx, Cos P, Y, T P10, C) (£) 2. (4.27)
Note that

! t
t
= ;;—gf/o {(wttht)t—wtttht} (O,T)d’['
t
Slwnws] (0,8) + |wiwx|(0,0) — 41(;?/0 Wiyt (0,7)dT
t
0 (0t 00ea) ()P40 | (0, 7)dr+6

t
§5||(thIthx)(f)||2+5/0 (e, e (7) | PdT+6. (4.28)

Integrating (4.27) on [0,t] and using (4.28), we can get (4.21). O

To control the derivatives with respect to d¢y on the boundary, we rewrite
system (4.19) as follows:

UPty + Py = Qi — Ott,
RO ~
Uer+ R+ 7<Ptx =Q2— Y, (4.29)
CottCtx + ROYs = Q3 — Colst — Wiy
Then
t t
[t 0275 [ o) ()

t t
S [ N (0) PTGy [ fns() P, (4.30)

t
| 1@ 2i) PO D)
f , Eo o~
S/o | (Ptt, Y, et Wix) | (O,T)d'f-f-/o ‘(QLQZIQB»)‘ (0,7)dt
S 11(Do,Fo, Wo) 1>+ (o, 0, 50) 153+ | (e, e, Ce) (0) | T +e°F
t
o N®) [ (D@ +Hlom@R)dr, @3
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where v >0 is a constant small enough. Therefore, one also has

2

/ |Z()txx’ OT dT</ ’ Wtfgtx/ gf/ gtrQ‘l }

S |(Po, Yo, Wo) 1>+ (o, %0, C0) 15+ 11 (e, 11, C¢) (0) ||1
e P+ || (pre Pre, L) (0) ||

+ s N) [ (10D OR+ lom@IP)dr. @32

Now we are ready to introduce the following lemma.

Lemma 4.4. Under the assumption of Proposition 2.2, if N(t) and ¢ are suitably small,
it holds that

t
||((Ptx/¢’tx/€tx)(t)||2+/0 <|((Ptx/¢’tngtx/wtx/wtxx)|2(0/T)+||wtx(7)||%)dr
S 1(Do, Yo, Wo) 17+ 1| (¢o, 90, 50) 13+ 11 (e, 91,81) (0) [T +e~°F
t
+||(<Ptt,lPtt,Ctt)(0)||2+((5+N(f))/0 (0, 9,0)(7)[[5d. (4.33)

Proof. Differentiating the equations in (4.19) with respect to x, then multiplying
each of the resulting equations by %(])tx, OPix, ggtx and #wtx respectively, and
adding all resulting equations together, we get

R_9 2 P2 pwtxx P apw 2
<2P P+ 2¢7tx ) 4bho* + (4b94>xwtxwtxx+ 4b94 ctc=Js, (4.34)
where

RGu Z,pu

J3:= (Ptx+ ll)tx gtx"i‘RG(Ptxlptx‘i‘RPlPtxgtx (4.35)
+_Ctxwtx 415)94 WixWixx
=O0(1) [(Prx, Prx, Ctxs Wrx, Wi ) (X, t)|
RO ~ RO
{ < ) ( u) }‘Ptx (le_lel)tx_ux(Ptx) ?(Ptx (4.36)
t

+ [QZx_uxlptx_ (R?G) (Ptx} Plptx‘i‘Rex(Ptletx_RlePtxgtx

Cy Co ~
+ { < 29[)) t+ ( 2gu)x}€t2x + (Q3x —CouxCix _Rexlptx) ggtx
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+ { O — 126020 1s — [4199;@ (62 +00°+ (95)2)} x} L‘;;z

= O(l) ’ (47thLptngtx/wtxr(,bxx/prxrgxx/wxx/(,bx/ll)ngx/wx/(l)/ll)/grw) (x/t) ’2-

Integrating (4.34) over R4 x [0,¢] and using the boundary estimates (4.30)-(4.32),
we can get (4.33). O

To control the other derivatives of second order, differentiating (3.11) with
respect to x, we get the system that

( Prx + Uy +pPrx = Qs, (4.37a)
wtx+u¢xx+zzgxx+%9¢xx=g6, (4.37)
Coltx+ Coltlxx + ROPxx +wrr = Q7, (4.37¢)

| — W 8+ 466 e+ 40030 (92 1065+ (95) 2) — Qs (4.37d)

where

Q5 =0Q1x— (ux(Px +Px1/)x)/

Q6:Q2x_uxlpx_<%9) Px,
Q7=0Q3— Cvutgx - Retll)x/
Qs =Gie—4b(6%) T —40{ 03 [0*+00°+ (6°)7] } ¢

X

(4.38)

It can be rewritten as
UPxx+PPxx = Q5 — P,
Wit REss 2 = Qs =i (439)
CoutCxx +ROPxx = Q7 — Colpx — Wax.

Therefore,

t
/0 | (P, Pxx, T ) [ (0, T)d T

t t
S/O |((,btleptxlgtx/wxx)|2(0/T)d77+/0 |(Q5/Q6/Q7)|2(0/T)dT
<110, %o, Wo) I+ | (9o, 90,20) B+ | (91 91,2 (0) 2
t
+e P4 (6+N() [ 190 B, (4.40)
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t
/O Wi 2(0,7)dT

t
S/O | (wXICXXIQ;CXIC/CXIQg) |2(0/T)dT
<11 (o, %o, Wo) |2+ | (0,10, 20) 13-+ 1 (91, 9,0) (O) 3
t
+e P (04N () [ 190,003 (8.41)

Then we have the following estimates.
Lemma 4.5. Under the assumption of Proposition 2.2, if N(t) and ¢ are suitably small,
it holds that
2, [ 2 2
@t Ga) O+ [ (1 (@enrtpen enst0see) P O7) + s (1)} )
<11 (@0, %0, Wo) I+ 11 (@0, $0,50) 13+ 1| (91,41, 8) (0) | +e7°F

@, O+ (+N) [ 16,9.6)() @42)

Proof. Differentiating the equations in (2.14) with respect to x twice, then mul-
tiplying each of them by %egbxx, OWxx, — eg”xxx and — 64 Wyxx respectively, and
adding the resulting equations together, we get

RO ¢> C a w w? a
(5o Gren) + e ' () oo

=O0(1) (6+N () [ (P o, Cxxs @) (P Yexs Coes s o P, G 0,0, 0) |, (4:43)

where

R6u u
Jo:= o ('b;x ¢xx +ROPxxPrx — z;P — 0
_C AW W
vpgtxgxx xxgxx %
—O( )|(47xx/1/)xx/€xx/€txzwxzwxx)’2- (4.44)
Integrating (4.43) over R x [0,] and using (4.40) with (4.41), we can get (4.42).
This completes the proof. O

Combining Lemmas 3.1-3.2 and 4.1-4.5 together, we can get
1@ E, W) DI+ 11 (1,0 (I3 + 1 (Pe e, 8e) (DT + (et Pee, ) ()12
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t t
—|—/](CI>,‘I’,W)|2(O,T)dT—|—// (151102, W) P4+T2+12) dxd
0 0 JR,
t
+/0 ’((P,(Px/prrgx/wxr(,bxxrprxrgxx/wxx/wxxx/(,btx/ll)tngtx/wtxrwtxx) IZ(O/T)dT

t
+ [ (Io@)l3+ () 13) de
110, Yo, Wo) I+ 1190, 0,50 13+ 11 (9, 91,20 (0) I + | P, s, 1) (0) 2
t
+e P (04N) [ 190,00 Bar. (445)

Finally in this section, we will deal with the term fot | (¢,%,0)(7)||3dT, which
appears in the right hand side of estimate (4.45).

Lemma 4.6. Under the assumptions of Proposition 2.2, if N(t) and ¢ are suitably small,
it holds that

t
/0H(@%é)(f)ll%dff,\I(q>o,‘f’o,Wo)\|2+H(cPo,lPo,éo)H% (4.46)

+11(9e 6L (O) 13+ 1| (b1, e, L) (0) >+ P
Proof. Multiplying the second and the third equations in (2.39) by R§°®P, and 2¥,,
respectively, we get
(ROPYDy ), —RO;Y D, — (ROFYD; ), +ROZY Dy
—RO°Y2 — RO°15 DY, + (R D, )

S

RO
= <G1 —RWy—(y—1)ui¥+

S

p;cp) RO°D,, (4.47)
2C,[(W¥x),— (WY¥y), ] +2C Wy (¥ +usFy) +2RO°YZ
S S
—2¥, (q—§q>+ P—f\lf—ﬁ) =2G,¥;. (4.48)
P P

Then
(REFYD,+2C, WYy ), — (ROTYD: +2C, W),
+ROTF2+ (RO°D, )2 — ROSF D, + ROS Y Dy
— RS DY +2C, Wy (i + 1)
R6*

S

= [Gl —RWy—(y—1u ¥+ pi@} RO° D,

S S
129, (Z—’;@Jr Z—’S“I’—Fx) 126G, Yy (4.49)
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Multiplying the fourth equation in (2.39) by Wy, we get

4b(95)3 2 2 2 S 2 S 2 2
wagrxerr +(65D)% + (15¥)? + G2. (4.50)

Hence, integrating (4.49) over R x [0,#] and by Lemma 2.1 and estimate (4.50),
we obtain that

t
/ / (RO -+ (RO DL+ W) drd
0 JR,
S (E, B, W, ) ()2 4+ | (F, @, W, ) (0) 2+~ 0F
t t
+ [ 1@ WO 0dT+ [ (10l (W) P+ TR AT (1)) dde
+
t t
+ [ 1@ W) PO )T+ (04+N() [ @b &) (@) PdT. (35)
Recalling the relation between (¢,1,{) and (®,¥,W) in (2.18), we know
P=02, PSELEDP, P SWIH(00)2+ (1) 4 p g,

Therefore

t
L@@ Pde
S (P, Fo, Wo) I+ [l (@0, 10, G0) 15+ | (¢, 1,24) (0) 113
t
@ v ) O+ P+ (54N ) [ gepel@lidr.  @52)

Furthermore, it follows from (3.11), that

10 (2,12 S (0,038, 0x) (1) 2. (4.53)

In addition, multiplying (3.11); and (3.11)3 by %94),( and 2¢y, respectively, we
obtain

2
(R?Glpc,bx‘FZCvClPx) _<R79¢(,bt+zcv€¢t) +(R79<px) + ROy>
t X
= (R?G) Yo+ (R?G) ¢’(”‘Px+P¢’x—Q1)+CvRCazc
t x
+O0(1) (|0x¢px |+ x|+ | (§x, Tx) Q| + |1 (Q1,Q3) ) - (4.54)
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Integrating (4.54) over R x [0,¢] and using (4.45) and (4.52) with (4.53), we have

t
/0 /]R ) (93+y2+33) dxdr
S 1 (@o,Fo,Wo) 1>+ 1 (po,0,80) 13+ 11 (e, 1, 5) (0) |17
t
+H(¢tt,¢tt,€tt)(0)||2+e_‘5ﬁ+(5+N(t))/0 (¢, ,0)(7)[13d. (4.55)
Next, from (4.37d), it holds that

|Cxx (/1) |2 S (W, 0x,050x,Qs) (1) |2- (4.56)

Finally, multiplying (4.37b) and (4.37c) by %(pxx and 21, respectively, we obtain

/Of/]R+ (IPE?ExJFlP}Zchr@;?Ex) dxdt
S1H(Do,Fo, Wo) 17411 (o, 0,50) 15+ (¢, 91, 2¢) (0) |7

t
+||(<Ptt/¢tt/Ctt)(0)||2+e_‘5ﬁ+((5+N(t))/0 I ¢.0)(7)[13d. (4.57)

Combining the estimates (4.52), (4.55) and (4.57) together, we can get (4.46). [

5 Estimates on radiative perturbation

In this section, we focus on the proof of the estimates related to the rediative heat
flux.

Lemma 5.1. Under the assumptions in Proposition 2.2, if N(t) and 6 are suitably small,
it holds that

T2+ [l (8113
< 1o, ¥o, Wo) 12+ | (@0, %0,Go) 12

+11 (1,20 O)1F + 11 (et e, £20) (0) |2+ =P (5.1)
Proof. By the last equation of (2.39), we see that
~Tyx +al+bZ(0+6°) [02+66° +(6°)*] =4°. (5.2)

Multiplying Eq. (5.2) by I', we have

— (0 D)+ T2 4-aT2 BT (6+6°) [02+66° + (6°)*] = 45T (5.3)
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Integrating (5.2) over [0,+0), and choosing ¢ and N(t) suitably small, we have

IS [T [+ g2+ 1) 64
Multiplying (2.14)4 by —wyy, we have
— (awwy ), + w3, +aws
- {4b93gx+4b9;g— [6%460° + (6°)2] —q;x}wxx. (5.5)

Integrating (5.5) over [0,4-o0), and choosing § and N(t) suitably small, we have

o) (OIS [ 22422+ (g0) 2]+ lawoso(0, )] (5.6)
Multiplying (2.14d) by —wyyx, we have
- (awxwxx)x + w%cxx + aw%x
_ {4b93gx+4b9;§[92+995+ (6°)] —qix} Wery. (5.7)
X

Integrating (5.7) over [0,4-o0), and choosing § and N(t) suitably small, we have

(s wes) OIS [ [t B4 P4 (@] dix w0 (68)
Combining the estimates (5.4), (5.6) and (5.8) together, one has
ITE)IZ + [l (B)113
SIS+ [ [0+ )+ (g20)]
+ T T(0,1)| + |aww(0,t) |+ |awxrwy (0,1)]. (5.9)

The last three terms on the right-hand side of (5.9) are estimated as follows one
by one:
IT2T(0,8)[ = [w(0,6)[|T(0,£)] < 1g° (0,£) [[[T(£) oo
1 1 2
SOITBIZ[[Tx(£)[12 ST (E) [ +0[Tx ()]
SO TR ()P +6, (5.10)
|[wxw]|(0,£) S 197 (0,8)[[[wx (£) oo
S0llx(8)]12 e (8)]12 S 6w ()P +0wax (£) 3
SOll(we, wx) (1] +6, (5.11)
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(01)

|wyxwy(0,8)] =

o { a0+ 466°T, + 4065 67+ 06° + (6%)%] — )

S w02 (5521 (0,8) + w02 (5,0) [(0,8)
SOl (wx,wx) (1)|12 48+ [we (1) oo (G2,8) (8) ] o

)

)

SOl (e, e ) ()P 40+ e ()| o (1)
% (1) O+ G ) (D7)

S (043 ) s O +0+ 1EOIR: 6.12)

Inserting (5.10)-(5.12) into (5.9), we can get (5.1). This completes the proof of
Lemma 5.1. L

Lemma 5.2. Under the assumptions of Proposition 2.2, if N(t) and ¢ are suitably small,
it holds that

s (#) |13+ lwee (#) |17
S 11(Po, o, Wo) |1+ 11 (o, 0, 20) |13
+ 11 (b6 91, 5e) (O) 13+ 1| (e, e, G2t ) (0) || >+ 2P (5.13)

Proof. Multiplying (4.19d) by w;, we get
— (Wi Wy ) x + W +aw?
= — { 4b6°C+ 46030 [62+ 06"+ (6°)*] — Qs b, (5.14)
Multiplying (4.19d) by —w¢yx, we get
— (aWpT0) A+ W F-a00Ey

_ {4b93€tx+4b9§§t 6%+ 06° + (6°)2] —Q“4}wtxx. (5.15)

Integrating (5.14) and (5.15) over [0,+o0), and choosing é and N(t) suitably small,
it holds

) BS [ (Rt G+2+ Q) dx+wnawn(0,)], (5.16)
where the last terms on the right-hand side of (5.16) are estimated as follows:
|wrw (0,6)] <17 (0,8)|[|wsx oo
1950 8) e lwtsallF S0 (ot 2+ leoral ) +5. (5.17)
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Plugging (5.17) into (5.16), we get

[ (£)[13 S 11 (Do, Fo, Wo) [12+ [ (o, 0, 50) 113+ I (@, 2¢) (0) |13
+ || (Pet e, ot ) (0) || >+ 0P (5.18)

On the other hand, multiplying (4.19d) by —w, we get

— (AWt t) A+ Wi+ AW
= 12660, pxwi + (4b6° Cpwyr)  — 12060760, L4y — 4b60° L yytopex

+{ 406,21 [07+00°+(6°)*] = Qu } i (5.19)
Integrating (5.19) over [0,+00), and choosing é and N(t) suitably small, it holds

[ (8) 1T S (2@ ) (D15 + |weele (0,8))]
SIZo. ) (®)[5+0. (5.20)

Combining (5.16) and (5.18) together, we can get (5.13). This completes the proof
of Lemma 5.2. O

Now we can prove Proposition 2.2 to conclude the proof of Theorem 2.1 by
Propositions 2.1 and 2.2.

Proof of Proposition 2.2. Using the results (4.45), (4.46), (5.1), and (5.13), we can
obtain (2.48). This completes the proof of Proposition 2.2. O
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