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Abstract. As a problem that dates back to the end of the seventieth century, the
brachistochrone problem is one of the oldest problems in the calculus of vari-
ations and as such, has generated a myriad of publications. However, in most
classical texts and in most papers, the favored way to solve the problem is to
make two a priori assumptions, viz., that the brachistochrone lies in a vertical
plane, and that it can be represented as the graph of a function in this plane;
besides, with few exceptions, the existence of a solution is not rigorously estab-
lished: instead it is sometimes even taken for granted that the solution is that
of the associated Euler-Lagrange equations, even though these are well known
to be only necessary conditions for the existence of a minimizer. The objec-
tive of this article is to show how all these shortcomings can be very simply,
and rigorously, overcome, by means of arguments that do not need any a pri-
ori assumptions and that otherwise require only a modicum of basic notions
from calculus, so as to rigorously establish the existence and uniqueness of the
brachistochrone in full generality. One originality of our approach is that from
the outset we seek the brachistochrone as a parameterized curve in the three-
dimensional space, i.e., that can be represented by means of three parametric
equations, instead of by means of a single graph in a vertical plane. Contrary
to expectations, this increase of generality renders the ongoing analysis much
simpler. Our objective is thus to show how the direct method of the calculus
of variations based on the Euler-Lagrange equations can be used to solve the
brachistochrone problem. Otherwise, there are other ways to solve this prob-
lem, for instance by means of convex optimization or optimal control; such
methods are briefly described at the end of the paper.
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1 Introduction

Consider the following mechanical problem: A material point with mass m is
subjected to uniform gravity and slides without friction along a curve joining
a point P0 in the “horizontal plane” to a different point P1 situated below, or in,
the horizontal plane.

Under the assumption that the velocity at P0 at the initial time vanishes, the
brachistochrone problem consists in seeking whether there exists a smooth curve
along which the time for the material point to go from P0 to P1 is the shortest
(Fig. 1). If such a curve exists, it is called a brachistochrone (“brákhistos” means
“shortest” and “khrónos” means “time” in ancient Greek).

This minimization problem was first proposed as an open one to his contem-
poraries by Johann Bernoulli in 1696 (cf. [4]). Answers were then quickly pro-
posed by several outstanding mathematicians: Isaac Newton, Gottfried Wilhelm
Leibniz, Johann Bernoulli, Jacob Bernoulli (brother of Johann), and Guillaume de
l’Hôpital. An account of the history of the brachistochrone can be found in, e.g.,
Shafer [10], or Sussman & Willems [11].

This problem constitutes one of the oldest ones of the calculus of variations
and has of course generated a myriad of publications. So, why write an additional
one?

Figure 1: Given a point P0 chosen as the origin of the “horizontal plane” and a point P1 =(x1,y1,0)
below (y1>0), or in (y1=0), the horizontal plane, the brachistochrone, if it exists, is a smooth curve
along which the time for a material point with mass m sliding without friction along this curve under
the influence of gravity, and with a zero velocity at P0, is the shortest for joining P0 to P1.
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The most compelling reason for doing so is that the various “solutions” for
solving this problem found in the existing literature by means of the Euler-Lagran-
ge equations are either incomplete, or not satisfactory. This is all the more surpris-
ing, since solving this problem does not require any advanced techniques com-
monly used in the calculus of variations, such as convexity and coercivity, weak
sequential lower semi-continuity, weak compactness in reflexive Banach spaces,
etc. Instead it only requires a good knowledge of basic notions from calculus,
such as ordinary differential equations, the fundamental formula of integral cal-
culus, or how to compute the derivative of an inverse function of one variable.

Here is a list of commonly encountered shortcomings:

Perhaps the most serious one is that it is most of the time blithely taken for
granted that the solution is that of the associated Euler-Lagrange equations, even
though these are well known to be only necessary conditions for the existence of
a minimizer. Incidentally, the issue of uniqueness of the solution is also seldom
addressed. Likewise, it is often assumed from the outset, i.e., without a proof, that
the brachistochrone lies in the vertical plane; that the Euler-Lagrange equations
can be applied, even though the minimization problem is posed over a set that is
not a vector space; and finally, that the brachistochrone can be represented as the
graph of a function.

Our purpose in this article is to see how all these shortcomings can be very
simply overcome. More specifically, we begin by carefully describing in Section 2
a natural mathematical model for this problem, which essentially relies on the
well-known law of conservation of energy. One originality of our approach is
that we seek the brachistochrone as a three-dimensional parameterized curve,
i.e., that can be represented by means of three parametric equations, instead of
by means of a graph in a vertical plane. Contrary to expectations, this increase
of generality renders the ongoing analysis much simpler. More specifically, it
is found that, if it exists, the brachistochrone should minimize a functional that
is not quadratic over a set of “admissible parameterized curves” that is not a
vector space, which indicates that the resulting Euler-Lagrange equations should
be nonlinear. At this stage, there are thus three unknowns, the three components
of the unknown parameterized curve.

For convenience, our proof is broken into a series of seven lemmas, which
constitute Section 3. We first show in Lemma 3.1 by means of a very simple
argument that the brachistochrone, if it exists, must lie in a vertical plane. This
observation thus reduces the number of unknowns to two.

We then show in Lemma 3.2 that any would-be minimizer must satisfy two
Euler-Lagrange equations, even though the set of admissible curves is not a vec-
tor space; note that there are two such Euler-Lagrange equations because the mi-
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nimizer is sought as a parameterized curve in the vertical plane, instead of as
a graph, in which case there would be only one Euler-Lagrange equation.

It is then established in Lemma 3.3 that, interestingly, the first Euler-Lagrange
equation implies that the brachistochrone is a graph, in that the vertical compo-
nent u is a function of the horizontal component. This observation, which seems
to be new (it results from our considering parameterized curves from the outset),
reduces the number of unknowns to one.

It is further established in Lemma 3.3 that the single unknown function should
satisfy a two-point boundary value problem of a specific form, where the nonlin-
ear ordinary differential equation is of the first order only, but fortunately the
right-hand side is an unknown constant.

After showing in Lemma 3.4 that the second Euler-Lagrange equation pro-
vides some essential information regarding the sign of the derivative of the un-
known function u (this information is usually overlooked, which results in an
incomplete proof), we then solve in Lemma 3.5 this two-point boundary value
problem by means of a suitable change of the unknown function, introduced here
in a natural way, instead of being “handed from the sky” as is often the case. Be-
cause we show that the solution to this boundary value problem is unique, the
uniqueness of the brachistochrone, if it exists, is thereby established.

We then establish the existence of the brachistochrone, which is achieved in
two stages, depending on whether the point P1 is in the same horizontal plane
as P0 or not. First, if the point P1 lies in the horizontal plane containing P0, then
the existence of the brachistochrone is established in Lemma 3.6 by using an ele-
gant argument due to Benson [3], based on an ingenious use of Cauchy-Schwarz
inequality. Second, if the point P1 lies under the horizontal plane containing P0,
then the existence of the brachistochrone is established in Lemma 3.7 by using
a very simple (and apparently new) argument based on the existence result of
Lemma 3.6.

All the results above are then assembled in a single theorem, the statement of
which concludes Section 3.

This article thus gives a complete and elementary proof for the existence and
uniqueness of the brachistochrone in full generality, which means in particular
that we do not assume that the brachistochrone must be a graph in a vertical plane
as is almost invariably the case in the existing literature. The only exceptions
to this rule that we know of are the articles of Brookfield [5] and Sussmann &
Willems [11]. Indeed, Brookfield’s proof is much shorter, but it implicitly relies
on the parametric equations of the brachistochrone (which can only be found by
using Euler-Lagrange equations as in this article). Sussmann & Willems’s proof
is not elementary (it relies on a maximum principle in optimal control theory;
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besides, most of the proof is “left to the reader”), by contrast to that of the present
article.

Otherwise, the existing literature provides several different proofs for the ex-
istence and uniqueness of the brachistochrone, i.e., that do not rely on the Euler-
Lagrange equations, but under the a priori assumption that the brachistochrone
is a graph in the vertical plane containing the points P0 and P1. Such proofs are
achieved, e.g., by convex optimization as in Kosmol [9] and Troutman [12] (see
also Ball [2]), thanks to a change of the unknown function defining the graph
of functions representing the curves; or by using the theory of parametric inte-
grals as in Cesari [6]; or by a clever choice of the unknown function combined
with Cauchy-Schwarz inequality as in Hrusa & Troutman [8], but this proof only
applies under an additional assumption ensuring that the brachistochrone is con-
tained in the first half of the cycloid (the above list is by no means exhaustive)

For completeness, these different approaches are briefly reviewed in Section 4.

2 Mathematical formulation of the brachistochrone

problem; cf. Fig. 1

Let ei, 1≤ i≤ 3, denote three mutually orthogonal unit vectors of the Euclidean
space E

3, chosen in such a way that the “horizontal plane” is that spanned by the
vectors e1 and e3, while the “downward vertical direction” is that of the vector e2.
Without loss of generality, we will assume that the point P0 is the origin of E

3 and
that the point P1 is a point with positive abscissa in the “vertical plane” spanned
by the vectors e1 and e2, i.e., that

P0=(0,0,0) and P1=(x1,y1,0) for some constants x1>0 and y1≥0.

In what follows, the notation E
3, a·b, and |a| :=

√
a·a, where a,b ∈ E

3, re-
spectively designate the three-dimensional Euclidean space, the Euclidean inner
product, and the Euclidean norm, in E

3. The notation ′ and ′′ respectively desig-
nate the derivative and the second derivative of functions or vector fields of one
variable.

Consider a material point of mass m that slides without friction along a curve
v=(vi)

3
i=1 :[θ0,θ1]→R

3 joining two points P0 to P1 in E
3, parameterized by means

of a parameter θ varying in some interval [θ0,θ1] with θ0<θ1. We will assume that

v∈C2
(
[θ0,θ1];E

3
)
, v′(θ0)=0, |v′(θ)|=

(
3

∑
i=1

|v′i(θ)|2
) 1

2

>0, θ0< θ< θ1,
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the last condition ensuring that a non-zero tangent vector is well-defined along
the curve, except possibly at its end-points. It will be convenient to identify the
curve with the image v([θ0,θ1]) in E

3 of the interval [θ0,θ1] under the mapping v,
i.e., the set {∑

3
i=1vi(θ)ei ∈E

3;θ0≤ θ≤ θ1}.
During its movement along the curve, the position of the material point at any

time t∈ [0,T], where T> 0 is the time it takes for the material point to reach the
point P1, is of the form

P(t)=
(

Pi(t)
)3

i=1
=v
(
χ(t)

)
, 0≤ t≤T,

where χ(t) designates the value of the parameter θ ∈ [θ0,θ1] at the time t∈ [0,T].
Assume that

χ∈C2[0,T], χ(0)= θ0 , χ(T)= θ1, and χ′(t)>0 for all 0< t<T.

Because the material point is assumed to slide without friction, the law of con-

servation of energy asserts that the sum of the kinetic energy
1

2
m|P′(t)|2 and the

potential energy −mgP2(t), where g denotes the gravitational constant, is a con-
stant function of the time t∈ [0,T]. Since P′(0)=0 and v2(θ0)=0 by assumption,
it thus follows that

1

2
m
∣∣P′(t)

∣∣2=mgP2(t), 0≤ t≤T.

Since by assumption χ′(t)>0, 0< t<T, the resulting relation

∣∣P′(t)
∣∣=
∣∣v′(χ(t))χ′(t)

∣∣=
∣∣v′(χ(t))

∣∣χ′(t)=
√

2gv2(χ(t)), 0< t<T,

combined with the assumption |v′(θ)|>0, θ0< θ< θ1, implies that, necessarily,

v2(θ)>0 at each θ=χ(t), 0< t<T.

Noting that the function χ:[0,T]→[θ0,θ1] is one-to-one and onto and differentiable
with a strictly positive derivative on the open interval (0,T), and that its inverse
function χ−1 is thus differentiable on the open interval (θ0,θ1) with a derivative
given by

(χ−1)′(θ)=
1

χ′(χ−1(θ))
, θ0< θ< θ1,

we infer that

T=χ−1(θ1)−χ−1(θ0)=
∫ θ1

θ0

(
χ−1

)′
(θ)dθ

=
∫ θ1

θ0

1

χ′(χ−1(θ))
dθ=

∫ θ1

θ0

|v′(θ)|√
2gv2(θ)

dθ.
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Observe that the time T does not depend on the function χ; as expected, T only
depends on the parameterized curve v.

The brachistochrone problem consists in seeking whether the integral

J(v) :=
∫ θ1

θ0

|v′(θ)|√
2gv2(θ)

dθ=
∫ θ1

θ0

√
v′1(θ)

2+v′2(θ)
2+v′3(θ)

2

2gv2(θ)
dθ,

which thus measures the time it takes the material point to go from P0 to P1

along the parameterized curve v, attains its infimum (this integral is obviously
bounded below, by zero), and whether the minimizer is unique if it exists, when
the vector fields v=(vi)

3
i=1 vary in a specific set V of parameterized curves, called

the admissible curves, that satisfy the various conditions enumerated above, thus
accordingly defined by

V :=
{

v=(vi)
3
i=1∈C2

(
[θ0,θ1];R

3
)
; v(θ0)=(0,0,0), v(θ1)=(x1,y1,0),

∣∣v′(θ)
∣∣>0 and v2(θ)>0, θ0 < θ< θ1

}
.

In other words, we look for a parameterized curve u such that

u=(ui)
3
i=1∈V , J(u)= inf

v∈V
J(v).

If such a curve u exists and is unique, it is called the brachistochrone for joining
the point P0 to the point P1.

Note that it may very well happen that J(v)=+∞ for some elements of V . But
of course, we are only interested in those v∈V that satisfy J(v)<+∞, since the
brachistochrone that we will eventually find fortunately fulfills this condition.

An important preliminary observation is that, when it is finite, the above in-
tegral J(v) is invariant under changes of parameterizations “up to C1-diffeomor-
phisms”: this means that, if the parameter θ∈[θ0,θ1] is replaced by another param-
eter λ∈ [λ0 ,λ1] in such a way that θ=ϕ(λ), where the function ϕ : [λ0,λ1]→ [θ0,θ1]
is one-to-one, onto, and continuously differentiable over [λ0,λ1] with a derivative
satisfying ϕ′(λ)> 0 for all λ∈ [λ0,λ1], then the functions wi defined by wi(λ) :=
vi(ϕ(λ)), λ0≤λ≤λ1, satisfy

∫ λ1

λ0

√
v′1(λ)

2+v′2(λ)
2+v′3(λ)

2

2gw2(λ)
dλ=

∫ θ1

θ0

√
v′1(θ)

2+v′2(θ)
2+v′3(θ)

2

2gv2(θ)
dθ

as is immediately verified.
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In other words, the minimizing curve that we are seeking is in effect an equiv-
alence class of all its parameterizations up to C1-diffeomorphisms between the
intervals of definition of their parameters; consequently, we have the freedom to
chose any representative in the equivalence class of a minimizer. This observation
will be perfectly illustrated in the statement of the final existence and uniqueness
theorem (Theorem 3.1), where the parameter θ∈ [θ0,θ1] used for a “generic” para-
meterized curve v of the space V will be replaced by a specific parameter τ∈[0,τ1]
used for the parameterized curve u that minimizes the functional J.

3 Solution to the brachistochrone problem

We now turn to the proof of the existence and uniqueness of the brachistochrone,
which will be established in a series of lemmas (Lemma 3.1 to Lemma 3.7).

To begin with, we show that, if it exists, the brachistochrone necessarily lies
in the “vertical” plane spanned by the vectors e1 and e2 (Lemma 3.1). We then
observe that, even though some assumptions classically made in the calculus of
variations (see, e.g., the excellent textbook of Dacorogna [7]) are not satisfied by
the above mathematical formulation of the brachistochrone problem (in particu-
lar, the set V is not a vector space), Euler-Lagrange equations can still be derived
(Lemma 3.2), and that, again if it exists, the minimizer is necessarily the graph of
a uniquely defined segment of cycloid (Lemmas 3.3 to 3.5). Following the inge-
nious approach due to Benson [3], we then show that, in the special case y1 = 0
(i.e., when P1 is in the same horizontal plane as P0), an explicit lower bound
for infv∈V J(v) can be found, and furthermore that this lower bound is attained,
precisely when the admissible curve is the segment of the cycloid obtained by
means of the Euler-Lagrange equations. Together, these two results establish the
existence and uniqueness of a minimizer when y1 = 0 (Lemma 3.6). Finally, we
show how to extend the existence and uniqueness results to the case where y1>0
(Lemma 3.7), and we state the final existence and uniqueness theorem (Theo-
rem 3.1).

In Lemmas 3.1 to 3.5, the notation u = (ui)
3
i=1 ∈V designates a solution, as-

sumed to exist at this stage, to the minimization problem.

Lemma 3.1. The curve u([θ0,θ1]) lies in the plane spanned by the vectors e1 and e2, i.e.,

u3=0.

Proof. Assume on the contrary that the function u3 does not vanish on [θ0,θ1].
Since then (u1,u2, 1

2u3) also belongs to the set V and (recall that u3(θ0)=u3(θ1)=0)
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|u′
3|>0 on an interval of length >0 contained in [θ0,θ1], we have

∫ θ1

θ0

√
u′

1(θ)
2+u′

2(θ)
2+(1

2 u′
3(θ))

2

2gu2(θ)
dθ<

∫ θ1

θ0

√
u′

1(θ)
2+u′

2(θ)
2+u′

3(θ)
2

2gu2(θ)
dθ,

which contradicts that u is a solution to the minimization problem. Hence,

u3(θ)=0 for all θ0≤ θ≤ θ1.

The proof is complete.

Taking into account that u3=0, we will henceforth identify a solution u to the
minimization problem with a vector field-still denoted by u for convenience-with
only two components, u1 and u2.

Lemma 3.2. The vector field (ui)
2
i=1 satisfies the Euler-Lagrange equations associated

with the functional J, which take the form





− d

dθ

{
u′

1(θ)

|u′(θ)|
√

u2(θ)

}
=0, θ0< θ< θ1,

− d

dθ

{
u′

2(θ)

|u′(θ)|
√

u2(θ)

}
− 1

2

|u′(θ)|
(u2(θ))

3
2

=0, θ0< θ< θ1.

Proof. Define the Lagrangian L by

L(v,ξ) :=

√
ξ2

1+ξ2
2

v2

for each v=(vi)
2
i=1∈R

2 with v2>0 and ξ=(ξi)
2
i=1∈R

2.

Let a vector field ϕ=(ϕi)
2
i=1 be given, where each function ϕi belongs to the

space C1[θ0,θ1] and has a compact support in the open interval (θ0,θ1). Then

a simple compactness-continuity argument shows that there exists ε0(ϕ)>0 such

that u2(θ)+εϕ2(θ)>0 and |(u+εϕ)′(θ)|>0 for all θ0<θ<θ1 and for all |ε|≤ε0(ϕ),
i.e., such that

(u+εϕ)∈V for all |ε|≤ ε0(ϕ).

By construction, the function

f : ε∈
(
−ε0(ϕ),ε0(ϕ)

)
→ f (ε) := J(u+εϕ),
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which is easily seen to be differentiable, has a minimum at ε=0. Therefore,

f ′(0)=0.

This implies that the classical argument used when a functional is to be mini-

mized over a vector space (in which case ε varies in R instead of only in an inter-

val) can be re-used verbatim from this point on; for this reason, it is only briefly

sketched below (for details see, e.g., Dacorogna [7, Chapter 2]). Noting that

f ′(0)=
1√
2g

∫ θ1

θ0

2

∑
i=1

{
ϕ′

i(θ)
∂L
∂ξi

(
u(θ),u′(θ)

)
+ϕi(θ)

∂L
∂vi

(
u(θ),u′(θ)

)}
dθ,

we thus infer by integrating by parts that

∫ θ1

θ0

2

∑
i=1

{
− d

dθ

{
∂L
∂ξi

(
u(θ),u′(θ)

)}
+

∂L
∂vi

(
u(θ),u′(θ)

)}
ϕi(θ)dθ=0

for all functions ϕi ∈C1[θ0,θ1], i=1,2, with compact support in (θ0,θ1).
The fundamental lemma of the calculus of variations therefore implies that

the following Euler-Lagrange equations hold:




− d

dθ

{
∂L
∂ξ1

(
u(θ),u′(θ)

)}
+

∂L
∂v1

(
u(θ),u′(θ)

)
=0, θ0< θ< θ1,

− d

dθ

{
∂L
∂ξ2

(
u(θ),u′(θ)

)}
+

∂L
∂v2

(
u(θ),u′(θ)

)
=0, θ0< θ< θ1.

The conclusion then follows by using the specific form of the Lagrangian L.

Lemma 3.3. The first Euler-Lagrange equation implies that the vector field (ui)
2
i=1 is the

graph of a function u : [0,x1]→R in the following sense: given any x∈ [0,x1], there exists

a unique θ∈ [θ0,θ1] such that

(
u1(θ),u2(θ)

)
=
(

x,u(x)
)
.

Besides, the function u is in the space C[0,x1]∩C2(0,x1), and necessarily satisfies

(
1+u′(x)2

)
u(x)=2R, 0< x< x1,

u(0)=0, u(x1)=y1

for some constant R unknown at this stage that satisfies either R≥ y1
2 if y1 >0 or R>0

if y1=0.
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Proof. The first Euler-Lagrange equation obviously implies that there exists a con-

stant C such that
u′

1(θ)

|u′(θ)|
√

u2(θ)
=C, θ0< θ< θ1.

If C≤0, then u′
1(θ)≤0, θ0 < θ< θ1, and thus

∫ θ1

θ0

u′
1(θ)dθ=u1(θ1)−u1(θ0)= x1≤0,

in contradiction with the assumption x1>0. Consequently, the only possibility is

that C>0, which implies that

u′
1(θ)>0, θ0< θ< θ1.

Besides,

C≤ 1√
supθ0≤θ≤θ1

u2(θ)
≤ 1√

y1
if y1=u2(θ1)>0.

The function

u1 : θ∈ [θ0 ,θ1]→u1(θ)=
∫ θ

θ0

u′
1(ψ)dψ,

which belongs to the space C2[θ0,θ1] (since u∈V ), is thus a bijection from [θ0,θ1]
onto [0,x1] since it is strictly increasing; besides, its inverse function u−1

1 belongs

to the space C[0,x1]∩C2(0,x1), with a derivative given by

(
u−1

1

)′
(x)=

1

u′
1(θ)

at each x=u1(θ), θ0< θ< θ1.

Then the function u : [0,x1]→R defined by

u(x) :=u2

(
u−1

1 (x)
)

at each x∈ [0,x1],

which belongs to the space C[0,x1]∩C2(0,x1), satisfies

u(x)
(
1+u′(x)2

)
=u2(θ)

(
1+

(
u′

2(θ)
1

u′
1(θ)

)2
)
=

u2(θ)
(
u′

1(θ)
2+u′

2(θ)
2
)

u′
1(θ)

2

=2R :=
1

C2
at each x=u1(θ), θ0< θ< θ1,

and

u(0)=u2(θ0)=0, u(x1)=u2(θ1)=y1.

The proof is complete.
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Lemma 3.4. The second Euler-Lagrange equation implies that the derivative u′ of the

function u ∈ C[0,x1]∩C2(0,x1) found in Lemma 3.3 has at most one zero in the open

interval (0,x1). Besides,

• If u′ has no zero in (0,x1), then y1>0 and u′(x)>0 at each 0< x< x1.

• If u′ has a zero x̃∈ (0,x1), then u′(x)>0 at each 0< x< x̃ and u′(x)<0 at each

x̃< x< x1.

Proof. The second Euler-Lagrange equation, viz.,

d

dθ

{
u′

2(θ)

|u′(θ)|
√

u2(θ)

}
=−1

2

|u′(θ)|
(u2(θ))

3
2

, θ0< θ< θ1,

obviously implies that, as a strictly decreasing function, the function θ∈(θ0 ,θ1)→
u′

2(θ)

|u′(θ)|
√

u2(θ)
has at most one zero; consequently, the function θ ∈ (θ0,θ1)→ u′

2(θ)

has also at most one zero.

Since u′
1(θ) 6=0 and u′(x)= u′

2(θ)
u′

1(θ)
at each x=u1(θ), θ0< θ< θ1 (cf. Lemma 3.3),

the function x∈ (0,x1)→u′(x) has likewise at most one zero.

If u′ has no zero in (0,x1), then y1>0 (to see this, use Rolle’s theorem); there-

fore, u′(x)> 0 at each 0 < x < x1 since the function u is in this case necessarily

increasing on the interval [0,x1].

If u′(x̃) = 0 for some x̃ ∈ (0,x1), then u′(x) is necessarily > 0 for x > 0 small

enough since u(0)=u2(θ0)= 0 and u(x)=u2(θ)> 0 at each x=u1(θ), θ0 < θ < θ1

(by definition of the set V ); consequently, u′(x)>0 at each 0< x< x̃ and u′(x)<0

at each x̃< x< x1.

Lemma 3.5. The function u∈C[0,x1]∩C2(0,x1) found in Lemma 3.2 is uniquely defined,

and is given in parametric form by

x=R(τ−sinτ), 0≤τ≤τ1,

u(x)=R(1−cosτ), 0≤τ≤τ1,

where (R,τ1) is the unique solution to the nonlinear system

R(τ1−sinτ1)= x1,

R(1−cosτ1)=y1.
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Proof. It was shown in Lemma 3.3 that the function u∈C[0,x1]∩C2(0,x1) neces-

sarily satisfies
(
1+u′(x)2

)
u(x)=2R, 0< x< x1,

u(0)=0, u(x1)=y1,

where the unknown constant R satisfies




R≥ y1

2
, if y1>0,

R>0, if y1=0.

In particular then,

0<u(x)≤2R, 0< x< x1.

Assume first that the derivative u′ does not vanish on the open interval (0,x1).
Since y1 >0 and u′(x)>0 for all 0< x< x1 in this case (Lemma 3.4), the function

u∈C[0,x1]∩C2(0,x1) is a bijection from [0,x1] onto [0,y1], its inverse function v :=
u−1 belongs to the space C[0,y1]∩C2(0,y1), and its derivative v′ satisfies

v′(y)=
1

u′(x)
>0 at each y=u(x)∈ (0,y1).

Consequently, (
1+

1

v′(y)2

)
y=2R, 0<y<y1,

or equivalently, (
1+v′(y)2

)
y=2R

(
v′(y)

)2
, 0<y<y1.

That the new variable y=u(x) varies in the interval [0,y1] and that y1 ≤ 2R then

suggest a change of variable, by means of the bijection

τ∈ [0,τ1]→y=R(1−cosτ) at each 0≤y≤y1,

where, for any given constant R ≥ y1
2 , the angle τ1 is uniquely defined by the

relations

0<τ1≤π, R(1−cosτ1)=y1.

Note that τ1 is a function of the unknown constant R at this stage. Together, the

relations v′(y)2=
y

2R−y and v′(y)>0, 0<y<y1, imply that

v′(y)=
√

y

2R−y
=

√
1−cosτ

1+cosτ
at each y=R(1−cosτ), 0<y<y1.



226 P. G. Ciarlet and C. Mardare / Commun. Math. Anal. Appl., 1 (2022), pp. 213-240

Let the function f : [0,τ1]→R be defined by

f (τ) :=v
(

R(1−cosτ)
)
=v(y)= x, 0≤τ≤τ1,

so that f (0)=0 and, for each 0<τ<τ1,

f ′(τ)=(Rsinτ)v′
(

R(1−cosτ)
)
=Rsinτ

√
1−cosτ

1+cosτ
=R(1−cosτ).

Consequently,

x=R(τ−sinτ), 0≤τ≤τ1.

In particular then, R(τ1−sinτ1) = x1, which, together with the relation R(1−
cosτ1)= y1, uniquely determines the constants R≥ y1

2 and τ1 ∈ (0,π] in this case;

besides,

τ1<π implies x1<πR,

τ1=π implies x1=πR.

Note that the case where u′(x1)=0, and thus u(x1)=2R, is covered by the above

analysis: it corresponds to 2R=y1.

Assume next that the derivative u′ vanishes on the open interval (0,x1). We

already know that the restriction of the function u to the interval [0,πR] is given

in parametric form by

x=R(τ−sinτ), u(x)=R(1−cosτ), 0≤τ≤π

for some constant R>0 that satisfies R≥ y1
2 .

Since then u′(πR)= 0, and the derivative u′ vanishes at most once in (0,x1)
(Lemma 3.4), it follows, again by Lemma 3.4, that u′(x)< 0 for all πR< x < x1.

So we can re-use an argument similar to the one used in the first case for finding

the parametric representation of the restriction of the function u to the interval

[πR,x1], by means of the change of variable

τ∈ [π,τ1]→y=R(1−cosτ) at each 2R≥y≥y1,

where, for any given constant R > 0 such that R ≥ y1
2 , the angle τ1 is this time

uniquely defined by the relations

π<τ1≤2π, R(1−cosτ1)=y1.
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Together, the relations v′(y)2 =
y

2R−y and v′(y) = 1
u′(x) < 0, y1 < y < 2R, where

v ∈ C[y1,2R]∩C2(y1,2R) now denotes the inverse function of the function u ∈
C[πR,x1]∩C2(πR,x1), imply that

v′(y)=−
√

y

2R−y
=−

√
1−cosτ

1+cosτ
at each y=R(1−cosτ), y1<y<2R.

Let the function f : [π,τ1]→R be defined by

f (τ) :=v
(

R(1−cosτ)
)
=v(y)= x, π≤τ≤τ1,

so that

f ′(τ)=(Rsinτ)v′
(

R(1−cosτ)
)
=R

(
−
√

sin2τ
)(

−
√

1−cosτ

1+cosτ

)

=R(1−cosτ), π<τ<τ1,

and f (π)=v(2R)=πR. Consequently,

x=R(τ−sinτ), π≤τ≤τ1.

In particular then, R(τ1−sinτ1) = x1, which, together with the relation R(1−
cosτ1)=y1, uniquely determines the constants R>0 and τ1∈ (π,2π] in this case;

besides,

τ1>π implies x1>πR.

The conclusion follows by taking into account that, given any x1 >0 and any

y1≥0, the nonlinear system

R(τ1−sinτ1)= x1,

R(1−cosτ1)=y1

has a unique solution (R,τ1)∈ (0,∞)×(0,2π] (this is easily seen, as hinted at in

Fig. 2).

Lemma 3.6. The brachistochrone problem has one and only one solution when y1=0.

Proof. The uniqueness has been established in Lemma 3.5. The existence when

y1 = 0 is established below by means of a clever argument due to Benson [3],

repeated here for the sake of completeness.
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Figure 2: This figure suggests how to show that, given two constants x1 >0 and y1 ≥0, there exists
one and only one solution (R,τ1) to the nonlinear system

R(τ1−sinτ1)=x1,
R(1−cosτ1)=y1,

R>0, 0<τ1≤2π.
More specifically, let C denote the “first arch” of the cycloid with 0 as a cusp and with one as the radius
of the rolling circle, and let P̃1 denote the intersection of C with the straight line passing through the
points 0 and P1=(x1,y1) (such a point P̃1 is uniquely defined, because the curve C is strictly concave
on the interval [0,2π]; recall that the “y-axis” is pointing downward). Then the radius R and angle τ1
are those corresponding to the segment of the cycloid obtained from C by means of a homothety with
0 as its center and |P1|/|P̃1| as its ratio. Note that there are three distinct cases if y1>0 (depending
on how x1 compares with π

2 y1), and one case if y1=0.
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Given any vector field v=(vi)
3
i=1∈V such that v3=0 on [θ0,θ1] and J(v)<∞,

let

M := sup
θ0≤θ≤θ1

v2(θ)=v2(θ̃)>0 for some θ0< θ̃< θ1.

Cauchy-Schwarz’ inequality implies that, for each θ0< θ< θ1,

√
v′1(θ)

2+v′2(θ)
2

√
1

v2(θ)
≥
∣∣v′1(θ)

∣∣ 1√
M

+
∣∣v′2(θ)

∣∣
√

1

v2(θ)
− 1

M
.

Consequently,

∫ θ1

θ0

√
v′1(θ)

2+v′2(θ)
2

v2(θ)
dθ≥ 1√

M

∫ θ1

θ0

∣∣v′1(θ)
∣∣dθ+

∫ θ1

θ0

∣∣v′2(θ)
∣∣
√

1

v2(θ)
− 1

M
dθ.

Besides, the integrals in the right-hand side satisfy

∫ θ1

θ0

∣∣v′1(θ)
∣∣dθ≥

∣∣∣∣
∫ θ1

θ0

v′1(θ)dθ

∣∣∣∣= |v1(θ1)−v1(θ0)|= x1,

∫ θ1

θ0

∣∣v′2(θ)
∣∣
√

1

v2(θ)
− 1

M
dθ

≥
∫ θ̃

θ0

v′2(θ)

√
1

v2(θ)
− 1

M
dθ−

∫ θ1

θ̃
v′2(θ)

√
1

v2(θ)
− 1

M
dθ.

Let

g(v) :=

√
1

v
− 1

M
, G(v) :=

∫ v

M
g(ρ)dρ at each v∈ (0,M].

Then, given any θ̃0 such that θ0< θ̃0< θ̃, we have

∫ θ̃

θ̃0

v′2(θ)

√
1

v2(θ)
− 1

M
dθ

=
∫ θ̃

θ̃0

g
(
v2(θ)

)
v′2(θ)dθ=

∫ θ̃

θ̃0

(
G(v2(θ))

)′
dθ,

=G
(
v2(θ̃)

)
−G

(
v2(θ̃0)

)
=
∫ M

v2(θ̃0)
g(ρ)dρ
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thanks to the fundamental formula of integral calculus applied to a function of

class C1 on a compact interval.

Likewise, given any θ̃1 such that θ̃< θ̃1< θ1, we have

−
∫ θ̃1

θ̃
v′2(θ)

√
1

v2(θ)
− 1

M
dθ

=−
∫ θ̃1

θ̃

(
G(v2(θ))

)′
dθ=G

(
v2(θ̃)

)
−G

(
v2(θ̃1)

)
=
∫ M

v2(θ̃1)
g(ρ)dρ.

Consequently, letting θ̃0 approach θ0 and θ̃1 approach θ1 gives

∫ θ̃

θ0

v′2(θ)

√
1

v2(θ)
− 1

M
dθ−

∫ θ1

θ̃
v′2(θ)

√
1

v2(θ)
− 1

M
dθ

=2
∫ M

0

√
1

ρ
− 1

M
dρ=π

√
M,

where the last integral is computed as follows:

∫ 1

0

√
1−σ

σ
dσ=−

∫ ∞

0
τd

(
1

1+τ2

)
=

π

2
.

Finally then,

∫ θ1

θ0

√
v′1(θ)

2+v′2(θ)
2

v2(θ)
dθ

≥ 1√
M

x1+π
√

M≥ inf
M>0

(
1√
M

x1+π
√

M

)
=2

√
πx1.

Let

u1(τ) :=
x1

2π
(τ−sinτ), u2(τ) :=

x1

2π
(1−cosτ), τ∈ [0,2π]

be the parameterized curve given by Lemma 3.5 (where τ1=2π and R= x1
2π since

y1=0). Then

∫ 2π

0

√
u′

1(τ)
2+u′

2(τ)
2

u2(τ)
dτ=2

√
πx1= inf

v∈V

∫ θ1

θ0

√
v′1(θ)

2+v′2(θ)
2

√
v2(θ)

dθ,



P. G. Ciarlet and C. Mardare / Commun. Math. Anal. Appl., 1 (2022), pp. 213-240 231

which establishes the existence of a minimizer as a segment of the cycloid with

two cusps, one at (0,0) and one at (x1,0) (as was noted in Section 2, we have the

freedom to choose whichever parametrization we please for the curves v([θ0,θ1]),
v∈V ). Thus the existence of the brachistochrone is established when y1=0.

Note that this minimizer u=(ui)
3
i=1 indeed belongs to the space V , since u3=0,

its components u1 and u2 are functions of class C∞ on [θ0,θ1],

u(0)=(0,0,0), u(2π)=(x1 ,0,0),

and

|u′(θ)|= x1√
2π

√
1−cosθ>0, u2(θ)=

x1

2π
(1−cosθ)>0, 0< θ<2π.

The proof is complete.

Lemma 3.7. The brachistochrone problem has one and only one solution when y1>0.

Proof. The uniqueness has been established in Lemma 3.5.

Given a point P1=(x1,y1,0) with x1>0 and y1>0, let R>0 be determined by

solving the nonlinear system found in Lemma 3.5, and let C denote the segment

of the cycloid joining the points P0 and (2πR,0); cf. Fig. 3. Then we claim that

the segment C1 of the cycloid C that joins the point P0 to P1 is a solution to the

Figure 3: Existence of a minimizer when y1>0: Given a point P1=(x1,y1) with y1>0, let P̃1 denote
the intersection of the line supporting the segment [P0,P1] with the segment of the cycloid with one as
the radius of the rolling circle and with only two cusps, at x=0 and at x=2π (dashed curve passing by

P̃1), let C1 denote the segment of the cycloid homothetic to the segment of this cycloid that joins P0

to P̃1, with P0 as the center and |P1|/|P̃1| as the ratio of the homothety, and let R denote the radius
of the rolling circle that generates the arc C1. Then C1 is the brachistochrone between the points P0
and P1 (the proof of this assertion is provided in Lemma 3.7).
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minimization problem infv∈V J(v), thus establishing the existence of the brachis-

tochrone when y1>0.

Assume on the contrary that there exists a parameterized curve C̃1 of class C2

(cf. Fig. 3) joining P0 and P1 such that (with self-explanatory notations)

∫ θ1

θ0

√
ũ′

1(θ)
2+ ũ′

2(θ)
2

ũ2(θ)
dθ<

∫ θ1

θ0

√
u′

1(θ)
2+u′

2(θ)
2

u2(θ)
dθ,

where the functions u1 and u2 appearing in the right-hand side are those defining

the curve C1. In other words, the time spent by the material point for going from

P0 to P1 along C̃1 is strictly shorter than that along C1. Besides, there is a nonzero

tangent vector along C̃1 except perhaps at the points P0 and P1 (by definition of

the set V).
By suitably modifying the curve C̃1 together with the segment C−C1 of cy-

cloid in a small enough neighborhood of the point P1, so that the time for going

from a point Q̃1 ∈ C̃1 to a point Q1 ∈C in this neighborhood along the modified

curve is small enough (see the dashed line in Fig. 3), a parameterized curve of

class C2 could thus be constructed, along which the time spent for going from

P0 to (2πR,0) would be strictly less than the time for going from P0 to (2πR,0)
along C, thus contradicting that the time spent for going from P0 to (2πR,0) is

the shortest (which has been established in Lemma 3.6).

Together, the results established in Lemmas 3.1 to 3.7 constitute the proof of
the following theorem. Recall that g>0 denotes the gravitational constant.

Theorem 3.1 (Existence and uniqueness of the brachistochrone). Given constants

θ0< θ1, x1>0, and y1≥0, define the set

V :=
{

v=(vi)
3
i=1∈C2

(
[θ0,θ1];R

3
)
; v(θ0)=(0,0,0), v(θ1)=(x1,y1,0),

|v′(θ)|>0 and v2(θ)>0, θ0 < θ< θ1

}
,

and the functional

J(v) :=
∫ θ1

θ0

√
v′1(θ)

2+v′2(θ)
2+v′3(θ)

2

2gv2(θ)
dθ.

Then the problem:

find u=(ui)
3
i=1∈V such that J(u)= inf

v∈V
J(v)
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has one and only one solution u up to C1-diffeomorphisms (cf. Section 2), called the

brachistochrone between the points (0,0,0) and (x1,y1,0), which is the segment of the

cycloid (Fig. 4) given (for instance) in parametric form by

u1(τ)=R(τ−sinτ)
u2(τ)=R(1−cosτ)
u3(τ)=0



 , 0≤τ≤τ1,

where the constants R = R(x1,y1) and τ1 = τ1(x1,y1) are the unique solutions of the

nonlinear system:

R(τ1−sinτ1)= x1,

R(1−cosτ1)=y1,

R>0, 0<τ1≤2π,

(note that the change of parameters is given here by τ= θ−θ0
θ1−θ0

τ1).

Figure 4: The brachistochrone is a segment of cycloid, with either one cusp if y1 < 0 in which case
τ1 < 2π, or with two cusps if y1 = 0 in which case τ1 = 2π. The geometric interpretations of the
parameter τ as an angle, of the constant R as the radius of a circle rolling without sliding along the
axis supporting e1, and of the angle τ1, are illustrated on the figure.

4 Final remarks

In this article, we showed that the classical method of the calculus of variations,
based on the Euler-Lagrange equations, for finding the brachistochrone joining
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two points P0 and P1 in R
3 can be rigorously justified in the general case, i.e.,

where the two points are joined by parameterized curves, by contrast with the
particular case most often used in the literature whereby the points are a priori
assumed to be joined by graphs of functions in the “vertical plane”. Besides, our
proof is deductive, in the sense that the solution is found by solving the Euler-
Lagrange equations, and not just guessed to be the segment of cycloid joining
the two given points P0 and P1 without explaining how the cycloid has been
identified as a potential solution in the first place.

For the sake of completeness, we conclude by outlining alternative proofs to
the brachistochrone problem found in the literature. These proofs fall into two
categories, depending on whether they are given for the brachistochrone problem
in the general case of parameterized curves in space (as in this paper), or to the
brachistochrone problem in the special case where the admissible curves are a
priori assumed to be graphs of functions in the vertical plane containing the two
points P0 and P1. This means that the curves are assumed to be given by

{
(x,y,z)∈R

3; z=0 and y= f (x), x∈ [0,x1]
}

,

where f : [0,x1]→ [0,∞) are sufficiently smooth functions such that f (0)= 0 and
f (x1)=y1.

For the brachistochrone problem in the general case, the authors are aware
of two other proofs: one based on an ad-hoc change of variable (due to Brook-
field [5]), and one based on optimal control theory and Hamiltonians (due to
Sussmann & Willems [11]).

For the brachistochrone problem in the special case where the admissible
curves are a priori assumed to be graphs of functions in the vertical plane contain-
ing the two points (which is substantially easier than the problem in the general
case; it corresponds to Lemmas 3.6 and 3.7 in this paper), there are many alter-
native proofs: e.g., Kosmol [9] and Troutman [12], who independently proposed
a change of unknown that transforms the brachistochrone problem into a convex
optimisation problem for the new unknown; or Cesari [6] who solves the brachis-
tochrone problem as a particular case of a general theorem about “parametric in-
tegrals” defined in ibid.; or Hrusa & Troutman [8], who solve the brachistochrone
problem in a particular case where the solution is contained in the first half of the
cycloid; or, finally, Balder [1], who solves the brachistochrone problem by using
a method similar to the one used in Lemma 3.6 due to Benson (Balder’s method
applies for all y1 ≥ 0, but under the assumption that the curve is a graph, while
Benson’s method applies for parameterized curves, but only for y1=0).
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4.1 Brookfield’s proof

Brookfield’s proof for the brachistochrone problem (cf. [5]) is based on an inge-
nious (although somewhat mysterious!) change of coordinates in the set {(x,y)∈
R

2; x>0,y≥0}, whereby the admissible curves joining the points P0=(0,0,0) and
P1=(x1,y1,0) are defined for each t∈ [0,T] by

x(t) :=ρ(t)σ(t)−ρ(t)2 sin

(
σ(t)

ρ(t)

)
,

y(t) :=ρ(t)2−ρ(t)2 cos

(
σ(t)

ρ(t)

)
,

z(t)=0,

where T > 0 is a real parameter and the functions ρ : [0,T]→R and σ : [0,T]→R

satisfy the following assumptions:

ρ∈C1 [0,T], ρ(t)>0 for all 0≤ t≤T,

σ∈C1[0,T], 0<σ(t)<2πρ(t) for all 0< t<T, σ(0)=0,
(

x(0),y(0)
)
=(0,0),

(
x(T),y(T)

)
=(x1,y1).

Then the law of conservation of energy implies that T equals the time needed for
a material point to go from P0 to P1 if, at each t∈ [0,T],

(
g−σ′(t)2

)
y(t)=16ρ2(t)

(
sin

σ(t)

2ρ(t)
− σ(t)

2ρ(t)
cos

σ(t)

2ρ(t)

)2(
ρ′(t)

)2
.

Since the right-hand side is obviously non-negative, it follows that

T≥ σ(T)√
g

with equality if and only if

ρ′(t)=0, σ′(t)=
√

g for all 0≤ t≤T.

This also implies that the shortest time T needed for joining the points P0 to P1 is
given by T=τ1

√
R/g, where (R,τ1)∈(0,∞)×(0,2π] is the unique solution of the

nonlinear system

R(τ1−sinτ1)= x1,

R(1−cosτ1)=y1,
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and that the corresponding brachistochrone is uniquely defined as a segment of
the cycloid given in parametric form at each 0≤ t≤T by

x(t)=R

(
t

√
g

R
−sin

(
t

√
g

R

))
,

y(t)=R

(
1−cos

(
t

√
g

R

))
.

4.2 Sussmann & Willems’ proof

Sussmann & Willems’ proof for the brachistochrone problem (cf. [11]) is based
on a maximum principle in optimal control theory. In this approach, the brachis-
tochrone problem is recast into the problem of minimising the functional J(T,u,v)
:=T over the set of all triples (T,u,v), where the real number T>0 and the vector
fields u=(u1,u2):[0,T]→R

2 and v=(v1,v2):[0,T]→R
2 are subject to the constrains

u1(t)
2+u2(t)

2=1, v′(t)=u(t)
√

2g|v2(t)| for all t∈ [0,T],

v(0)=(0,0), v(T)=(x1,y1).

Then the maximum principle alluded to above states that any solution (T̂,û,v̂)
to the above minimisation problem necessarily satisfies the following conditions:

• First, there exists a vector field p̂=(p̂1, p̂2) : [0,T̂]→R
2 and a constant Ĉ≥0

such that (
p̂(t),Ĉ

)
6=((0,0),0) for all t∈ [0,T̂].

• Second,

v̂′(t)=
∂H

∂p

(
v̂(t),û(t), p̂(t),Ĉ

)
, t∈ [0,T̂],

−p̂′(t)=
∂H

∂v

(
v̂(t),û(t), p̂(t),Ĉ

)
, t∈ [0,T̂],

where

H
(
(v,u,p,C)

)
:=(p ·u)

√
2g|v2|−C.

• Third, for each t∈ [0,T̂],

H
(
v̂(t),û(t), p̂(t),Ĉ

)
= max

a2+b2=1
H
(
v̂(t),(a,b), p̂(t),Ĉ

)
.
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• Fourth, for each t∈ [0,T̂],

H
(
v̂(t),û(t), p̂(t),Ĉ

)
=0.

One then deduces from the above necessary conditions that the curve t∈ [0,T̂]→
v̂(t)∈R

2 is the graph of a function f : [0,x1]→R, where f satisfies the differential
equation

1+ f ′(t)2+2 f (t) f ′′(t)=0, t∈ [0,T̂],

then that
v̂2(t)>0 for all t∈ (0,T̂).

Noting that the differential equation above coincides with the Euler-Lagrange
equation associated to the brachistochrone problem in the special case where the
curves are assumed to be graphs of functions, one concludes that the segment of
cycloid joining the points P0 and P1 is a solution to the brachistochrone problem.

4.3 Kosmol & Troutman’s proof

Kosmol [9] and Troutman [12] independently solved the brachistochrone problem
in the special case of curves that can be represented as graphs of functions by
using a change of unknown that transforms the brachistochrone problem into
a convex optimisation problem for the new unknown.

More specifically, assume that the curves are defined by

Γ f :=
{
(x,y,z)∈R

3; z=0 and y= f (x), x∈ [0,x1]
}

,

where f : [0,x1]→ [0,∞) are sufficiently smooth functions such that f (0)= 0 and
f (x1)= y1. Then the time needed for a material point to go from P0 to P1 along
Γ f is given by

T( f ) :=
1√
2g

∫ x1

0

√
1+ f ′(x)2

f (x)
dx∈ [0,+∞].

Performing the change of unknown

f (x)=
√

φ(x) for all x∈ [0,x1]

in the above integral then shows that

T( f )= I(φ) :=
1√
2g

∫ x1

0

√
4φ′(x)2+

1

φ(x)2
dx.
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Since the function φ→ I(φ) is strictly convex, the brachistochrone problem in the
special case where the curves are graphs of functions admits at most one solution.

That this problem does have a solution can be established in at least three
ways, each one having its advantages and disadvantages.

The most natural way is to use the theory of convex optimisation, in which
case the function φ must be chosen to belong to the space of absolutely continuous
functions on the closed interval [0,x1]. Then one has to prove that the problem
of minimising the functional f → T( f ) under the assumption that f is an abso-
lutely continuous function over [0,x1] is equivalent to the problem of minimising
the functional φ→ I(φ) under the assumption that φ is an absolutely continuous
function over [0,x1], in spite of the fact the change of unknown does not preserve
the absolute continuity of the functions; see e.g. Kosmol [9] or Ball [2].

Another way is to derive the Euler-Lagrange equation associated with the
above minimisation problem, then to prove that the segment of cycloid joining
the points (0,0) and (x1,y1) satisfies this Euler-Lagrange equation.

Yet another way, due to Balder [1], is to directly prove that the segment of
cycloid joining the points (0,0) and (x1,y1) minimises the functional I, by noting
that, for all sufficiently regular functions φ,ψ : [0,x1]→R,

I(φ)≥ I(ψ)+K(φ,ψ),

where

K(φ,ψ) :=
1√
2g

∫ x1

0

ψ(x)−2−4ψ′(x)2+4ψ′(x)φ(x)−ψ(x)−3φ(x)√
4ψ′(x)2+ψ(x)−2

dx,

and that, for all sufficiently regular functions φ : [0,x1]→R,

K(φ,ψ̂)=0,

where ψ̂ : [0,x1]→R is the function with the property that the curve

{(
x,ψ̂(x)2

)
∈R

2; x∈ [0,x1]
}

is the segment of cycloid joining (0,0) to (x1,y1).
The key to proving the inequality I(φ)≥ I(ψ)+K(φ,ψ) (mentioned above) is

the following variant of the Cauchy-Schwarz inequality: For all a>0, b∈R, α>0
and β∈R,

√
a2+b2

√
α2+β2≥ aα+bβ− a

α
(a−α)2,
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or equivalently,
√

α2+β2≥
√

a2+b2+
a2−b2+bβ− a3

α√
a2+b2

with the inequality becoming an equality if and only if (a,b)=(α,β).

4.4 Hrusa & Troutman’s proof

Hrusa & Troutman solved the brachistochrone problem (cf. [8]) in the special case

where 0< x1 <
2y1
π , in which case the segment of cycloid joining the points (0,0)

and (x1,y1) can be represented by the graph of a function y∈ [0,y1]→ x= f̂ (y)∈
[0,x1], and for curves that can also be represented as graph of a functions

y∈ [0,y1]→ x= f (y)∈ [0,x1 ].

In this case, the time needed for a material point to go from (0,0) and (x1,y1)
along the graph of the function f : [0,y1]→ [0,x1] is given by

T( f ) :=
1√
2g

∫ y1

0

√
1+ f ′(y)2

y
dy.

Since the function f → T( f ) is strictly convex, the brachistochrone problem
in this special case can be solved by using convex optimisation theory, as in the
proof of Kosmol [9] and Troutman [12] described above.
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