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Abstract. For every surface, we find the minimum number k such that every
non-bipartite graph that is embeddable in that surface is not k-extendable. In
particular, we construct a family of 3-extendable graphs which we call bow-
tie graphs. This confirms the existence of an infinite number of 3-extendable
non-bipartite graphs that are embeddable in the Klein bottle.
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1 Introduction

A matching M of a graph G is said to be extendable if G has a perfect matching
containing M . A graph is k-extendable if it has a matching consisting of k edges
and every matching consisting of k edges is extendable, where

1≤k≤(|V (G)|−2)/2.

Much attention to the theory of matching extension has been paid since it was intro-
duced by Plummer [17] in 1980. We recommend Lovász and Plummer’s book [11] for
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an excellent survey of the matching theory, and [21,27] for recent progress. Interests
in the matching extensions of graphs embedded on surfaces began with the charming
result [19] that no planar graph is 3-extendable. We refer the reader to Gross and
Tucker’s book [5] for basic notions on topological graph theory; see also [2].

Plummer [18] considered the problem of determining the minimum integer k such
that every Σ-embeddable graph is not k-extendable. Based on some partial results
of Plummer, Dean [3] found the complete answer to this problem.

Theorem 1.1 (Dean, Plummer). Let Σ be a surface of characteristic χ. Let µ(Σ)
be the minimum integer k such that every Σ-embeddable graph is not k-extendable.
Then we have

µ(Σ)=

{
3, if χ=2,

2+b
√

4−2χc, otherwise.
(1.1)

Its proof made a heavy use of the Euler contribution technique, which dates back
to Lebesgue [8], developed by Ore [14], and flourished by Ore and Plummer [15].

In a previous paper [12], we extended Theorem 1.1 by finding the minimum
integer k such that there is no Σ-embeddable (n,k)-graphs, where an (n,k)-graph is
a graph whose subgraph obtained by removing any n vertices is k-extendable. This
paper continues the study of this embeddable-extendable type of problems. We dig
a little deeper by concentrating on non-bipartite graphs. Here is our main result.

Theorem 1.2. Let Σ be a surface of characteristic χ. Let µ′(Σ) to be the minimum
integer k such that every Σ-embeddable non-bipartite graph is not k-extendable. Then
we have

µ′(Σ)=


4, if χ∈{−1,0},
3, if χ=2,

b(7+
√

49−24χ)/4c, otherwise.

(1.2)

Non-bipartite graphs differ from bipartite graphs in many aspects, even if we are
concerned with only matching problems. For instance, König theorem states that
the maximum size of a matching in a bipartite graph equals the minimum size of a
vertex cover; see Rizzi [24] for a short proof. Taking a triangle as the graph under
consideration, one may see immediately that non-bipartite graphs do not admit this
beautiful property in general.

Another example is on the algorithmic complexity. Lakhal and Litzler [7] dis-
covered a polynomial-time algorithm for the problem of finding the extendability of
a bipartite graph. It is still unknown that whether the same extendability problem
for non-bipartite graphs can be solved in polynomial time or not; see Plummer [20].
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The sharp distinction between the appearances of Eqs. (1.1) and (1.2), also
supports the above difference between bipartite and non-bipartite graphs in the
theory of matching extensions.

A big part of the proof of Theorem 1.2 is to show the 3-extendability of some
so-called bow-tie graphs. We think the family of bow-tie graphs is interesting also
on its own right. We will confirm the infinity of the number of 3-extendable graphs
which can be embedded onto the Klein bottle, and which are non-bipartite. An in-
finity number of such, but bipartite, graphs, were constructed recursively by Aldred,
Kawarabayashi, and Plummer [1].

This paper is organized as follows. In the next section we list necessary notion
and notation, as well as necessary known results in the field of surface embedding
and matching extension of graphs. The stand-alone Section 3 is devoted to the
extendability of the two families of Cartesian product graphs of paths and cycles,
and of the bow-tie graphs denoted as C6./Pn for odd n≥5. We also pose a conjecture
for the 3-extendability of the general bow-tie graphs. In Section 4 we establish
Theorem 1.2 with the aid of these extendability results.

2 Preliminaries

This section contains an overview of necessary notion and notation. Let G=(V,E)
be a simple graph. We denote the number |V (G)| of vertices by |G| for short. Denote
by δ(G) the minimum degree of G, and by κ(G) the connectivity.

2.1 The surface embedding

A surface is a connected compact Hausdorff space which is locally homeomorphic
to an open disc in the plane. If a surface Σ is obtained from the sphere by adding
some number g of handles (resp. some number g̃ of cross-caps), then Σ is said to
be orientable of genus g (resp. non-orientable of non-orientable genus g̃). We shall
follow the usual convention of denoting the surface of genus h (resp. non-orientable
genus k) by Sh (resp. Nk).

A 2-cell embedding of a graph G onto a surface is a drawing of the graph G on the
surface such that the edges of G cross only at the vertices of G, and that every face
is homeomorphic to an open disk. In this paper, we wording “embedding” always
means 2-cell embedding. We say that a graph G is Σ-embeddable if there exists an
embedding of the graph G on the surface Σ. The minimum value g such that G is
Sg-embeddable is said to be the genus of G, denoted g(G). Any embedding of G
on Sg(G) is said to be a minimal (orientable) embedding. Similarly, the minimum
value g̃ such that G is Ng̃-embeddable is said to be the non-orientable genus of G,
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denoted g̃(G). For a general surface Σ, let g(Σ) be the genus of Σ. The Euler
characteristic χ(Σ) is defined by

χ(Σ)=

{
2−2g(Σ), if Σ is orientable,

2−g̃(Σ), if Σ is non-orientable.

Any embedding of G on Ng̃(G) is said to be a minimal (non-orientable) embedding.
Working on minimal embeddings, one should notice the following two fundamental
results, which are due to Youngs [26] and Parsons et al. [16] respectively.

Theorem 2.1 (Youngs). Every minimal orientable embedding of a graph is 2-cell.

Theorem 2.2 (Parson, Pica, Pisanski and Ventre). Every graph has a minimal
non-orientable embedding which is 2-cell.

The formula of non-orientable genus of complete graphs was found by Franklin [4]
in 1934 for K7, and by Ringel [22] in 1954 for the other Kn. Early contributors
include Heawood, Tietze, Kagno, Bose, Coxeter, Dirac, and so on; see [22]. The
more difficult problem of finding the genus of complete graphs has been explored
by Heffter, Ringel, Youngs, Gustin, Terry, Welch, Guy, Mayer, and so on. A short
history can be found in the famous work [23] of Ringel and Youngs in 1968, who
settled the last case. These formulas are as follows.

Theorem 2.3. Let n≥5. We have

1. g̃(K7)=3 and g̃(Kn)=d(n−3)(n−4)/6e when n 6=7,

2. g(Kn)=d(n−3)(n−4)/12e.

2.2 The Euler contribution

Let G→Σ be an embedding of a graph G on the surface Σ. Euler’s formula states
that

|G|−e+f=χ(G),

where e is the number of edges of G, and f is the number of faces in the embedding.
Let xi denote the size of the ith face containing v, i.e., the length of its boundary
walk. The Euler contribution of v is defined to be

Φ(v)=1− d(v)

2
+
∑
i

1

xi
,
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where the sum ranges over all faces containing v. One should keep in mind that
a face may contribute more than one angle to a vertex. This can be seen from
the embedding of K5 on the torus. From Euler’s formula, in any embedding of a
connected graph G, we have ∑

v

Φ(v)=χ(Σ).

Thus there exists a vertex v such that

Φ(v)≥ χ(Σ)

|G|
.

Such a vertex is said to be a control point of the embedding. This definition implies
the following lemma immediately, see also [18, Lemma 2.5] or [3, Lemma 2.5] for its
proof.

Lemma 2.1. Let G be a connected graph of at least 3 vertices. Let G→Σ be an
embedding. Let v be a control point which is contained in x triangular faces. Then
we have

d(v)

6
≤ d(v)

4
− x

12
≤1−χ(Σ)

|G|
. (2.1)

2.3 The matching extension

Let G be a graph and k≥0. A k-matching of G is a collection of k pairwise disjoint
edges. Perfect matchings are |G|/2-matchings. A near perfect matching of the
graph G is a perfect matching of the graph G−v for some vertex v of G. The most
basic result for perfect matchings is Tutte’s theorem [25].

Theorem 2.4 (Tutte). A graph G has a perfect matching if and only if for every
vertex subset S, the subgraph G−S has at most |S| connected components with an
odd number of vertices.

The graph G is said to be k-extendable if

• it has a perfect matching, and

• for any k-matching M , the graph G has a perfect matching containing M .

The following basic property on the connectivity of extendable graphs can be
found in [17].

Theorem 2.5 (Plummer). Let k≥0 and let G be a connected k-extendable graph.
Then G is (k+1)-connected and δ(G)≥k+1.
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Liu and Yu [9] found the following result for the extendability of Cartesian prod-
uct graphs.

Theorem 2.6 (Liu and Yu). Let G1 be a k-extendable graph and G2 be a connected
graph. Then the Cartesian product G1×G2 is (k+1)-extendable.

Györi and Plummer [6] gave the following nice generalization.

Theorem 2.7 (Györi and Plummer). The Cartesian product of a k-extendable graph
and an l-extendable graph is (k+l+1)-extendable.

Plummer [19] also gave the famous result that no planar graph is 3-extendable.
The next deeper result is due to Lou and Yu [10, Theorem 7]; see also [27, Chapter 6].

Theorem 2.8 (Lou and Yu). If G is a k-extendable graph of order at most 4k, then
either G is bipartite or the connectivity κ(G) of G is at least 2k.

We also need the following result, whose proof can be found in [3, 12].

Lemma 2.2. Let k≥ 1. Let G be a connected k-extendable graph embedded on a
surface Σ. Let v be a vertex of G which is contained in x triangular faces in the
embedding. Then we have

d(v)≥

{
k+1+dx/2e, if x≤2k−2,

2k+1, if x≥2k−1.

3 The matching extension of special product

graphs

In this section, we shall establish the 3-extendability for some special graphs, which
will be used in handling some sporadic cases in proving Theorem 1.2.

Denote by Pm the path having m vertices. Denote by Pm×Pn, as usual, the
Cartesian product graph of the paths Pm and Pn. We label its vertices by vi,j (or
by vij if there is no confusion), from the northwest to the southeast, where i∈ [m]
and j ∈ [n]. We use the notation Ri to denote the vertex set {vi1,··· ,vin} of the
i-th row; and use the notation Tj to denote the vertex set {v1j,··· ,vmj} of the j-th
column. We say that any edge in a row is horizontal, and that any edge in a column
is vertical. For convenience, we consider the first subscript i of the notation vij as
modulo m, and consider the second subscript j as modulo n, i.e.,

vi+km,j+hn =vij for all k,h∈Z.
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v11 v12 v13 v14 v15 v11

v21 v22 v23 v24 v25 v61

v31 v32 v33 v34 v35 v51

v41 v42 v43 v44 v45 v41

v51 v52 v53 v54 v55 v31

v61 v62 v63 v64 v65 v21

v11 v12 v13 v14 v15 v11

Figure 1: The bow-tie graph C6 ./P5 is N2-embeddable.

It follows that Ri+m =Ri for all i, and that Tj+n =Tj for all j. Denote by Cn the
cycle having n vertices. We use the same way to label the vertices of the graphs
Pm×Cn and Cm×Cn.

For any positive integers m and n, we define the bow-tie graph Cm ./Pn to be
the graph obtained from the graph Cm×Pn by adding the edges vi1vm+2−i,n for all
i∈ [m]. From Fig. 1, it is easy to see that the graph Cm ./Pn is N2-embeddable.

In the subsequent three subsections, we will explore the matching extension of
the following graphs respectively:

Pm×Cn, Cm×Cn, and Cm ./Pn.

Precisely speaking, we will show that the graph Pm×Cn is 2-extendable, and the
other two graphs are 3-extendable, subject to some natural conditions on the inte-
gers m and n.

Here we describe a combinatorial idea, which will be adopted in all the proofs
uniformly. Let G be a graph with a matching M . We say that G is separable by a
subgraph G′ (with respect to M), if

• the matching M has at least one edge in the subgraph G′; and

• no edge of the matching M has ends in both of the subgraphs G′ and G−V (G′).

We call the subgraph G′ an M -separator of G, if

• the subgraph G′ has a perfect matching containing the edge set M∩E(G′);
and
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• the subgraph G−V (G′) has a perfect matching containing the edge set M∩
E(G−V (G′)).

In particular, the subgraph G−V (G′) has a perfect matching even if the set M∩
E(G−V (G′)) is empty. From the above definition, it is direct to see that the extend-
ability of a matching M can be confirmed by finding an M -separator. We call this
approach the separator method. We will use it uniformly by choosing the separator
to be a subgraph induced by consecutive rows or columns.

3.1 The 2-extendability of the graph Pm×Cn
This subsection is devoted to establish the following result. It is basic and will be
used in the proof of Lemma 3.1 and Theorems 1.2 and 3.2.

Theorem 3.1. Let m,n≥4. The Cartesian product graph Pm×Cn is 2-extendable
if and only if the integer m or n is even.

Proof. The necessity is clear from the definition. When n is even, the cycle Cn is
1-extendable. Thus the sufficiency is true from Theorem 2.6. It suffices to show the
sufficiency for odd n.

Let n≥ 5 be an odd integer. Then the integer m is even. Let G be the graph
Pm×Cn, with a 2-matching M ={e1,e2}. Note that every column of the graph G
is isomorphic to the path Pm, which has a perfect matching. We will adopt the
separator method by finding some columns, whose induced subgraph has a perfect
matching containing the matching M . We have 3 cases to treat.

Case 1. There are two disjoint pairs of adjacent columns, such that one pair contains
the vertex set V (e1), and the other pair contains the vertex set V (e2). Since the
subgraph induced by any two adjacent columns is 1-extendable, the four columns
form an M -separator.

Case 2. The vertex set V (M) is contained in two adjacent columns, and Case 1
does not occur. Then the two adjacent columns form an M -separator. In fact, when
both the edges e1 and e2 are vertical and in distinct columns, the previous possibility
happens, a contradiction. In other words, either the vertex set V (M) is contained
in one column, or one of the edges in the matching M is horizontal.

Case 3. Otherwise, the vertex set V (M) intersects with exactly three consecutive
columns, and both the edges e1 and e2 are horizontal.

We proceed by induction on m. For m=4, we have 2 sub-cases to treat.

Case 3-1 Assume that the edges in the matching M lie in Row 1 and Row 2, or in
Row 1 and Row 3. Since every row is isomorphic to a cycle, we can suppose
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without loss of generality that

e1 =v11v12 and e2∈{v22v23,v32v33}.

In this case, the subgraph G[T1,T2,T3,T4] has the perfect matching

{v11v12,v13v14,v22v23,v32v33,v41v42,v43v44,v21v31,v24v34},

which contains the matching M , see Fig. 2.

1 2 3 4

1

2

3

4

Figure 2: The extension of the matching M for Case 3-1.

Case 3-2 Otherwise, the edges in the matching M lie in Row 1 and Row 4, or in
Row 2 and Row 3. We can suppose that

M={v11v12,v42v43} or M={v21v22,v32v33}.

In this case, the subgraph G[T1,T2,T3] has the perfect matching

{v11v12,v21v22,v13v23,v31v41,v32v33,v42v43},

which contains the matching M , see Fig. 3.

This completes the proof for m=4.
Now we can suppose that m≥6, and that the graph Pm−2×Cn is 2-extendable.

Note that the subgraph induced by any two adjacent rows has a perfect matching.
By induction, we are done if the matching M shares no vertices with the first two
rows. For the same reason, we are done if M shares no vertices with the last
two rows. Since m≥ 6, we can suppose that the horizontal edge e1 is in the first
two rows, and that the horizontal edge e2 is in the last two rows. On one hand,
the subgraph G[R1,R2] is isomorphic to the graph P2×Cn, which is 1-extendable.
On the other hand, the subgraph G−R1−R2 is isomorphic to Pm−2×Cn, which
is 2-extendable by induction hypothesis. Hence, the subgraph G[R1,R2] is an M -
separator. This completes the proof.
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1 2 3

1

2

3

4

Figure 3: The extension of the matching M for Case 3-2.

3.2 The 3-extendability of the graph Cm×Cn
In this subsection we study the extendability of the graph Cm×Cn, which will be
used in the proof of Theorem 1.2.

A necessary condition for the graph Cm×Cn to have a perfect matching is that
one of the integers m and n is even. By symmetry, we can suppose that the integer m
is even. In virtue of Theorem 2.7, the graph Cm×Cn is 3-extendable if the integer n
is also even. Therefore, we can suppose that n is odd. The following lemma will be
used for several times.

Lemma 3.1. Let m≥6 be an even integer, and let n≥5 be an odd integer. Let G be
the graph Cm×Cn, with a 3-matching M . Then the matching M is extendable if G
is separable by

(i) a subgraph G[Ri,Ri+1] for some i∈ [m], which contains exactly one edge of the
matching M ; or

(ii) a subgraph G[Tj,Tj+1] for some j∈ [n], which contains one or two edges of the
matching M .

Proof. We prove the validities of Condition (i) and Condition (ii) separately. Let
i∈ [m] and j∈ [n].

(i) The graph G[Ri,Ri+1] is isomorphic to P2×Cn, which is 1-extendable. The
subgraph G−Ri−Ri+1 is isomorphic to Pm−2×Cn. Since m−2≥4, the graph G−
Ri−Ri+1 is 2-extendable by Theorem 3.1. Hence, the matching M is extendable
in G.

(ii) The graph G[Tj,Tj+1] is isomorphic to Cm×P2, and G−Tj−Tj+1 is isomorphic
to Cm×Pn−2. Both of them are 2-extendable by Theorem 2.7. Hence, the matching
M is extendable in the graph G.
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Here is the main result of this subsection.

Theorem 3.2. Let m≥6 be an even integer, and let n≥5 be an odd integer. Then
the Cartesian product graph Cm×Cn is 3-extendable.

Proof. Let m≥6 be an even integer, and let n≥5 be an odd integer. Let G=Cm×Cn,
with a 3-matching M={e1,e2,e3}. In order to show that M is extendable, it suffices
to find

• a row index i∗ such that the subgraph G[Ri∗ ,Ri∗+1] is an M -separator, or

• a column index j∗ such that the subgraph G[Tj∗ ,Tj∗+1] is an M -separator.

Let h be the number of horizontal edges in the matching M . Then we have h∈
{0,1,2,3}. We treat these 4 cases individually.

Case 1. h= 0, that is, all edges in M are vertical. Note that each column of the
graph G is isomorphic to the cycle Cm, which is 1-extendable. If the 3 edges in M
are in distinct columns, we are done immediately. If they are in the same column,
then that column together with one of its adjacent columns form an M -separator.
Otherwise, we can suppose that Column j contains the edges e1 and e2, but not the
edge e3. By virtue of Lemma 3.1, we can take j∗= j if e3 is not in Column (j+1);
and take j∗=j+1 otherwise.

Case 2. h=1. In this case, we can suppose that e1 is horizontal, and that e2 and
e3 are vertical. Since each row is isomorphic to a cycle, we can further suppose
that e1 =vi1vi2 and it intersects with the first two columns.

If at most one of the edges e2 and e3 is in the first two columns, then we can
take j∗=1 by Lemma 3.1. Otherwise, both of them are in the first two columns. If
the vertex set V (M) misses Row (i+1), then we can take i∗= i by Lemma 3.1. For
the same reason, we can take i∗= i−1 if V (M) misses Row (i−1). Otherwise, one
of the edges e2 and e3 is immediately above the horizontal edge e1, and the other is
immediately below e1. In this case, we can take i∗= i+1 by Lemma 3.1.

Case 3. h=2. We can suppose that e1 and e2 are horizontal, and that e3 is vertical.
Furthermore, we can suppose that the horizontal edge e1 intersects with the first
two columns, the horizontal edge e2 intersects with Column j and Column (j+1),
and that the vertical edge e3 =vpqvp+1,q, where p∈ [m] and q∈ [n].

If j=1, to wit, the horizontal edge e2 lies below the edge e1. In this case, we can
take j∗= 1. In fact, since e3 is vertical, the graph G is separable by the subgraph
G[T1,T2]. On the other hand, it is easy to see that both of the subgraphs

G[T1,T2]−V (e1∪e2) and G−T1−T2
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are 1-extendable.

If j≥3, then the graph G is separable by the first two columns with respect to
the matching M . In this case, we can also take j∗=1, by using Lemma 3.1.

Otherwise, we have j=2, that is, the vertex set of the horizontal edges e1 and e2
intersects with exactly the first three columns.

• If q∈ [3], i.e., the edge e3 is also contained in the subgraph G[T1,T2,T3], then
we can take i∗=p. In fact, the subgraph G′=G[Rp,Rp+1] contains the vertical
edge e3, and possibly one of the edges e1 and e2. In any case, the matching
M∩E(G′) is extendable in the subgraph G′.

• If q≥ 4, i.e., the vertical edge e3 has empty intersection with the first three
columns. In this case, the subgraph G[Tq] is an M -separator. In fact, the
subgraph G[Tq], which contains the edge e3, is isomorphic to the cycle Cm,
which is 1-extendable. On the other hand, the subgraph G−Tq is isomorphic
to the graph Cm×Pn−1, i.e., the graph Pn−1×Cm. Since n−1≥ 4, it is 2-
extendable by Theorem 3.1.

Case 4. h=3. If all edges in M lie in the same row, by Lemma 3.1, we can take
j∗=j for any edge vijvi,j+1∈M . Otherwise, there exists a row Ri containing exactly
one edge in M such that one of its adjacent rows has no edges in M . In other words,
either

Ri−1∩V (M)=∅ or Ri+1∩V (M)=∅.

By Lemma 3.1, we can take i∗=i−1 in the former case, and i∗=i in the latter case.
This completes the proof.

We remark that the graph C4×Cn is not 3-extendable when n is odd. This can
be seen from the fact that the particular 3-matching

M={v11v12,v22v32,v31v41}

is not extendable, see Fig. 4. Define

U={vi,2j : i∈{1,3}, 2≤j≤(n−1)/2}∪{vi,2j+1 : i∈{2,4}, 1≤j≤(n−1)/2}.

We have |U |=2n−4. Note that the subgraph G−V (M)−U consists of 2n−2 isolated
vertices. By Theorem 2.4, the subgraph G−V (M) has no perfect matchings.
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1

2

3

4

1 2 3 4 5 6 7 8 n−3 n−2 n−1 n

···

Figure 4: The graph C4×Cn is not 3-extendable when n is odd.

3.3 The 3-extendability of the graph C6./Pn for odd n≥5

In this subsection, we will show the 3-extendability of the graph C6 ./Pn for odd
integers n≥ 5. It is easy to see that C6 ./Pn can be drawn as in Fig. 5, which is
symmetric up and down. For convenience, we rename the vertices in the following
way:

v1i =hi, v6i =qi, v2i =qi+n,

v4i =h′i, v5i =q′i, v3i =q′i+n,

and use capital letters to denote vertex subsets as follows:

H={hi : i∈ [n]}, Q={qj : j∈ [2n]}, J=H∪Q,
H ′={h′i : i∈ [n]}, Q′={q′j : j∈ [2n]}, J ′=H ′∪Q′.

Let us keep in mind that the subscript i in the symbols hi are considered mod-
ulo n, and the subscript i in the symbols qi are modulo 2n, namely,

hi+n =hi and qj+2n =qj for all integers i and j.

Theorem 3.3. Let n≥ 5 be an odd integer. Then the bow-tie graph C6 ./ Pn is
3-extendable.

Proof. Let G=C6 ./Pn, where n is an odd integer and n≥5.
Let M0 be a 3-matching of the graph G. We call an edge of M0 faithful if it

is an edge of the subgraph G[J ]; co-faithful if it is an edge of the subgraph G[J ′];
and unfaithful otherwise, i.e., if it is an edge of the form qjq

′
j for some j ∈ [2n].

Correspondingly, we call a vertex of the matching M0 faithful (resp. co-faithful,
unfaithful) if it is a vertex of a faithful (resp. co-faithful, unfaithful) edge.
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H

H ′

v11 v12 v1n

v41 v42 v4n

h1 h2 h0

h′1 h′2 h′0

v61 v62 v6n v21 v22 v2n

v51 v52 v5n v31 v32 v3n

q1 q2 qn qn+1 qn+2 q0

q′1 q′2 q′n q′n+1 q′n+2 q′0

Q

Q′

··· ···

··· ···

··· ···

Figure 5: The graph C6 ./Pn.

Suppose that the matching M0 has x faithful edges, y unfaithful edges, and z
co-faithful edges. Then we have x+y+z=3. By the symmetry of the graph G, we
can suppose that x≥ z. Then we have z= 0 or z= 1. For each of them, we will
construct a perfect matching of the graph G which extends the matching M0.

The following lemma serves for Lemma 3.3, by which we can solve the case z=0.
The other case z=1 can be divided into the cases

(x,y,z)=(1,1,1) and (x,y,z)=(2,0,1).

We will handle them by Lemmas 3.4 and 3.5 respectively.

Lemma 3.2. Every 3-matching of the subgraph G[J ] can be extended to a matching
covering the vertex set H.

Proof. Suppose that the claim is false. Let M0 be a 3-matching which is not extend-
able in this way. Let M̃ be an extension of M0, which covers the maximum number
of vertices in the set H. Without loss of generality, we can suppose that h1 /∈V (M̃).
Then q1,qn+1∈V (M0), and we can write

M0 ={q0q1, e2, e3},

where e2∈{qnqn+1, qn+1qn+2}. We will find a contradiction by constructing an ex-
tension of M0, which covers H. It suffices to find a matching M of the subgraph
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G[H]−V (M0) such that the subgraph G[H]−V (e3)−V (M) consists of paths of even
orders. We proceed according to the number of vertices in H covered by the edge e3.

Case 1. If V (e3)∩H=∅, then we can define

M=

{
{h2q2}, if q2 /∈V (e3),

{hn−1qn−1}, otherwise.

Case 2. If |V (e3)∩H|=1, then we can define M=∅.
Case 3. If |V (e3)∩H|=2, then we have e3=hihi+1, where i∈{2,··· ,n−1}. We can
define

M=


{hn−1qn−1}, if i is even and i 6=n−1,

{h2q2}, if i is odd,

{h3q3}, if i=n−1.

This proves Lemma 3.2.

Here is the lemma by using which the case z=0 can be solved.

Lemma 3.3. Suppose that the matching M0 has no co-faithful edges. Then the
subgraph G[J ] has a matching M such that M covers both the faithful edges and the
vertex set H, and that M misses every unfaithful vertex.

Proof. We proceed according to the number x of faithful edges. The case x= 3 is
Lemma 3.2.

When x= 2, let qjq
′
j be the unfaithful edge, where j ∈ [2n]. Assume that the

vertex qj−1 is uncovered by the matching M0. By Lemma 3.2, the 3-matching
(M0−qjq′j)∪{qj−1qj} can be extended to a matching M1, which covers the set H.
Then the matching M1−qj−1qj is a desired one. For the same reason, Lemma 3.3
holds true if the vertex qj+1 is uncovered by M0. Now, we can suppose that both
the vertices qj−1 and qj+1 are covered by M0. By Lemma 3.2, the matching

M2 =(M0−qjq′j)∪{hjqj+n}

can be extended to a matching, say, M ′
2, which covers the set H. Since all the

three neighbors qj−1, qj+1 and hj, of the vertex qj in the subgraph G[J ], are in the
matching M2 which misses the vertex qj, we infer that the unfaithful vertex qj is
not covered by M ′

2. Therefore, M ′
2 is a desired one.

When x=1, we can represent the matching M0 as

M0 ={e1, qjq′j, qkq′k},
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where 1≤j<k≤2n. If the vertices qj and qk are not adjacent in the subgraph G[Q],
then there exist two distinct vertices u and w such that

u∈{qj−1, qj+1}\V (e1) and w∈{qk−1, qk+1}\V (e1).

By Lemma 3.2, the matching {uqj,wqk, e1} can be extended to a matching, say, M ′
3,

which covers the set H. Then the matching M ′
3−uqj−wqk is a desired matching.

Otherwise, the vertices qj and qk are adjacent. By Lemma 3.2, the 2-matching
{qjqk}∪{e1} can be extended to a matching, say, M ′

4, which covers the set H. Then
the matching M ′

4−qjqk is a desired matching.
When x=0, the vertex set Q contains exactly three unfaithful vertices. Let qj be

a vertex in Q which is not unfaithful. Let M5 be the perfect matching of the path
H−hj of order n−1. Then, the matching M5∪{qjhj} is a desired matching. This
completes the proof of Lemma 3.3.

Now we deal with the first case z= 0. Let M be the matching obtained from
Lemma 3.3. Let M ′ be the matching of the subgraph G[J ′] which is symmetric
to M . In other words, an edge h′ih

′
i+1 (resp. h′jq

′
j, q

′
jq
′
j+1) is in the matching M ′ if

and only if the edge hihi+1 (resp. hjqj, qjqj+1) is in M . Then the set

M∪M ′∪{qjq′j : qj∈J−V (M)}

is a perfect matching of the graph G which covers the matching M0, as desired.
Next lemma is for the case (x,y,z)=(1,1,1).

Lemma 3.4. For any edge e in the subgraph G[J ], and for any vertex qk in the set
Q−V (e), the subgraph G[J ]−V (e)−qk has a perfect matching.

Proof. It suffices to find a matching M of the subgraph G[J ]−V (e)−qk, such that

1. the path G[H]−V (M)−V (e) is of even order;

2. every path component of the subgraph G[Q]−V (M)−V (e)−qk is of even order.

Below we will construct such a matching M according to the position of the
edge e.

Case 1. If V (e)⊂H, we can suppose that e=h0h1 without loss of generality, and
take the matching

M=

{
{h2q2}, if k is odd,

{h2qn+2}, if k is even.
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Case 2. If V (e)∩H 6=∅ and V (e)∩Q 6=∅, then we can suppose that e=h1q1 without
loss of generality, and take the matching

M=

{
∅, if k is even,

{h0q0,h2q2}, if k is odd.

Case 3. If V (e)⊂Q, then we can suppose e= q0q1 without loss of generality, and
take the matching

M=

{
{h2q2}, if k is odd,

{hn−1q2n−1}, if k is even.

This completes the proof.

Now we are ready to solve the case x= y = z = 1. By Lemma 3.4, the sub-
graph G[J ]−V (M0) has a perfect matching. For the same reason, the subgraph
G[J ′]−V (M0) has a perfect matching. The union of these two matchings and the
matching M0 form a desired perfect matching of the graph G.

For the last case (x,y,z)=(2,0,1), we will need the following lemma.

Lemma 3.5. Let e0 be an edge of the subgraph G[Q]. Then any 2-matching of the
subgraph G[J ] can be extended to a near perfect matching of G[J ], which covers the
vertex set H∪V (e0).

Proof. Let {e1,e2} be a 2-matching of the subgraph G[J ]. It suffices to show that
the subgraph

G[J ]−V (e1∪e2)

has a matching M such that

1. every path component of the subgraph G[H]−V (e1∪e2∪M) is of even order;

2. at most one of the path components of the subgraph G[Q]−V (e1∪e2∪M) is
of odd order;

3. if the subgraph

G[Q]−V (e1∪e2∪M)

has an isolated vertex, then the isolated vertex is not an end of the edge e0.
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If such a matching M exists, then the subgraph G[Q]−V (e1∪e2∪M) has a near
perfect matching M ′, such that the matching M∪M ′∪{e1,e2} covers the set V (e0).
The desired result follows immediately. Below we will seek the above matching M .
According to the positions of the edges e1 and e2, we have six cases to treat.

Case 1. Both the edges e1 and e2 are from the subgraph G[H]. The subgraph
G[H]−V (e1∪e2) consists of two paths of different parities of orders, in which the
path of even order might be empty. Let hi be an end of the path of odd order. We
can take the matching M={hiqi}.
Case 2. The edge e1 is from the subgraph G[H], and the edge e2 =hjqj for some
j∈[2n]. We can suppose that e1=h0h1 without loss of generality. Then we can take
the matching

M=

{
{hjqj : 2≤j≤n−1}, if e2∈{hjqj : 2≤j≤n−1},
{hjqj : n+2≤j≤2n−1}, otherwise, i.e., if e2∈{hjqj : n+2≤j≤2n−1}.

Case 3. The edge e1 is from the subgraph G[H], and the edge e2 is from the
subgraph G[Q]. Without loss of generality, we can suppose that

e2 =q0q1 and e1 =hihi+1,

where 0≤ i≤n−1. Moreover, by symmetry, we can suppose that 0≤ i≤ (n−1)/2
without loss of generality. We can take the matching

M=

{
{hi+2qi+2}, if the vertex q2 is not an end of the edge e0,

{h3qn+3}, otherwise.

Case 4. Both the edges e1 and e2 have the form hjqj, where j∈ [2n]. Without loss
of generality, we can suppose that e1 =h1q1. Then we can take the matching

M=

{
{hjqj : 2≤j≤n}, if e2∈{hjqj : 2≤j≤n},
{hjqj : n+2≤j≤2n}, otherwise, i.e., if e2∈{hjqj : n+2≤j≤2n}.

Case 5. The edge e1 has the form hjqj for some j∈ [2n], and the edge e2 is from
the subgraph G[Q]. Without loss of generality, we can suppose that e2 = q0q1 and
j∈ [n], and take the matching

M=

{
{h2q2,h4q4}, if q2∈V (e0), and j=3,

∅, otherwise.
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Case 6. Both the edges e1 and e2 are from the subgraph G[Q]. The subgraph
G[Q]−V (e1∪e2) consists of two paths, where one of them might be empty. Since
the sum 2n−4 of their orders is even, the two paths have the same parity of orders.
Since 2n−4≥6, there is at most one path is of order 1. If such an isolated vertex
exists, say, qj, then we can take the matching M to be the edge hjqj. Otherwise,
we can take the matching M to be the edge hkqk, where qk is an end of the path of
larger order, or an end of any path when the two paths have the same orders. This
completes the proof of Lemma 3.5.

The last case (x,y,z)=(2,0,1) can be done as follows. Let

M0 ={e1,e2,e3},

where the edges e1 and e2 are faithful, and the edge e3 is co-faithful. By Lemma 3.5,
the subgraph G[J ] has a near perfect matching M1 covering {e1,e2}, such that the
associated uncovered vertex qj satisfies that its symmetric vertex q′j is uncovered
by e3. By Lemma 3.4, the subgraph

G[J ′]−V (e3)−qj

has a perfect matching M2. Hence the matching

M1∪M2∪{e3, qjq′j}

is a perfect matching of G which extends M0. This completes the proof of Theo-
rem 3.3.

Since the bow-tie graph C6 ./Pn can be embedded onto the Klein bottle, Theo-
rem 3.3 implies immediately that there is an infinite number of 3-extendable graphs
which are N2-embeddable. We further propose the following conjecture.

Conjecture 3.1. The graph Cm./Pn is 3-extendable for any integers m and n such
that m is even.

4 Proof of Theorem 1.2

Recall that µ′(Σ) is the minimum integer k such that there is no Σ-embeddable
k-extendable non-bipartite graphs. It follows that

µ′(Σ)≤µ(Σ). (4.1)

This section is devoted to find out µ′(Σ). We will need the following lemma.
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Lemma 4.1. Let k≥1. Any connected k-extendable graph of order 2k+2 is either
the complete graph K2k+2, or the complete bipartite graph Kk+1,k+1.

Proof. It is easy to show for the case k=1. Below we let k≥2. Let G be a connected
k-extendable graph with |G|=2k+2. By Theorem 2.8, either the graph G is bipartite
or we have κ(G)≥2k.

In the former case, any vertex in the part with larger order has degree at most
the order of the other part, and thus, at most |G|/2=k+1. By Theorem 2.5, we have
δ(G)≥k+1. Therefore, both parts of the graph G has order k+1. Since δ(G)≥k+1,
we infer that G=Kk+1,k+1.

In the latter case, we suppose to the contrary that the graph G is not complete.
Then G has a pair (u,v) of non-adjacent vertices. Since the graph G is k-extendable
and is of order 2k+2, we infer that the subgraph G′=G−u−v does not have a
perfect matching. On the other hand, any graph H of even order with δ(H)≥|H|/2
has a Hamilton circuit; see Ore [13]. Since

δ(G′)≥2k−2≥2k/2= |G′|/2,

we deduce that the subgraph G′ has a Hamilton circuit, and a perfect matching in
particular, a contradiction. This completes the proof.

Now we are in a position to show Theorem 1.2.

Proof. Let Σ be a surface of characteristic χ. Let µ′(Σ) be the minimum integer k
such that every Σ-embeddable non-bipartite graph is not k-extendable.

First, we deal with the sporadic cases that χ≥−1. For the sphere S0, by
Ineq. (4.1),

µ′(S0)≤µ(S0)=3

by Theorem 1.1. On the other hand, it is clear that the graph P4×C5 is planar and
non-bipartite. Since it is 2-extendable by Theorem 3.1, we deduce that µ′(S0)=3.

By Ineq. (4.1) and Theorem 1.1, µ′(N1)≤µ(N1) = 3. Since every planar graph
is N1-embeddable, we deduce that µ′(N1)≥µ′(S0)=3. Therefore, we conclude that
µ′(N1)=3.

For the torus S1, by Ineq. (4.1) and Theorem 1.1,

µ′(S1)≤µ(S1)=4.

On the other hand, it is clear that the graph C6×C5 is toroidal and non-bipartite.
Since it is 3-extendable by Theorem 3.2, we infer that µ′(S1)=4.
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For the Klein bottle N2, we have

µ′(N2)≤µ(N2)=4

by Theorem 1.1. On the other hand, the N2-embeddable non-bipartite graph C6./P5

is 3-extendable by Theorem 3.3. Thus µ′(N2)=4.
Along the same line, we have µ′(N3)≤4. Since µ′(N3)≥µ′(N2)=4, we infer that

µ′(N3)=4.
Below we can suppose that χ≤−2. Write

n=b(7+
√

49−24χ)/4c. (4.2)

Since χ≤−2, one may estimate that n≥ 4. By Theorem 2.3, it is direct to check
that K2n is Σ-embeddable. It is obvious that K2n is both (n−1)-extendable and
non-bipartite. Thus µ′(Σ)≥n.

Suppose, by way of contradiction, that µ′(Σ)>n. Then there exists a the graphG,
which is Σ-embeddable, n-extendable, and non-bipartite. The n-extendability im-
plies that |G|≥2n+2. If |G|=2n+2, then G=K2n+2 by Lemma 4.1. By computing
the genus and the non-orientable genus of K2n+2 directly, we see that K2n+2 is not
Σ-embeddable. Thus we have |G|≥2n+4.

Let v be a control point in an embedding of the graph G on Σ. Assume that
|G|≤4n. By Theorem 2.8, we deduce that the connectivity κ(G) is at least 2n. It
follows that

d(v)≥δ(G)≥κ(G)≥2n.

Let x be the number of triangles containing v. Let y=d(v). When y=2n, since G
is n-extendable, we infer that x≤2n−2. By Lemma 2.1,

2n+1

6
=
y

4
− 2n−2

12
≤ y

4
− x

12
≤1− χ

2n+4
. (4.3)

Solving it we find that n≤(1+
√

81−24χ)/4. By Eq. (4.2), we obtain that

7+
√

49−24χ

4
−1<b∗7+

√
49−24χ

4
c≤ 1+

√
81−24χ

4
,

which implies that χ>0, a contradiction. Otherwise y≥2n+1. By Lemma 2.1,

2n+1

6
≤ y

6
≤1− χ

2n+4
,

which is same to Ineq. (4.3) and thus impossible.
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Now we are led to the case that |G| ≥ 4n+2. Assume that x≤ 2n−2. By
Lemmas 2.1 and 2.2,

n+1

4
≤ n+1+dx/2e

4
− x

12
≤ y

4
− x

12
≤1− χ

4n+2
.

Solving it we find that n≤(5+
√

49−16χ)/4. By Eq. (4.2), we obtain that

7+
√

49−24χ

4
−1<

⌊
∗ 7+

√
49−24χ

4

⌋
≤ 5+

√
49−16χ

4
. (4.4)

Solving the above inequality we find that χ∈ {−6,−5,−4,−3,−2}. Substituting
each of these five values of χ into Ineq. (4.4), we obtain a contradiction. Otherwise
x≥2n−1. Then Lemma 2.1 gives

n+1

4
≤ 2n+1

6
=
y

6
≤1− χ

4n+2
,

the same contradiction. This completes the proof of Theorem 1.2.

At the end of this paper, we would like to share the approach of finding Eq. (1.2).
Our previous result [12] on (n,k)-graphs is as follows.

Theorem 4.1 (Lu and Wang). Let Σ be a surface of characteristic χ. Let µ(n,Σ)
be the minimum integer k such that there is no Σ-embeddable (n,k)-graphs. Then
for n≥1, we have

µ(n,Σ)=

{
max(0,3−dn/2e), if Σ is homeomorphic to the sphere,

max(0,b(7−2n+
√

49−24χ)/4c), otherwise.
(4.5)

While Eq. (4.5) was obtained by laborious computations, we discover Eq. (1.2)
by the guess-and-check strategy. Although (0,k)-graphs are exactly k-extendable
graphs, Eq. (4.5) is valid under the premise n≥1. Nevertheless, it was Eq. (4.5) by
which we were inspired to guess Eq. (1.2) out.
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