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Abstract. Hyperspectral unmixing (HU) plays an important role in terrain classifi-
cation, agricultural monitoring, mineral recognition and quantification, and military
surveillance. The existing model of the linear HU requires the observed vector to be a
linear combination of the vertices. Due to the presence of noise, or any other pertur-
bation source, we relax this linear constraint and penalize it to the objective function.
The obtained model is solved by a sequence of gradient type steps which contain a
projection onto the simplex constraint. We propose two gradient type algorithms for
the linear HU, which can find vertices of the minimum volume simplex containing
the observed hyper-spectral vectors. When the number of given pixels is huge, the
computational time and complexity are so large that solving HU efficiently is usually
challenging. A key observation is that our objective function is a summation of many
similar simple functions. Then the computational time and complexity can be reduced
by selecting a small portion of data points randomly. Furthermore, a stochastic vari-
ance reduction strategy is used. Preliminary numerical results showed that our new
algorithms outperformed state-of-the-art algorithms on both synthetic and real data.
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1 Introduction

Hyperspectral unmixing (HU) is a source separation problem, which is widely used
in terrain classification, agricultural monitoring, mineral recognition and quantification,
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and military surveillance [1, 5, 18, 22]. HU aims at decomposing pixel spectra in a scene
into materials, and their corresponding fractional abundances. The materials are also
called endmembers, which are generally considered to represent the pure materials present
in the image. The set of abundances at each pixel is considered to represent the percent-
age of each endmember that is occupied in the pixel. The materials in hyperspectral
unmixing are statistically dependent and combine in a linear or nonlinear fashion. Be-
cause the linear model of hyperspectral unmixing is simple, whose physical meaning is
clear, and the solution is satisfactory, it is very suitable for hyperspectral unmixing. We
only consider linear hyperspectral unmixing [14, 23, 26, 30] in this paper.

Algorithms of linear hyperspectral unmixing mainly fall into four types: geometrical
based approaches [4,27], statistical based approaches [24,25], sparse regression based ap-
proaches [6], and spatial/spectral joint analysis [29]. The geometrical based approaches
can be categorized into two main classes of methods: pure pixel (PP) [27] based and min-
imum volume (MV) [14] based methods. The pure pixel based algorithms still belong
to the minimum volume class but assume the presence in the data of at least one pure
pixel per endmember. This kind of algorithm finds the set of the purest pixels in the
data, see for instances pixel purity index (PPI) [7, 8], N-FINDR [34], iterative error anal-
ysis (IEA) [28], vertex component analysis (VCA) [27], simplex growing (SGA) [12], se-
quential maximum angle convex cone (SMACC) [16], alternating volume maximization
(AVMAX) [11]. The minimum volume approaches seek a mixing matrix M that mini-
mizes the volume of the simplex defined by its columns, referred to as conv(M), subject
to the constraint that conv(M) contains the observed spectral vectors. The pure pixel
constraint is no longer enforced, resulting in a much harder nonconvex optimization
problem. The minimum volume approaches include minimum volume simplex analy-
sis (MVSA) [20], simplex identification via variable splitting and augmented Lagrangian
(SISAL) [4], minimum volume enclosing simplex (MVES) [10], iterative constrained end-
members (ICE) [3], convex cone analysis (CCA) [17], etc. Geometrical based approaches
have a light computational burden and clear conceptual meaning, but may lead to poor
results in highly mixed scenarios. Statistical methods are powerful alternative in highly
mixed scenarios at the cost of higher computational complexity. They are mainly based
on independent component analysis, Bayesian method and non-negative matrix factor-
ization. In sparse regression based unmixing, endmembers are assumed to exist in a huge
spectral library, and each pixel of the image can be expressed by the linear combinations
of a number of spectra in the spectral library. Because the endmembers are very rare
compared to the spectral library, images can be sparsely expressed by the spectral library.
Sparse regression based unmixing is an area with strong links to compressed sensing,
least angle regression, basis and matching pursuits. Spatial/spectral joint analysis sup-
pose that pixels are not isolated alone, but in a 3D natural scene. The endmembers of the
hyperspectral image can be extracted by combining the spectral and spatial information
of the surrounding pixels.

The existing model of linear HU requires the observed vector to be a linear combina-
tion of the vertices. Due to the presence of noise, or contaminations from other sources,
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the spectral vectors may lie outside the true data simplex. In this paper, we construct
a new model which relaxes the equality constraint and penalizes it onto the objective
function. Then we propose two gradient type algorithms to solve the corresponding lin-
ear HU models. Since the number of pixels may be huge, the computational time and
complexity are so large that solving HU efficiently is challenging. A key observation is
that our objective function is a summation of many similar simple functions. The in-
formation involved in observed vectors may have redundancy, so we can reduce com-
putational time and complexity by picking up a portion of data points randomly. Fur-
thermore, many first-order randomized algorithms have been presented recently, includ-
ing stochastic gradient method [32], batch gradient method, and some noise reduction
methods, such as Prox-SVRG [35] and SAGA [15]. The projected mini-batch gradient
descent method is a randomized algorithm of linear HU, its model is based on a nonneg-
ative matrix factorization and the online kernel-based nonnegative matrix factorization
method [21, 36]. We will apply the stochastic variance reduction strategy to reduce the
computational cost in this paper.

The remainder of this article is organized as follows. In Section 2, we propose a new
linear hyperspectral unmixing model. Three gradient type algorithms are given in Sec-
tion 3. When the number of given pixels is large, we apply the stochastic variance re-
duction strategy to HU and design a proximal stochastic variance reduction gradient
algorithm. Section 4 presents simulation numerical results on simulated and real data.
Section 5 ends the paper by presenting a few concluding remarks.

The following notations will be used throughout this paper. Upper (lower) case letters
are used for matrices (column vectors). All vectors are column vectors, and the subscript
(·)⊤ denotes matrix and vector transposition. In stands for the n×n identity matrix, and
1p denotes the vector of all ones. The Frobenius norm of X∈R

m×n is defined as ‖X‖F =√∑
i,j |Xi,j|2. The Euclidean inner product between two vectors x ∈R

n and y ∈R
n is

defined as 〈x,y〉=∑i(xiyi) = x⊤y. The Euclidean inner product between two matrices

X∈R
m×n and Z∈R

m×n is defined as 〈X,Z〉=∑i,j(Xi,jZi,j)= trace(X⊤Z). Î(A) denotes
the indicator function of the set A. The inequality X≥ 0 is element-wise, which means
Xij≥0 for all entries (i, j). Likewise, the equality X=Z means Xij=Zij for all entries (i, j).

2 A model for linear hyperspectral unmixing

Assuming that there are p endmembers in a given scene with spectral signatures mi∈R
B,

i=1,··· ,p, where B≥p denotes the number of spectral bands. In the linear mixture model,
the observed spectral vectors are in the convex hull of endmember spectral signatures,
i.e.,

Y=MS,

where Y=[y1,··· ,yn]∈R
B×n denotes a matrix holding the observed spectral vectors yi∈

R
B, S=[s1,··· ,sn]∈R

p×n is a matrix holding the respective fractions and M=[m1,··· ,mp]∈
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R
B×p is the mixing matrix containing the endmembers. That is to say, for each observed

vector, yi = Msi, i = 1,··· ,n. Since the components of si are nonnegative and their sum-
mation are equal to one, the fractional abundance vectors si (i = 1,··· ,n) belong to the
standard p-simplex set Sp={s∈R

p : s≥0,1p
⊤s=1}.

The number of endmembers p is usually much smaller than the number of bands B.
Assuming that the linear model is a good approximation, spectral vectors lie in or very
close to a low-dimensional linear subspace. Therefore, a signal subspace identification
algorithm is required as the first preprocessing step. The signal space is denoted by U ,
and let the columns of E= [e1,··· ,ep] be an orthonormal basis for U , where ei ∈R

B, for
i= 1,··· ,p. The coordinates of the orthogonal projection of a spectral vector y∈R

B onto
U , with respect to the basis E, are given by yU =E⊤y∈R

p. Thus, we have

yU =E⊤Ms.

From now on, we assume that the observed data set has been projected onto the signal
subspace, and for simplicity of notation, we still represent the projected vectors as

Y=MS,

where Y∈R
p×n and M∈R

p×p.
Since the volume defined by the column of M is proportional to log|det(M)|. Linear

hyperspectral unmixing can be conducted by minimizing log|det(M)| with respect to si

belonging to the standard p-simplex set and the linear constraint Y = MS. The corre-
sponding model was used in [4]:

min
M,S

log|det(M)|,

s.t. Y=MS,

S≥0p×n, 1⊤p S=1⊤n .

(2.1)

Let Q=M−1, the equality constraint Y=MS is equivalent to QY=S. Moreover, log|det(M)|
is equal to −log|det(Q)|. Due to the presence of noise, or any other perturbation source,
the spectral vectors may lie outside the true data simplex. We relax the equality con-
straint QY=S and penalize it onto the objective function. A new minimum volume class
model can be obtained as follows:

min
Q,S

1

2
||QY−S||2F−λlog|det(Q)|,

s.t. S≥0p×n, 1⊤p S=1⊤n .

(2.2)

where λ is the parameter used to balance the noise and simplex volume. Let u(Q,S)=
1
2 ||QY−S||2F , h(Q) =−λlog|det(Q)|, v(S) = ÎSp

(S), and φ(Q,S) = u(Q,S)+v(S). Then
Model (2.2) is equivalent to

min
Q,S

Ψ(Q,S)=u(Q,S)+h(Q)+v(S). (2.3)
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ÎSp(S) is convex because the set Sp is convex. Moreover, u(Q,S) is jointly convex in
(Q,S), and its gradient ∇u(Q,S) is Lipschitz continuous. Model (2.3) can be solved by
the alternating minimization method [9]. Alternating minimization method for model
(2.3) is derived by successively minimizing Ψ(Q,S) with respect to one of the variables Q
and S at a time while fixing the other at its most recent value. We firstly find Ŝ := Ŝ(QY)
that minimizes Ψ(Q,S). Denotes

f (Q)=min
S

φ(Q,S), (2.4)

which is equivalent to

min
S

1

2
||QY−S||2F ,

s.t. S≥0p×n, 1⊤p S=1⊤n .
(2.5)

The above problem is essentially a projection onto the simplex constraints and its solution
is available in Lemma 2.1 [33].

Lemma 2.1. Let αj=(QY)j be the jth column of QY, we sort αj into u such that u1≥u2≥···≥up,

and find ρ=max{1≤ l≤ p : ul+
1
l (1−

∑l
i=1ui)>0}. The closed-form solution of model (2.5) is:

ŝj =max{αj+ηj, 0}, j=1,··· ,n
where ηj =

1
ρ(1−

∑ρ
i=1ui).

After Ŝ is determined, Q̂ can be solved by

min
Q

ϕ(Q)= f (Q)+h(Q). (2.6)

Finally, model (2.2) is transformed into a problem with respect to the variable Q itself.
Note that model (2.6) is a nonconvex problem due to the nonconvexity of h(Q). Since
u(Q,S) is jointly convex with respect to Q and S and it is strongly convex with respect to
S, the function f (Q) is differentiable with respect to Q and its gradient is:

∇ f (Q)=∇φ(Q,Ŝ)=(QY−Ŝ)Y⊤, (2.7)

where Ŝ is the unique solution of model (2.5). Since model (2.5) is actually a projection
onto a convex set and the solution operator Ŝ(QY) is non-expansive, we have

‖Ŝ(QY)−Ŝ(Q̄Y)‖F≤‖(Q−Q̄)Y‖F≤‖Q−Q̄‖F‖Y‖F.

Consequently, we obtain

‖∇ f (Q)−∇ f (Q̄)‖F≤‖(Q−Q̄)YY⊤‖F+‖(Ŝ(QY)−Ŝ(Q̄Y))Y⊤‖F

≤2‖Y‖2
F‖Q−Q̄‖F.

Hence, the gradient∇ f (Q) is Lipschitz continuous with a constant 2‖Y‖2
F. If det(Q) 6=0,

the gradient of ϕ(Q) is

∇ϕ(Q)=(QY−Ŝ)Y⊤−λQ−1. (2.8)
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3 Gradient type methods

In this section, we solve model (2.6) in detail and present three gradient type methods.

3.1 Proximal gradient method

The proximal gradient algorithm is a special gradient type method, it is mainly used to
solve the optimization problem whose objective function is not differentiable. The idea of
the proximal gradient algorithm is to apply the proximal operator to a gradient descent
step with respect to the differentiable part. We compute Qk+1 of model (2.6) with one
proximal gradient step:

Qk+1=argminQ

〈
∇ f (Qk),Q−Qk

〉
+

1

2τ
||Q−Qk||2F+h(Q),

=argminQ

1

2
||Q−(Qk−τ∇ f (Qk))||2F+τh(Q), (3.1)

=Proxτh(W
k), (3.2)

where Wk =Qk−τ∇ f (Qk), τ=(2+γ)‖Y‖2
F with γ>0, and

Proxτh(W
k)=argminQ

1

2
||Q−Wk||2F+τh(Q).

Next, let us see how to compute Qk+1 in detail.

Lemma 3.1. The solution of proximal operator in Eq. (3.2) is

Proxτh(W)=UQ̃V⊤, (3.3)

where U and V are orthogonal matrices in the SVD decomposition of W, Q̃=diag{q1,··· ,qp},
qi=

wi+
√

w2
i +4τλ

2 (i=1,··· ,p), wi>0 is the ith singular value of W.

Proof. Let UW̃V⊤ be the singular value decomposition of W, where W̃=diag{w1,··· ,wp},
wi is the ith singular value of W, wi > 0, U and V are orthogonal matrices. Let w =
(w1,··· ,wp)T. Model (3.1) is equivalent to

min
q∈Rp

1

2
||q−w||2F−τλ

p∑

i=1

log|qi|.

Note that the above problem is separable, qi (i=1,2,··· ,p) is the optimal solution of

min
qi

1

2
(qi−wi)

2−τλlog|qi|. (3.4)
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The solution of model (3.4) is

qi=
wi+

√
w2

i +4τλ

2
, wi>0.

Therefore, the solution of proximal operator in Eq. (3.2) is Proxτh(W) =UQ̃V⊤, where
Q̃=diag{q1,··· ,qp}.

To sum up, we obtain the proximal gradient method framework for linear hyperspec-
tral unmixing problem. The framework is illuminated in Algorithm 1.

Algorithm 1: Proximal Gradient Method (PGM)

1 Given Q0, λ>0, k=0;
2 while stopping criterion not satisfied do

3 Given Qk, calculate S by Lemma 2.1 and∇ f (Qk) by Eq. (2.7);

4 Compute Qk+1 by Eq. (3.3) ;
5 k← k+1.

Model (2.6) falls into the framework of [9]. The convergence of Algorithm 1 can be
guaranteed by Proposition 3 in [9], and the generated sequence of Algorithm 1 is globally
convergent to a critical point of model (1), as shown in Theorem 3.1.

Theorem 3.1. Let {Qk}k∈N be a sequence generated by Algorithm 1. Assume that ϕ(Q) is
bounded from below on {Q | ϕ(Q)≤ ϕ(Q0)}.
(1) The sequence {Qk}k∈N has finite length, that is

∞∑

k=1

‖Qk+1−Qk‖F <∞.

(2) The sequence {Qk}k∈N converges to a critical point Q∗ of model (2.6).

Proof. Since ϕ(Qk) is bounded from below {Q | ϕ(Q)≤ ϕ(Q0)} and f (Q) is nonnega-
tive, h(Qk) is bounded which implies that Qk is bounded. Because h(Q) satisfies the KL
property, the convergence of Algorithm 1 can be guaranteed by Proposition 3 in [9].

In practice, τ is usually computed by the BB (Barzilai and Borwein) [2] method. At
the k-th iteration, let t=Qk−Qk−1 and z=∇ϕ(Qk)−∇ϕ(Qk−1), then

τk = 〈t,t〉/〈t,z〉 , (3.5)

or

τk = 〈t,z〉/〈z,z〉 . (3.6)
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3.2 Adaptive moments method

Since model (2.6) is non-convex, the solution is not necessarily optimal. The adaptive
momentum method (ADAM) is robust and suitable for non-convex and large-scale prob-
lems. It corrects the iteration direction and adjusts the step size adaptively [19]. In this
subsection, we apply Adam to solve model (2.6) and get a gradient descent algorithm.
The update rules of Adam for model (2.6) are given by

gk =∇ϕ(Qk),

Hk =ρ1Hk−1+(1−ρ1)gk, Ĥk =
Hk

1−ρk
1

,

Gk =ρ2Gk−1+(1−ρ2)gk⊙gk, Ĝk=
Gk

1−ρk
2

,

Qk+1=Qk−τk
Ĥk√
Ĝk+δ

,

where ⊙ is component-wise multiplication and the division is also component-wise. Gk

is a weighted mean of Gk−1 and the accumulated squared gradients. The parameter τk is
the BB step size and δ is a small constant for numerical stability. The parameters ρ1and
ρ2 are decaying rates. The second and the third equations above perform a correction on
Hk and Gk.

Adaptive moments method for linear hyperspectral unmixing problem is described
as Algorithm 2.

Algorithm 2: Adaptive Moments Method (ADAM)

1 Given Q0, τ0>0, λ>0, ρ1, ρ2, g0=∇ϕ(Q0), H0=(1−ρ1)g0, G0=(1−ρ2)g0⊙g0, δ=
1e−7, k=0;

2 while stopping criterion not satisfied do

3 Given Qk, calculate S by Lemma 2.1;
4 Calculate the gradient gk by Eq. (2.8);
5 Compute Hk =ρ1Hk−1+(1−ρ1)gk, Gk =ρ2Gk−1+(1−ρ2)gk⊙gk;

6 Correct bias: Ĥk =
Hk

1−ρk
1

, Ĝk=
Gk

1−ρk
2

;

7 Qk+1=Qk−τk
Ĥk√
Ĝk+δ

, where τk is calculated by Eq. (3.5) or Eq. (3.6);

8 k← k+1.

The convergence of ADAM depends on the suitable stepsizes and algorithm param-
eters. Although model (2.6) is non-convex, ADAM converge to the first-order stationary
solutions under a set of mild sufficient conditions. For details of convergence of ADAM
for non-convex problems, please refer to [13].
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3.3 Proximal gradient method by variance reduction

When the number of given pixels is large, we use proximal stochastic variance reduc-
tion gradient algorithm (Prox-SVRG) to reduce computational time and complexity in
this section. Prox-SVRG progressively reduces the variance of the stochastic gradient.
More specifically, Prox-SVRG computes the full gradient at the beginning of each stage,
followed by m stochastic gradient inner iterations.

Note that the objective function of model (2.6) can be written as

1

2
||QY−S||2F−λlog|det(Q)|= 1

2

n∑

i=1

||Qyi−si||22−λlog|det(Q)|.

Therefore, model (2.6) is equivalent to

min
Q

1

n

∑
fi(Q)− λ

n
log|det(Q)|, (3.7)

where

fi(Q)=min
si

1

2
||Qyi−si||22, s.t. si≥0, 1p

⊤si =1. (3.8)

The optimal solution of model (3.8) is denoted by ŝi := ŝi(Qyi). Then the gradient of fi(Q)
is ∇ fi(Q) = (Qyi− ŝi)y

⊤
i , and the gradient of F(Q) = 1

n

∑n
i=1 fi(Q) is ∇F(Q) = 1

n (QY−
Ŝ)YT. Let R(Q)=− λ

n log|det(Q)|, and it admits a simple proximal mapping obviously.
Therefore, we can apply Prox-SVRG to model (2.6). Our stochastic algorithm for linear
hyperspectral unmixing is presented in Algorithm 3.

Algorithm 3: Proximal Gradient Method via Variance Reduction (PGMVR)

1 Given Q̃0 ;
2 for t=1,2,··· do

3 Q̃= Q̃t−1;
4 solve S by Lemma 2.1;

5 ṽt =∇FP(Q̃)= 1
n (Q̃Y−S)Y⊤;

6 τt=
1
m ||Q̃t−Q̃t−1||22/|(Q̃t−Q̃t−1)

⊤(ṽt− ṽt−1)|;
7 Q0= Q̃;
8 for k=1,2,··· ,m do

9 pick Ik⊂{1,2,··· ,n} randomly ;

10 vk =∇ f Ik
(Qk−1)−∇ f Ik

(Q̃)+ ṽt;
11 Qk =ProxτtR(Qk−1−τkvk);

12 Q̃t=Qm ;
13 If stopping criterion is satisfied, break.
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Because R(Q) is non-convex, problem (3.7) is the sum of convex function and non-
convex regularizer. The convergence of Prox-SVRG demands convexity or strong convex-
ity on both F(Q) and R(Q), therefore PGMVR may diverge [35]. But we will demonstrate
the efficiency of PGMVR in the numerical experiments.

4 Numerical results

In this section, we verify the effectiveness of our proposed algorithms for linear hyper-
spectral unmixing problems. A series of experiments are carried out to show that our
algorithms are suitable for linear HU.

The main contribution of this paper is proposing the new model (2.2) of linear hy-
perspectral unmixing. PGM, ADAM, PGMVR are all based on model (2.2). We compare
the proposed method with related methods. The details of these evaluated algorithms
(including our algorithms) are listed as follows:

• The proximal gradient method (PGM in short), presented in Subsection 3.1.

• The adaptive moments method (ADAM in short), presented in Subsection 3.2.

• The proximal gradient method via variance reduction (PGMVR in short), presented
in Subsection 3.3.

• The simplex identification via split augmented Lagrangian (SISAL in short). It is
a geometrical method. In SISAL, the positivity constraints, forcing the spectral
vectors to belong to the convex hull of the endmember signatures, are replaced
by soft constraints. The obtained problem is solved by a sequence of augmented
Lagrangian optimizations. The code for this method is downloaded from http:

//www.lx.it.pt/~bioucas/code.htm.

• The vertex component analysis (VCA in short). It is a classic geometrical method
that needs the existence of pure pixels for each endmember. Different with the
other algorithms that estimate the endmembers and abundances simultaneously,
VCA can only estimate the endmembers. The abundances are estimated by solving
a constrained least square Problem. The code for this algorithm is obtained from
http://www.lx.it.pt/~bioucas/code.htm.

• The projected mini-batch gradient descent method (MBSGD in short) [21]. It uses
a mini-batch of samples or pixels every time. This algorithm is a stochastic gra-
dient descent approach. Since its original code is not available, we implement it
ourselves.

• The online kernel-based nonnegative matrix factorization method (OKNMF in short)
[36]. It is an online learning method using the mini-batch strategy. The code for this
algorithm is obtained from http://www.honeine.fr/paul/publi/17.oknmf.zip.
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All algorithms are written in MATLAB. All experiments are performed on a Lenovo
PC with Intel(R) Core(TM) i7−6500 CPU at 2.50GHz and 8G of memory running Win-
dows 7 and MATLAB 2016a.

4.1 Simulated data

The data was generated according to the linear observation model. The abundance frac-
tions are Dirichlet distributed with parameter µi =1, i=1,··· ,p. The mixing matrix M is
randomly generated by rand(L,p). To ensure that no pure pixel is present, we discarded
all pixels with any abundance fractions larger than 0.8. See Fig. 1 for simulated data.
Every star dot is an endmember, while blue dots denote simulated data point. Note that
there is no pure pixel in simulated data.

-6 -5 -4 -3 -2 -1 0 1 2
-7

-6

-5

-4

-3

-2

-1
Endmembers and data points (2D projection)

data points
Endmembers

Figure 1: Diagram of simulated data.

All the parameters of SISAL are set to be their defaults values. The stopping criterion
is ||(QY−S)Y⊤−λQ−⊤||F <10−4, where Q−⊤ denotes the transport matrix of Q−1. The
maximum number of iterations is set to be 2000 in PGM and ADAM, and 100 in PG-
MVR. The other parameters in PGM, ADAM, and PGMVR are set as Table 1. The other
parameters of MBSGD, and OKNMF are set to be their defaults values. SNR is defined
as

SNR=10log

(
10

signal voltage

noise voltage

)
.

The meaning of SNR=∞ is that there is no noise in the data set. Because noise exists in the
hyperspectral images, therefore we only consider SNR=10, 20 and 30 in this subsection.

In order to evaluate the proposed method, we use the spectral angle distance (SAD)
[31]. SAD is used to evaluate the performance of estimated endmembers, which is an
angle distance between an estimated endmember and its corresponding ground truth. It
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Table 1: Parameter settings.

Methods Parameters

PGM τ0=1

ADAM τ0=1 ρ1=0.8 ρ2=0.9 δ=1e−7

PGMVR τ0=1 m=50

Table 2: The average SADs vs. SNRs on simulated data.

SAD
SNR

10 20 30

PGM 0.0096 0.0109 0.0038

ADAM 0.0688 0.0108 0.0039

PGMVR 0.0091 0.0107 0.0038

SISAL 0.0852 0.0216 0.0043

VCA 0.0912 0.1237 0.1388

MBSGD 0.0230 0.0495 0.0545

OKNMF 0.2020 0.2035 0.2037

is defined as

SAD(Mi,M̂i)=arccos

(
M⊤i M̂i

||Mi||·||M̂i ||

)
, (4.1)

where Mi denotes the ground truth of one endmember, and M̂i is the corresponding
estimated result. The smaller SAD, the better performance.

We first perform numerical experiments to study the relationship between SAD and
the number of pixels for p = 3 and N = 10000. When the number of pixels N is 10000,
we use the whole data set to identify the endmembers. Experiment results for p=3 and
N=10000 are reported in Tables 2 and 3. The endmembers found by five algorithms are
compared in Fig. 2. As we can see, VCA does not perform well because there are no pure
pixels in the simulated data. Because VCA is very fast, it is used to provide an initial
value Q0 for PGM, ADAM, and PGMVR.

When the number of pixels N is larger than 10000, we select n columns from Y ran-
domly to generate a submatrix Ŷ. Then Ŷ is used in all models to find endmembers. The
procedure is based on the founding that most pixels are redundant to recover only 3 end-
members. To test the efficiency of the stochastic variance reduction strategy, we do some
numerical experiments on large data sets. n is set to be 0.1N. Let p=3 and SNR=20. The
numerical experiment results are listed in Tables 4 and 5. Model (2.2) performs very well
on large data sets for noise case in comparison with results from other approaches.
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Table 3: The average time vs. SNRs on simulated data.

Time(s)
SNR

10 20 30

PGM 0.1174 0.1386 0.4399

ADAM 3.0399 2.2754 3.0773

PGMVR 0.3898 0.7711 2.7701

SISAL 6.8153 6.2807 8.7522

VCA 0.0626 0.0612 0.0567

MBSGD 1.7141 1.6148 1.6145

OKNMF 73.0677 65.5441 64.5498
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Figure 2: Average SAD of different algorithms for different SNRs.
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Table 4: The average SADs and time on big data for noise case (N=100000).

Algorithms PGM ADAM PGMVR SISAL VCA MBSGD OKNMF

SAD 0.0143 0.0124 0.0103 0.0146 0.1356 0.0391 0.2102

Time (s) 0.0220 0.1389 0.3294 1.4032 0.0143 0.1944 6.2752

Table 5: The average SADs and time on big data for noise case (N=1000000).

Algorithms PGM ADAM PGMVR SISAL VCA MBSGD OKNMF

SAD 0.0121 0.0117 0.0118 0.0237 0.1204 0.0496 0.2054

Time (s) 0.1358 2.6395 0.9019 6.2508 0.0695 1.7616 73.6146

4.2 Real data

We now perform some experiments on four real data examples [37–39], see Fig. 3. They
are available at http://www.escience.cn/people/feiyunZHU/Dataset\_GT.html, and
widely used in the hyperspectral unmixing study.

Figure 3: Four real hyperspectral images, ie, Samson, Jasper Ridge, Urban and Cuprite.

The size of Samson is 95×95×156, in which there are three endmembers, i.e. soil, tree,
and water. The size of Jasper Ridge is 100×100×198, and its endmembers include road,
soil, water, and tree. Urban has the largest size: 307×307×162. Ground truth contains 6
endmembers: asphalt, grass, tree, roof, metal, and dirt. Cuprite’s size is 250×190×224,
and it has 12 endmembers. Due to dense water vapor and atmospheric effects, we remain
188 channels after the common preprocess for Cuprite. Each data set is first transformed
to a B×n matrix Y. Then it is preprocessed according to Section 2. Note that the ground
truth M of each data set is only used to measure the effectiveness of the algorithms.

Firstly , we perform numerical experiments to study the relationship between SAD in
estimating the endmember signatures and the number of pixels. The results are shown
in Fig. 4. The figure shows that SAD tends to be decreased as the number of pixels is
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Figure 4: Average SAD of different algorithms for different data examples.

increased at the early stage, then SAD tends to be increased afterwards. Since the best
number of pixels is unknown as a prior, we choose 100 pixels since it usually is enough
to recover the endmembers for the four data sets. That is, we set n= 100 to identify the
endmember signatures M. We repeat the above procedure for 50 times and calculate the
average SADs. The box plots are shown in Fig. 5.

We use PGM, ADAM, and SISAL to identify the endmembers and fractional abun-
dances of four real hyperspectral images. All the parameters of SISAL are set to be their
defaults values. The maximum number of iterations is set to be 1000 in PGM, and ADAM.
The maximum number of iterations in PGMVR is set to be 10. λ is set to be 2. The other
parameters are the same as in Table 1. Here, we ignore VCA because there are no pure
pixels in this data set. The average spectral angle distances are list in Tables 6 to 9. Com-
pared with non-stochastic algorithms and the other two stochastic algorithms, PGMVR
is comparable to all other algorithms.
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Figure 5: Box plot of SAD for n=100.

Table 6: SAD and time of different algorithms for Samson.

Algorithms
SAD

Time(s)
1-rock 2-tree 3-water Mean value

PGM 0.0157 0.0146 0.0198 0.0167 0.0101

ADAM 0.1154 0.0706 0.2477 0.1446 0.0470

PGMVR 0.0190 0.0172 0.0272 0.0211 0.0139

SISAL 0.0207 0.0613 0.2625 0.1148 0.0929

The spectral signatures of different algorithms are presented in Figs. 6 and 7. Figs. 8
and 9 shows the abundances of different algorithms. The first row is the ground truth,
the following rows are respectively given by PGM, ADAM, PGMVR, and SISAL in Figs. 8
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Table 7: SAD and time of different algorithms for Jasper Ridge.

Algorithms
SAD

Time(s)
1-tree 2-water 3-dirt 4-road Mean value

PGM 0.0547 0.0157 0.0390 0.7097 0.2048 0.0206

ADAM 0.2120 0.2524 0.5411 0.7053 0.4277 0.0643

PGMVR 0.0545 0.0485 0.0289 0.7266 0.2146 0.0150

SISAL 0.2211 0.1710 0.4052 0.8265 0.4059 0.1158

Table 8: SAD and time of different algorithms for Urban.

Algorithms
SAD

Time(s)
1-asphalt 2-grass 3-tree 4-roof 5-metal 6-dirt Mean value

PGM 0.1565 0.1103 0.0580 0.1990 0.2365 0.5654 0.2210 0.4520

ADAM 0.6198 0.4562 0.5639 0.6116 0.8695 0.9647 0.6809 0.1354

PGMVR 0.1510 0.1004 0.0632 0.1987 0.1830 0.5248 0.2035 0.0359

SISAL 0.4318 0.2653 0.1906 0.5563 0.6702 0.7462 0.4767 0.0729

Table 9: SAD and time of different algorithms for Cuprite.

SAD
Algorithms

PGM ADAM PGMVR SISAL

1-Alunite 0.1724 0.1453 0.1850 0.1482

2-Andradite 0.0685 0.1188 0.0870 0.1046

3-Buddingtonite 0.1067 0.2023 0.1364 0.1325

4-Dumortierite 0.0802 0.1120 0.1412 0.1116

5-Kaolinite1 0.0872 0.1293 0.1037 0.1267

6-Kaolinite1 0.0599 0.2146 0.1122 0.1697

7-Muscovite 0.1518 0.2873 0.1892 0.2059

8-Montmorillonite 0.0921 0.2202 0.1336 0.2399

9-Nontronite 0.1155 0.2000 0.1322 0.2504

10-Pyrope 0.0523 0.2578 0.1551 0.2436

11-Sphene 0.1849 0.6078 0.2498 0.4795

12-Chalcedony 1.0490 1.3520 0.9327 1.3181

Mean value 0.1850 0.3206 0.2132 0.2942

Time(s) 0.4483 0.1764 0.0150 0.0987
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Figure 6: Spectral Signatures estimated by different algorithms compared with the ground truth of Samson.

and 9. Because the endmembers of Urban and Cuprite are too many, here we do not
present their spectral signatures and abundances because of the limit of space. From
Figs. 6 and 7, we observe that spectral signatures of endmembers are similar to ground
truth, only some parts deviate slightly. From Figs. 8-9, we observe that abundances of
SISAL are all darker than PGM and PGMVR.

Obviously, model (2.2) performs very well on real data, and the stochastic variance
reduction strategy plays an important role in large scale problems.

5 Conclusions and future works

In this paper, we introduce a new linear unmixing model and its corresponding algo-
rithms PGM and ADAM. The unmixing is achieved by finding the minimum volume
simplex containing the hyperspectral data. This optimization problem is solved by a se-
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Figure 7: Spectral Signatures estimated by different algorithms compared with the ground truth of Jasper Ridge.

quence of proximal gradient steps in PGM while a special sequence of gradient steps
with an adaptive learning rate in ADAM. To deal with large data sets, we present a ran-
dom algorithm PGMVR to reduce the computational complexity. The numerical results
demonstrate the efficiency of these algorithms.
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Figure 8: Abundances estimated by different algorithms compared with the ground truth of Samson.
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