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Abstract. In this paper we introduce models of short wave-long wave interac-
tions in the relativistic setting. In this context the nonlinear Schrödinger equa-
tion is no longer adequate for describing short waves and is replaced by a non-
linear Dirac equation. Two specific examples are considered: the case where
the long waves are governed by a scalar conservation law; and the case where
the long waves are governed by the augmented Born-Infeld equations in elec-
tromagnetism.
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1 Introduction

In [3], Benney proposed a general theory describing interactions between short
waves and long waves, in the classical non-relativistic context. More specifically,
in Benney’s model short waves are described by a non-linear Schrödinger equa-
tion. As for the long waves, in [3] two examples are given: a linear transport
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equation, and the Burgers equation, namely, with some simplifications, these ex-
amples are

iut+uxx = |u|2u+αvu,

vt+c1vx =
(

α|u|2
)

x
,

and
iut+uxx = |u|2u+αvu,

vt+

(

v2

2

)

x

=
(

α|u|2
)

x
,

where α > 0 is a constant. We recall, among works dedicated to the study of
this original model in [3], that the well-posedness for the linear case was ad-
dressed in [31], while the case of the Burgers equation with dispersion, that is,
the KdV equation, was addressed in [2]. In [11], global existence for the Burg-
ers flux with a cubic perturbation, av2−bv3, b> 0, was obtained. We denote the

coupling prescribed in [3] by
( vu
|u|2

)

. An important improvement in the model

set forth in [3] was achieved in [12] where the coupling, in the case where long

waves are described by scalar conservation laws, was prescribed as
( g(v)u

g′(v)|u|2

)

,

where supp g′ may be suitably chosen so as to guarantee the preservation of the
physical domain. Moreover, the improvement proposed in [12] also enabled the
study of interactions with long waves governed by systems of conservation laws
such as elasticity, electromagnetism, symmetric systems, etc. It also opened the
way for the study of interactions with compressible fluids in [13], followed by
extensions to heat conductive fluids and magnetohydrodynamics equations (see,
e.g., [15–18, 24]). An important feature in the latter references for interactions
with fluids is that the nonlinear Schrödinger equation governing the short waves
is based on the Lagrangian coordinates of the fluid. Also, the coupling in these

works on interactions involving fluids has the form
(g(v)h′(|u|2)u

g′(v)h(|u|2)

)

, with supph′

compact in [0,∞).
In the relativistic context, the short waves can no longer be described by a non-

linear Schrödinger equation since this type of equation yields infinite speed of
propagation, which violates the relativity principle that no signal can propa-
gate with speed higher than the speed of light. The natural substitute for the
Schrödinger equation is the Dirac equation proposed by Dirac [14] in search of
compatibility between relativity and quantum theories. On the other hand as a re-
placement for the nonlinear cubic Schrödiger equation there are different models
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of the nonlinear cubic Dirac equation (see, e.g., [1, 5–7, 9, 21, 30]). Here we will be
concerned with the Thirring model proposed by Thirring in [30] whose mathe-
matical study has been considered in several papers (see, e.g., [5, 9, 10, 21]). More
specifically, here we only consider the zero mass case.

For instance, in the relativistic context, using the massless Thirring model,
the simplest case of the transport equation found in [3] and recalled as the first
system above would be recast as

ut=aux−i(λU+αv)u,

vt+c1vx=
(

α|u|2
)

x
,

(1.1)

U=u
†
u−u

†
aua, (1.2)

where, as usual for Dirac equations, u∈C2 and a is a 2×2 complex matrix satis-
fying a

∗ := ā
⊤= a and a

2 = I. Here, α> 0,λ∈R and U is the Thirring quadratic
matrix valued functional, where † means the conjugate transpose, i.e., if

u=

(

u1

u2

)

∈C
2,

then u
† = (ū1,ū2), in particular, u

†
u= |u|2 = (ℜu1)

2+(ℑu1)
2+(ℜu2)

2+(ℑu2)
2.

The justification of this type of model follows from the justification for the cor-
responding model in the non-relativistic case in [3].

In this connection, we recall that Dias and Figueira in [10] established an im-
portant property of the solution of a simplified version of the massless Thirring
model (with U = |u|2), which is the fact that |u|2 solves the wave equation (see
also [23]). Here we extend this property to a general massless Thirring model
(with U as in (2.1)) with any real-valued potential V(t,x), in particular, that is,
a nonlinear Dirac equation of the form

ut=aux−i(λU+V)u (1.3)

with V=V(t,x) any real-valued function, possibly depending on u. Not only |u|2

satisfies the wave equation, but this is true also for (u†
au). This observation by

itself trivializes the solution of the Cauchy problem for (1.1). We will prove this
general property in Section 2.

In Sections 3 and 4 of this paper, we apply the result in Section 2 to two exam-
ples of models for relativistic short wave-long wave interactions, for two different
types of long waves propagation. The first application, discussed in Section 3, is
the case of a scalar conservation law in the relativistic context such as the one in-
troduced by LeFloch, Makhlof and Okutmustur in [22] (see also [20]). In this case
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the system modeling the short wave-long wave interactions has the form

ut=aux−i
(

λU+g(v)
)

u,

vt+ f (t,v)x+h(t,v)=α
(

g′(v)|u|2
)

x
,

whose details will be explained in Section 3.

The second application, discussed in Section 4, is provided by the augmented
Born-Infeld (ABI) equations, introduced by Brenier in [4], in electromagnetism.
This is a linearly degenerate 8×8 system which shares some features with com-
pressible fluid equations. More specifically, the two first equations of the system
form themselves a closed system independent from the other remaining 6 vari-
ables and has the same structure of the equations for the so called Chapligyn gas
(see, e.g., [27]). From this similarity with compressible gas dynamics, it is natural
that the model for the referred interactions should be based on the Lagrangian
coordinates of the ABI system. The system modeling the short wave-long wave
interactions then reduces to the following, whose details are explained in Sec-
tion 4:

ut=auy−i
(

λU+α1g1(θ)+α2g2(ζ)
)

u,

θt−Zθy =α1

(

g′1(θ)|u|
2
)

y
,

ζt+Zζy =α2

(

g′2(ζ)|u|
2
)

y
.

We would like to remark here that an important property of the models of
relativistic short wave-long wave interactions discussed in Sections 3 and 4 is
their stability in the sense that if we have a sequence of weak solutions bounded
in the natural norms, that is, L2 for u and L∞ for the long waves, described by v
in the first case and by (θ,ζ) in the second, then any weak limit of this sequence
is also a weak solution of the corresponding system. This is a trivial consequence
of the way we obtain the weak solutions and the entropy inequalities they satisfy.
We state and prove this stability property in our main theorems in Sections 3
and 4.

2 The main property of the massless Thirring model

In this section we state and prove the main property of the massless Thirring
model for the purposes of this paper, which extends the corresponding fact pro-
ved in [10] for the homogeneous simplified version of the Thirring model.
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Consider the equation

ut−aux=−iA(t,x)u, (2.1)

where u∈C2, a is a 2×2 complex matrix satisfying a
∗ :=(ā)⊤= a, a2 = I, and A

is a 2×2 complex matrix satisfying A∗=A, aA=Aa. An example of A satisfying
these conditions comes from the massless Thirring model with A=λU+V, where
U is as in (1.2) and V is any real-valued function.

Theorem 2.1. Under the above conditions both w= |u|2 and w=u
†
au satisfy the wave

equation

wtt−wxx=0. (2.2)

Proof. Then, multiplying (2.1) by u
† to the left

u
†ut−u

†
aux=−iu†A(t,x)u,

applying † to the last equation

u
†
t u−u

†
xau= iu†A(t,x)u,

adding the last two gives
(

|u|2
)

t
−
(

u
†
au
)

x
=0. (2.3)

Differentiating the last equation by t, it follows

(

|u|2
)

tt
−
(

u
†
au
)

tx
=0. (2.4)

Similarly, multiplying (2.1) by u
†
a, it follows

u
†
aut−u

†
ux=−iu†

aA(t,x)u,

applying † to the last equation

u†
t au−u

†
xu= iu†A(t,x)au,

adding the last two gives
(

u
†
au
)

t
−
(

|u|2
)

x
=0. (2.5)

Differentiating the last equation by x, it follows

(

u
†
au
)

xt
−
(

|u|2
)

xx
=0. (2.6)
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From (2.4) and (2.6) it follows
(

|u|2
)

tt
−
(

|u|2
)

xx
=0. (2.7)

Similarly, differentiating (2.3) with respect to x, (2.5) with respect to t and adding

the resulting equations we arrive at
(

u
†
au
)

tt
−
(

u
†
au
)

xx
=0, (2.8)

which proves the assertion for u†
au and concludes the proof.

Remark 2.1. Solving the wave equation, taking into account (2.3), we obtain

|u|2(t,x)=
1

2

[

|u(0,x+t)|2+(u†
au)(0,x+t)

]

+
1

2

[

|u(0,x−t)|2−(u†
au)(0,x−t)

]

. (2.9)

This formula shows that |u(t,x)|2≥0, for all t>0, as it should be, where we have

used the fact that |au|= |u|, and so |(u†
au)|≤ |u|2. Moreover, if

|u(0,x)|2+
(

u
†
au
)

(0,x)>0 for all x∈R, (2.10)

then |u(t,x)|2>0, for all t>0. For instance, for

a=

(

1 0

0 −1

)

as in [5, 21], if u=(u1,u2), then condition (2.10) is true if |u1(0,x)|2 >0. Similarly,

using (2.5), we arrive at the formula

(

u
†
au
)

(t,x)=
1

2

[

|u(0,x+t)|2+(u†
au)(0,x+t)

]

−
1

2

[

|u(0,x−t)|2−(u†
au)(0,x−t)

]

. (2.11)

Remark 2.2. By the previous remark, in particular the formula (2.9), the solution

of the initial value problem for (1.1) is trivial, as follows. We first solve the linear

transport equation for v, with |u|2 as a given right-hand side, obtained from (2.9).

Then, having found v(t,x), we solve the equation for u, using the fact that (2.9)

and (2.11) determine U everywhere, and so we can obtain u by using the uni-

tary group associated with the skew-adjoint operator a∂x, with domain H1(R),
S(t)= exp(a ∂

∂x )t, and solving the Duhamel’s equation by a standard fixed point

argument in C([0,∞);L2(R)). We will give a bit more details about the solution

of the equation for u in the next section.
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We take this opportunity to state and prove an extension of the above result
to massless Dirac equations in three space dimensions as follows. Let us consider
the equation

ut−a1ux−a2uy−a3uz=−iB(t,x,y,z)u, (2.12)

where u=u(t,x)∈C4 , ai, i=1,2,3, are 4×4 complex matrices satisfying a
∗
i =ai, a

2
i =I,

aiaj=−ajai, i 6=j, i, j=1,2,3, and B(t,x,y,z) is a 4×4 complex matrix such that B∗=B
and aiB= Bai, i= 1,2,3. Equations such as (2.12) were proposed by R.T. Glassey,
as cited by Strauss in [28, p.245], where B = λ|u|p−1 I, p > 1, λ ∈R, and I is the
4×4 identity matrix. Also, (2.12) includes a 1+3-dimensional extension of the
massless Thirring model, where B(t,x,y,z)=λŪ+V(t,x,y,z) with Ū=u

†
u−u

†
bub

such that
b= ia1a2a3,

and V is a real-valued function.

Theorem 2.2. Let u be a smooth solution of (2.12) and let ai, i=1,2,3, satisfy the above

properties. Then, both w= |u|2 and w=u
†
bu satisfy

wtt−wxx−wyy−wzz=0. (2.13)

Proof. Multiplying (2.12) by u
† to the left

u
†
ut−u

†
a1ux−u

†
a2uy−u

†
a3uz=−iu†B(t,x,y,z)u,

applying † to the last equation

u
†
t u−u

†
xa1u−u

†
ya2u−u

†
za3u= iu†B(t,x,y,z)u,

adding the last two gives

(

|u|2
)

t
−
(

u
†
a1u
)

x
−
(

u
†
a2u
)

y
−
(

u
†
a3u
)

z
=0.

Differentiating the last equation by t, it follows

(

|u|2
)

tt
−
(

u
†
a1u
)

tx
−
(

u
†
a2u
)

ty
−
(

u
†
a3u
)

tz
=0. (2.14)

Similarly, multiplying (2.12) by u†
a1, it follows

u
†
a1ut−u

†
ux−u

†
a1a2uy−u

†
a1a3uz=−iu†B(t,x,y,z)a1u,

applying † to the last equation

u
†
t a1u−u

†
xu−u

†
ya2a1u−u

†
za3a1u= iu†B(t,x,y,z)a1u,
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adding the last two gives

(

u
†
a1u
)

t
−
(

|u|2
)

x
=0. (2.15)

Similarly, we get

(

u
†
a2u
)

t
−
(

|u|2
)

y
=0, (2.16)

(

u
†
a3u
)

t
−
(

|u|2
)

z
=0. (2.17)

Differentiating (2.15) by x, (2.16) by y and (2.17) by z there follow, respectively,

(

u
†
a1u
)

xt
−
(

|u|2
)

xx
=0, (2.18)

(

u
†
a2u
)

yt
−
(

|u|2
)

yy
=0, (2.19)

(

u
†
a3u
)

zt
−
(

|u|2
)

zz
=0. (2.20)

Adding (2.14), (2.18)-(2.20), it follows

(

|u|2
)

tt
−
(

|u|2
)

xx
−
(

|u|2
)

yy
−
(

|u|2
)

zz
=0, (2.21)

which proves the assertion for w= |u|2. To prove the assertion for w= u
†
bu, we

first multiply (2.12) by u
†
b on the left to obtain

u
†
but+u

†
ba1ux+u

†
ba2uy+u

†
ba3uz=−iu†Bbu. (2.22)

We then apply † to (2.22) and add the resulting equation to (2.22) to obtain

(

u
†
bu
)

t
+
(

u
†
ba1u

)

x
+
(

u
†
ba2u

)

y
+
(

u
†
ba3u

)

z
=0. (2.23)

Differentiating (2.23) by t we obtain

(

u
†
bu
)

tt
+
(

u
†
ba1u

)

tx
+
(

u
†
ba2u

)

ty
+
(

u
†
ba3u

)

tz
=0. (2.24)

Now we multiply (2.12) by u
†
ba1 to get

u
†
ba1ut+u

†
bux+u

†
ba1a2uy+u

†
ba1a3uz=−iu†Bba1u. (2.25)

We then apply † to (2.25) and add the resulting equation to (2.25) to obtain

(

u
†
ba1u

)

t
+
(

u
†
bu
)

x
=0,
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which differentiating with respect to x gives

(

u
†
ba1u

)

tx
+
(

u
†
bu
)

xx
=0. (2.26)

Similarly, we obtain

(

u
†
ba2u

)

ty
+
(

u
†
bu
)

yy
=0, (2.27)

(

u
†
ba3u

)

tz
+
(

u
†
bu
)

zz
=0. (2.28)

Adding (2.24), (2.26)-(2.28) we then obtain (2.13) for w= u
†
bu, which concludes

the proof.

3 Application to relativistic scalar conservation laws

In this section we consider the interaction between short waves governed by
a nonlinear massless Dirac equation and long waves governed by a scalar con-
servation law in the relativistic context such as the one proposed in [22] (see
also [20]). We consider the following system describing this interaction:

ut=aux−i
(

λU+αg(v)
)

u, (3.1)

vt+∂x f (t,v)+h(t,v)=α
(

g′(v)|u|2
)

x
, (3.2)

where

u=

(

u1

u2

)

∈C
2,

a is a 2×2 complex matrix satisfying a
† := ā

T=a, a2= I, λ∈R, α>0 are constants
and U is given in (2.1). We assume that f ,h∈C2([0,∞)×R), with | fv(t,v)| ≤ |v|,
and h(t,±c0)= 0, ±hv(t,±c0)< 0, respectively, where c0 is the speed of light, for
all t≥0.

In [20] one has

f (t,v)=
1

2a
v2, h(t,v)=

ȧ

a
v

(

1−
v2

c2
0

)

,

where a∈C2([0,∞)), a(t)≥ 1, ȧ(t)> 0, for all t≥ 0, 0< δ1 ≤
ȧ

a
≤ L0, and c0 is the

speed of light.
We prescribe initial conditions

u(0,x)=u0(x), v(0,x)=v0(x), x∈R, (3.3)
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and we assume that

u0∈H1(R), v0∈L∞(R)∩L1(R) (3.4)

with
‖v0‖∞ < c0. (3.5)

As to the function g we assume that g∈C3(R) and supp g′⊂ (−M,M), with 0<
M< c0, satisfying

∣

∣

{

v∈R : fvv(t,v)−kg′′′(v)=0
}
∣

∣=0, ∀k,t≥0, (3.6)

where |{···}| denotes the one-dimensional Lebesgue measure of the set {···}.
Observe that from (2.9) and (3.4) it follows that |u|2 ∈ H1((0,T)×R), for all

T>0.

Definition 3.1. For all T>0, we say that

(u,v)∈L2
(

(0,T)×R;C2
)

×
(

L1∩L∞
)(

(0,T)×R
)

is a weak solution of the problem (3.1)-(3.3) in (0,T)×R if for all ϕ∈C∞

c ((−∞,T)×R)
the following holds

∫ T

0

∫

R

uϕt−auϕx−i
(

λU+αg(v)
)

uϕdxdt+
∫

R

u0ϕ(0)dx=0,

∫ T

0

∫

R

vϕt+
(

f (t,v)−αg′(v)|u|2
)

ϕx+h(t,v)ϕdxdt+
∫

R

v0ϕ(0)dx=0.

(3.7)

Moreover, for any convex η∈C2(R), we must have

η(v)t+

(

∫ v

0
fv(t,ξ)η

′(ξ)dξ−α|u|2
∫ v

0
η′(ξ)g′′(ξ)dξ

)

x

+h(t,v)η′(v)

≤α

(

η′(v)g′(v)−
∫ v

0
η′(ξ)g′′(ξ)dξ

)

(

|u|2
)

x
(3.8)

in the sense of distributions in (0,T)×R.

We next state our existence result for the initial value problem (3.1)-(3.3).

Theorem 3.1. For all T>0, there exists a weak solution of the initial value problem (3.1)-

(3.3) in (0,T)×R. Furthermore, if (un,vn) is a sequence of such weak solutions of the sys-

tem (3.1)-(3.3) with initial data (un
0 ,vn

0) uniformly bounded in H1(R)×(L1∩L∞)(R),
converging in the sense of distributions to (u0,v0) ∈ H1(R)×(L1∩L∞)(R) then, by

passing to a subsequence if necessary, (un,vn) converges in the sense of distributions to

a weak solution of (3.1)-(3.3).
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Proof. By (2.9) we see that (3.2) essentially decouples from (3.1). Therefore we can

first solve (3.2) and then plug the solution of (3.2) into (3.1). Further, since U is

also determined by the u0, by Theorem 2.1, we see that once we have the solution

of (3.2), the solution of (3.1) is immediate. We can use the vanishing viscosity

method to solve (3.2). More specifically, we approximate the solution of (3.2) by

solving the problem

vt+∂x f (t,v)+hε(t,v)=
(

g′(v)|u|2
)

x
+εvxx , (3.9)

v(0,x)=vε
0(x), (3.10)

where hε(t,v)=h(t,(1−ε)v), vε
0=v0∗ρε, where ρε is a standard mollifying kernel,

for 0< ε<< 1 such that ±h(t,±(1−ε)c0)> 0, respectively, which is possible by

the hypotheses on h. Also, because of the assumption on supp g′, we can apply

a standard maximum principle argument to deduce that the solution vε of (3.9)-

(3.10) satisfies

|vε(t,x)|≤ c0 for all (t,x)∈ (0,∞)×R. (3.11)

Using this a priori estimate, the solution of (3.9)-(3.10) follows easily by a stan-

dard fixed point argument as explained in several text books, e.g., in [19, Chap-

ter 3] (see also [8]).

Given η∈C2(R) convex, multiplying (3.9) by η′ and making trivial rearrange-

ments we obtain

η(vε)t+

(

∫ vε(t,x)

0
fv(t,ξ)η

′(ξ)dξ−α|u|2
∫ vε(t,x)

0
η′(ξ)g′′(ξ)dξ

)

x

(3.12)

+hε(t,vε)η′(vε)

= ε
(

η(vε)
)

xx
−εη′′(vε)|vε

x |
2+α

(

η′(vε)g′(vε)−
∫ vε(t,x)

0
η′(ξ)g′′(ξ)dξ

)

(

|u|2
)

x
.

Taking a strictly convex η, for instance, η(v)= 1
2v2, using the uniform bounded-

ness (3.9) of vε and the fact that (|u|2)x ∈ L2((0,T)×R), for any T>0, integrating

(3.12) on (0,t)×R, we obtain
∫

R

(

vε(t)
)2

dx+
∫

(0,t)×R

ε|vε
x |

2 dxdt

≤
∫

R

(vε
0)

2 dx+
∫

(0,t)×R

(

|u|2
)2

x
dxdt+C

∫

(0,t)×R

|vε|2dxdt, (3.13)

which, by using Gronwall’s inequality, gives the uniform boundedness of vε in

L∞((0,T);L2(R)), for all T>0, and also
∫

(0,T)×R

ε|vε
x |

2dxdt≤C(T) (3.14)
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with C(T)>0 independent of ε. Let us denote

qη

(

t,vε;|u|2
)

:=
∫ vε(t,x)

0
fv(t,ξ)η

′(ξ)dξ−α|u|2
∫ vε(t,x)

0
η′(ξ)g′′(ξ)dξ.

From (3.14), it follows in a by now standard way that, for all η∈C2(R),

η(vε)t+∂xqη

(

t,vε;|u|2
)

belongs to a compact in W−1,2
loc

(

(0,T)×R
)

.

Applying Tartar’s compensated compactness argument in [29], using the non-

degeneracy condition (3.6), we obtain the convergence in L1
loc((0,∞)×R) of a sub-

sequence of vε, also denoted vε, to a function v∈(L1∩L∞)((0,T)×R), for all T>0.

The latter then clearly satisfies the second integral equation in (3.7) and (3.8).

We then use the obtained limit function v in (3.1) and also the fact that U is

determined by the initial data u0, by Theorem 2.1. We find a weak solution u of

(3.1), using Duhamel’s principle, by solving the integral equation

u(t)=S(t−t0)u(t0)−
∫ t

t0

S(t−s)i
(

λU(s)+αg(v(s))
)

u(s)ds, (3.15)

where S(t) is the unitary group generated by a
∂

∂x , which is a skew-adjoint oper-

ator with domain H1(R), that is, S(t)= exp(a ∂
∂x )t. Using the fact that (λU(s)+

αg(v(s)))∈L∞ ((0,∞)×R), we easily obtain a solution of (3.15) in C([0,T0];L
2(R)),

with t0 =0, by a fixed point argument, for T0>0 small enough, whose smallness

depends only on ‖(λU+αg(v))‖∞ . We then extend the solution using the same

argument, for t0=T0,2T0,3T0,···. By the semigroup property we then obtain a so-

lution u∈C([0,∞);L2(R)) to

u(t)=S(t)u0−
∫ t

0
S(t−s)i

(

λU(s)+αg(v(s))
)

u(s)ds (3.16)

for all t>0. It is then standard to check that this solution of (3.16) satisfies the first

integral equation in (3.7).

The second part of the statement follows by noticing that, under the assump-

tions in the statement, it follows that (|un|2), passing to a subsequence if neces-

sary, converges in L2((0,T)×R), vn is bounded in (L1∩L∞)((0,T)×R), and the

fact that the inequalities obtained from (3.8) applied to (un,vn) imply, in a by

now standard way, using the compactness of the embedding Mloc((0,T)×R)⋐

W
−1,p
loc ((0,T)×R), for some 1< p<2, where Mloc((0,T)×R) is the space of mea-

sures of locally finite variation, and interpolation between W
−1,p
loc ((0,T)×R) and
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W−1,∞((0,T)×R) (see, e.g., [25]), that

η(vn)t+∂xqη

(

t,vn;|un|2
)

∈compact in W−1,2
loc

(

(0,T)×R
)

.

Therefore, we can apply again Tartar’s compensated compactness arguments in

[29], and the final assertion follows.

4 Application to the augmented Born-Infeld

equations

In this section we consider the interaction between short waves governed by
a massless nonlinear Dirac equation with long waves governed by the augmented
Born-Infeld (ABI) equations, an extension of the Born-Infeld equations introduced
by Brenier in [4], the latter being a nonlinear version of the Maxwell equations of
the electromagnetism.

The Born-Infeld equations (cf. [4], see also, e.g., [26]) are obtained from the
energy density h given by

h=
√

1+B2+D2+|B×D|2,

where |·| denotes the Euclidean norm, B and D are fields in R3 related with the
magnetic and electric fields, H and E, respectively, by the expressions

E=
∂h

∂D
=

D+B×P

h
, H=

∂h

∂B
=

B−D×P

h
,

where
P=D×B

is the Poynting vector. The BI equations are

∂tD+∇×

(

−B+D×P

h

)

=∂tB+∇×

(

D+B×P

h

)

=0,

∇·D=∇·B=0,

(4.1)

and the energy density satisfies the additional conservation law

∂th+∇·P=0. (4.2)

As remarked in [4], h is a strictly convex function of B and D only in a neigh-
borhood of the origin, not in the large, and it is not clear that the BI equations
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are hyperbolic in the large. Nevertheless, clearly h is a global convex function of
B, D and P=B×D. Motivated by this observation, the following new evolution
equation is obtained for P in [4]:

∂tP+∇·

(

P⊗P−B⊗B−D⊗D

h

)

=∇

(

1

h

)

. (4.3)

The 10×10 system formed by Eqs. (4.1)-(4.3) is the so called augmented Born-
Infeld (ABI) system. The hyperbolicity of the ABI system is proven in [4], where
it is shown that

S(D,B,P,h)=
1+B2+D2+P2

2h
, h>0 (4.4)

is convex entropy for the ABI system. More specifically, smooth solutions of the
ABI system also satisfy the additional conservation law

∂tS+∇·
SP

h
=∇·

{

P=D×B+(B·P)B+(D ·P)D

h2

}

. (4.5)

Here, we are concerned with the plane waves of the ABI system, that is, solutions
that, with respect to the space variable x = (x1,x2,x3), do not depend on x2,x3.
Therefore, it follows for these solutions that

∂tB1=∂tD1=0, ∂1B1=∂1D1=0,

which immediately follows from (4.1), which implies that B1 and D1 are constant.
Let us define the positive constant Z such that Z2 = 1+B2

1+D2
1. The 8×8 ABI

system is as follows:

∂th+∂1P1=0, (4.6)

∂tP1+∂1

(

P2
1 −Z2

h

)

=0, (4.7)

∂tD2+∂1

(

B3+D2P1−D1P2

h

)

=0, (4.8)

∂tD3+∂1

(

−B2+D3P1−D1P2

h

)

=0, (4.9)

∂tB2+∂1

(

−D3+B2P1−D1P3

h

)

=0, (4.10)

∂tB3+∂1

(

D2+B3P1−B1P3

h

)

=0, (4.11)
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∂tP2+∂1

(

P1P2−D1D2−B1B2

h

)

=0, (4.12)

∂tP3+∂1

(

P1P3−D1D3−B1B3

h

)

=0. (4.13)

We first observe that (4.6) and (4.7) form a 2×2 system decoupled from the re-
maining 6 equations of the ABI system. In fact, (4.6)-(4.7) describes the evolution
of an isentropic gas often called Chaplygin gas. It is a linearly degenerate sys-
tem, which is also the case of the whole ABI system. Since we want to describe
the interaction of the long waves governed by the ABI system with short waves
governed by a nonlinear Dirac equation, and the latter must be formulated in
the Lagrangian coordinates of the long waves, we pass system (4.6)-(4.13) to La-
grangian coordinates as follows. Let us denote

τ=
1

h
, v=

P1

h
, D̃i =

Di

h
, B̃i =

Bi

h
, P̃i =

Pi

h
, i=2,3.

We then get

∂tτ−∂yv=0, (4.14)

∂tv−∂y

(

Z2τ
)

=0, (4.15)

∂tD̃2+∂y

(

B̃3−D1P̃2

)

=0, (4.16)

∂tD̃3−∂y

(

B̃2+D1P̃3

)

=0, (4.17)

∂tB̃2−∂y

(

D̃3+B1P̃2

)

=0, (4.18)

∂tB̃3+∂y

(

D̃2−B1P̃3

)

=0, (4.19)

∂tP̃2−∂y

(

D1D̃2+B1B̃2

)

=0, (4.20)

∂tP̃3−∂y

(

D1D̃3+B1B̃3

)

=0. (4.21)

Hence, recalling that D1 and B1 are constants, we see that the plane waves of
the ABI system are described by a linear hyperbolic system with constant coeffi-
cients in Lagrangian coordinates. Moreover, introducing the Riemann invariant
variables θ=v+Zτ and ζ=v−Zτ Eqs. (4.14) and (4.15) may be replaced by

∂tθ−Z∂yθ=0, (4.22)

∂tζ+Z∂yζ=0. (4.23)

The physical region is h≥1, which is equivalent to θ−ζ≤2Z.
We propose to model the interaction of the electromagnetic waves governed

by the ABI equations with short waves governed by a nonlinear Dirac equation
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by the following system:

ut=auy−i
(

λU+α1g1(ζ)+α2g2(θ)
)

u, (4.24)

θt−Zθy =α1

(

g′1(θ)|u|
2
)

y
, (4.25)

ζt+Zζy =α2

(

g′2(ζ)|u|
2
)

y
, (4.26)

where U is as in (1.2), g1,g2 ∈C3(R) such that for certain a≤ b≤ c+2Z ≤ d+2Z,
supp g′1⊂ [a,b], supp g′2⊂ [c,d].

Observe that in Lagrangian coordinates, the variables D̃i,B̃i,P̃i, i=2,3, are not
affected by the interactions with the short waves and keep being described by
Eqs. (4.16)-(4.21). However, the corresponding variables in Eulerian coordinates,
Di,Bi,Pi, i = 2,3, are also affected by those interactions. More specifically, let us
define

γ1(h,P1)=
α1

2Z
g′1

(

P1

h
+

Z

h

)

−
α2

2Z
g′2

(

P1

h
−

Z

h

)

,

γ2(h,P1)=
α1

2
g′1

(

P1

h
+

Z

h

)

+
α2

2
g′2

(

P1

h
−

Z

h

)

.

Then, in Eulerian coordinates, the ABI equations through the interactions with
the short waves become

∂th+∂1P1=∂1

(

γ1(h,P1)h|u|
2
)

,

∂tP1+∂1

(

P2
1 −Z2

h

)

=∂1

(

γ1(h,P1)P1|u|
2
)

+∂1

(

γ2(h,P1)|u|
2
)

,

∂tD2+∂1

(

B3+D2P1−D1P2

h

)

=∂1

(

γ1(h,P1)D2|u|
2
)

,

∂tD3+∂1

(

−B2+D3P1−D1P2

h

)

=∂1

(

γ1(h,P1)D3|u|
2
)

,

∂tB2+∂1

(

−D3+B2P1−D1P3

h

)

=∂1

(

γ1(h,P1)B2|u|
2
)

,

∂tB3+∂1

(

D2+B3P1−B1P3

h

)

=∂1

(

γ1(h,P1)B3|u|
2
)

,

∂tP2+∂1

(

P1P2−D1D2−B1B2

h

)

=∂1

(

γ1(h,P1)P2|u|
2
)

,

∂tP3+∂1

(

P1P3−D1D3−B1B3

h

)

=∂1

(

γ1(h,P1)P3|u|
2
)

.
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Thus, once we get a solution to (4.24)-(4.26), together with a solution to (4.16)-
(4.21), we get, in particular, also a solution to the above forced ABI system with
interaction forces in Eulerian coordinates, by using the inverse Lagrangian trans-
formation, which is nonsingular in the region h>0. Therefore, henceforth we will
no longer mention the ABI system in Eulerian coordinates but only concentrate
on solving the initial value problem for (4.24)-(4.26).

We then prescribe the initial conditions

u(0)=u0, θ(0)= θ0 , ζ(0)= ζ0 (4.27)

with u0∈H1(R), θ0,ζ0∈ (L1∩L∞)(R), so that

a< θ0<b, c< ζ0 <d. (4.28)

We also assume the following non-degeneracy condition on g1,g2:
∣

∣

{

θ∈ [a,b] : g′′′1 (θ)=0
}
∣

∣=0=
∣

∣

{

ζ∈ [c,d] : g′′′2 (ζ)=0
}
∣

∣. (4.29)

Definition 4.1. For all T>0, we say that

(u,θ,ζ)∈L2
(

(0,T)×R;C2
)

×
(

L∞((0,T)×R)
)2

is a weak solution of the problem (4.24)-(4.27) in (0,T)×R if for all ϕ∈C∞

c ((−∞,T)×R)
the following holds:

∫ T

0

∫

R

uϕt−auϕx−i
(

λU+α1g1(θ)+α2g2(ζ)
)

uϕdxdt+
∫

R

u0ϕ(0)dx=0,

∫ T

0

∫

R

θϕt+
(

Zθ−α1g′1(θ)|u|
2
)

ϕx dxdt+
∫

R

θ0ϕ(0)dx=0,

∫ T

0

∫

R

ζϕt+
(

Zζ−α2g′2(ζ)|u|
2
)

ϕx dxdt+
∫

R

θ0ϕ(0)dx=0.

(4.30)

Moreover, for any convex η∈C2(R), we have
(

η(θ)t−

(

Zη(θ)+α1 |u|
2
∫ θ

0
η′(ξ)g′′1 (ξ)dξ

)

x

)

⌊

|u|2

≤

(

α1

(

η′(θ)g′1(θ)−
∫ θ

0
η′(ξ)g′′1 (ξ)dξ

)

(

|u|2
)

x

)

⌊

|u|2,

(

η(ζ)t+

(

Zη(ζ)−α2 |u|
2
∫ ζ

0
η′(ξ)g′′2 (ξ)dξ

)

x

)

⌊

|u|2

≤

(

α2

(

η′(ζ)g′2(ζ)−
∫ ζ

0
η′(ξ)g′′2 (ξ)dξ

)

(

|u|2
)

x

)

⌊

|u|2

(4.31)
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in the sense of the distributions where, for ℓ∈W−1,2
loc ((0,T)×R), ℓ

⌊

|u|2∈D′((0,T)×R)
is defined by

〈

ℓ
⌊

|u|2,ϕ
〉

=
〈

ℓ,|u|2ϕ
〉

, for ϕ∈C∞

c ((0,T)×R).

Remark 4.1. We remark that the restricted form of the entropy inequalities in

(4.31) is due to the fact that the system (4.24)-(4.26) becomes linear where |u|2=0.

On the other hand, if |u|2 > 0, the non-degeneracy condition (4.29) ensures the

nonlinear stability of the system, as we will see below. We also observe that, by

the Remark 2.1, if u0 satisfies (2.10) then |u|2 > 0 everywhere and the apparent

restriction in (4.31) is imaterial.

We then have the following theorem concerning the existence of a weak solu-
tion to the problem (4.24)-(4.27).

Theorem 4.1. Given T > 0, for all α1,α2 > 0, there exists a weak solution of the ini-

tial value problem (4.24)-(4.27), (u,θ,ζ)∈ L2([0,T]×T)×(L∞([0,T]×R))2. Further-

more, if (un,θn,ζn) is a sequence of such weak solutions of (4.24)-(4.27) with initial data

(un
0 ,θn

0 ,ζn
0 ) uniformly bounded in H1(R)×((L1∩L∞)(R))2, converging in the sense

of distributions to (u0,θ0,ζ0)∈ H1(R)×((L1∩L∞)(R))2 then, by passing to a subse-

quence if necessary, (un,θn,ζn) converges in the sense of distributions to a weak solution

of (4.24)-(4.27).

Proof. 1. The proof is very similar to the proof of Theorem 3.1, we only point

out some points where the proof differs slightly from that one. Again, we apply

Theorem 2.1 from which it follows that |u|2 is determined by u0. So, first we

approximate the solution of (4.25)-(4.26) by solving the problem

θt−Zθy =α1

(

g′1(θ)|u|
2
)

y
+εθyy, (4.32)

ζt+Zζy =α2(g
′
2(ζ)|u|

2)y+εζyy, (4.33)

θ(0,x)= θε
0(x), (4.34)

ζ(0,x)= ζε
0(x), (4.35)

where θε
0 = ρε∗θ0, ζε

0 = ρε∗ζ0, with ρε as before. Denoting θε, ζε the solution of

(4.32)-(4.35), by the assumption that supp g′1 ⊂ [a,b], supp g′2 ⊂ [c,d], and (4.28),

using standard maximum principle arguments, we deduce the a priori estimate

a≤ θ(t,x)≤b, c≤ ζ(t,x)≤d. (4.36)

Again, for η∈C2(R) convex we get

η(θε)t−

(

∫ θε(t,y)

0
Zξη′(ξ)dξ−α1 |u|

2
∫ θε(t,y)

0
η′(ξ)g′′(ξ)dξ

)

y

(4.37)
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= ε
(

η(θε)
)

yy
−εη′′(θε)|θε

y|
2+α1

(

η′(θε)g′1(θ
ε)−

∫ θε(t,y)

0
η′(ξ)g′′1 (ξ)dξ

)

(

|u|2
)

y
,

η(ζε)t+

(

∫ ζε(t,y)

0
Zξη′(ξ)dξ−α2 |u|

2
∫ ζε(t,y)

0
η′(ξ)g′′2 (ξ)dξ

)

y

(4.38)

= ε
(

η(ζε)
)

yy
−εη′′(ζε)|ζε

y|
2+α2

(

η′(ζε)g′2(ζ
ε)−

∫ ζε(t,y)

0
η′(ξ)g′′2 (ξ)dξ

)

(

|u|2
)

y
.

Again, for all T>0, and get
∫

(0,T)×R

ε
(

∣

∣θε
y

∣

∣

2
+
∣

∣ζε
y

∣

∣

2
)

dydt≤C(T) (4.39)

for some C(T)>0 independent of ε. Denoting

q1
η

(

θ;|u|2
)

:=
∫ θε(t,y)

0
−Zξη′(ξ)dξ−α1 |u|

2
∫ θε(t,y)

0
η′(ξ)g′′1 (ξ)dξ,

q2
η

(

ζ;|u|2
)

:=
∫ ζε(t,y)

0
Zξη′(ξ)dξ−α2 |u|

2
∫ ζε(t,y)

0
η′(ξ)g′′2 (ξ)dξ.

Again, from (4.39), it follows, for all η∈C2(R),

η(θε)t+∂xq1
η

(

θε;|u|2
)

belongs to a compact in W−1,2
loc

(

(0,T)×R
)

,

η(ζε)t+∂xq2
η

(

ζε;|u|2
)

belongs to a compact in W−1,2
loc

(

(0,T)×R
)

.

Again, applying Tartar’s compensated compactness argument in [29], using the

non-degeneracy condition (4.29), we obtain the convergence in the sense of dis-

tributions in (0,∞)×R) of a subsequence of (θε,ζε), also denoted (θε,ζε), to a pair

of functions

(θ,ζ)∈
(

(

L1∩L∞
)(

(0,T)×R
)

)2
for all T>0.

The convergence is in L1
loc on the set {(t,y) : |u|2 > 0}, where the Young measure

generated by the referred subsequence reduces to a Dirac measure. With (θ,ζ) at

hand, we solve the initial value problem for u following the same procedures as

in the last section.

The second part of the statement also follows as in the last section by noticing

that a subsequence of (|un|2) converges in L2((0,T)×R), and (θn,ζn) is bounded

in (L1∩L∞)((0,T)×R), and the fact that the inequalities obtained from (4.31) ap-

plied to (un,θn,ζn) imply, as explained in the last section, that

η(θn)t+∂xq1
η

(

θn;|un|2
)

belongs to a compact in W−1,2
loc

(

(0,T)×R
)

,
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η(ζn)t+∂xq1
η

(

ζn;|un|2
)

belongs to a compact in W−1,2
loc

(

(0,T)×R
)

.

Therefore, as in the last section, we can apply again Tartar’s compensated com-

pactness arguments in [29], to conclude the proof of the final assertion.
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