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Abstract. In this paper, we are concerned with the large time behavior of global
solutions to the Cauchy problem of one-dimensional compressible Navier-Sto-
kes-Poisson equations with density and/or temperature dependent transport
coefficients and large initial data. The initial data are assumed to be without
vacuum and mass concentrations, and the same is shown to be hold for the
global solution constructed. The proof is based on some detail analysis on uni-
form positive lower and upper bounds of the specific volume and the absolute
temperature.
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1 Introduction and main results

1.1 The problem and our main results

The compressible Navier-Stokes-Poisson (denote as NSP in the sequel) equations
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which take form of compressible Navier-Stokes equations coupled with self-con-
sistent Poisson equation are often used to simulate the motion of viscous fluid
under the influence of self-consistent electrostatic potential force. In this paper,
we will consider one-dimensional non-isentropic compressible NSP equations,
which can be written in the Lagrange coordinates as

vt−ux =0, (1.1a)

ut+p(v,θ)x =
(µux

v

)

x
+

φx

v
, (1.1b)

(
E+

u2

2

)

t

+
(
up(v,θ)

)
x
=
(µuux

v

)

x
+

(
κθx

v

)

x

+
uφx

v
, (1.1c)

(
φx

v

)

x

=1−ve−φ, lim
|x|→∞

φ(t,x)=0. (1.1d)

Here t≥0 and x∈R are the time and Lagrangian spatial variables. The unknown
functions v(t,x), u(t,x), θ(t,x) and φ(t,x) stand for the specific volume, the ve-
locity, the absolute temperature, and the self-consistent potential, respectively. p
and E are the pressure and internal energy. µ> 0 and κ > 0 are transport coeffi-
cients which are assumed to be smooth functions of the specific volume v and/or
the absolute temperature θ. Throughout this paper, we focus on the case that the
background doping profile is a positive constant which, without loss of general-
ity, can be normalized to be 1. Moreover, we consider the ideal, polytropic gas

p=
Rθ

v
, E= cvθ. (1.2)

Here cv and R are the specific heat at constant volume and the specific gas con-
stant, respectively.

This paper is concerned with the problem on the construction of global smooth
nonvacuum solutions (v(t,x),u(t,x),θ(t,x), φ(t,x)) together with the precise de-
scription of their large time behaviors to the Cauchy problem of the NSP system
(1.1), (1.2) with prescribed large initial data

(
v(0,x),u(0,x),θ(0,x)

)
=
(
v0(x),u0(x),θ0(x)

)
, (1.3)

which is further assumed to satisfy the following far field conditions:

lim
|x|→∞

(
v0(x),u0(x),θ0(x)

)
=
(
v±,u±,θ±

)
. (1.4)

This paper is concentrated on the case when the far fields (v±,u±,θ±) of the initial
data (v0(x),u0(x),θ0(x)) are the same, i.e. (v−,u−,θ−)=(v+ ,u+,θ+), and without
loss of generality, one can assume v−=v+=1,u−=u+=0,θ−= θ+=1 in the rest
of this paper.
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Such a problem has been studied by many mathematicians and many results
have been obtained. Before stating our main results, we first recall some former
results closely related.

For the one-dimensional compressible Navier-Stokes equations, Kanel’ [13]
first studied the isentropic case with p= Rv−γ(γ> 1) and positive constant vis-
cosity and obtained the existence and large time behavior of global solutions with
large initial data. For the non-isentropic case with positive constant transport co-
efficients, the existence of global solutions in bounded domain with large initial
data was first obtained by Kazhikhov and Shelukhin in [17]. After that, many
efforts have been made to study the asymptotic behavior of global solutions con-
structed by Kazhikhov and Shelukhin in [17] as t → ∞. With some additional
smallness conditions imposed on the initial data, the corresponding results are
confirmed in [4, 9, 14, 15, 23, 24] and the references therein. To remove the small-
ness assumptions, Jiang [10, 11] firstly introduced a localized representation of
the specific volume to deduce its pointwise upper and lower bounds indepen-
dent of the time and space variables, with which the global solutions constructed
by Kazhikhov and Shelukhin in [17] are shown to be convergent locally in space
as time goes to infinity for large initial data and the temperature is bounded from
below and above locally in space for all t≥ 0. For the problem on whether such
global solutions converge to a constant steady state uniformly with respect to
the spatial variable as time goes to infinity for large initial data or not, Li and
Liang [19] gave a positive answer by deriving lower and upper bounds for the
temperature independent of both time and space. Then, Wang and Zhao [28] ex-
tended the corresponding results to the case when transport coefficients depend
on the density and temperature, which are assumed to be proportional to h(v)θα

for certain non-degenerate smooth function h(v). From then on, there are a lot of
results on the stability of basic wave patterns to the one-dimensional compress-
ible Navier-Stokes equations with large initial perturbation, see [6–8, 26] and the
references therein.

When the potential force is taken into account, the corresponding results with
small initial perturbations were well-established: For multidimensional Cauchy
problem, the global existence of smooth solutions to the compressible NSP sys-
tem away from vacuum with optimal temporal decay estimates was established
in [18] for the isentropic case, and in [5, 31] for non-isentropic case. Then, the
pointwise decay estimates of global solutions for bipolar compressible NSP sys-
tem were obtained by Wu and Wang in [29, 30] for isentropic flow and non-
isentropic flow, respectively. While for the one-dimensional case, the nonlinear
stability of some basic wave patterns to NSP system are studied in [1–3].

The story for the case with large initial perturbation is quite different and
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fewer results are available up to now on the global existence and asymptotic
behavior of solutions to the compressible NSP equations with large initial data.
For one-dimensional Cauchy problem, Tan et al. [25] studied the global solutions
for a class of degenerate density and/or temperature dependent transport coef-
ficients with large initial data away from vacuum. Moreover, they obtained the
large time behavior of the global solutions when the adiabatic exponent γ> 1 is
assumed to satisfy that γ−1 is sufficiently small. After that, Liu et al. [21] con-
sidered the initial boundary value problems for compressible NSP system on the
exterior domain, and under the radial symmetry assumption, the global existence
of solutions with large initial data on a domain exterior to a ball in R

n(n≥ 1) is
proved in [21]. For three-dimensional case, Liu et al. [22] considered an initial
value problem of compressible NSP equations subject to large and non-flat dop-
ing profile in whole space R

3 and established the global well-posedness of strong
solutions with large oscillations and vacuum provided the initial data are of small
energy and the steady state is strictly away from vacuum. For the nonlinear sta-
bility of some basic wave patterns under large initial perturbation, the only result
available up to now is on the nonlinear stability of rarefaction waves for isen-
tropic compressible NSP obtained in [32].

Even so, for one-dimensional compressible non-isentropic NSP system, to the
best of our knowledge, the only result on the precise description of the large time
behaviors of global solutions to its Cauchy problem obtained up to now is on the
Nishida-Smoller type global large solution constructed in [25] and the main pur-
pose of this paper is to show that the Cauchy problem (1.1)-(1.4) admits a unique
global smooth nonvacuum solution (v(t,x),u(t,x),θ(t,x),φ(t,x)) and the nonvac-
uum constant equilibrium state (1,0,1,0) is time-asymptotically nonlinear stable
for large initial data provided that the transport coefficients µ and κ satisfy some
assumptions listed below.

In this paper, we assume that the heat conductivity κ takes the following form:

κ(v,θ)=κ1+κ2vθb (1.5)

for some positive constants κ1,κ2, and b. As for the viscosity coefficient µ, we
assume that µ=µ(v) is a smooth function of v for v>0 which satisfies

µ(v)≃
{

v−ℓ1 , v→0+,

vℓ2 , v→∞
(1.6)

for some nonnegative constants ℓ1≥0, ℓ2≥0 and

v

∣∣∣∣
dµ(v)

dv

∣∣∣∣
2

. |µ(v)|3 (1.7)
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holds for v>0. Here and in the rest of this paper, f (x). g(x) holds for all x∈ A
means that there exists a generic positive constant C> 0 such that f (x)≤Cg(x)
holds for all x∈ A. f (x)≃ g(x)(x ∈ A) means both f (x). g(x) and g(x). f (x)
hold for x∈A.

Under the above assumptions imposed on the transport coefficients µ and κ,
we now turn to state our main result. To do so, for each given constant 0<w<1,
we first introduce the notation

H(w) := sup
w≤σ≤w−1

∣∣(µ(σ),µ′(σ),µ′′(σ),µ′′′(σ)
)∣∣ (1.8)

and then our result can be stated as follows.

Theorem 1.1. Suppose that

(i) The viscosity coefficient µ(v) is assumed to satisfy (1.6) and (1.7).

(ii) The initial data (v0(x),u0(x),θ0(x)) satisfy
(
v0(x)−1,u0(x),θ0(x)−1

)
∈H3(R),

‖(v0−1,u0,θ0−1)‖H3(R)≤Π0,

V0≤v0(x)≤V−1
0 , θ0(x)≥V0, ∀x∈R,

where Π0 and V0≤1 are given positive constants.

(iii) The parameters b,ℓ1,ℓ2 and κ2 are assumed to satisfy

b>
29

4
, ℓ1>1, ℓ2>1, κ2>1, (1.9)

κ2≥C0

(
λλ1

1

(λ1−1)λ1−1

) 2b+3
14ς1

, (1.10)

where

λ1=
7

2b+3

(
b+

3

2
+

1

2ℓ1

)
>1

and C0 is some constant depending only on Π0,V0 and κ1.

Then the Cauchy problem (1.1)-(1.6) admits a unique solution (v(t,x),u(t,x),θ(t,x),
φ(t,x)) satisfying

(
v(t,x)−1,u(t,x),θ(t,x)−1

)
∈C
(
[0,∞);H3(R)

)
,

vx(t,x)∈L2
(
[0,∞);H2(R)

)
,

(
ux(t,x),θx(t,x)

)
∈L2

(
[0,∞);H3(R)

)
,

φ(t,x)∈C0
(
[0,∞);H5(R)

)
,
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and

inf
(t,x)∈[0,+∞)×R

{
v(t,x),θ(t,x)

}
>0, sup

(t,x)∈[0,+∞)×R

{
v(t,x),θ(t,x)

}
<+∞.

In addition, we have the following large time behavior:

lim
t→+∞

sup
x∈R

|(v(t,x)−1,u(t,x),θ(t,x)−1,φ(t,x))|=0.

Remark 1.1. Several remarks concerning Theorem 1.1 are listed below:

(1) The restrictions (1.9) and (1.10) imposed on the parameters b,ℓ1,ℓ2, and κ2

mean that both the viscosity µ and the heat conductivity κ can not be con-

stants. We are convinced that such assumptions are due to the limitations

of our argument and can be relaxed to cover the case when the transport

coefficients are positive constants. Such a problem is under our current re-

search.

(2) Only the case when (v−,u−,θ−)=(v+,u+,θ+)=(1,0,1) is considered in this

paper. When (v−,u−,θ−) 6=(v+ ,u+,θ+), the large time behaviors of the cor-

responding global solutions will be well-described by some basic wave pat-

terns consisting of rarefaction waves, viscous shock waves, viscous con-

tact waves, and/or their linear superpositions and the nonlinear stability

of these wave patterns with large initial perturbation is under our current

study.

1.2 Main ideas to prove Theorem 1.1

Now we outline our main ideas used to prove Theorem 1.1. As is well-known,
the key point to guarantee the global solvability of the Cauchy problem (1.1)-(1.6)
is to deduce the desired positive lower and upper bounds, which can depend on
the time variable, on the specific volume and the absolute temperature, while to
derive its large behavior, generally speaking, one had to show further that the
above bounds on the specific volume and the absolute temperature are indepen-
dent of the time variable also.

To the best of our knowledge, the effective methods available up to now to
deduce the uniform positive lower and upper bounds on the specific volume and
the absolute temperature rely heavily on the assumptions imposed on the state
equations between the five thermodynamic variables and the transport coeffi-
cients.
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When the transport coefficients are positive constants, an effective method to
yield the desired uniform positive lower and upper bounds on the specific vol-
ume for one-dimensional Navier-Stokes equations satisfying the state equations
for ideal polytropic gas is the method developed by Jiang in [10, 11], which is
based on a localized representation of the specific volume, it seems, however,
that such a method does not work for the compressible NSP equations (1.1), (1.2).

When µ=µ(v) and κ= κ(v,θ), the argument used in [19, 28] tells us that one
can utilize Kanel’s method introduced in [13] to derive an estimate on the lower
and upper bounds on the specific volume in terms of the ‖θ‖L∞([0,T]×R) and then
use method introduced by Li and Liang in [19] to deduce the desired estimates
on the absolute temperature, which in turn yields also the desired estimates on
the specific volume. But unfortunately, unlike the case for one-dimensional com-
pressible Navier-Stokes equation for ideal polytropic gas, cf. [19,28] for example,
if we apply this method to our problem, we can only get that

‖θ(t)−1‖2
L∞(R).1+‖θ−1‖α

L∞

holds for some positive constant α>2, from which one can not deduce the desired
estimate on ‖θ‖L∞([0,T]×R).

Even so, motivated by the work of Liao and Zhao [20] on a viscous radiative
and reactive gas, where the constitutive relations for the pressure and the internal
energy consist of a linear term in θ corresponding to the perfect polytropic con-
tribution and a fourth-order radiative part due to the Stefan-Boltzmann radiative
law [27]

p=
Rθ

v
+

aθ4

3
, E= cvθ+avθ4

and the following four auxiliary functions:

X̃(t)=
∫ t

0

∫

R

(
1

1+‖θ‖ς2
L∞

t,x

+
θb+3

1+‖θ‖ς1
L∞

t,x

)
θ2

t (τ,x)dxdτ,

Ỹ(t)= max
0≤τ≤t

{∫

R

(
1

1+‖θ‖2ς2
L∞

t,x

+θ2b

)
θ2

x(τ,x)dx

}
,

Z̃(t)= max
0≤τ≤t

{∫

R

u2
xx(τ,x)dx

}
,

W̃(t)=
∫ t

0

∫

R

µ(v,θ)u2
xt

v
(τ,x)dxdτ

are introduced in [20] to deal with the fourth-order radiative part a
3 θ4,avθ4 ap-

peared in both p(v,θ) and E(v,θ).
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By making full use of the positive contribution of the fourth-order radiative
part a

3 θ4,avθ4 appeared in both p(v,θ) and E(v,θ), they can indeed prove that

X̃(T)+Ỹ(T).1+
ε

1+‖θ‖ς1
L∞

t,x
+‖θ‖ς2

L∞
t,x

W̃(T)+Z̃(T)λ̃1 ,

W̃(T).1+
(

1+‖θ‖ς1
L∞

t,x
+‖θ‖ς2

L∞
t,x

)
X̃(T)+Ỹ(T)+Z̃(T)λ̃2 ,

Z̃(T).1+
(

1+‖θ‖ς1
L∞

t,x
+‖θ‖ς2

L∞
t,x

)(
X̃(T)+Ỹ(T)

)
+Z̃(T)λ̃3

hold for some constants 0< λ̃i < 1 for i= 1,2,3, from which one can deduce that
X̃(T),Ỹ(T),Z̃(T), and W̃(T) are bounded from above, and, as a consequence, one
can deduce the desired upper bound estimate on the absolute temperature θ(t,x).

We borrowed this idea and introduced three auxiliary functions X(t),Y(t)
and Z(t) in (3.1). However, when we tried to control X(T)+Y(T), the term∫ t

0

∫
R

µκθtu
2
x

v2 dxdτ appeared, which can not be bounded by Z(T). Besides that, the

lack of the estimates on the derivatives of electric potential φ such as
∫ t

0

∫
R

φ2
t dxdτ

and
∫ t

0

∫
R

φ2
xtdxdτ lead to some difficulties when we want to bound Z(T). Thus

some new strategies should be developed and our main ideas can be summarized
as follows:

(i) We first apply Kanel’s method [13] to yield an estimate of the lower and up-
per bound of v(t,x) in terms of ‖θ‖L∞([0,T]×R) simultaneously in Lemma 2.3.

(ii) Since we had to deal with the higher power of Y(T) in the control of X(T)+
Y(T), we estimate the corresponding difficult terms carefully and pay par-
ticular attention to the relation of their estimates with respect to the param-
eter κ2. Then such a difficulty can indeed be overcome by choosing the pa-
rameter κ2 sufficiently large. Moreover, in order to derive the desired bound

of Z(T), we made efforts on the estimates of
∫ t

0

∫
R

φ2
xt
v dxdτ,

∫ t
0

∫
R

vφ2
t dxdτ

and
∫

R
u2

t dx, based on which we can then deduce the bound of X(T),Y(T),
and Z(T).

(iii) By using the delicate energy method, we can derive the higher-order deriva-
tives estimates in Section 4. Then using the continuation argument designed
by Wang and Zhao [28], we can prove our main Theorem 1.1.

1.3 Outline of this paper and notations

The rest of this paper is organized as follows: Section 2 is devoted to derive point-
wise lower and upper bounds for the specific volume v(t,x). Section 3 focuses on
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the uniform-in-time upper bound and a local-in-time lower bound of the abso-
lute temperature θ(t,x). In Section 4, we derive some estimates on higher order
derivatives of the solution (v(t,x),u(t,x),θ(t,x),φ(t,x)).

Notations. For simplicity, we use ‖·‖∞ to denote the norm in L∞([0,T]×R) with
T > 0 being some given positive constant, ‖·‖ and ‖·‖q are used to denote the
norm ‖·‖L2(R) and the norm ‖·‖Hq(R), respectively.

We introduce A.B (or B&A) if A≤CB holds uniformly for some constant C
depending solely on Π0,V0,H(V0) and κ1, and A≃B if A.B and B&A.

2 Pointwise bounds for the specific volume

We define, for some positive constants N,m1,m2,s, and t, the set of functions
X(s,t;m1,m2,N) as follows:

X(s,t;m1,m2,N)

:=





(
v(τ,x),u(τ,x),θ(τ,x),φ(τ,x)

)
:

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
v(τ,x)−1,u(τ,x),θ(τ,x)−1

)
∈C
(
[s,t];H3(R)

)
,

φ(t,x)∈C
(
[s,t];H5(R)

)
,

vx(τ,x)∈L2
(
s,t;H2(R)

)
,(

ux(τ,x),θx(τ,x)
)
∈L2

(
s,t;H3(R)

)
,

E(s,t)≤N2,

v(τ,x)≥m1, θ(τ,x)≥m2, ∀(τ,x)∈ [s,t]×R





,

where

E(s,t) := sup
s≤τ≤t

{
‖(v−1,u,θ−1)(τ)‖2

3

}
+
∫ t

s

(
‖vx(τ)‖2

2+‖(ux ,θx)(τ)‖2
3

)
dτ.

Theorem 1.1 will be proved by combining local solvability result, certain a pri-
ori estimates, and the continuation argument. First, from the well-established
local existence result for hyperbolic-parabolic system, cf. [12], one can deduce
that there exists a sufficiently small positive constant t1 > 0 and certain posi-
tive constants m1,m2, and N such that the Cauchy problem (1.1)-(1.6) admits
a unique local solution (v(t,x),u(t,x),θ(t,x),φ(t,x))∈X(0,t1 ;m1,m2,N). Suppose
that such a local solution (v(t,x),u(t,x),θ(t,x), φ(t,x)) has been extended to the
time interval [0,T] for some T ≥ t1 and satisfies (v(t,x),u(t,x),θ(t,x),φ(t,x)) ∈
X(0,T;m1,m2,N), to prove Theorem 1.1, we only need to derive certain a priori
estimates on the solution (v(t,x),u(t,x), θ(t,x),φ(t,x)) in terms of the initial data
(v0(x),u0(x),θ0(x)) but independent of the constants m1,m2, and N.
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Now we turn to deduce the desired a priori estimates. Our goal in this section
is to get the desired lower and upper bound of the specific volume v(t,x) in terms
of ‖θ‖∞ and for this purpose, we need to obtain the basic energy estimates.

Lemma 2.1. Under the assumption of Theorem 1.1, we have for 0≤ t≤T that

∫

R

(
η+

φ2
x

2v
+v
(
1−φe−φ−e−φ

))
(t,x)dx+

∫ t

0

∫

R

(
µu2

x

vθ
+

κθ2
x

vθ2

)
(τ,x)dxdτ

≤
∫

R

(
η+

φ2
x

2v
+v
(
1−φe−φ−e−φ

))
(0,x)dx := e0, (2.1)

where

η=η(v,u,θ)=RΦ(v)+
u2

2
+cvΦ(θ) and Φ(x)= x−lnx−1.

Proof. Multiplying (1.1a), (1.1b), and (1.1c) by R(1−v−1),u, and (1−θ−1), respec-

tively, and adding the resulting identity together, we find

ηt+

{
(p−R)u−µuux

v
− κ(θ−1)θx

vθ

}

x

+

(
µu2

x

vθ
+

κθ2
x

vθ2

)
=

uφx

v
. (2.2)

The right-hand side of the above identity can be rewritten as

∫

R

uφx

v
dx=

∫

R

uφx

v

((
φx

v

)

x

+ve−φ

)
dx

=
∫

R

u

(
1

2

(
φx

v

)2
)

x

dx+
∫

R

uφxe−φdx

=−1

2

∫

R

φ2
x

v2
vtdx+

∫

R

e−φvtdx.

Due to
∫

R

e−φvtdx=
d

dt

∫

R

ve−φdx+
∫

R

e−φvφtdx

=
d

dt

∫

R

(
ve−φ+vφe−φ

)
dx−

∫

R

φ
(
ve−φ

)
t
dx

=− d

dt

∫

R

v
(
1−e−φ−φe−φ

)
dx+

∫

R

φ

(
φx

v

)

xt

dx

=− d

dt

∫

R

v
(
1−e−φ−φe−φ

)
dx−

∫

R

v·φx

v
·
(

φx

v

)

t

dx
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=− d

dt

∫

R

v
(
1−e−φ−φe−φ

)
dx− d

dt

∫

R

φ2
x

2v
dx+

1

2

∫

R

φ2
x

v2
vtdx,

we can get that

∫

R

uφx

v
dx=− d

dt

∫

R

v
(
1−e−φ−φe−φ

)
dx− d

dt

∫

R

φ2
x

2v
dx. (2.3)

Inserting the above identity (2.3) into (2.2), we finish the proof of Lemma 2.1.

The basic energy estimate obtained in Lemma 2.1 actually implies the follow-
ing two corollaries, which will be used later.

Corollary 2.1. Let α1<α2 be the two positive roots of the equation

Φ(x)=
e0

min{R,cv}
,

then for any k∈Z, one can get that

α1≤
∫ k+1

k
v(t,x)dx,

∫ k+1

k
θ(t,x)dx≤α2 , 0≤ t≤T (2.4)

and there exist ak(t),bk(t)∈ [k,k+1] such that

α1≤v
(
t,ak(t)

)
, θ

(
t,bk(t)

)
≤α2, 0≤ t≤T. (2.5)

The main purpose of our next corollary is to show that the electric potential
φ(t,x) can be bounded from above and below.

Corollary 2.2. For all (t,x)∈ [0,T]×R, we have

φ(t,x)≃1. (2.6)

Proof. For each 0≤ t≤T, set Λ(t)= {x∈R : |φ(t,x)|≥ 1}, it suffices to prove that

there exists a positive constant C depending only on e0 such that

|φ(t,x0)|≤C

holds for any x0∈Λ(t) and 0≤ t≤T.
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Without loss of generality, we assume that φ(t,x0)≥1 and define the following

function:

Φ̃(t,x)=
∫ φ(t,x)

1

√
1−ze−z−e−zdz,

which satisfies for any (t,x)∈ [0,T]×R that

∣∣Φ̃(t,x)
∣∣.
∣∣∣∣
∫ φ(t,x)

0

√
1−ze−z−e−zdz

∣∣∣∣+1

=

∣∣∣∣
∫ x

−∞

√
1−φ(t,y)e−φ(t,y)−e−φ(t,y)φy(t,y)dy

∣∣∣∣+1

.

(∫

R

v(1−φe−φ−e−φ)dy

) 1
2

(∫

R

φ2
y

v
dy

) 1
2

+1.1.

Meanwhile, it follows from

√
1−ze−z−e−z&1, z∈ [1,+∞),

that ∣∣Φ̃(t,x0)
∣∣& |φ(t,x0)|−1.

As a consequence, we can deduce that there exists a positive constant C, which

depends only on e0, such that

|φ(t,x0)|≤C

holds for 0≤ t≤T. This completes the proof of Corollary 2.2.

The derivation of pointwise bounds for v(t,x) relies on the following lemma.

Lemma 2.2. Suppose that the conditions of Theorem 1.1 hold, then we can obtain for

0≤ t≤T that

∫

R

(µvx

v

)2
dx+

∫ t

0

∫

R

(
µθv2

x

v3
+

φ2
x

v

)
dxdτ

.1+‖θ‖∞+
∥∥v−1

∥∥ℓ1+1

∞
+‖v‖ℓ2

∞ . (2.7)

Proof. According to the chain rule, we have

(µux

v

)

x
=
(µvt

v

)

x
=
(µvx

v

)

t
, (2.8)
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which combined with (1.1b) implies

(µvx

v

)

t
+R

θvx

v2
=ut+R

θx

v
−φx

v
.

Multiplying the above identity by
µvx

v and integrating the resultant over [0,t]×R,

we obtain

1

2

∫

R

(µvx

v

)2
(t,x)dx+R

∫ t

0

∫

R

µθv2
x

v3
(τ,x)dxdτ

=
1

2

∫

R

(µvx

v

)2
(0,x)dx+

∫ t

0

∫

R

ut ·
µvx

v
dxdτ

︸ ︷︷ ︸
I1

+R
∫ t

0

∫

R

µvxθx

v2
dxdτ

︸ ︷︷ ︸
I2

−
∫ t

0

∫

R

φx

v
·µvx

v
dxdτ

︸ ︷︷ ︸
I3

.

It follows from (2.1) and (2.8) that

I1=
∫

R

µuvx

v
(t,x)dx−

∫

R

µuvx

v
(0,x)dx+

∫ t

0

∫

R

µu2
x

v
dxdτ

≤C+
1

4

∫

R

(µvx

v

)2
dx+

∫ t

0

∫

R

µu2
x

v
dxdτ,

I2≤
R

2

∫ t

0

∫

R

µθv2
x

v3
dxdτ+C

∫ t

0

∫

R

µθ2
x

vθ
dxdτ.

For the last term I3, we introduce the function

g(v)=
∫ v

1

µ(z)

z
dz,

then lim|x|→∞ g(v(t,x))=0 and

∫ t

0

∫

R

φx

v
·µvx

v
dxdτ−

∫ t

0

∫

R

µ(eφ)

v
φ2

xdxdτ

=
∫ t

0

∫

R

φx

v
·
(

g(v)−g(eφ)
)

x
dxdτ

=−
∫ t

0

∫

R

(1−ve−φ)
(

g(v)−g(eφ)
)
dxdτ≥0.

Here we have used the monotonicity of g(v) with respect to v.
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As a consequence, combining Corollary 2.2, we have
∫

R

(µvx

v

)2
(t,x)dx+

∫ t

0

∫

R

(
µθv2

x

v3
+

φ2
x

v

)
(τ,x)dxdτ

.1+
∫ t

0

∫

R

(
µu2

x

v
+

µθ2
x

vθ

)
dxdτ.1+‖θ‖∞+

∥∥∥∥
µθ

κ

∥∥∥∥
∞

.

Since b≥ 29
4 , we have

µθ

κ
=

µ(v)θ

κ1+κ2vθb
.





µ(v), θ≤1,
µ(v)

v
, θ≥1,

which combined with (1.6) implies (2.7). Thus the proof of Lemma 2.2 is com-

plete.

By applying Kanel’s technique, we can obtain the pointwise bounds for the
specific volume v(t,x) in the following lemma.

Lemma 2.3. Assume that the conditions of the Theorem 1.1 hold, then we can deduce

that ∥∥v−1‖∞.1+‖θ‖ς1
∞ , ‖v‖∞.1+‖θ‖ς2

∞ , (2.9)

where

ς1 :=
1

2ℓ1
, ς2 :=

1

2ℓ2+1
. (2.10)

Proof. Let

Ψ(v) :=
∫ v

1

µ(z)

z

√
Φ(z)dz.

In light of (1.6), we have

‖v‖
1
2+ℓ2
∞ +‖v−1‖ℓ1

∞ .1+‖Ψ(v)‖∞.

Estimates (2.1) and (2.7) imply for any (t,x)∈ [0,T]×R,

|Ψ(v(t,x))| ≤
∣∣∣∣
∫ x

−∞
Ψv

(
v(t,y)

)
·vy(t,y)dy

∣∣∣∣

≤
∥∥∥
(µvx

v

)
(t)
∥∥∥ ·
∥∥∥∥
√

Φ(v(t))

∥∥∥∥

.1+‖θ‖
1
2
∞+

∥∥v−1
∥∥

ℓ1+1
2

∞
+‖v‖

ℓ2
2

∞ .

In view of ℓ1 > 1, ℓ2 > 1, and the Young’s inequality, we finish the proof of Lem-

ma 2.3.
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Lemmas 2.2 and 2.3 yield the following result.

Corollary 2.3. Suppose that the conditions of Theorem 1.1 hold, we can get for 0≤ t≤T

that ∫

R

(µvx

v

)2
dx+

∫ t

0

∫

R

(
µθv2

x

v3
+

φ2
x

v

)
dxdτ.1+‖θ‖∞. (2.11)

3 Pointwise bounds for the absolute temperature

In this section we will derive a uniform-in-time upper bound and a local-in-time
lower bound for the absolute temperature θ. For this purpose, motivated by [16,
20], we introduce the following auxiliary functions:

X(t) :=
∫ t

0

∫

R

κ(v(τ,x),θ(τ,x))

v(τ,x)
θ2

t (τ,x)dxdτ,

Y(t) := sup
0≤τ≤t

∫

R

|κ(v(τ,x),θ(τ,x))|2
v(τ,x)2

θ2
x(τ,x)dx,

Z(t) := sup
0≤τ≤t

∫

R

u2
xx(τ,x)dx.

(3.1)

The functions X(t), Y(t), and Z(t) are introduced to control ‖θ‖∞, ‖ux(t)‖, and
‖ux‖∞, respectively. Actually, we have

Lemma 3.1. Suppose that the conditions of Theorem 1.1 hold, we can get that

‖θ‖∞.1+Ỹ(T)
1

2b+3 , (3.2)

where Ỹ(T)=κ−2
2 Y(T)≤Y(T).

Proof. For any 0≤ t≤T and x∈ [k,k+1], we utilize (2.4) and (2.5) to obtain
∣∣θ(t,x)α−θ(t,bk(t))

α
∣∣

≤α

∣∣∣∣
∫ k+1

k
θα−1(t,y)θy(t,y)dy

∣∣∣∣

≤α

∣∣∣∣∣

∫ k+1

k

κ2θ2
y

v2
(t,y)dy

∣∣∣∣∣

1
2

·
∣∣∣∣
∫ k+1

k

v2

κ2
θ2α−2(t,y)dy

∣∣∣∣

1
2

≤αY(T)
1
2 ·κ−1

2 ‖θ‖α−b− 3
2

∞ ·
∣∣∣∣
∫ k+1

k
θ(t,y)dy

∣∣∣∣

1
2

.κ−1
2 Y(T)

1
2‖θ‖α−b− 3

2
∞ .
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Taking α = b+ 3
2 , we conclude the estimate (3.2) and consequently complete the

proof of Lemma 3.1.

The next lemma follows immediately from the Gagliardo-Nirenberg inequal-
ity and the Sobolev inequality.

Lemma 3.2. For each 0≤ t≤T, one has

sup
0≤τ≤t

‖ux(τ)‖.1+Z(t)
1
4 ,

‖ux‖L∞([0,t]×R)= sup
[τ,x)∈[0,t]×R

{
|ux(τ,x)|

}
.1+Z(t)

3
8 .

(3.3)

Now we start to show that X(T) and Y(T) can be controlled by Y(T) and
Z(T).

Lemma 3.3. Under the assumptions of Theorem 1.1 we have

X(T)+Y(T).1+κ
− 14ς1

2b+3
2 Y(T)λ1 +Z(T)

7
8 . (3.4)

Here

λ1=
7(b+3/2+ς1)

2b+3
>1.

Proof. In the same manner as in [16, 27], if we set

K(v,θ)=
∫ θ

0

κ(v,z)

v
dz,

then by using (κ

v
θt

)

x
−
(κ

v
θx

)

t
=
(κ

v

)

v
(vxθt−vtθx),

one can easily verify that

Kt=
κ

v
θt+Kvux, (3.5)

Kxt =
(κ

v
θx

)

t
+
(κ

v

)

v
vxθt+Kvuxx+Kvvvxux, (3.6)

|K|. θ

v
+κ2θb+1,

∣∣∣
(κ

v

)

v

∣∣∣.
1

v2
, |Kv|.

θ

v2
. (3.7)
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Now multiplying (1.1c) by Kt and integrating the resulting identity over [0,t]×
R, we arrive at

cvX(t)+
1

2
Y(t)=

1

2
Y(0)−cv

∫ t

0

∫

R

Kvθtuxdxdτ−R
∫ t

0

∫

R

κuxθθt

v2
dxdτ

−R
∫ t

0

∫

R

Kvθu2
x

v
dxdτ+

∫ t

0

∫

R

µu2
x

v
·
(κ

v
θt+Kvux

)
dxdτ

−
∫ t

0

∫

R

κθx

v
·
(κ

v

)

v
vxθtdxdτ−

∫ t

0

∫

R

κθx

v
(Kvuxx+Kvvvxux)dxdτ

=:
1

2
Y(0)+

6

∑
i=1

Ji.

We now turn to control Ji, i= 1,2,.. .,6 term by term. Using Hölder’s inequality,

Young’s inequality, (2.1), (2.9), and (3.2), we have

|J1|≤C
∫ t

0

∫

R

∣∣∣∣
√

κ√
v

θt

∣∣∣∣·
∣∣∣∣∣

√
µux√
v
√

θ

∣∣∣∣∣·
√

θ3

v
√

µκ
dxdτ

≤ cv

8
X(T)+C

∥∥∥∥
θ3

v2µκ

∥∥∥∥
∞

≤ cv

8
X(T)+C+CY(T)

3+ς1
2b+3 ,

|J2|≤C
∫ t

0

∫

R

∣∣∣∣
√

κ√
v

θt

∣∣∣∣·
∣∣∣∣
√

µux√
vθ

∣∣∣∣·
√

κθ3

v
√

µ
dxdτ

≤ cv

8
X(T)+

∥∥∥∥
κθ3

µv2

∥∥∥∥
∞

≤ cv

8
X(T)+C+CY(T)

3+ς1
2b+3 +Cκ

− 3
2b+3

2 Y(T)
b+3

2b+3 ,

|J3|≤C
∫ t

0

∫

R

θ2u2
x

v3
dxdτ≤C+CY(T)

3+ς1
2b+3 ,

where we have used the facts that
∥∥∥∥

1

µv

∥∥∥∥
∞

+

∥∥∥∥
1

µ

∥∥∥∥
∞

+

∥∥∥∥
v

µ

∥∥∥∥
∞

.1.

As for the term J4, we have to treat it carefully. Since

|J4|≤
∣∣∣∣
∫ t

0

∫

R

µκθtu
2
x

v2
dxdτ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫

R

Kvµu3
x

v
dxdτ

∣∣∣∣=:J41+J42
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it follows from Hölder’s inequality, Young’s inequality, (2.1), (2.9), (3.2), and (3.3)

that

|J41|≤
∫ t

0

∫

R

∣∣∣∣
√

κ√
v

θt

∣∣∣∣·
∣∣∣∣
√

µux√
vθ

∣∣∣∣·
∣∣∣∣∣

√
µκθ

v
ux

∣∣∣∣∣dxdτ

≤ cv

4
X(T)+C

∥∥∥∥
µκθ

v2

∥∥∥∥
∞

·
(

1+Z(T)
3
4

)

≤ cv

4
X(T)+C+CZ(T)

7
8 +C

∥∥∥∥
µθ

v2

∥∥∥∥
7

∞

+C

∥∥∥∥∥
κ2µθb+1

v

∥∥∥∥∥

7

≤ cv

4
X(T)+C+CZ(T)

7
8 +Y(T)

7[(ℓ1+1)ς1+ς1+1]
2b+3

+

(
κ2 ·κ

− 2
2b+3 ((ℓ1+1)ς1+b+1)

2 Y(T)
(ℓ1+1)ς1+b+1

2b+3

)7

≤ cv

4
+C+Y(T)

21
2 +14ς1

2b+3 +κ
− 14ς1

2b+3
2 Y(T)λ1 +CZ(T)

7
8 ,

|J42|≤C
∫ t

0

∫

R

µθu3
x

v3
dxdτ≤C

∫ t

0

∫

R

∣∣∣∣
µu2

x

vθ

∣∣∣∣·
∣∣∣∣
θ2

v2

∣∣∣∣·|ux|dxdτ

≤C

(
1+Y(T)

2+2ς1
2b+3

)(
1+Z(T)

3
8

)

.1+Y(T)
4+4ς1
2b+3 +Z(T)

3
4 ,

where we have used the fact that
∥∥∥

µ

v

∥∥∥
∞
.‖θ‖max{(ℓ1+1)ς1,(ℓ2−1)ς2}

∞ =‖θ‖(ℓ1+1)ς1
∞ .

The term J5 can be controlled as follows:

|J5|≤C
∫ t

0

∫

R

∣∣∣∣
κvxθxθt

v3

∣∣∣∣dxdτ

≤C

∥∥∥∥
1√
κvµ

∥∥∥∥
∞

∫ t

0

∥∥∥∥
√

κ√
v

θt

∥∥∥∥ ·
∥∥∥

µvx

v

∥∥∥ ·
∥∥∥∥

κθx

v

∥∥∥∥
L∞(R)

dτ

≤ cv

8
X(T)+C‖θ‖∞

∫ t

0

∫

R

∣∣∣∣
κθx

v
·
(

cvθt+pux−
µu2

x

v

)∣∣∣∣dxdτ

≤ cv

8
X(T)+C‖θ‖∞

(∫ t

0

∫

R

κθ2

v

(
θ2

t +
θ2u2

x

v2
+

µ2u4
x

v2

)
dxdτ

) 1
2
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≤ cv

8
X(T)+C‖θ‖2

∞X(T)
1
2 +κ

1
2
2 ‖θ‖ b+7

2 +κ
1
2
2

(
1+Z(T)

3
8

)
‖θ‖

b+5+(ℓ1+1)ς1
2

≤ cv

4
X(T)+CY(T)

4
2b+3 +κ

− 11
4b+6

2 Y(T)
b+7

4b+6 +κ
− 8+2ς1

2b+3
2 Y(T)

b+ 11
2 +ς1

2b+3 +CZ(T)
3
4 .

For the last term J6, since

−
∫ t

0

∫

R

κθx

v
Kvuxxdxdτ

=
∫ t

0

∫

R

(
κθx

v

)

x

Kvuxdxdτ+
∫ t

0

∫

R

κθx

v

(
Kvvvx+

(κ

v

)

v
θx

)
uxdxdτ,

we have

J6=
∫ t

0

∫

R

(
κθx

v

)

x

Kvuxdxdτ+
∫ t

0

∫

R

κθx

v

(κ

v

)

v
θxuxdxdτ.

Thus

|J6|≤C
∫ t

0

∫

R

∣∣∣∣
√

µux√
vθ

∣∣∣∣·
∣∣∣∣
(

κθx

v

)

x

∣∣∣∣ ·
√

θ3

µv3
dxdτ+C

∫ t

0

∫

R

κθ2
x

vθ2
· θ2

v2
|ux |dxdτ

≤C

(∫ t

0

∫

R

θ3

µv3

(
θ2

t +
θ2u2

x

v2
+

µ2u4
x

v2

)
dxdτ

) 1
2

+

(
1+Y(T)

2+2ς1
2b+3

)(
1+Z(T)

3
8

)

≤C

(
1+Y(T)

3+ς1
2(2b+3)

)
X(T)

1
2 +Y(T)

3+ς1
2b+3 +

(
1+Y(T)

2+2ς1
2b+3

)(
1+Z(T)

3
8

)

≤ cv

4
X(T)+C+CY(T)

4+4ς1
2b+3 +Z(T)

3
4 .

Combining all the above estimates and utilizing Young’s inequality, we can

complete the proof of our lemma.

Our next step is to show that Z(T) can be controlled by X(T) and Y(T) con-

versely. Before that, we give the following estimates for
∫ t

0

∫
R

φ2
xt
v dxdτ and

∫
R

u2
t dx,

which will be used to derive the bound of Z(T).

Lemma 3.4. Under the assumptions of Theorem 1.1 we have

∫ T

0

∫

R

(
φ2

xt

v
+vφ2

t

)
(t,x)dxdt.1+Y(T)+Z(T)λ2 , (3.8)

where

λ2=
3

4
· 2b+3

2b+2−2ς1
<1.
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Proof. Differentiating (1.1d) with respect to t yields

(
φx

v

)

xt

=−(ve−φ)t.

Hence
((

φx

v

)

t

φt

)

x

=

(
φx

v

)

t

φxt+

(
φx

v

)

xt

φt

=

(
φxt

v
−φxux

v2

)
φxt−uxe−φφt+ve−φφ2

t .

Integrating the above identity over (0,t)×R and using Hölder’s inequality,

Young’s inequality, and Corollary 2.2 yields

∫ t

0

∫

R

(
φ2

xt

v
+ve−φφ2

t

)
dxdτ

=
∫ t

0

∫

R

ux

v2
φxφxtdxdτ+

∫ t

0

∫

R

uxe−φφtdxdτ

≤
∥∥∥

ux

v

∥∥∥
∞
·
∥∥∥∥

φx√
v

∥∥∥∥
L2([0,T],L2(R))

·
∥∥∥∥

φxt√
v

∥∥∥∥
L2([0,T],L2(R))

+

∥∥∥∥∥

√
θ

µ
e−φ

∥∥∥∥∥
∞

·
∥∥√ve−φφt

∥∥
L2([0,T],L2(R))

·
∥∥∥∥
√

µux√
vθ

∥∥∥∥
L2([0,T],L2(R))

≤ 1

2

∫ T

0

∫

R

φ2
xt

v
dxdτ+C

(
1+Y(T)

1+2ς1
2b+3

)(
1+Z(T)

3
4

)

+
1

2

∫ T

0

∫

R

ve−φφ2
t dxdτ+C

(
1+Y(T)

1
2b+3

)

≤ 1

2

∫ T

0

∫

R

φ2
xt

v
dxdτ+

1

2

∫ T

0

∫

R

ve−φφ2
t dxdτ+C+CY(T)+CZ(T)λ2 .

Hence we have finished the proof of Lemma 3.4.

Lemma 3.5. Under the assumptions of Theorem 1.1 we have for 0≤ t≤T that

∫

R

u2
t (t,x)dx+

∫ t

0

∫

R

µ

v
u2

xtdxdτ.1+X(T)+Y(T)+Z(T)λ3 , (3.9)

where

λ3=
3

4
· 2b+3

2b+3/2−ς1
<1.
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Proof. Differentiating (1.1b) with respect to t and multiplying the resulting iden-

tity by ut, we have
(

1

2
u2

t

)

t

+
µu2

xt

v
=
(

ut

(µux

v

)

t
−ut pt

)

x
+uxt

(
pt−

(µ

v

)

t
ux

)
+

(
φx

v

)

t

ut.

Integrating this identity over (0,t)×R yields

1

2

∫

R

u2
t dx+

∫ t

0

∫

R

µ

v
u2

xtdxdτ

=
1

2

∫

R

u2
0tdx+

∫ t

0

∫

R

ptuxtdxdτ

−
∫ t

0

∫

R

(µ

v

)

v
u2

xuxtdxdτ+
∫ t

0

∫

R

(
φx

v

)

t

utdxdτ

=:
1

2

∫

R

u2
0xdx+

3

∑
j=1

Kj.

Noticing that (1.6) implies

∣∣∣
(µ

v

)

v

∣∣∣.
√

µ3

v3
+

µ

v2
=

√
µ3

v3

(
1+

1√
µv

)
.

√
µ3

v3
, (3.10)

K1 and K2 can be controlled by combining Hölder’s and Young’s inequalities

with Lemmas 2.3, 3.1, and 3.2. That is

|K1|≤
1

4

∫ t

0

∫

R

µ

v
u2

xtdxdτ+C
∫ t

0

∫

R

v

µ

(
θ2

t

v2
+

θ2u2
x

v4

)
dxdτ

≤ 1

4

∫ t

0

∫

R

µ

v
u2

xtdxdτ+CX(T)+CY(T)
3

2b+3 ,

|K2|≤C
∫ t

0

∫

R

∣∣∣∣
√

µ√
v

uxt

∣∣∣∣ ·
∣∣∣∣
√

µux√
vθ

∣∣∣∣·
∣∣∣∣∣
(µ

v

)

v
· v
√

θ

µ
·ux

∣∣∣∣∣dxdτ

≤ 1

4

∫ t

0

∫

R

µ

v
u2

xtdxdτ+C

(
1+Y(T)

(ℓ1+1)ς1+1
2b+3

)(
1+Z(T)

3
4

)

≤ 1

4

∫ t

0

∫

R

µ

v
u2

xtdxdτ+C+CY(T)+CZ(T)λ3 .

For the last term K3, we can get by utilizing (1.1b) and by splitting it into three

terms:

K3=−
∫ t

0

∫

R

(
φx

v

)

t

pxdxdτ+
∫ t

0

∫

R

(
φx

v

)

t

(µux

v

)

x
dxdτ
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+
1

2

∫ t

0

∫

R

(
φ2

x

v2

)

t

dxdτ=:
3

∑
j=1

K3j.

Utilizing Lemma 3.4, we obtain

|K31|≤R
∫ t

0

∫

R

∣∣∣∣
φxt

v

(
θx

v
− θvx

v2

)∣∣∣∣dxdτ+R
∫ t

0

∫

R

∣∣∣∣
φxux

v2

(
θx

v
− θvx

v2

)∣∣∣∣dxdτ

≤
∫ t

0

∫

R

φ2
xt

v
dxdτ+

∥∥∥∥
θ2

κv2

∥∥∥∥
∞

∫ t

0

∫

R

κθ2
x

vθ2
dxdτ+

∥∥∥∥
θ

µv2

∥∥∥∥
∫ t

0

∫

R

µθv2
x

v3
dxdτ

+

∥∥∥∥
θux√
κv2

∥∥∥∥
∞

∥∥∥∥
φx√

v

∥∥∥∥
L2([0,T],L2(R))

∥∥∥∥
√

κθx√
vθ

∥∥∥∥
L2([0,T],L2(R))

+

∥∥∥∥∥

√
θux

v2√µ

∥∥∥∥∥
∞

∥∥∥∥
φx√

v

∥∥∥∥
L2([0,T],L2(R))

∥∥∥∥∥

√
µθvx√

v3

∥∥∥∥∥
L2([0,T],L2(R))

≤C+CY(T)+CZ(T)λ2 +
(

1+Z(T)
3
8

)(
1+Y(T)

3
2+2ς1
2b+3

)

+
(

1+Z(T)
3
8

)(
1+Y(T)

3
2+

3
2 ς1

2b+3

)

≤C+CY(T)+CZ(T)λ2 .

The term K32 can be estimated similarly as follows:

|K32|=
∫ t

0

∫

R

∣∣∣
(
ve−φ

)
t

µux

v

∣∣∣dxdτ

≤
∫ t

0

∫

R

e−φ µu2
x

v
dxdτ+

∫ t

0

∫

R

∣∣µuxe−φφt

∣∣dxdτ

≤C‖θ‖∞+C‖
√

µθ‖∞ ·‖
√

vφt‖L2([0,T],L2(R)) ·
∥∥∥∥
√

µux√
vθ

∥∥∥∥
L2([0,T],L2(R))

.1+Y(T)
1

2b+3 +Y(T)
1+(ℓ1+1)ς1

2b+3 +Y(T)+Z(T)λ2

.1+Y(T)+Z(T)λ2 .

It is obvious that

|K33|.1+Y(T)
ς1

2b+3 .

Thus we have

|K3|.1+Y(T)+Z(T)λ2 . (3.11)

Since λ2<λ3, we can complete the proof of our lemma.
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With Lemmas 3.4 and 3.5 in hand, now we start to bound Z(T).

Lemma 3.6. Under the assumptions of Theorem 1.1, we have

Z(T).1+X(T)+Y(T). (3.12)

Proof. We can conclude from (1.1b) that

uxx =
v

µ

(
ut+px−

(µ

v

)

v
vxux−

φx

v

)
.

By direct calculations, we obtain

Z(T)≤
∫

R

v2

µ2
u2

t dx+
∫

R

θ2
x

µ2
dx+

∫

R

θ2v2
x

µ2v2
dx+

∫

R

µ

v
v2

xu2
x+
∫

R

φ2
x

µ2
dxdx

.1+X(T)+Y(T)+Z(T)λ3 +Y(T)
2

2b+3 +Z(T)
3
4 · 2b+3

2b+2

.1+X(T)+Y(T)+Z(T)λ3 ,

where we have used Lemma 3.5. Then our lemma can be proved by Young’s

inequality.

We are now in a position to derive the upper bound of θ(t,x). In fact, Lem-
mas 3.3 and 3.6 tell us that

X(T)+Y(T)≤C0

(
1+κ

− 14ς1
2b+3

2 Y(T)λ1

)
, (3.13)

where

C0=C0

(
Π0,V0,κ1,‖φ0x‖,‖

√
1−φ0e−φ0−e−φ0‖

)
.

Thus we obtain
X(T)+Y(T)+Z(T).1 (3.14)

as long as κ2 is chosen sufficiently large. To be specific, a sufficient condition to
guarantee the above estimate is that κ2 is assumed to satisfy (1.10).

Recalling the definition of X(T),Y(T) and Z(T), and by combining Lemmas 2.1
-3.6, we have the following lemma.

Lemma 3.7. Under the assumptions of Theorem 1.1, there exist positive constants C1

and C2, which depend only on Π0, V0, ‖φ0x‖, and ‖
√

1−φ0e−φ0−eφ0‖, such that

θ(t,x)≤C1, ∀(t,x)∈ [0,T]×R, (3.15)

C2≤v(t,x)≤C−1
2 , ∀(t,x)∈ [0,T]×R. (3.16)
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Moreover, we have

∥∥∥∥
(

v−1,u,θ−1,vx,ut,ux,θx,φx,uxx,
√

1−φe−φ−e−φ

)
(t)

∥∥∥∥
2

+
∫ t

0

∥∥∥
(√

θvx,ux,θx,θt,φx,φt,uxt,φxt

)
(τ)
∥∥∥

2
dτ.1. (3.17)

Now we obtain uniform bounds for
∫ t

0

∫
R

u2
xxdxdτ and

∫ t
0

∫
R

θ2
xxdxdτ. In fact,

we have the following lemma.

Lemma 3.8. Under the assumptions of Theorem 1.1, for any 0≤ t≤T, we have

‖ux(t)‖2+
∫ t

0

∫

R

u2
xx(τ,x)dxdτ.1, (3.18)

‖θx(t)‖2+
∫ t

0

∫

R

θ2
xx(τ,x)dxdτ.1. (3.19)

Proof. Firstly, multiplying (1.1b) by uxx and integrating the resultant identity over

[0,t]×R, we obtain

1

2

∫

R

u2
xdx+

∫ t

0

∫

R

µ

v
u2

xxdxdτ

=
1

2

∫

R

u2
0xdx+

∫ t

0

∫

R

pxuxxdxdτ

−
∫ t

0

∫

R

(µ

v

)

v
vxuxuxxdxdτ−

∫ t

0

∫

R

φx

v
uxxdxdτ.

≤ 1

4

∫ t

0

∫

R

µ

v
u2

xxdxdτ+C
∫ t

0
‖ux‖2

∞dτ+C

≤ 1

4

∫ t

0

∫

R

µ

v
u2

xxdxdτ+C
∫ t

0

∫

R

uxuxxdxdτ+C

≤ 1

2

∫ t

0

∫

R

µ

v
u2

xxdxdτ+C.

Here we used (2.1), Lemma 3.7, and Sobolev’s inequality.

Secondly, multiplying (1.1c) by θxx and integrating the result with respect to x

over R, one has

cv

2

∫

R

θ2
x(t,x)dx+

∫ t

0

∫

R

κ

v
θ2

xxdxdτ

=
cv

2

∫

R

θ2
x(0,x)dx+

∫ t

0

∫

R

puxθxxdxdτ
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−
∫ t

0

∫

R

µu2
x

v
θxxdxdτ−

∫ t

0

∫

R

(κ

v

)

v
vxθxθxxdxdτ

≤ 1

4

∫ t

0

∫

R

κ

v
θ2

xxdxdτ+C
∫ t

0
‖θx(τ)‖2

∞dτ+C

≤ 1

2

∫ t

0

∫

R

κ

v
θ2

xxdxdτ+C.

This completes the proof of Lemma 3.8.

It is easy to see that the constant C0 in (3.13), the constants Ci, i=1,2 appeared
in the estimates (3.15), (3.16) obtained in Lemma 3.7, and the right-hand sides
of the estimates (3.17)-(3.19) obtained in Lemmas 3.7 and 3.8 depend on Π0, V0,

‖φ0x‖, and ‖
√

1−φ0e−φ0−e−φ0‖, the main purpose of our next lemma is to show

that ‖φ0x‖ and ‖
√

1−φ0e−φ0−e−φ0‖ can be controlled by ‖v0−1‖ and V0.

Lemma 3.9. Under the assumptions of Theorem 1.1, there exists a generic positive con-

stant C3, which is independent of v and φ, such that the following estimates hold for all

0≤ t≤T:

∥∥∥∥∥
φx(t)√

v(t)

∥∥∥∥∥

2

+

∥∥∥∥
√

v(t)
(
1−φ(t)e−φ(t)−e−φ(t)

)∥∥∥∥
2

≤C3



∥∥∥∥∥

v(t)−1√
v(t)

∥∥∥∥∥

2

+

∥∥∥∥∥
v(t)−1√

v(t)

∥∥∥∥∥

6

. (3.20)

Consequently, one can deduce that

‖φ0x‖2+
∥∥∥
√
(1−φ0e−φ0−e−φ0)

∥∥∥
2
≤C3V−4

0

(
‖v0−1‖2+‖v0−1‖6

)
. (3.21)

Proof. Multiplying the first equation of (1.1d) by φ(t,x) and integrating the result

with respect to x over R, we can get that

∫

R

(
φ2

x

v
+vφ

(
1−e−φ

))
dx=−

∫

R

φ(1−v)dx. (3.22)

Noticing that there exist generic positive constants D1 and D2 independent of φ

such that

|φ|≤
{

D1

√
φ(1−e−φ), φ≤1,

D2
√

φ·
√

φ(1−e−φ), φ≥1,
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thus if φ≤1, we have

∣∣∣∣
∫

R

φ
∣∣∣
χφ≤1

(1−v)dx

∣∣∣∣≤D1

∫

R

|1−v|
√

φ(1−e−φ)dx (3.23)

≤ 1

4

∫

R

vφ
(
1−e−φ

)
dx+D2

1

∫

R

(1−v)2

v
dx,

while if φ≥1, we can conclude that

∣∣∣∣
∫

R

φ
∣∣∣
χφ≥1

(1−v)dx

∣∣∣∣≤D2

∫

R

(√
φ·
√

φ(1−e−φ)

)∣∣∣∣
χφ≥1

|1−v|dx (3.24)

≤ 1

4

∫

R

vφ
(
1−e−φ

)
dx+D2

2

∥∥∥φ
∣∣
χφ≥1

∥∥∥
L∞(R)

∫

R

(1−v)2

v
dx.

To derive an estimate on the last term in the right-hand side of (3.24), we set

Ω(t,x) :=
∫ φ(t,x)

0

√
z(1−e−z)dz,

which, for any φ≥1, satisfies

Ω(t,x)≥ 1

3

∣∣∣φ(t,x)
∣∣
χφ(t,x)≥1

∣∣∣
3
2 −D3 (3.25)

for some generic positive constant D3 > 0 independent of φ(t,x). On the other

hand, due to

Ω(t,x)=
∫ x

−∞

∂Ω(t,y)

∂y
dy

=
∫ x

−∞

√
φ(t,y)(1−e−φ(t,y))

∂φ(t,y)

∂y
dy

≤
∥∥∥∥

φx√
v

∥∥∥∥

∥∥∥∥
√

v(1−φe−φ)

∥∥∥∥

we can get from (3.25) that there exists a generic positive constant D4 independent

of φ such that

∣∣∣φ(t,x)
∣∣
χφ(t,x)≥1

∣∣∣≤D4

(
1+

∥∥∥∥
φx√

v

∥∥∥∥

2
3
∥∥∥∥
√

v(1−φe−φ)

∥∥∥∥

2
3

)
. (3.26)
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Thus we get from (3.24) and (3.26) that
∣∣∣∣
∫

R

φ
∣∣
χφ≥1

(1−v)dx

∣∣∣∣ (3.27)

≤ 1

4

∫

R

vφ
(
1−e−φ

)
dx+D2

2D4

(
1+

∥∥∥∥
φx√

v

∥∥∥∥

2
3
∥∥∥∥
√

v(1−φe−φ)

∥∥∥∥

2
3

)∫

R

(v−1)2

v
dx

≤ 1

2

∫

R

vφ
(
1−e−φ

)
dx+

1

2

∫

R

φ2
x

v
dx+D5

(∫

R

(v−1)2

v
dx+

(∫

R

(v−1)2

v
dx

)3
)

.

Here D5 is a generic positive constant independent of v and θ. Inserting (3.23),

(3.27) into (3.22) and noticing that
∫

R

vφ(1−e−φ)dx=
∫

R

v(φ−1+e−φ)dx+
∫

R

v(1−φe−φ−e−φ)dx

≥
∫

R

v(1−φe−φ−e−φ)dx,

which follows from the fact that
∫

R

v(φ−1+e−φ)dx≥0,

we can deduce (3.20), from which one can get (3.21) immediately. This completes

the proof of Lemma 3.9.

As a result of Lemmas 2.1-3.9, we can obtain the following corollary.

Corollary 3.1. Under the assumptions of Theorem 1.1, there exists a positive constant

C4, which depends only on Π0 and V0, such that

‖(v−1,u,θ−1,φ)(t)‖2
1

+
∫ t

0

(∥∥√θvx(τ)
∥∥2

+‖(θx ,ux)(τ)‖2
1+‖φx(τ)‖2

)
dτ≤C2

4 . (3.28)

We now consider the local-in-time estimate on the lower bound on the abso-
lute temperature θ(t,x). To this end, we repeat the method used in [28] to obtain
the following lemma.

Lemma 3.10. Under the assumptions stated in Theorem 1.1, for each 0≤ s< t≤T and

x∈R, there exists a positive constant C5 depending only on Π0 and V0 such that

θ(t,x)≥ infx∈R θ(s,x)

C5 infx∈R θ(s,x)(t−s)+1
. (3.29)
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4 Estimates of higher order derivatives

In this section, to simplify the presentation, we introduce A.h B if A.ChB holds
uniformly for some constant Ch, depending only on Π0,V0, and H(C2), where C2

is given in Lemma 3.7. C(m2) will be employed to denote some positive constant
which depends only on m2,Π0,V0, and H(C2). Firstly, we give the second-order
derivatives of (v,u,θ) in the next two lemmas.

Lemma 4.1. Assume that the conditions of Theorem 1.1 hold, then one can get that

sup
t∈[0,T]

‖(uxx ,θxx)(t)‖2+
∫ T

0
‖(uxxx ,θxxx)(t)‖2dt

.h C(m2)+ sup
t∈[0,T]

‖vxx(t)‖2+
∫ T

0
‖vxx(t)‖2dt. (4.1)

Proof. The proof is divided into the following steps:

Step 1. Differentiating (1.1b) with respect to x and multiplying the resulting

identity by uxxx gives
(

1

2
u2

xx

)

t

+
µu2

xxx

v
−
(

uxtuxx−
(

φx

v

)

x

uxx

)

x

= pxxuxxx+
(µuxxx

v
−
(µux

v

)

xx

)
uxxx+

(
φx

v

)

xx

uxx .

Integrating the above identity over [0,t]×R, we have

1

2
‖uxx(t)‖2+

∫ t

0

∫

R

u2
xxxdxdτ

≤ 1

2
‖uxx(0)‖2+

∫ t

0

∫

R

(µuxxx

v
−
(µux

v

)

xx

)
uxxxdxdτ

︸ ︷︷ ︸
L1

+
∫ t

0

∫

R

pxxuxxxdxdτ
︸ ︷︷ ︸

L2

+
∫ t

0

∫

R

(
φx

v

)

xx

uxxdxdτ

︸ ︷︷ ︸
L3

.

By repeating the argument used in [28], the terms L1 and L2 can be estimated as

follows:

|L1|+|L2|.C(δ)+C(m2)+ sup
τ∈[0,t]

‖vxx(τ)‖2+δ
∫ t

0
‖(uxxx ,θxxx)(τ)‖2dτ.
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As for L3, noticing that

L3=−
∫ t

0

∫

R

(ve−φ)xuxxdxdτ=−
∫ t

0

∫

R

vxe−φuxxdxdτ+
∫ t

0

∫

R

ve−φφxuxxdxdτ,

we find that

|L3|.
∫ t

0

∫

R

θv2
xdxdτ+C(m2)

∫ t

0

∫

R

u2
xxdxdτ+

∫ t

0

∫

R

φ2
xdxdτ.C(m2).

Combining L1, L2 with L3, we obtain

‖uxx(t)‖2+
∫ t

0

∫

R

u2
xxxdxdτ

.h C(m2)+ sup
τ∈[0,t]

‖vxx(τ)‖2+
∫ t

0
‖vxx(τ)‖2dτ

+δ
∫ t

0
‖(uxxx ,θxxx)(τ)‖2dτ. (4.2)

Step 2. Differentiating (1.1c) with respect to x, multiplying it by θxxx, and

integrating the resultant over [0,t]×R, we can get by repeating the argument

used in [28] to get that

‖θxx(t)‖2+
∫ t

0

∫

R

θ2
xxxdxdτ

.h C(m2)+ sup
τ∈[0,t]

‖vxx(τ)‖2+
∫ t

0
‖vxx(τ)‖2dτ

+δ
∫ t

0
‖(uxxx ,θxxx)(τ)‖2dτ. (4.3)

Combining (4.2) and (4.3) and by taking δ small enough, we can prove our

lemma.

Next, we derive a m2−dependent bound for the second derivatives with re-
spect to x of the solution (v(t,x),u(t,x),θ(t,x)).

Lemma 4.2. Assume that the conditions of Theorem 1.1 hold, we have for 0≤ t≤T that

sup
t∈[0,T]

‖(vxx ,uxx,θxx)(t)‖2+
∫ T

0
‖(vxx ,uxxx,θxxx)(t)‖2dt≤C(m2). (4.4)
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Proof. Differentiating (1.1b) with respect to x and multiplying the result by (µvx

v )x

to find

1

2

∣∣∣
(µvx

v

)

x

∣∣∣
2

t
+R

µθv2
xx

v3
=

(
uxt+R

(
θx

v

)

x

)(µvx

v

)

x

+

(
R

µθv2
xx

v3
−R

(
θvx

v2

)

x

(µvx

v

)

x

)
−
(

φx

v

)

x

(µvx

v

)

x
.

Integrating the above identity over [0,t]×R gives

1

2

∥∥∥
(µvx

v

)

x
(t)
∥∥∥+R

∫ t

0

∫

R

µθv2
xx

v3
dxdτ

=
1

2

∥∥∥
(µvx

v

)

x
(0)
∥∥∥+

∫ t

0

∫

R

(
uxt+R

(
θx

v

)

x

)(µvx

v

)

x
dxdτ

︸ ︷︷ ︸
L4

+
∫ t

0

∫

R

(
R

µθv2
xx

v3
−R

(
θvx

v2

)

x

(µvx

v

)

x

)
dxdτ

︸ ︷︷ ︸
L5

−
∫ t

0

∫

R

(
φx

v

)

x

(µvx

v

)

x
dxdτ

︸ ︷︷ ︸
L6

. (4.5)

The terms L4 and L5 can be estimated similarly as in [28]

|L4|+|L5|.C(m2)+
R

2

∫ t

0

∫

R

µθv2
xx

v3
dxdτ+C(m2)

∫ t

0
‖(θx ,vx)‖2‖vxx‖2dτ. (4.6)

We only give the estimate of term L6. Since
(

φx

v

)

xx

=
(
−ve−φ

)
x
=−vxe−φ+ve−φφx,

we can obtain

∫ t

0

∫

R

∣∣∣∣
(

φx

v

)

xx

∣∣∣∣
2

dxdτ.‖θ−1‖∞

∫ t

0

∫

R

θv2
xdxdτ+

∫ t

0

∫

R

φ2
xdxdτ≤C(m2). (4.7)

Thus L6 can be estimated as

|L6|=
∣∣∣∣
∫ t

0

∫

R

(
φx

v

)

xx

·µvx

v
dxdτ

∣∣∣∣≤C(m2). (4.8)
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Combining (4.6) and (4.8), we can derive

‖vxx(t)‖2+
∫ t

0
‖vxx(τ)‖2dτ.h C(m2)+

∫ t

0
‖(θx ,vx)‖2‖vxx‖2dx.

We apply the Gronwall inequality to the above estimate to obtain

‖vxx(t)‖2+
∫ t

0
‖vxx(τ)‖2dτ.C(m2), (4.9)

which combined with (4.1) implies (4.4). The proof is completed.

Secondly, we give the third-order derivatives of (v,u,θ) in Lemmas 4.3 and 4.4.
Since the higher-order derivatives of φx can be converted to lower-order deriva-
tives of v and φx by using (1.1d), the proof of Lemmas 4.3 and 4.4 is similar to that
of Lemmas 4.1-4.2, we thus omit the details for brevity.

Lemma 4.3. Assume that the conditions of Theorem 1.1 hold, we can deduce for 0≤t≤T

that

sup
t∈[0,T]

‖(uxxx ,θxxx)(t)‖2+
∫ T

0
‖(uxxxx ,θxxxx)(t)‖2dt

.h C(m2)+ sup
t∈[0,T]

‖vxxx(t)‖2+
∫ T

0
‖vxxx(t)‖2dt. (4.10)

Lemma 4.4. Assume that the conditions of Theorem 1.1 hold, we have for 0≤ t≤T that

sup
t∈[0,T]

‖(vxxx ,uxxx,θxxx)(t)‖2+
∫ T

0
‖(vxxx ,uxxxx,θxxxx)(t)‖2dt≤C(m2). (4.11)

By virtue of Lemmas 4.1-4.4, we can get the following corollary.

Corollary 4.1. Assume that the conditions of Theorem 1.1 hold, we have for all t∈ [0,T]
that

‖(v−1,u,θ−1,φ)(t)‖2
3

+
∫ t

0

(
‖vx(τ)‖2

2+‖(ux ,θx)(τ)‖2
3+‖φx(τ)‖2

)
dx≤C(m2). (4.12)

With Corollary 4.1 in hand, Theorem 1.1 follows immediately by combining
the local existence of solution (v(t,x),u(t,x),θ(t,x),φ(t,x)) of the Cauchy problem
(1.1)-(1.6) and the continuation argument designed in [28] and we omit the details
for brevity.
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