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Abstract

In this paper, we aim at dynamical behaviors of a stochastic SIS epidemic
model with double epidemic hypothesis. Sufficient conditions for the extinction
and persistence in mean are derived via constructing suitable functions. We
obtain a threshold of stochastic SIS epidemic model, which determines how
the diseases spread when the white noises are small. Numerical simulations
are used to illustrate the efficiency of the main results of this article.
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1 Introduction
Epidemiology is the science of studying the spread of infectious diseases, which

is to investigate and to trace the dynamics and stabilities of infectious diseases.

The modified models and recent contributions always assume that the population is

separated by three subclasses: the susceptible, infective and the recovered, denoting

them as S, I and R respectively.

The classical SIS model turns into SIR model or SIRS model when the recovered

individuals are taken into account. Related research and modified models can be

found in [1-5]. When the exposed individuals are considered into population level

and participate into the spread process of disease, the classical SIS model becomes

a new version, often mentioned as SEIR model or SEIRS model if the recovered

individuals return into the susceptible again, for instance, see the recent literatures

[6-9].
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Meng et al. [10] discussed an SIS epidemic model with double epidemic hypoth-

esis of the following form:

Ṡ(t) = A− µS(t)− β1S(t)I1(t)

a1 + I1(t)
− β2S(t)I2(t)

a2 + I2(t)
+ r1I1(t) + r2I2(t),

İ1(t) =
β1S(t)I1(t)

a1 + I1(t)
− (µ+ α1 + r1)I1(t),

İ2(t) =
β2S(t)I2(t)

a2 + I2(t)
− (µ+ α2 + r2)I2(t),

(1.1)

where A is the total input susceptible population size, β1 and β2 are the contact rates,

µ is the natural mortality, α1 and α2 are the rates of disease-related death, r1 and r2
are the treatment cure rates of two diseases, respectively. Functions β1S(t)I1(t)

a1+I1(t)
and

β2S(t)I2(t)
a2+I2(t)

respectively represent saturated incidence rates for two epidemic diseases.

Model (1.1) admits the following equilibria:

E0 :
(A
µ
, 0, 0

)
,

E1 : (S
∗
1 , I

∗
1 , 0) with S∗

1 =
(µ+α1+r1)(α1+I∗1 )

β1
, I∗1 =

β1A−a1µ(µ+α1+r1)

µ(µ+α1+r1)+β1(µ+a1)
,

E2 : (S
∗
2 , 0, I

∗
2 ) with S∗

2 =
(µ+α2+r2)(α2+I∗2 )

β2
, I∗2 =

β2A−a2µ(µ+α2+r2)

µ(µ+α2+r2)+β2(µ+a2)
,

E∗ : (S∗, I∗1 , I
∗
2 ) with S∗ =

A+ a1(µ+ α1) + a2(µ+ α2)

µ+ β1(µ+α1)
µ+α1+r1

+ β2(µ+α2)
µ+α2+r2

,

I∗1 =
β1A− a1µ(µ+ α1 + r1) + (µ+ α2)(β1a2 − β2a1)

µ(µ+ α1 + r1) + β1(µ+ α1) + β2(µ+ α2)
,

I∗2 =
β2A− a2µ(µ+ α2 + r2) + (µ+ α1)(β2a1 − β1a2)

µ(µ+ α2 + r2) + β2(µ+ α2) + β1(µ+ α1)
.

Let

R1 =
β1A

a1µ(µ+ α1 + r1)
, R2 =

β2A

a2µ(µ+ α2 + r2)

be the thresholds of model (1.1). Meng et al. [10] derived that: (i) If R1 < 1 and

R2 < 1, then two diseases go extinct and model (1.1) has a unique stable diseases-

extinction equilibrium point E0. (ii) If R1 > 1 and R2 < 1, then the disease I2
is extinct and model (1.1) has a unique stable equilibrium E1. (iii) If R1 < 1 and

R2 > 1, then the disease I1 is extinct and model (1.1) has a unique stable equilibrium

E2. (iv) When (1.1) has a positive equilibrium E∗, if R1 > 1 and R2 > 1, then E∗ is

a unique stable equilibrium, which implies two diseases of model (1.1) are persistent.

The main aim of this article is to investigate how the dynamics behaviors when

the environmental noise is considered in deterministic model (1.1). Let Bi(t) (i =
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1, 2, 3) be independent Brownian motions and σi (i = 1, 2, 3) be the intensities of

white noises. Let (Ω, {Ft}t≥0,P) be a complete probability space with a filtration

{Ft}t≥0 satisfying the usual conditions (that is, it is right continuous and increasing

while F0 contains all P-null sets). Based on the model that has been studied in [10],

we propose a stochastic model with double epidemic hypothesis as follows:

dS(t)=
[
A−µS(t)− β1S(t)I1(t)

a1+I1(t)
− β2S(t)I2(t)

a2+I2(t)
+r1I1(t)+r2I2(t)

]
dt+σ3S(t)dB3(t),

dI1(t)=
[β1S(t)I1(t)
a1 + I1(t)

− (µ+ α1 + r1)I1(t)
]
dt+ σ1I1(t)dB1(t),

dI2(t)=
[β2S(t)I2(t)
a2 + I2(t)

− (µ+ α2 + r2)I2(t)
]
dt+ σ2I2(t)dB2(t),

(1.2)

where all parameters have the same biological meanings with those of model (1.1).

In this paper, we prove that there is a unique positive solution of model (1.2) in

Section 2. The conditions that guarantee the extinction of the diseases is derived in

Section 3. And, the conditions ensuring the persistent of disease are given in Section

4. Several examples and their numerical simulations are carried out to support the

main results of this article in the last section.

2 Existence and Uniqueness of Positive Solution
To investigate the dynamical behavior, the first concern is whether the solution

has a global existence. Moreover, for a population dynamics model, whether the

value is nonnegative is also considered. Hence in this section, we first show that the

solution of model (1.2) is global and nonnegative.

Theorem 2.1 There is a unique solution of model (1.2) on t ≥ 0 for any initial

value (S(0), I1(0), I2(0)) ∈ R3
+, and the solution will remain in R3

+ with probability

1, namely, (S(t), I1(t), I2(t)) ∈ R3
+ for all t ≥ 0 almost surely.

Proof Since the coefficients of (1.2) are locally Lipschitz continuous for any giv-

en initial value (S(0), I1(0), I2(0)) ∈ R3
+, there is a unique local solution (S(t), I1(t),

I2(t)) on t ∈ [0, τe), where τe is the explosion time (see [11]). To show that this

solution is global, we need to show that τe = ∞ a.s. Let k0 > 0 be sufficiently large

so that each component of (S(0), I1(0), I2(0)) all lies within the interval [ 1
k0
, k0]. For

each integer k ≥ k0, we define the stopping time:

τk = inf
{
t ∈ [0, τe) : min{S(t), I1(t), I2(t)} ≤ 1

k
or max{S(t), I1(t), I2(t)} ≥ k

}
.

(2.1)

Throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Accord-

ing to the definition, τk is an increasing function as k → ∞. We set τ∞ = lim
k→∞

τk,

where τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ and (S(t), I1(t),
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I2(t)) ∈ R3
+ for all t ≥ 0. In other words, to complete the proof, what we need

to show is that τ∞ = ∞ a.s. If this statement is false, then there exists a pair of

constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε. (2.2)

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ε, k ≥ k1. (2.3)

Define a C2-function W : R3
+ → R as follows:

W (S, I1, I2) = (S − 1− logS) + (I1 − 1− log I1) + (I2 − 1− log I2), (2.4)

where

R3
+ =

{
x ∈ R3 : xi > 0, i = 1, 2, 3

}
, R =

{
x ∈ R3 : xi ≥ 0, i = 1, 2, 3

}
.

The nonnegativity of function W is clear since u − 1 − log u ≥ 0 on u > 0. The

generalized Itô’s formula gives that

dW (S, I1, I2) =
(
1− 1

S

)[
A− µS − β1SI1

a1 + I1
− β2SI2

a2 + I2
+ r1I1 + r2I2

]
dt

+
σ2
3

2
dt+

(
1− 1

I1

)[ β1SI1
a1 + I1

− (µ+ α1 + r1)I1

]
dt+

σ2
1

2
dt

+
(
1− 1

I2

)[ β2SI2
a2 + I2

− (µ+ α2 + r2)I2

]
dt+

σ2
2

2
dt

+(S − 1)σ3dB3(t) + (I1 − 1)σ1dB1(t) + (I2 − 1)σ1dB2(t),

which can be written as

dW (S, I1, I2) = LW (S, I1, I2)dt+ (S − 1)σ3dB3(t)

+(I1 − 1)σ1dB1(t) + (I2 − 1)σ1dB2(t), (2.5)

where L maps from R3
+ to R and is expressed as

LW (S, I1, I2) = A− µ(S + I1 + I2)− α1I1 − α2I2 −
A

S
+ µ+

β1I1
a1 + I1

+
β2I2

a2 + I2
− r1I1 + r2I2

S
− β1S

a1 + I1
+ µ+ α1 + r1 −

β2S

a2 + I2

+µ+ α2 + r2 +
σ2
1

2
+

σ2
2

2
+

σ2
3

2

≤ A+ µ+ β1 + β2 + µ+ α1 + r1 + µ+ α2 + r2 +
σ2
1

2
+

σ2
2

2
+

σ2
3

2
:= K. (2.6)

The remainder of the proof follows from that of Mao et al. [12]. The proof is

complete.
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3 Extinction

Let us prepare two useful lemmas before proving Theorem 3.1. According to the

similar mechanism in [13] and same arguments, we can obtain Lemmas 3.1 and 3.2.

The proofs of these two lemmas are omitted here.

Lemma 3.1 Let (S(t), I1(t), I2(t)) be a solution of model (1.2) with any initial

value (S(0), I1(0), I2(0)) ∈ R3
+, then

lim
t→∞

S(t) + I1(t) + I2(t)

t
= 0 a.s.

Moreover

lim
t→∞

S(t)

t
= 0, lim

t→∞

I1(t)

t
= 0, lim

t→∞

I2(t)

t
= 0 a.s.

Lemma 3.2 Assume that µ > (σ2
1 ∨ σ2

2 ∨ σ2
3)/2. Let (S(t), I1(t), I2(t)) be a

solution of model (1.2) with any initial value (S(0), I1(0), I2(0)) ∈ R3
+, then

lim
t→∞

1

t

∫ t

0
S(r)dB3(r)=0, lim

t→∞

1

t

∫ t

0
I1(r)dB1(r)=0, lim

t→∞

1

t

∫ t

0
I2(r)dB2(r)=0, a.s.

(3.1)

Theorem 3.1 Assume that µ > (σ2
1 ∨ σ2

2 ∨ σ2
3)/2. Let (S(t), I1(t), I2(t)) be a

solution of model (1.2) with any initial value (S(0), I1(0), I2(0)) ∈ R3
+. If R∗

1 < 1

and R∗
2 < 1 hold, then the densities of two infective individuals of model (1.2) go to

extinction almost surely, that is

lim
t→∞

I1(t) = 0, lim
t→∞

I2(t) = 0.

Moreover,

lim
t→∞

S(t) = 0,

where

R∗
i =

βiA

µai(µ+ αi + ri +
σ2
i
2 )

, i = 1, 2. (3.2)

Proof The integration of model (1.2) yields

S(t)− S(0)

t
+

I1(t)− I1(0)

t
+

I2(t)− I2(0)

t
= A− µ⟨S(t)⟩ − (µ+ α1)⟨I1(t)⟩ − (µ+ α2)⟨I2(t)⟩

+
σ3
t

∫ t

0
S(τ)dB3(τ) +

σ1
t

∫ t

0
I1(τ)dB1(τ) +

σ2
t

∫ t

0
I2(τ)dB2(τ).

We simplify the above expression as follows:

⟨S(t)⟩ = A

µ
− µ+ α1

µ
⟨I1(t)⟩ −

µ+ α2

µ
⟨I2(t)⟩+

1

µ
φ(t), (3.3)

where
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φ(t) =
σ3
t

∫ t

0
S(τ)dB3(τ) +

σ1
t

∫ t

0
I1(τ)dB1(τ) +

σ2
t

∫ t

0
I2(τ)dB2(τ)

−S(t)− S(0)

t
− I1(t)− I1(0)

t
− I2(t)− I2(0)

t
.

By (3.1) of Lemma 3.2, we have

lim
t→∞

φ(t) = 0 a.s. (3.4)

Applying Itô’s formula to model (1.2) leads to

dlog Ii =

[
βiS

ai + Ii
−

(
µ+ αi + ri +

σ2
i

2

)]
dt+ σidBi(t), i = 1, 2. (3.5)

Integrating both sides of (3.5) from 0 to t and dividing t on both sides gives that

log Ii(t)− log Ii(0)

t
=

⟨
βiS(t)

ai + Ii

⟩
−

(
µ+ αi + ri +

σ2
i

2

)
+

σiBi(t)

t

≤ βi
ai
⟨S(t)⟩ −

(
µ+ αi + ri +

σ2
i

2

)
+

σiBi(t)

t
. (3.6)

Substituting (3.3) into (3.6) yields

log Ii(t)

t
≤ Aβi

µai
− βi(µ+ α1)

aiµ
⟨I1(t)⟩ −

βi(µ+ α2)

aiµ
⟨I2(t)⟩ −

(
µ+ αi + ri +

σ2
i

2

)
+

βi
aiµ

φ(t) +
σiBi(t)

t
+

log Ii(0)

t

≤ Aβi
µai

−
(
µ+ αi + ri +

σ2
i

2

)
+Mi(t)

=

(
µ+ αi + ri +

σ2
i

2

)
(R∗

i − 1) +Mi(t), (3.7)

where

Mi(t) =
βi
aiµ

φ(t) +
σiBi(t)

t
+

log Ii(0)

t
, i = 1, 2.

Obviously,

lim
t→∞

Mi(t) = 0, a.s.

Since R∗
i < 1 for i = 1, 2, taking superior limit on both sides of (3.7) gives

lim sup
t→∞

log Ii(t)

t
≤

(
µ+ αi + ri +

σ2
i

2

)
(R∗

i − 1) < 0,

which implies

lim
t→∞

Ii(t)

t
= 0. (3.8)

From (3.3) and (3.8), we have
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lim
t→∞

S(t)

t
=

A

µ
.

The proof is complete.

Remark 3.1 Note that the expressions of R∗
i (i = 1, 2) carry the same in-

formation with thresholds of model (1.1), say Ri (i = 1, 2). These conditions that

guarantee the extinction of Ii(t) (i = 1, 2) in the deterministic model (1.1) are

stronger than those in the corresponding stochastic model (1.2).

4 Persistence in Mean

Theorem 4.1 Assume that µ > (σ2
1 ∨ σ2

2 ∨ σ2
3)/2. Let (S(t), I1(t), I2(t)) be a

solution of model (1.2) with any initial value (S(0), I1(0), I2(0)) ∈ R3
+.

(i) If R∗
1 > 1, R∗

2 < 1, then the disease I2 is extinct and the disease I1 is

persistent in mean, moreover, I1 satisfies

lim inf
t→∞

⟨I1(t)⟩ ≥
µa1(µ+ α1 + r1 +

σ2
1
2 )

β1(µ+ α1) + µ(µ+ α1 + r1)
(R∗

1 − 1).

(ii) If R∗
1 < 1, R∗

2 > 1, then the disease I1 is extinct and the disease I2 is

persistent in mean, moreover, I2 satisfies

lim inf
t→∞

⟨I2(t)⟩ ≥
µa2(µ+ α2 + r2 +

σ2
2
2 )

β2(µ+ α2) + µ(µ+ α2 + r2)
(R∗

2 − 1).

(iii) If R∗
1 > 1, R∗

2 > 1, then two infectious diseases I1 and I2 are persistent in

mean, moreover, I1 and I2 satisfy

lim inf
t→∞

⟨I1(t) + I2(t)⟩ ≥
1

∆max

2∑
i=1

ai

(
µ+ αi + ri +

σ2
i

2

)
(R∗

i − 1),

where

∆max = max

{
β1 + β2

µ
(µ+ α1) + µ+ α1 + r1,

β1 + β2
µ

(µ+ α2) + µ+ α2 + r2

}
.

Proof Case (i). By Theorem 3.1, since R∗
2 < 1, lim

t→∞
I2(t) = 0. Since R∗

1 > 1,

for ε small enough, such that 0 < I2(t) < ε for all t large enough, we obtain

β1(A− (µ+ α2)ε)

µa1(µ+ α1 + r1 +
σ2
1
2 )

> 1.

According to (3.3), we can derive that

⟨S(t)⟩ = A

µ
− µ+ α1

µ
⟨I1(t)⟩ −

µ+ α2

µ
⟨I2(t)⟩+

1

µ
φ(t)

≥ A− (µ+ α2)ε

µ
− µ+ α1

µ
⟨I1(t)⟩+

1

µ
φ(t). (4.1)
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Generalized Itô’s formula gives

d(a1 log I1(t) + I1(t)) =

[
β1S(t)− a1(µ+ α1 + r1)− (µ+ α1 + r1)I1(t)−

a1σ
2
1

2

]
dt

+(a1σ1 + σ1I1(t))dB1(t). (4.2)

Integrating this from 0 to t and dividing it by t on both sides of (4.2) yields

a1(log I1(t)− log I1(0))

t
+

I1(t)− I1(0)

t

= β1⟨S(t)⟩−a1

(
µ+α1+r1+

σ2
1

2

)
−(µ+α1+r1)⟨I1(t)⟩+

σ1
t

∫ t

0
(a1+I1(τ))dB1(τ)

≥ β1(A−(µ+α2)ε)

µ
−a1

(
µ+α1+r1+

σ2
1

2

)
−
[
β1(µ+α1)

µ
+(µ+α1+r1)

]
⟨I1(t)⟩

+
β1
µ
φ(t) +

σ1
t

∫ t

0
(a1 + I1(τ))dB1(τ)

= a1

(
µ+ α1 + r1 +

a1σ
2
1

2

)[ β1(A− (µ+ α2)ε)

µa1(µ+ α1 + r1 +
σ2
1
2 )

− 1

]

−
[
β1(µ+α1)

µ
+(µ+α1+r1)

]
⟨I1(t)⟩+

β1
µ
φ(t)+

σ1
t

∫ t

0
(a1+I1(τ))dB1(τ). (4.3)

Inequality (4.3) can be rewritten as

⟨I1(t)⟩≥
1

∆

[
a1

(
µ+ α1 + r1 +

σ2
1

2

)( β1(A− (µ+ α2)ε)

µa1(µ+ α1 + r1 +
σ2
1
2 )

− 1

)

+
β1
µ
φ(t) +

σ1
t

∫ t

0
(a1+I1(τ))dB1(τ)−

a1(log I1(t)−log I1(0))

t
−I1(t)−I1(0)

t

]

≥



1

∆

[
a1

(
µ+ α1 + r1 +

σ2
1

2

)( β1(A− (µ+ α2)ε)

µa1(µ+ α1 + r1 +
σ2
1
2 )

− 1

)
+

β1
µ
φ(t)

+
σ1
t

∫ t

0
(a1+I1(τ))dB1(τ)+

a1 log I1(0)

t
−I1(t)−I1(0)

t

]
, 0<I1(t)<1;

1

∆

[
a1

(
µ+ α1 + r1 +

σ2
1

2

)( β1(A− (µ+ α2)ε)

µa1(µ+ α1 + r1 +
σ2
1
2 )

− 1

)
+

β1
µ
φ(t)

+
σ1
t

∫ t

0
(a1+I1(τ))dB1(τ)−

a1(log I1(t)−log I1(0))

t
−I1(t)−I1(0)

t

]
, 1≤I1(t),

(4.4)

where ∆ = β1(µ+α1)
µ + (µ+ α1 + r1). By Lemma 3.2, we get

lim
t→∞

φ(t) = 0, lim
t→∞

σ1
t

∫ t

0
(a1 + I1(τ))dB1(τ) = 0.

According to Lemma 3.1, one has
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lim
t→∞

I1(t)

t
= 0, lim

t→∞

log I1(t)

t
= 0 as I1(t) ≥ 1.

Taking inferior limit on both sides of (4.4) yields

lim inf
t→∞

⟨I1(t)⟩ ≥
a1(µ+ α1 + r1 +

σ2
1
2 )

∆

(
β1(A− (µ+ α2)ε)

µa1(µ+ α1 + r1 +
σ2
1
2 )

− 1

)
> 0.

Letting ε → 0 gives that

lim inf
t→∞

⟨I1(t)⟩ ≥
a1µ(µ+ α1 + r1 +

σ2
1
2 )

β1(µ+ α1) + µ(µ+ α1 + r1)

(
R∗

1 − 1
)
.

By the similar argument, we can prove Case (ii), so we omit it here.

To prove Case (iii), we define

V (t) = log Ia11 (t) + log Ia22 (t) + I1(t) + I2(t),

then we have

dV (t) =

[
(β1 + β2)S(t)−

2∑
i=1

ai

(
µ+ αi + ri +

σ2
i

2

)
−

2∑
i=1

(µ+ αi + ri)Ii(t)

]
dt

+

2∑
i=1

σi(ai + Ii(t))dBi(t). (4.5)

Integrating this from 0 to t and dividing it by t on both sides of (4.5), together with

(3.3), yields that

V (t)

t
− V (0)

t
= (β1 + β2)⟨S(t)⟩ −

2∑
i=1

ai

(
µ+ αi + ri +

σ2
i

2

)
−

2∑
i=1

(µ+ αi + ri)⟨Ii(t)⟩+
2∑

i=1

(σi
t

∫ t

0
(ai + Ii(τ))dBi(τ)

)
= (β1 + β2)

A

µ
−

2∑
i=1

ai

(
µ+ αi + ri +

σ2
i

2

)
−

2∑
i=1

(β1 + β2
µ

(µ+ αi) + µ+ αi + ri

)
⟨Ii(t)⟩+

β1 + β2
µ

φ(t)

+
2∑

i=1

(σi
t

∫ t

0
(ai + Ii(τ))dBi(τ)

)
≥ (β1 + β2)

A

µ
−

2∑
i=1

ai

(
µ+ αi + ri +

σ2
i

2

)
−∆max

[
⟨I1(t) + I2(t)⟩

]
+
β1 + β2

µ
φ(t) +

2∑
i=1

(σi
t

∫ t

0
(ai + Ii(τ))dBi(τ)

)
. (4.6)
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Inequality (4.6) can be rewritten as

⟨I1(t) + I2(t)⟩ ≥
1

∆max

[
(β1 + β2)

A

µ
−

2∑
i=1

ai

(
µ+ αi + ri +

σ2
i

2

)
+

β1 + β2
µ

φ(t)

+

2∑
i=1

(σi
t

∫ t

0
(ai + Ii(τ))dBi(τ)

)
− V (t)

t
+

V (0)

t

]
, (4.7)

where

−V (t)

t
= −a1 log I1(t) + a2 log I2(t) + I1(t) + I2(t)

t

≥



−a1 log I1(t) + a2 log I2(t) + I1(t) + I2(t)

t
, 1 ≤ I1(t), 1 ≤ I2(t);

−a1 log I1(t) + I1(t) + I2(t)

t
, 1 ≤ I1(t), 0 < I2(t) < 1;

−a2 log I2(t) + I1(t) + I2(t)

t
, 0 < I1(t) < 1, 1 ≤ I2(t);

−I1(t) + I2(t)

t
, 0 < I1(t) < 1, 0 < I2(t) < 1.

By Lemma 3.2, we get that

lim
t→∞

φ(t) = 0, lim
t→∞

σi
t

∫ t

0
(ai + Ii(τ))dBi(τ) = 0.

According to Lemma 3.1 and taking inferior limit on both sides of (4.7), implies that

lim inf
t→∞

⟨I1(t) + I2(t)⟩ ≥
1

∆max

2∑
i=1

ai

(
µ+ αi + ri +

σ2
i

2

)
(R∗

i − 1).

The proof is complete.

Remark 4.1 Theorem 4.1 shows that two diseases prevail if the white noises

are small enough and R∗
i > 1. On the contrary, if the white noises are large enough,

then two diseases become extinct. This implies that random perturbations may

cause epidemic diseases to die out.

5 Conclusion and Simulations
In this paper, we investigate the dynamics of an SIS epidemic model with non-

linear growth rate and double epidemic hypothesis. The thresholds of stochastic

model which guarantee the extinction and permanence of two epidemic diseases are

derived in Theorems 3.1 and 4.1. Compared with the known results given by Meng

et al., from Theorem 3.1, we can see that conditions that guarantee the extinction

of stochastic model (1.2) are weaker than that of deterministic model (1.1), and the

conditions of Theorem 3.1 depend on the intensity of white noise.
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By using of Euler Maruyama (EM) method [14, 15], we present several simula-

tions to support main results of this article. We show the property of deterministic

model (1.1) in Figure 1 (a). And, we demonstrate the extinction and persistence of

diseases in Figure 1 (b) and Figure 2 (a)(b)(c).
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(a) deterministic model (1.1) with R1 = 1.4000 > 1, R2 = 1.2800 > 1
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(b) stochastic model (1.2) with R∗
1 = 0.9964 < 1, R∗

2 = 0.9110 < 1

Figure 1: Numerical simulation of paths S(t), I1(t), I2(t) for
SIS epidemic model with double epidemic hypothesis

We choose initial values (S(0), I1(0), I2(0)) = (3, 4, 5) and the parameters in

models (1.1) and (1.2) as follows:

A=4, a1=4, a2=5, β1=0.7, β2=0.8, r1=0.1, r2=0.2, µ=0.5, α1=0.4, α2=0.3.

Notice that in Figure 1:

(a) σ1 = 0, σ2 = 0, σ3 = 0, R1 = 1.4000 > 1, R2 = 1.2800 > 1,

(b) σ1 = 0.9, σ2 = 0.9, σ3 = 0.1, R∗
1 = 0.9964 < 1, R∗

2 = 0.9110 < 1,

and in Figure 2:

(a) σ1 = 0.3, σ2 = 0.9, σ3 = 0.1, R∗
1 = 1.3397 > 1, R∗

2 = 0.9110 < 1,

(b) σ1 = 0.9, σ2 = 0.3, σ3 = 0.1, R∗
1 = 0.9964 < 1, R∗

2 = 1.2249 > 1,

(c) σ1 = 0.3, σ2 = 0.3, σ3 = 0.1, R∗
1 = 1.3397 > 1, R∗

2 = 1.2249 > 1,

and µ > (σ2
1 ∨ σ2

2 ∨ σ2
3)/2 = 0.405.
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(a) R∗
1 = 1.3397 > 1, R∗

2 = 0.9110 < 1
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(b) R∗
1 = 0.9964 < 1, R∗

2 = 1.2249 > 1
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(c) R∗
1 = 1.3397 > 1, R∗

2 = 1.2249 > 1.

Figure 2: Numerical simulations of stochastic model (1.2) with double epidemic hypothesis

Figure 1 shows that two diseases are persistent in a deterministic model (see

Figure 1 (a)), and they die out due to taking intensities of white noises into account

in a stochastic model with σ1 = σ2 = 0.9 (see Figure 1 (b)). When R∗
i < 1 < Ri, the

persistence of deterministic model changes into the extinction of the corresponding

stochastic model due to random perturbation. Therefore, the intensities of white

noises can be referred as to control parameters when stochastic epidemic models are
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considered.

Now, we keep the most parameters the same as shown in Figure 1, but σ1 and σ2
take different values. When σ1 is smaller, and σ2 is larger (σ1 = 0.3, σ2 = 0.9), here

R∗
1 = 1.3397 > 1, R∗

2 = 0.9110 < 1, thus I2 goes to extinction and I1 is persistent

(see Figure 2 (a)). When σ1 is larger and σ2 is smaller (σ1 = 0.9, σ2 = 0.3), here

R∗
1 = 0.9964 < 1, R∗

2 = 1.2249 > 1, Figure 2 (b) shows that I1 goes to extinction

and I2 is persistent. Furthermore, let σ1 and σ2 take small values, then I1 and I2
are persistent (see Figure 2 (c)). That is, two diseases will prevail in a long run,

which strongly supports the theoretical results derived in Theorem 4.1.
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