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Abstract. We consider the problem of detecting cardiac artery occlusions using
stenosis driven viscoelastic (VE) waves propagated through biotissue to body sur-
face sensors. We investigate possible statistical model formulations (ordinary least
squares (OLS), generalized least squares (GLS)) and post analysis techniques (resid-
ual plots) to ascertain uncertainty in estimates as well as validity of the statistical
models as part of a methodology for stenosis detection using viscoelastic waves.
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1 Introduction

Coronary artery disease (CAD) is the leading cause of death in many parts of the
developed world. The disease is caused by a gradual accumulation of atheromatous
plaques (e.g. cholesterol, fatty acids, calcium and fibrous connective tissue) along the
wall of the vessel [1]. Although the symptoms of CAD are pronounced in the later
stages of the affliction, it is very difficult to diagnose the disease before the first onset
of symptoms, typically a sudden heart attack [24].

Current detection techniques include angiograms and CT scans. Angiograms are
an invasive technique, which typically requires entering the vessel through the femoral
artery or the jugular vein — a process many may wish to avoid. On the other hand,
CT scans generate a three-dimensional image of an object by taking multiple two-
dimensional X-Rays while rotating around an axis and expose a patient to sufficient
radiation. In another approach, engineers have developed sensors that can detect the
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acceleration of acoustic waves [2]. The underlying approach is rather simple: block-
ages in the artery create turbulence in the blood flow, which then generates an acous-
tic wave with a normal and shear component (Fig. 1). The acoustic wave propagates
through the chest cavity until it reaches the chest wall, where a series of sensors would
detect the acceleration of the components of the wave. The data from the sensors
might then be used to quickly determine the location of the blockages, if any, in the
artery. Unlike the other detection techniques discussed above, the process would be
inexpensive and non-invasive.

Figure 1: Depiction of interaction between arterial blockage and acoustic wave.

For such a technology to be feasible, a mathematical model that describes the prop-
agation of the acoustic wave from the stenosis to the chest wall would be necessary.
One, two and three dimensional models have been developed [2, 23, 25] as investi-
gators continued efforts on scientific issues, especially the feasibility of detecting and
locating the stenosis. In [11, 23], the authors identified difficulties with obtaining es-
timates of the stenosis parameters as well as reliability of these and other estimates
of parameters even in the two-dimensional models. Here we report further efforts
and results related to the efficacy of the inverse problem involving a two-dimensional
version of the model and simulated noisy data.

In particular we consider viscoelastic (VE) models for stenosis driven wave sim-
ulations and demonstrate that the corresponding inverse problems are computation-
ally tractable even though they involve computationally challenging forward prob-
lems. Specifically, we show that one can implement the inverse problem for estima-
tion of both geometric and material parameters in the VE wave propagation models.
We consider how one ascertains reliability of estimates and show by example one
approach to the computation of standard errors and the associated confidence inter-
vals [5,14,16,26]. As we detail below, there exist asymptotic theories for error analysis
– whether for absolute error or for relative error in the data, but one does not know
a priori what type of error model to assume. As we demonstrate by computational
examples, one must use the correct statistical model for the standard errors computed
to be meaningful (one could err because one could assume incorrect error ǫ or incor-
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rect model response f (t, θ0)). As we show, one cannot make judgements regarding
correct statistical model assumptions by simply comparing standard errors. We argue
that residual plot analysis offers one approach to investigating correctness of statistical
model assumption. Finally, our presentation here demonstrates the effectiveness of a
mathematical and statistical inverse problem methodology in identifying both mate-
rial and geometric occlusion parameters in a 2D model for arterial stenosis detection.

2 Model formulation

In [11, 23] the authors developed a two dimensional internal strain variable (ISV)
model that describes how VE waves that are caused by arterial blockages propagate
through biotissue. For the two-dimensional geometry in polar coordinates (r, φ), the
authors assumed that the sensors would be located on the chest wall at r = R, φ =
φi, i = 1, . . . , m, and would detect the acceleration of VE waves from within the chest
cavity (see Fig. 2). The acceleration data would then be compared to the model to
determine if a stenosis is located in the artery. Although the two-dimensional model
contains a number of parameters (e.g., the relaxation parameters νλk

, νµk
, and the am-

plitude parameters Cλk
, Cµk

, as defined in (2.1)–(2.6)), the two of particular interest
represent the location of the occlusion along the inner wall of a circular geometry (see
Fig. 2).
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Figure 2: Geometry with occlusion
along the inner radius r = r1.

The model in [11, 23, 25] is sophisticated; however, one should not be under the il-
lusion that it (or any model) perfectly describes the situation at hand. It is not difficult
to imagine that noise generated from measurement error or biological influences from
within the chest cavity might corrupt the data. Thus one needs to investigate how
random noise might impact the model. Ideally, we would like to begin this investi-
gation by comparing the OLS estimates θ̂OLS and GLS estimates θ̂GLS for the geometric

parameters~θ = (q1, q2)T to each other, but the discontinuous occlusion geometry (see
Fig. 2) prevents a straightforward optimization [23]. Unless we alter the geometry of

the occlusion we will be unable to compare θ̂OLS to θ̂GLS for~θ = (q1, q2)T.

There are, however, parameters embedded continuously in the model, which will
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allow us to calculate θ̂GLS. The model dynamics as developed in [11,23,25] are given in
polar co-ordinates (r, φ) by

ρ
∂ 2u1

∂t2
=

K

∑
k=1

{ ∂

∂r

(

ǫλk
+ ǫ11

µk

)

+
1

r

∂

∂φ

(

ǫ21
µk

)

+
1

r

(

ǫ11
µk
− ǫ22

µk

) }

, (2.1)

ρ
∂ 2u2

∂t2
=

K

∑
k=1

{ ∂

∂r

(

ǫ12
µk

)

+
1

r

∂

∂φ

(

ǫλk
+ ǫ22

µk

)

+
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r

(

ǫ12
µk

+ ǫ21
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) }

, (2.2)

∂ǫλk

∂t
= −νλk

ǫλk
+ Cλk

∂

∂t

(

S
(e)
11 + S

(e)
22

)

, (2.3)

∂ǫ11
µk

∂t
= −νµk

ǫ11
µk

+ Cµk

∂

∂t

(

S
(e)
11

)

, (2.4)

∂ǫ12
µk

∂t
= −νµk

ǫ12
µk

+ Cµk

∂

∂t

(

S
(e)
12

)

, (2.5)

∂ǫ22
µk

∂t
= −νµk

ǫ22
µk

+ Cµk

∂

∂t

(

S
(e)
22

)

, k = 1, . . . , K. (2.6)

The relevant terms in the model are the radial (u1=ur) and tangential (u2=uφ) dis-

placements, respectively, the “elastic” stress tensor {S
(e)
ij } [20,22] and the internal strain

variables (ISV) ǫλk
and ǫkl

µk
. The elastic stress tensor elements are computed using strain

energy functions (SEFs) as explained in Chapter 4 of [25] and are functions of the
Green’s strains

E11 =
∂u1

∂r
, E22 =

1

r
(u1 +

∂u2

∂φ
), E12 = E21 =

1

r

∂u1

∂φ
+

∂u2

∂r
−

u2

r
.

The parameters Cλk
and Cµk

, k = 1, . . . , K, are amplitude coefficients for input to the
finite number K of internal strain variables used in approximating (in a sense to be ex-
plained below) the reduced relaxation parameter G in Fung’s quasi-linear viscoelastic
model [19]. The parameters q1 and q2 arise in the inner radius boundary conditions
(see Fig. 2). It is obvious that the model depends continuously on the parameters Cλk

,
Cµk

, νλk
and νµk

; hence those parameters are better candidates for estimation via an
inverse problem formulation than are q1 and q2. Examples with estimation of the C′s
and ν′s can be found in [11,23,25]. Here we focus on reliable estimation of the C′s and
q′s. The remainder of the parameters (νλk

, νµk
) will be taken as fixed in the estimation

procedures described below even though they are also readily estimated.

Full discussions on other parameter values, the form of the boundary conditions
required for implementation of the model, as well as detailed explanations of compu-
tational techniques can be found in [11, 23, 25]. Because the focus of our present effort
involves other aspects of the problem, these numerically oriented details will not be
repeated here.

To derive Eqs. (2.1)-(2.6), we first combine the equation of continuity with momen-
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tum balance equations in linear elasticity theory [20, 22] to obtain

ρ
∂2u1

∂t2
=

∂S11

∂r
+

1

r
(S11 − S22) +

1

r

∂S21

∂φ
, (2.7)

ρ
∂2u2

∂t2
=

1

r
(S12 + S21) +

∂S12

∂r
+

1

r

∂S22

∂φ
, (2.8)

where {Sij} is the internal stress tensor. Next we consider Fung’s Quasilinear Vis-
coelasticity (QLV) constitutive equation theory [19] for the internal stresses in biologi-
cal tissue given by

Sij(t) = ∑
kl

∫ t

−∞
Gijkl(t − τ)

∂S
(e)
kl (Ē(τ))

∂τ
dτ, (2.9)

where Ē is the Green’s strain tensor, Gijkl is the Fung reduced (Gijkl(0)=0) relaxation
or kernel function. The Green’s strain tensor Ē(τ)={Eij(τ)} is symmetric and is com-
monly used when materials undergo small deformations, while the elastic stress ten-

sor S(e) = {S
(e)
ij } describes the material’s response to a sudden application of a step

function [19].
In [2] the authors substantially decreased computational time (a highly desirable

goal in inverse problem applications) by approximating Fung’s one dimensional quasi-
linear VE model

σ(t) =
∫ t

−∞
G(t − τ)

∂S(e)(Ē(τ))

∂τ
dτ, (2.10)

using internal variables ǫ̃k (in σ(t)=∑
K
k=1 ǫ̃k(t)). To employ the internal variable ap-

proach the authors assumed that the material properties can be well approximated
by those of a material with a finite number of relaxation times (instead of a continu-
ous spectrum of relaxation times as Fung proposed). The assumption is equivalent to
approximating G in (2.10) by a finite sum of exponential functions:

G(t) =
K

∑
k=1

Cke−t/τk .

The main advantage to using internal variables in (2.9) with the equations of motion in
the one-dimensional case is that the dynamical system can be integrated much more
quickly without a significant loss of accuracy [2].

Although it might be obvious why such an approximation would be computation-
ally beneficial, it is not as obvious what the K internal variables {ǫ̃k} physically repre-
sent. We approximate Fung’s kernel resulting in a family of internal variable strains. The
underlying assumption involves treating the molecules within the biological tissue as
elastic on a microscopic scale. Thus, the stress response σij of a particular molecule
within the material (on a microscopic scale) takes the form

σij = ∑
kl

Gijklekl , (2.11)
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where ekl is the strain applied to the molecule of interest. If Gijkl = Gjikl and Gijkl =
Gijlk then the tensor Gijkl can be written [20]

Gijkl(t) = λ(t)δijδkl + µ(t)
(

δikδjl + δilδjk

)

, (2.12)

where λ and µ are generalized Lamé parameters. The constitutive law then takes the
form

Sij(t) = ∑
kl

∫ t

−∞

{

λ(t − τ)δijδkl + µ(t − τ)(δikδjl + δilδjk

)

}
∂S

(e)
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∫ t
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)

δij

+ 2µ(t − τ)
∂S

(e)
ij (Ē(τ))

∂τ

}

dτ. (2.13)

Depending on the form assumed for λ and µ, the above formulation assumes that all
molecules react in the same manner at the microscopic level. Previous work in one
dimension [12] suggests that multiple internal variables might be used to represent var-
ious subclasses of molecules in a particular material. For instance, if a tissue sample is
comprised primarily of three different (elastic) types of molecules, then there would
be K = 3 internal variables each identified by a particular relaxation time τk = 1/νk.
As shown in [12], a finite number of such subclasses of molecules can often be success-
fully used as a good approximation to a continuum of subclasses of molecules (i.e., the
Fung approach): an identical approach was employed in the two dimensional case [23]
with success. We remark that the Fung QLV approach as developed in [19] is essen-
tially a one-dimensional theory. An extension to higher dimensional dynamic models
for use in inverse problems does not appear to be computationally feasible.

The approach we use here can be utilized in higher dimensions. To do so, we will
approximate the parameters λ(t) and µ(t) in (2.12) by series of exponentials, such that

λ(t) ≈ ∑
k

Cλk
e−νλk

t, µ(t) ≈ ∑
k

Cµk
e−νµk

t. (2.14)

If these exponential parameters are used in (2.13) then the stress tensor Sij can be
approximated as

Sij(t) ≈ ∑
k

{

ǫλk
(t)δij + ǫ

ij
µk

(t)
}

, (2.15)

where
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dτ, (2.16)

ǫ
ij
µk

(t) =
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∂S

(e)
ij (Ē(τ))
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]

dτ, (2.17)
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are internal variables with ǫλk
(0)=0 and ǫ

ij
µk

(0)=0. Note that in this formulation we
have assumed zero motion prior to t = 0 and hence the form of Eqs. (2.16) and (2.17)
can be written (using the variation of parameters formula) as solutions to linear dif-
ferential equations

∂ǫλk

∂t
= −νλk

ǫλk
+ Cλk

∂

∂t

(

S
(e)
11 (Ē(t)) + S

(e)
22 (Ē(t))

)

, ǫλk
(0) = 0, (2.18)

∂ǫ
ij
µk

∂t
= −νµk

ǫ
ij
µk

+ 2Cµk

∂

∂t
(S

(e)
ij (Ē(t))), ǫ

ij
µk

(0) = 0, (2.19)

which when combined with (2.7), (2.8) and (2.15), yields (2.1)–(2.6).
We remark that models employing (2.14) and (2.15) are special cases of models

with a continuum of relaxation times τ=1/ν as formulated in [12,13]. Specifically, we
define generalized constitutive laws embodying Lamé parameters

λ(t) =
∫

Λ
e−νλtdP1(λ), µ(t) =

∫

M
e−νµtdP2(µ), (2.20)

with probability measures P1(λ), P2(µ), defined respectively on the bounded con-
tinuum sets Λ, M, along with the corresponding continuum version of (2.15) given
by

Sij(t) = δij

∫

Λ
ǫλ(t)dP1(λ) +

∫

M
ǫ

ij
µ(t)dP2(µ), (2.21)

where

ǫλ(t) =
∫ t

−∞

[

Cλe−νλ(t−τ) ∂

∂τ

(

S
(e)
11 (Ē(τ)) + S

(e)
22 (Ē(τ))

) ]

dτ, (2.22)

ǫ
ij
µ(t) =

∫ t

−∞

[

2Cµe−νµ(t−τ)
∂S

(e)
ij (Ē(τ))

∂τ

]

dτ. (2.23)

These constitutive laws have a continuum of relaxation parameters and moreover, it
is shown in [3] that the set of finite rational convex combinations of Dirac measures ∆a

(with atom at a) of the form

P1(λ) = ∑
k

ak∆λk
(λ), P2(µ) = ∑

k

bk∆µk
(µ), (2.24)

are dense in the Prohorov metric [4] in the set of all probability measures on Λ and M,
respectively. This can be used to argue that (2.14)-(2.17) do indeed provide finite spec-
trum constitutive law approximations to the continuum spectrum constitutive laws.

As noted above, Fung’s kernel as developed in [19] embodies a continuous spec-
trum of relaxation times in the constitutive law (2.9). With his kernel Fung was able to
significantly enhance the mathematical description of the relationship between stress
and strain in biological tissue. Unfortunately, if the constitutive law (2.9) with Fung’s
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reduced relaxation function is used in a dynamical system (such as (2.7)–(2.8)), the
system is not computationally tractable for use in inverse problems (this is also true
for our alternative continuum relaxation spectrum model defined using (2.20)). One
reason for this is that Fung’s kernel is formulated with a double integral and so if, for
example, a finite difference scheme is used to integrate the equations of motion with
the kernel, then at every step the scheme must integrate multiple double integrals -
a very time consuming task. To remedy this situation, we approximated a Fung type
constitutive law (or more precisely the alternative constitutive law defined via (2.20))
using a finite number of internal variables. These internal variables lead to a form
of the equations of motion and dynamical system that is not only computationally
tractable but also whose solutions closely approximate solutions of systems utilizing
Fung’s kernel or the generalized law involving (2.20) (at least in the one-dimensional
setting–for details see [2]). We use this model to demonstrate inverse problem con-
cepts and capabilities with simulated noisy acceleration data.

3 Inverse problems

In inverse problems involving the internal strain variable models formulated in the
previous section, there are two distinct types of problems that one might consider:
ones involving estimation of material parameters such as νλk

, νµk
, Cλk

, and Cµk
, and

ones involving estimation of geometric parameters such as the occlusion parameters
q1 and q2. Moreover, in such problems there are two primary types of noisy data
most frequently encountered: measurements with absolute (and constant variance)
error and measurements with relative error (and hence nonconstant model-dependent
variance).

To treat such data one usually employs either ordinary least squares (OLS) or gen-
eralized least squares (GLS) formulations corresponding to the statistical model as-
sumed. We recall [5] that in any inverse problem formulation one requires both a
mathematical model (such as (2.1)-(2.6)) and a statistical model as described in [5]). In
this paper we will investigate two popular statistical models and the corresponding
estimators, the ordinary least squares (OLS) estimators θOLS defined by

θOLS = arg min
~θ∈Θ

n

∑
j=1

(

~Yj − ~f
(

tj,~θ
)

)T
V−1

0

(

~Yj − ~f
(

tj,~θ
)

)

, (3.1)

and the generalized least squares (GLS) estimators θGLS defined here as the limit as
k → ∞ of the sequence of solutions to minimizing problems

θ
(k+1)
GLS = arg min

~θ∈Θ

n

∑
j=1

f−2(tj, θ
(k)
GLS)

(

Yj − f
(

tj,~θ
)

)2
, (3.2)

to estimate various parameters in an ISV model of the form (2.1)-(2.6) for waves in
VE tissue. (The usual definition involves normal equations as discussed in [5, 17].
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Convergence discussions for this alternative iterative formulation can also be found

in [5, 17].) The weighting terms V0 and w
(k)
j = f−2(tj, θ

(k)
GLS) are related to the assumed

statistical model. For instance, if the data arises from measurements described by a
constant variance (CV) statistical model (absolute error)

~Yj = ~f (tj,~θ0) + ~Ej, (3.3)

where ~f ∈Rm, then

V0 = var(~Ej) = diag(σ2
0,1, . . . , σ2

0,m), (3.4)

for j = 1, . . . , n, where the σ2
0,j are scalar variances corresponding to the error in the co-

ordinates of the model output ~f . In this case the OLS formulation is appropriate. How-
ever, if the data is generated from the nonconstant variance (NCV) statistical model
such as one with relative measurement error

Yj = f (tj,~θ0)
(

1 + Ej

)

, (3.5)

then
var(Yj) = σ2

0 f 2(tj,~θ0) = σ2
0 (wj(tj,~θ0))

−1,

so that a GLS formulation is most appropriate. (Here f is any one of the scalar sensor
accelerations ∂2u1/∂t2.) We can obtain an estimate θ̂OLS (or θ̂GLS) of the random variable
θOLS (or θGLS) if there exists a realization, say {~yj}

n
j=1 (or {yj}

n
j=1), of the random variable

{~Yj}
n
j=1 (or {Yj}

n
j=1). Of course, one rarely knows in advance the form of the error struc-

ture present in the data. Thus we shall investigate both OLS and GLS formulations
to demonstrate their feasibility if the correct statistical model for the data is chosen.
Moreover, we shall present and illustrate (with examples involving the geometric pa-
rameters q1, q2) post inverse problem methodology for ascertaining whether one has
made a reasonable choice for the statistical model. From our discussions, it will be
clear that the mathematical model is dictated by the underlying dynamics in a prob-
lem and the statistical model should be determined by the measurement process that
produces the data. We remark that in the case of multiple sensors considered here, we
have assumed error properties of all the sensors are the same (i.e., all have constant
or all have nonconstant variance noise). If one simultaneously uses several different
types of sensors with different error properties, one would have to use a hybrid of the
methods given here.

Because there are difficulties with the inverse problems for the two-dimensional
ISV model, we will address the inverse problem in this setting. We note that the model
solutions are smooth in the material parameters νλk

, Cλk
, etc., while they are not dif-

ferentiable with respect to the geometric parameters such as q1, q2, when formulated
as depicted in Fig. 2. Therefore, we will first investigate results from the OLS and GLS
methods and the corresponding standard errors from the more well-behaved material
parameters. To illustrate concepts throughout we choose K = 2 internal variables in
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our mathematical models. This is partially motivated by the fact that in several appli-
cations [2,12,13,23] with experimental data we have found that two internal variables
are adequate to obtain decent fits to the data. Thus we consider the model with am-
plitude coefficients

~θ =









Cλ1

Cλ2

Cµ1

Cµ2









.

To illustrate ideas the following procedure will be followed:
1. Because we wish to demonstrate the methodology using “data” with known

statistical properties, we first solve (2.1)-(2.6) for the compression wave acceleration
model responses

fi(t,~θ) =
∂2u1

∂t2
(t, R, φi,~θ),

at the chest wall boundary r = R and some sensor locations (R, φi) (we assume there

are sensors located at m points (R, φi)) with known~θ = ~θ0 defined by

~θ0 =











C0
λ1

C0
λ2

C0
µ1

C0
µ2











=









1187.43236
1432.64603
386.639704
3456.74921









.

(We remark that we could have equally well used shear wave acceleration

fi(t,~θ) =
∂2u2

∂t2
(t, R, φi,~θ),

in our investigations throughout.)
2. Then varying levels of normally distributed error (measurement noise) will be

added to these solutions in two ways: with constant variance (CV) and nonconstant
variance (NCV). That is, we construct noisy data in the constant variance case by

~Yj = ~f (tj,~θ0) +
α

100
~ηj,

with ~ηj ∼ N (0, V0) and in the nonconstant variance case by

Yj = f (tj,~θ0)
(

1 +
α

100
ηj

)

,

where ηj ∼ N (0, σ2
0 ) and f is the acceleration at a given sensor. The parameter α

allows us to adjust the level of noise introduced in the statistical models.
3. Once noise is added to the solutions, the resulting simulated “noisy data” is

used in inverse problem algorithms (for details see [25]) to obtain an estimate θ̂ using
a numerical implementation of the OLS and GLS formulations for α = 0, 1, . . . , 10.
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(Depending on the noise properties in a specific class of sensors, one can easily test
the estimation procedures for data with noise levels exceeding 10%.)

Therefore, four cases will be considered: the OLS estimate obtained using data
generated with constant variance (the correct procedure for the data), the OLS esti-
mate obtained using data generated with nonconstant variance (an incorrect proce-
dure for the data), the GLS estimate obtained using data generated with constant vari-
ance (again an incorrect procedure for the data) and the GLS estimate obtained using
data generated with nonconstant variance (the correct procedure for the data).

Initially, constant variance was added to the scalar model

fi(tj,~θ0) =
∂2u1

∂t2
(t, R, φi,~θ),

at the sensor location (R, φi)

Yi
j = fi(tj,~θ0) +

α

100
ηj, (3.6)

where var(ηj) = σ2
0 for α = 0, . . . , 10. However, data from some sensors were swamped

by the level of noise introduced. This situation arose from the fact that different sen-
sors had varying scales of acceleration data (see Fig. 3). The noise was generated in
Fig. 3 by setting α = 3 and ηj ∼ N (0, 1). It is obvious that the 1st sensor’s reading has

not been significantly affected by the noise, but the 5th sensor’s data has been totally
corrupted.

So, instead of implementing a scalar model in the constant variance regime, we
will treat the observations in the constant variance case by

~Yj = ~f (tj,~θ0) +
α

100
~ηj, (3.7)

where
var(~ηj) = V0 = diag(σ2

0,1, . . . , σ2
0,m)

and the ith element of the vector ~Yj represents the acceleration at the ith sensor on
the chest wall. In this regime we can add sensor-specific constant variance error to

each element in the array ~f (tj,~θ0), and thus avoid totally corrupting a given sensor’s
data. Because nonconstant variance depends upon the model (and hence its scale)
adding nonconstant variance will not swamp any sensor’s readings. In other words,
for nonconstant variance data, we use a simple scalar error ηj to formulate the model
and data at each sensor location (R, φi) as

Yi
j = fi(tj,~θ0)

(

1 +
α

100
ηj

)

,

where

fi(t,~θ) =
∂2u1

∂t2
(t, R, φi,~θ).
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Figure 3: Comparison of the scale between the readings of two sensors.

3.1 Asymptotic theories for error analysis

To follow the procedure outlined in [25], optimized estimates θ̂opt and the correspond-
ing variances for each case were obtained and standard errors computed. The stan-
dard errors are computed using the variance of an estimate’s asymptotic distribution.
The asymptotic distribution (as sample size n→∞) for both methods is a normal (N ) dis-
tribution and the form of the variance, and hence the standard error, depends upon
the error generating term in the statistical model [5, 17, 18, 26]. If the statistical model
has constant variance (CV) as in

~Yj = ~f (tj,~θ0) + ~Ej, Var(~Yj) = V0,

and the OLS method is used to estimate~θ0, then under a number assumptions [5,26] on
the model and the measurement process, the asymptotic distribution of the estimator
θOLS is given by (see [5] for a detailed discussion)

θOLS ∼ N (~θ0, Σn
0), (3.8)

where

Σn
0 =

( n

∑
j=1

DT
j (~θ0)V−1

0 Dj(~θ0)
)−1

, (3.9)
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and the m × p matrix Dj(~θ) = Dn
j (

~θ) is given by

















∂ f1(tj,~θ)

∂θ1

∂ f1(tj,~θ)

∂θ2
· · ·

∂ f1(tj,~θ)

∂θp
...

...
...

∂ fm(tj,~θ)

∂θ1

∂ fm(tj,~θ)

∂θ2
· · ·

∂ fm(tj,~θ)

∂θp

















.

Because the true value of the parameters~θ0 and V0 are unknown, their estimates θ̂ and
V̂ are used to approximate the asymptotic properties of the least squares estimator
θOLS:

θOLS ∼ Np(~θ0, Σn
0) ≈ Np(θ̂, Σ̂n), (3.10)

where

Σn
0 ≈ Σ̂n =

( n

∑
j=1

DT
j (θ̂)V̂−1Dj(θ̂)

)−1
. (3.11)

The standard errors of the parameters can then be calculated by taking the square root
of the diagonal elements of (3.11).

On the other hand, if the statistical model has nonconstant variance (NCV) and
has the form (here f is the scalar acceleration at one of the sensors)

Yj = f (tj,~θ0) + f (tj,~θ0) Ej, V(Yj) = σ2
0 f 2(tj,~θ0),

and the GLS method is used to estimate ~θ0, then the distribution of the θGLS estimator
can be approximated as

θGLS ∼ Np(~θ0, Σn
0) ≈ Np

(

~θ0, σ2
0

(

χnT(~θ0)W−1(~θ0)χn(~θ0)
)−1

)

, (3.12)

where the sensitivity matrix χ(~θ) = χn(~θ) = {χn
jk} is defined as

χn
j k(~θ) =

∂ f (tj,~θ)

∂θk
, j = 1, . . . , n, k = 1, . . . , p,

and

Σn
0 ≡ σ2

0 [nΩGLS
0 ]−1, (3.13)

with

ΩGLS
0 = lim

n→∞

1

n
χnT(~θ0)W−1(~θ0)χn(~θ0),
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(existence of the limit is one of the underlying assumptions of the theory) and

W(~θ) = diag
(

f 2(t1,~θ), . . . , f 2(tn,~θ)
)

.

Note that since ~θ0 and σ2
0 are unknown, the estimates θ̂ = θ̂GLS, σ̂2 = σ̂2

GLS will be used
in (3.12) to calculate

Σn
0 ≈ Σ̂n = σ̂2

(

χnT(θ̂)W−1(θ̂)χn(θ̂)
)−1

. (3.14)

The standard errors of the parameters can then be calculated by taking the square root
of the diagonal elements of (3.14). Therefore, in order to obtain the correct standard
errors, the correct form of the error generating term and estimation procedure must
be specified. That is, if a data set has constant variance and the OLS method is used

to estimate ~θ0 then the correct standard error formula is given by (3.11); similarly, if a

data set has nonconstant variance and the GLS method is used to estimate~θ0 then the
correct standard error formula is given by (3.14). Thus, if the error generating term in
the statistical model is not correctly specified any conclusions regarding the standard
error are incorrect!

Although it is imperative that the error structure in the statistical model be spec-
ified correctly, we point out that one can also derive asymptotic statistics of an OLS

estimate obtained using NCV generated data. If Var(Yj) = σ2
0 f 2(tj,~θ0) and the OLS

method is used to estimate~θ0 [21], then as n→∞

θOLS ∼ Np

(

~θ0, σ2
0

(

Fn(~θ0)
)−1

χnT(~θ0)W(~θ0)χn(~θ0)
(

Fn(~θ0)
)−1

)

, (3.15)

where Fn(~θ0) = χnT(~θ0)χn(~θ0) and χn(~θ0), W−1(~θ0) have the same definitions as ear-
lier. The underlying conditions necessary for (3.15) to hold are similar to the condi-
tions mentioned earlier - see [25] for details. Although the OLS procedure is easy to
implement and possesses different asymptotic statistics for CV and NCV data sets,
the OLS estimator is not always the best estimator for a given data set. The reason
we assume a data set has constant variance when OLS is employed is because of the
asymptotic relative efficiency (ARE) of (3.14) with respect to (3.15). The ARE provides
a means of determining which estimate converges to its asymptotic variance quicker,
and it can be shown that θ̂GLS is more efficient than θ̂OLS when the data has nonconstant
variance [21]. Therefore, we tacitly assume a data set has constant variance when OLS

is used to estimate~θ0, and would then use (3.11) to calculate the standard errors of the
estimate from the OLS procedure.

A further issue to be resolved is the calculation of the sensitivity matrix χn(~θ).
Because of the complexity of the VE wave model, the sensitivity matrix cannot be
calculated by analytical techniques and sensitivity equations methods (see [5,10]) pose

significant computational challenges. Instead, we will approximate χn(~θ) using the
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first order approximation

χn
jk(~θ) ≈

f (tj,~θ +~hk)− f (tj,~θ)

hk
, (3.16)

where ~hk is the vector with all components zero except for the scalar hk in the kth

component. However, choosing an appropriate value of hk is essential to obtaining
an accurate approximation. As explained in some detail in [25], one can, with careful
but tedious calculations, study the effects of step size hk on the accuracy in computing

standard errors using (3.16). One can then choose an~hk that provides reasonably stable

(with respect to~hk) calculated values of the standard error. Such investigations were

used to choose~hk in the results presented in Tables 1, 2, 3 and 4.

3.2 Computational results

We next compare the estimates obtained using the OLS and GLS methods on the CV
data set in Tables 1 and 2 and Fig. 4. Although one might suspect the OLS estimate
to be more accurate than the GLS estimate on the CV data set, it appears the estimates

from both methods do equally well in estimating ~θ0. This observation is bolstered by
comparing the graphs of Fig. 4 with the top graphs of Fig. 3. The main difference
between the estimates lies in their respective standard errors. The standard error of
the GLS estimate, which is computed using invalid formulas, is much more optimistic
than that of the OLS estimate.
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Figure 4: Comparison of estimates with CV data for 1st sensor with α = 3.

Considering the computational results for the CV data set (Tables 1 and 2 and
Fig. 4), we see that the GLS estimate is as accurate as the OLS estimate. The main
difference between the results of the two methods is the corresponding standard error;
the standard errors of the GLS estimate are much more appealing than the standard
errors of the OLS estimate. However, the fact that the data has constant variance
means that it would be incorrect (indeed meaningless) to report the GLS results on
this data set, because the expressions for standard errors corresponding to the GLS
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Figure 5: Comparison for estimates with NCV data for 1st sensor with α = 3.

method are derived under the assumption that the data set has nonconstant variance
and hence these expressions have no validity when used with results obtained using
CV data.

We also compared the estimates obtained using the OLS and GLS methods on
the NCV data set (Tables 3 and 4 and Fig. 5). Although one might suspect the GLS
estimate to be more accurate than the OLS estimate on the nonconstant variance data
set, it (again) appears the estimates from both methods do equally well in estimating
~θ0. This observation is again bolstered by comparing the graphs in Fig. 5 with the
top graphs of Fig. 3. The main difference between the estimates (again) lies in their
respective standard errors. The standard errors of the GLS estimate are still more
optimistic than that of the OLS estimate, but now the GLS results are correct because
the data set has nonconstant variance. Use of the OLS based standard errors would
give incorrect estimates for the uncertainty in parameter estimates.

An interesting observation from the simulations reported in Tables 1-4 is that the
standard errors for the GLS estimate are more optimistic than that of the OLS esti-
mate. Before one makes any generalizations regarding which estimates have more

Table 1: Estimation with OLS procedure and CV data with α = 3.

~θinit
~θ0 θ̂CV

OLS Standard Error

1100.000 1187.432 1155.660 0.22743310
1400.000 1432.646 1455.667 0.23246094
350.000 386.640 390.278 0.16176841

3400.000 3456.749 3436.025 0.21157166

Table 2: Estimation with GLS procedure and CV data with α = 3.

~θinit
~θ0 θ̂CV

GLS Standard Error

1100.000 1187.432 1162.446 0.04007688
1400.000 1432.646 1462.446 0.04062001
350.000 386.640 384.670 0.03158570

3400.000 3456.749 3446.752 0.03797396
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Table 3: Estimation with OLS procedure NCV data with α = 3.

~θinit
~θ0 θ̂NCV

OLS Standard Error

1100.000 1187.432 1161.867 0.07329180
1400.000 1432.646 1461.869 0.07170462
350.000 386.640 384.895 0.05162474
3400.000 3456.749 3474.578 0.07734921

Table 4: Estimation with GLS procedure and NCV data with α = 3.

~θinit
~θ0 θ̂NCV

GLS Standard Error

1100.000 1187.432 1163.501 0.01863883
1400.000 1432.646 1463.501 0.01899244
350.000 386.640 386.557 0.01474706
3400.000 3456.749 3448.968 0.01774607

Table 5: Standard errors obtained with different estimates θ̂ (α = 3).

SE(θ̂CV
OLS) SE(θ̂NCV

OLS ) SE(θ̂CV
GLS) SE(θ̂NCV

GLS )

.2356770 .2618172 .2682730 .0121120

.2267969 .2700248 .2686650 .0119206

.1619844 .8086739 .1594453 .0120431

.2336860 .5258509 .2627922 .0124671

optimistic standard errors, recall that the estimates θ̂OLS and θ̂GLS are realizations of
the random variables θOLS and θGLS, and also that the standard errors depend upon
the value of the estimate θ̂OLS and θ̂GLS. Hence, two realizations of θOLS (or θGLS) will
in general produce two different estimates θ̂OLS (θ̂GLS), which in turn will generate two
different standard errors. For instance, Table 5 displays standard errors for estimates
obtained from different realizations {yj} of the observation process {Yj} than that of
Tables 1 - 4. As expected, the standard errors for the estimates are different than those
from the first simulation. What is most striking, however, is that the GLS estimate is
no longer always more optimistic than the OLS estimate. Thus, when possible, con-
clusions regarding the accuracy of an estimator should be based on a large number of
realizations (i.e., multiple longitudinal data sets if available) of that estimator - a pro-
cess that is described in detail in [25]. Nonetheless, the computations with simulated
CV and NCV “data” sets discussed in this section suggest the feasibility of accurate
estimation of material parameters in models such as (2.1)-(2.6) with data containing
either absolute or relative error as long as the correct inverse problem formulations
are employed.

4 Estimating occlusion parameters q1 and q2

Now that we have demonstrated the effectiveness of the OLS and GLS estimators
in estimating the parameters Cλk

and Cµk
with noisy data, we turn our attention to
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Table 6: OLS estimation in 2D discontinuous model and data with no noise.

IP OP TP RE
π
4 = 0.785398 0.790306 0.785398 0.6%

3π
4 = 2.356194 2.422462 2.356194 2.81%
π
3 = 1.047197 0.929387 0.785398 18.3%
2π
3 =2.094395 2.336559 2.356194 .833%

π
6 = 0.523598 0.523598 0.785398 33.3%
5π
6 =2.617993 2.617933 2.356194 11.1%

π
2 = 1.570796 0.711527 0.785398 9.4%
π
2 = 1.570796 2.36885 2.356194 .53%

IP-Initial parameters; OP-Optimal parameters;
TP-true parameters; RE-Relative error.

estimating the geometric occlusion parameters q1 and q2. We initially deferred esti-
mating q1 and q2 because the model is discontinuous with respect to these parameters
if formulated directly based on the discontinuous geometry of Fig. 2; this makes the
estimation procedure somewhat challenging. In fact, previous efforts [23] encoun-
tered difficulties estimating the occlusion geometric parameters even when there was
no noise introduced into the measurement data. A sampling of the results from that
work is summarized in Table 6 where Matlab’s fminsearch was used to minimize the
OLS estimating equation (3.3). Difficulties arose even though fminsearch is a direct
search method not requiring derivatives. Of particular concern are cases where the op-
timization routine simply returns the initial guess, such as when q0 = [π/6, 5π/6] =
[.523598, 2.617993].

To attempt to obtain better results we reformulated the model in terms of a smoother
(continuous) geometry with respect to q1 and q2 and utilized the iteratively re-weighted
least squares (IRWLS) algorithm for GLS estimators. IRWLS is an iterative approach to
calculating the GLS estimate, but instead of solving the defining normal equations for
GLS estimators (see [5, 17]), one iteratively solves

θ
(k+1)
GLS = arg min

~θ∈Θ

n

∑
j=1

w
(k)
j

(

Yj − f
(

tj,~θ
)

)2
, (4.1)

where w
(k)
j = f−2(tj, θ

(k)
GLS) [5, 17]. In addition to providing a potential improvement in

parameter estimation, one could argue that a continuous occlusion geometry is closer
to the physical characteristics of an arterial stenosis. To implement the continuous
occlusion geometry, the signal from the input will be impeded, at a linear rate, near q1

and q2 (see Fig. 6). That is, the impulse function along the arterial wall will be defined
as f11(t, φ, z) = r(φ)w1(t, R1, φ, z), where

r(φ) =















0, φ ∈ (q1, q2),
1
δ (q1 − φ) , φ ∈ (q1 − δ, q1),
1
δ (φ − q2) , φ ∈ (q2, q2 + δ),
1, otherwise,

(4.2)
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Table 7: OLS estimation results, 2D continuous model, no noise data.

IP OP ~θ0 RE
π
4 = .785398 .78540 .78540 0%

3π
4 = 2.356194 2.3562 2.3562 0%
π
3 = 1.047197 .78536 .78540 .00510%
2π
3 =2.094395 2.3562 2.3562 0%
π
6 = .523598 .78540 .78540 0%

5π
6 = 2.617993 2.3562 2.3562 0%
π
2 = 1.570796 .78538 .78540 .00255%
π
2 = 1.570796 2.3562 2.3562 0%

denotes the ramp function and δ indicates the distance from q1 and q2 at which the im-
pulse function signal is no longer impeded. Matlab’s fminsearch was used in both the
OLS and GLS estimating procedures. Gradient-based, trust region optimization meth-
ods, such as lsqnonlin, were attempted, but the errors in the estimates were significant
while the computation time remained about the same as that found using fminsearch.

The OLS and GLS results obtained from using fminsearch (with the continuous
model) are given in Tables 7 and 8 respectively. These results are an improvement
from the estimates obtained for the discontinuous model with fminsearch. In particu-
lar, when the exact solution is the initial value in the optimization routine, we expect
the routine to return the exact solution when the forward-generated data has no noise.
That did not happen with the discontinuous model, but does occur with the continu-
ous model. Another encouraging finding when we used the continuous model with
fminsearch is that the optimal value is not the same as the initial value for any of the
optimizations. This situation arose with the discontinuous model (see the third simu-
lation in Table 6) and is one of the more troubling aspects of the discontinuous model.
When the continuous model is optimized using fminsearch (Tables 7 and 8), the esti-
mates for both q1 and q2 for all the inverse problem results using data generated with
no noise are excellent. To permit ready comparison with the results of [23] and Ta-
ble 6, we list in Tables 7 and 8 the relative error in the estimate as compared to the
true parameter value. Thus, we will use the continuous model with the fminsearch

����
����
����

����
����
����

q1 q2

Acceleration Sensors

Rigid Occlusion

Figure 6: Altered occlusion allows model
to depend continuously on q1, q2.
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Table 8: GLS estimation results, 2D continuous model, no noise data.

IP OP ~θ0 RE
π
4 = 0.785398 0.78540 0.78540 0%

3π
4 = 2.356194 2.3562 2.3562 0%
π
3 = 1.047197 0.78540 0.78540 0%
2π
3 =2.094395 2.3562 2.3562 0%

π
6 = 0.523598 0.78540 0.78540 0%

5π
6 = 2.617993 2.3562 2.3562 0%
π
2 = 1.570796 0.78540 0.78540 0%
π
2 = 1.570796 2.3562 2.3562 0%

Table 9: OLS estimation in 2D continuous model with CV error.

α IP OP ~θ0 RE SE(e-05)

2 π
2 =1.570796 .78539 .78540 0% 2.3728
π
2 =1.570796 2.3562 2.3562 0% 1.8217

4 π
2 =1.570796 .78539 .78540 .00127% 5.0233
π
2 =1.570796 2.3562 2.3562 0% 3.7085

8 π
2 =1.570796 .78555 .78540 .0191% 9.8035
π
2 =1.570796 2.3562 2.3562 0% 7.1959

10 π
2 =1.570796 .78534 .78540 .00764% 12.347
π
2 =1.570796 2.3562 2.3562 0% 9.0529

Table 10: OLS estimation in 2D continuous model with NCV error.

α IP OP ~θ0 RE SE(e-04)

2 π
2 =1.570796 .78541 .78540 .00127% 3.7059
π
2 =1.570796 2.3562 2.3562 0% 3.6991

4 π
2 =1.570796 .78490 .78540 .0637% 7.3616
π
2 =1.570796 2.3557 2.3562 .0212% 7.4441

8 π
2 =1.570796 .78501 .78540 .0450% 15.360
π
2 =1.570796 2.3560 2.3562 .00849% 15.454

10 π
2 =1.570796 .78435 .78540 .13% 18.835
π
2 =1.570796 2.3569 2.3562 .0297% 18.889

optimization routine to approximate the location of the occlusion when the data has
been corrupted by noise varying between 2% and 10%. We also used initial estimates

q1 = q2 in ~θinit in obtaining the results presented in Tables 9, 10, 11 and 12. This initial-
ization is equivalent to assuming no blockages are present in the artery.

The time it took to compute estimates for q1 and q2 was between 800-900 seconds
and 1000-2500 seconds, respectively, for the OLS and GLS methods using fminsearch
We also carried out these same computations using lsqnonlin and the time it took to
compute q1 and q2 in this case was between 800-900 seconds each for the OLS and GLS
methods .
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Table 11: GLS estimation in 2D continuous model with CV error.

α IP OP ~θ0 RE SE(e-04)

2 π
2 =1.570796 .786541 .78540 .15% 2.055343
π
2 =1.570796 2.353690 2.3562 .11% 2.054282

4 π
2 =1.570796 .784193 .78540 .15% 3.899241
π
2 =1.570796 2.356844 2.3562 .028% 3.897943

8 π
2 =1.570796 .785371 .78540 .0035% 7.816567
π
2 =1.570796 2.356133 2.3562 .0026% 7.813815

10 π
2 =1.570796 .785114 .78540 .036% 9.719429
π
2 =1.570796 2.356181 2.3562 .00058% 9.715764

Table 12: GLS estimation in 2D continuous model with NCV error.

α IP OP ~θ0 RE SE(e-02)

2 π
2 =1.570796 .785422 .78540 .0031% 2.071356
π
2 =1.570796 2.356179 2.3562 .00064% 2.073407

4 π
2 =1.570796 .785401 .78540 .00033% 4.038974
π
2 =1.570796 2.356166 2.3562 .0012% 4.041175

8 π
2 =1.570796 .785321 .78540 .0099% 8.153026
π
2 =1.570796 2.356328 2.3562 .0057% 8.157475

10 π
2 =1.570796 .785165 .78540 .03% 10.25934
π
2 =1.570796 2.356243 2.3562 .0021% 10.24360

Just as in the previous section, one needs to address the approximation of the sen-
sitivity matrix χn. Again, a forward difference scheme was used to approximate χn,

and an appropriate step size~hk was determined; details can be found in [25]. The re-
sults in Tables 9 and 12 suggest that even in the presence of 10% noise in either the CV
or NCV data cases, one can readily estimate the geometric occlusion parameters with
reasonable accuracy.

On the other hand, comparison of Tables 9 and 10 and Tables 11 and 12 suggest
that one cannot, in general, determine whether the correct statistical model (and cor-
responding correct method OLS or GLS) has been assumed by simply looking at the
estimates obtained or comparing the standard errors when the true parameter values
are not known. Thus, in dealing with experimental data and unknown parameters in
a model, one needs post analysis techniques to ascertain whether the correct statistical
model and correct asymptotic expressions for the standard error have been assumed.
This will be the focus of our discussions on residual plots.

5 Residual plots

One can carry out simulation studies with a proposed mathematical model to assist
in understanding the behavior of the model in inverse problems with different types
of data with respect to mis-specification of the statistical model. For example, we
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consider a statistical model with constant variance noise Ej = αηj/100 in

Yj = f (tj,~θ0) +
α

100
ηj, Var(Yj) =

α2

10000
σ2

0 ,

and nonconstant variance noise f (tj,~θ0)Ej in

Yj = f (tj,~θ0)
(

1 +
α

100
ηj

)

, Var(Yj) =
α2

10000
σ2

0 f 2(tj,~θ0).

We can obtain a data set by considering a realization {yj}
n
j=1 of the random process

{Yj}
n
j=1 through a realization of {ηj}

n
j=1 and then calculate an estimate θ̂ of~θ0 using the

OLS or GLS procedure. Here f = fi is the model response (i.e., acceleration ∂2u1/∂t2)
at one of the sensors.

We can then use the residuals rj = yj − f (tj, θ̂) to test whether the data set is
independent and identically distributed (i.i.d.) and possesses the assumed variance
structure. If a data set has constant variance error then

Yj = f (tj,~θ0) + Ej or Ej = Yj − f (tj,~θ0).

Because it is assumed that the error Ej is i.i.d., a plot of the residuals rj = yj − f (tj, θ̂)
vs. tj should be random. Also, the error in the constant variance case does not depend

on f (tj, θ0), and so a plot of the residuals rj = yj − f (tj, θ̂) vs. f (tj, θ̂) should also
be random. Therefore, if the error has constant variance then plots of the residuals
rj = yj − f (tj, θ̂) against tj and against f (tj, θ̂) should both be random. If not, then the
independent constant variance assumption is suspect.

We turn next to questions of what to expect if this residual test is applied to a data
set that has nonconstant variance generated error. That is, we wish to investigate what
happens if the data are incorrectly assumed to have constant variance error when
in fact they have nonconstant variance error. Because in the nonconstant variance
example,

Rj = Yj − f (tj,~θ0) = f (tj,~θ0) Ej,

depends upon the deterministic model f (tj,~θ0), we should expect that a plot of the

residuals rj = yj − f (tj, θ̂) vs. tj should exhibit some type of pattern. Also, the resid-

uals actually depend on f (tj, θ̂) in the nonconstant variance case, and so as f (tj, θ̂)

increases the variation of the residuals rj = yj − f (tj, θ̂) should increase as well. Thus

rj = yj − f (tj, θ̂) vs. f (tj, θ̂) should have a fan shape in the nonconstant variance case.
In summary, if a data set has nonconstant variance generated data, then

Yj = f (tj,~θ0) + f (tj,~θ0) Ej or Ej =
Yj − f (tj,~θ0)

f (tj,~θ0)
.

If the distribution Ej is i.i.d., then a plot of the modified residuals

rm
j = (yj − f (tj, θ̂))/ f (tj, θ̂) vs. tj,



H.T. Banks and J.R. Samuels, Jr. / Adv. Appl. Math. Mech., 1 (2009), 1-28 23

should be random for nonconstant variance generated data. A plot of rm
j = (yj −

f (tj, θ̂))/ f (tj, θ̂) vs. f (tj, θ̂) should also be random.

Another question of interest concerns the case in which the data are incorrectly
assumed to have nonconstant variance error when in fact they have constant variance

error. Because Yj − f (tj,~θ0) = Ej in the constant variance case, we should expect that a

plot of rm
j = (yj − f (tj, θ̂))/ f (tj, θ̂) vs. tj as well as that for rm

j = (yj − f (tj, θ̂))/ f (tj, θ̂)

vs. f (tj, θ̂) will possess some distinct pattern.

There are further issues regarding residual plots: As we shall see by examples,
some data sets might have values that are repeated or nearly repeated a large num-
ber of times (for example when sampling near an equilibrium for the mathematical
model or when sampling a periodic system over many periods). If a certain value is
repeated numerous times (e.g., frepeat) then any plot with f (tj, θ̂) along the horizontal
axis should have a cluster of values along the vertical line x = frepeat. This feature
can easily be removed by excluding the data points corresponding to these high fre-
quency values (or simply excluding the corresponding points in the residual plots).
Another common technique when plotting against model predictions is to plot against
log f (tj, θ̂) instead of f (tj, θ̂) itself which has the effect of “stretching out” plots at the

ends. Also, note that the model value f (tj, θ̂) could possibly be zero or very near zero,

in which case the modified residuals rm
j = (yj − f (tj, θ̂))/( f (tj, θ̂)) would be unde-

fined or extremely large. To remedy this situation one might exclude values very close
to zero (in either the plots or in the data themselves). We chose here to reduce the data
sets (although this sometimes could lead to a deterioration in the estimation results
obtained). In our examples below, estimates obtained using a truncated data set will
be denoted by θ̂tCV

OLS for constant variance data and θ̂tNCV
OLS for nonconstant variance data.

6 VE wave model residual plots

The residual tests described in Section 5 will be applied to the VE wave propagation
model. The setup for the tests is exactly the same as was described earlier - the OLS

and GLS methods will be used to estimate ~θ0 on data sets with constant and noncon-
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Figure 7: 8th sensor output, and corresponding histogram (model values no noise).
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stant variance noise. In order to avoid dense vertical lines (occurring when one has
many repeated model values in the plots) and division by zero (when model values
are nearly zero), we consider the truncated data sets. Inspecting Fig. 7 we see that

there are high frequency repeated values near f (tj,~θ0) = 0 and f (tj,~θ0) = −.02 for the

8th sensor; thus the truncated data set will not include model values that are near zero
or −.02 (which simultaneously alleviates problems of dividing by zero when comput-
ing modified residuals). Using truncated data plots (compare Figs. 8 and 9; one draws
the same conclusions from either plot) makes analysis somewhat easier (patterns are
easier to discern) in many cases. More importantly, though, when using the truncated
data set, the modified residuals no longer blowup, and this makes the conclusions
regarding the error structure straightforward. Thus, for our presentation here, we in-
vestigate residual plots with truncated data sets (corresponding residuals computed
from full data sets can be found [25]) for two different statistical models:

~Yj = ~f (tj,~θ0) +
α

100
~ηj, ~η i

j ∼ max
k

∣

∣

∣ fi(tk,~θ0)
∣

∣

∣N (0, 1), (6.1)

Yj = f (tj,~θ0)
(

1 +
α

100
ηj

)

, ηj ∼ N (0, 1). (6.2)

As we mentioned earlier, both methods (OLS and GLS) do a reasonable job at estimat-

ing~θ0 in the VE wave propagation model; however the error structure was not always
correctly specified. That is, the OLS method was applied to nonconstant variance data
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Figure 8: 8th sensor’s residual plots for θ̂CV
OLS with α = 3.
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Figure 9: 8th sensor’s residual plots for θ̂tCV
OLS with α = 3.
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Figure 10: 8th sensor’s residual plots for θ̂tNCV
OLS with α = 3.
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Figure 11: 8th sensor’s residual plots for θ̂tCV
GLS with α = 3.
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Figure 12: 8th sensor’s residual plots for θ̂tNCV
GLS with α = 3.

and the GLS method was applied to constant variance data. We expect the residual
plots to reveal these statistical model choice mistakes. The plot of the residuals for θ̂NCV

OLS

given in Fig. 10 reveals a fan shaped pattern, which indicates the constant variance
assumption is suspect. In addition, the plot of the residuals for θ̂CV

GLS given in Fig. 11
reveals the residuals have a deterministic structure, which indicates the nonconstant
variance assumption is suspect. As expected, when the correct error structure is as-
sumed, the i.i.d. test and the model dependence test both display a random pattern
(Figs. 9 and 12).
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7 Concluding remarks

In the presentation here we have attempted to demonstrate the effectiveness of inverse
problem methodology in identifying both material and geometric occlusion parame-
ters such as Cλk

, q1 and q2 in a 2D model for arterial stenosis detection using viscoelas-
tic wave propagation. A major concern as one prepares experiments for validation
of the stenosis detection concept is the performance of inverse problem methodology
for use with actual experimental data. By establishing that the inverse problem can
be used to accurately detect and identify the geometric occlusion parameters q1 and
q2 with simulated data, we have shown that the ISV is not only a possible viable de-
scription of VE wave propagation and deserves to be tested against experimental data,
but that the related inverse problem techniques could be readily developed in possi-
ble stenosis detection procedures for use by the medical community. A significant
component of the contribution here explores various statistical techniques that can be
used to assess the underlying model assumptions of an experimental data set. After
presenting various statistical methods to achieve that goal, we tested those methods
on the ISV model with simulated data. The results support our expectations that the
proposed inverse problem methodology can be effectively used in carefully chosen
mathematical and statistical representations for acceleration data in stenosis detection.

There are other techniques that one could use to further investigate inverse prob-
lems in elasticity/viscoelasticity wave propagation. We list several of these.

• Monte Carlo simulations are useful to help determine typical results from asymp-
totic statistical theory. In particular, MC simulations with multiple simulated data sets
can be used to investigate the accuracy of asymptotic based standard errors and con-
fidence intervals for a given problem with respect sample size as well as other factors
such as number of iterations used in GLS IRWLS algorithms (see [25] for example cal-
culations).

• Pre-experiment inverse problem calculations can be carried out to provide infor-
mation on properties (sample size, sampling frequency, duration of experiments, etc.)
of data sets needed to identify specific parameters as was done for example in design
of experiments with shrimp to support and validate complex growth rate dynamic
models-see [6].

• Finally, one can also use traditional sensitivity functions (TSF) and generalized
sensitivity functions (GSF) to investigate which parameters are mostly likely to accu-
rately be identified with what types (how much, how often and when to sample, etc.)
of data for a given class of models-see [7–10, 15, 27].
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