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1 Introduction

The effects of singularities, fractal support and long-range interactions of the sys-
tem are involved in numerous applications such as chaotic dynamics [18], ma-
terial science [11], physical kinetics [19], and among other (see, e.g., [8, 9, 15]).
Fractional dynamics equations are just the right tool to describe these phenom-
ena because they are nonlocal, which means they depend on the value of the
whole space from the mathematical point of view, see Metzler and Klafter [6].

The fractional generalization of the Ginzburg-Landau equation was first pro-
posed by Tarasov and Zaslavsky [13]. Its rescaled form is

∂u

∂t
=Au−(a+νi)Λ2αu−(b+µi)u|u|2σ , (1.1)
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u(x,0)=u0(x), (1.2)

where Λ = (−△)
1
2 , and σ > 0, A ≥ 0, a > 0,b > 0,α ∈ (0,1],ν,µ are real constants.

Actually, this equation can be used to describe dynamic processes in medium
with fractional mass dimension or a continuum with fractional dispersion [12].
It is indicated by asymptotic analysis that an implication of the complex frac-
tional Ginzburg-Landau equation was the renormalization of the transition state
owing to the non-locality of competition [7]. In [10], the Psi-series solution of
the one-dimensional fractional Ginzburg-Landau equation was proposed and
the dominant order behavior and its structure of arbitrary singular solutions are
discussed. In [5], we obtained local well-posedness result for the whole space
case with initial data in Lp(Rn), 1 ≤ p ≤ ∞, C(Rn) and global well-posedness
result for the periodic case. In [4], we proved that the initial-value problem of
(1.1)-(1.2) with 0< σ ≤ 1 is locally well-posed with initial data in Ẇr,p(Rn) and
Ẇr,p(Tn), T

n=R
n/Zn if r and p satisfy

1< p<∞,
α

3
<

n

p
≤α, r=

n

p
−α≤0

by contraction mapping principle.
As we learned from [7, 12–14, 17], very singular initial data such as certain

measures concentrated on smooth surfaces are of real physical interest for frac-
tional Ginzburg-Landau equation, which motivates us to reconsider the problem
of (1.1)-(1.2) containing initial data in the Morrey space. In this paper, we prove
that if 0<α≤1 and u0∈Mp,λ(R

n) with

1≤ p<∞, 0≤λ<∞,
n−λ

p
<

α

σ
,

then the problem of (1.1)-(1.2) is locally well-posed for some T > 0 and for suf-
ficiently small initial data the solution is global. Moreover, we prove that the
solution is actually smooth for 0< σ< 1. The precise statement of the results is
presented in Theorem 3.1 of Section 3. For initial data u0(x)∈Mp,λ(R

n), we prove
that Eq. (1.1)-(1.2) admits a solution u∈BC([0,T);L−k/q,q), and for the global so-
lution u we have decay rate

‖u‖L∞ =O(tz),

where

z=−

[
n−λ

pα

(
σ+

1

2

)
−1

]
.

The results reduce to those in Lp(Rn) theory by taking λ=0.
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The rest of this article is organized as follows. In Section 2, the definition and
some properties of Morrey space, as well as the solution operator of semi-linear
equations and their properties are given. In Section 3, we demonstrate that the
solution to the initial value problem (1.1)-(1.2) exists globally with small initial
data. And further regularity has been showed in Section 4.

2 The linear equation

In this section, we will introduce some of the basic properties of the Morrey space
and then study the corresponding linear equation on the Morrey spaces. First we
give the basic definition.

Definition 2.1. For 1≤ p<∞, 0≤λ<n, the Morrey space Mp,λ is defined as

Mp,λ =Mp,λ(R
n) :=

{
f ∈L

p
loc(R

n)|‖ f‖Mp,λ
<∞

}
,

where the norm is given by

‖ f‖Mp,λ
= sup

{x∈Rn,R>0}

R
− λ

p

(∫

|y−x|≤R
| f |p(y)dy

) 1
p

.

M̈p,λ is the following subspace of Mp,λ:

M̈p,λ :=
{

f ∈Mp,λ |‖ f (·−y)− f (·)‖Mp,λ
→0 as y→0

}
.

We note that Mp,λ is a Banach space and M̈p,λ is a closed subspace of Mp,λ.
For p>1, Mp,0 = Lp and M1,0 = M, where M is the space of finite measures. The
index in the symbol Mp,λ will be restricted to 1≤ p < ∞, 0≤ λ < n, when they
are not specified. Sometimes we consider p = ∞ and then M∞,λ simply means
L∞. Some general properties of Morrey spaces [1] will be used in our article.
More properties of Morrey spaces in another form were presented in [2]. For the
reader’s convenience, they are listed in the following lemma.

Lemma 2.1. For 1≤ p,q,r≤∞, we have

(i) Inclusion relations

Mp,λ ⊂Mq,µ, if
n−λ

p
=

n−µ

q
, q≤ p. (2.1)



460 J. Li, X. Yang and L. Xia / Commun. Math. Anal. Appl., 1 (2022), pp. 457-470

(ii) The Hölder inequality

‖ f g‖Mp,λ
≤‖ f‖Mq,µ‖g‖Mr,ν , (2.2)

where
1

p
=

1

q
+

1

r
,

λ

p
=

µ

q
+

ν

r
.

(iii) Continuous embedding in weighted Lebesgue space

Mp,λ →֒L−
µ
p ,p for p>1, µ>λ, (2.3)

where Ls,p is the weighted Lebesgue space composed of functions f such that

(
1+|x|2

) s
2 f ∈Lp

with the norm

‖ f‖Ls,p =
∥∥∥
(
1+|x|2

) s
2 f

∥∥∥
Lp

.

Now let us consider the linear equation

∂tu−Au+(a+νi)Λ2αu= f (x,t), (x,t)∈R
n×(0,+∞), (2.4)

u(x,0)=u0(x), x∈R
n. (2.5)

The exact solution of (2.4)-(2.5) is

u= eAt−(a+iν)tΛ2α
u0+

∫ t

0
eA(t−τ)−(a+iν)(t−τ)Λ2α

f (τ)dτ

= eAtgα(·,t)∗u0(·)+
∫ t

0
eA(t−τ)gα(·,t−τ)∗ f (·,τ)dτ

△
=Uu0+G f , (2.6)

where e−(a+iν)tΛ2α
is a convolution operator and the kernel gα(x,t) is defined by

Fourier transform
ĝα(ξ,t)= e−(a+iν)|ξ|2αt.

Note that the Poisson kernel and the heat kernel are special cases of gα(x,t). For
α∈ (0,1], and t>0, |gα(x,t)| is a nonnegative and non-increasing radial function,
and satisfies the dilation relation

gα(x,t)= t−
n
2α gα

(
xt−

1
2α ,1

)
, gα(x,1)∈Lp(Rn), 1≤ p<∞. (2.7)

We now establish estimates for the operators U and G on the Morrey spaces.
We first introduce the space of weighted continuous functions in time. These
spaces was first defined as solving initial value problem for Navier-Stokes equa-
tions by Kato and collaborators [3].
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Definition 2.2. Let 0<T<∞. For a given Banach space X and a real number β≥0, we

denote by Cβ((0,T);X) the space of X-valued continuous functions f on (0,T) with the

norm

‖ f‖Cβ((0,T);X)= sup
0<t<T

tβ‖ f (·,t)‖X <∞.

Particularly, C0((0,T);X)= BC((0,T);X) is the space of bounded continuous
functions (note that C0((0,T);X) 6=C((0,T);X), the space of continuous functions).
Ċβ((0,T);X) denotes a subspace of Cβ((0,T);X) consisting of all functions f with

lim
t→0

tβ‖ f‖X =0.

In the following, the Morrey spaces will play the role of X and the norm in
Cβ((0,T);Mp,λ) will be abbreviated as ‖·‖β,p,λ.

For the linear operators U and G, we have the following results.

Proposition 2.1 ([16]). Let 1≤ q1 ≤ q2 < ∞ and 0≤ λ1 = λ2 < n. For any t> 0, the

operators U(t), W(t)=∇U(t) and ∂tU(t) are bounded operators from Mq1,λ1
to Mq2,λ2

and depend on t continuously, where ∇· denotes the space derivative. In addition, we

have for f ∈Mq1,λ1

t
1

2α (γ1−γ2)‖U(t) f‖Mq2 ,λ2
≤CeAt‖ f‖Mq1,λ1

, (2.8)

t
1

2α+
1

2α (γ1−γ2)‖W(t) f‖Mq2,λ2
≤CeAt‖ f‖Mq1,λ1

, (2.9)

t1+ 1
2α (γ1−γ2)‖∂tU(t) f‖Mq2 ,λ2

≤CeAt‖ f‖Mq1,λ1
, (2.10)

where

γi =
n−λi

qi
, i=1,2

and constants C depend on α,q1,q2,λ1,λ2.

Remark 2.1. Although for technical reasons we need λ1=λ2 in the proof of Propo-

sition 2.1, we can see that it also works for λ1 6=λ2 satisfying

n−λ2

q2
≤

n−λ1

q1

because of the embedding relations (2.1).

Generally, U(t) is not a C0-group on Mp,λ. In fact, M̈p,λ is the maximal closed
subspace of Mp,λ on which the U(t) is a C0-group [2]. Therefore, we need an
estimate of the operator G that acts between the weighted continuous function
spaces introduced at the beginning.
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Lemma 2.2. Let u∈Ch((0,T);Mq1,λ1
) and v∈Cl((0,T);Mq2,λ2

) with

1≤q1≤∞, 1≤q2≤∞,
2σ

q1
+

1

q2
≤1, l+2σh<1.

Assume that q and λ satisfy 1≤q≤∞,

1

q
≤

2σ

q1
+

1

q2
, 0≤ǫ=

2σ(n−λ1)

q1
+

n−λ2

q2
−

n−λ

q
<2α.

Then

G
(
(b+iµ)|u|2σ v

)
∈Cm

(
(0,T);Mq,λ

)

and

∥∥G
(
(b+iµ)|u|2σ v

)∥∥
Cm((0,T);Mq,λ)

≤CeAt‖u‖2σ
Ch((0,T);Mq1,λ1

)‖v‖Cl((0,T);Mq2,λ2
),

where

m= l+2σh+
ǫ

2α
−1

and C is a constant.

Proof. To prove this lemma, we use Proposition 2.1 and Hölder’s inequality in

Lemma 2.1

∥∥G
(
(b+iµ)|u|2σv

)∥∥
Mq,λ

≤C
∫ t

0

∥∥eA(t−τ)gα(·,t−τ)∗|u|2σv(·,τ)
∥∥

Mq,λ
dτ

≤CeAt
∫ t

0
(t−τ)−

ǫ
2α
∥∥|u|2σv(τ)

∥∥
M q1q2

2σq2+q1
,
2σλ1q2+λ2q1

2σq2+q1

dτ. (2.11)

Therefore,

∥∥G
(
(b+iµ)|u|2σ v

)∥∥
Mq,λ

≤CeAt‖u‖2σ
Ch((0,T);Mq1,λ1

)‖v‖Cl((0,T);Mq2,λ2
)t
−m

∫ 1

0
(1−s)−

ǫ
2α s−l−2σhds

for

m= l+2σh+
ǫ

2α
−1.
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Note that ∥∥|u|2σ
∥∥

M p
2σ ,λ

=‖u‖2σ
Mp,λ

.

The integral in the last inequality can be written as the Beta function

B
(

1−
ǫ

2α
,1− l−2σh

)
.

Using the fact that the Beta function B(a,b) is finite if a>0 and b>0, we have
∥∥G

(
(b+iµ)|u|2σ v

)∥∥
Cm((0,T);Mq,λ)

≤CeAt‖u‖2σ
Ch((0,T);Mq1,λ1

)‖v‖Cl((0,T);Mq2,λ2
). (2.12)

The proof is complete.

3 Main results and proofs

We will state the main theorem in this section.

Theorem 3.1. Suppose that 0<α<1 and u0∈Mp,λ with

1≤ p<∞, 0≤λ<∞,
n−λ

p
<

α

σ
. (3.1)

Then there is a δ> 0 such that if ‖u0‖Mp,λ
< δ, the initial value problem of (1.1)-(1.2)

admits a solution u(x,t) on (0,T) for some T>0 satisfying

u∈Cβ

(
(0,T);M(2σ+1)p,λ

)
, β=

σ(n−λ)

pα(2σ+1)
. (3.2)

Further assume that A=0, then

u∈
⋂

q<p

⋂

k>n−
q
p (n−λ)

BC
(
[0,T);L− k

q ,q

)
, (3.3)

and

u∈Cσ(n−λ)
pα −1

(
(0,T);Mp,λ

)
. (3.4)

Moreover, for any p< p′≤∞, A=0 and t is large,

u∈Y≡Cm′

(
(t,T);M̈p′ ,λ

)
, m′=

(n−λ)σ

pα
+
(n−λ)

2α

(
1

p
−

1

p′

)
−1, (3.5)
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and u is the unique solution in the class of functions satisfying (3.5) with small norm

‖u‖Mp′ ,λ
for p< p′≤∞. Moreover, the mapping

O :V→Y,

is Lipschitz and V is a neighborhood of u0.

Remark 3.1. For A = 0, it can be seen from the proof of the theorem that the

solution is actually global if the norm ‖u0‖Mp,λ
is small enough.

Remark 3.2. Note that (3.3) implies that for 1< q ≤ p, u(x,t)→ u0(x) in L−k/q,q

as t→0. Generally speaking, we do not anticipate u(x,t)→u0(x) in Mp,λ for any

u0∈Mp,λ, since U(t) is not a C0 semigroup on Mp,λ.

Remark 3.3. For ‖u0‖Mp,λ
< δ, (3.5) also tells us the decay rate of u for large t,

namely

‖u‖L∞ =O(tz),

where

z=−

[
n−λ

pα

(
σ+

1

2

)
−1

]
.

We prove this theorem by integral equations and contraction mapping. Ac-
cording to standard practice, we write the fractional Ginzburg-Landau equation
(1.1) as an integral form

u(x,t)=U(t)u0−G
(
(b+iµ)|u|2σu

)

=U(t)u0−
∫ t

0
U(t−τ)(b+iµ)|u|2σ u(τ)dτ. (3.6)

Proof. Let X denote the Banach space

X=Cβ

(
(0,T);M(2σ+1)p,λ

)

and XR represent the complete metric space of the closed ball in X centred at 0 and

of radius R, where T and R will be determined later on. Consider the nonlinear

map A on XR defined by

A(u)(t)=U(t)u0−G
(
(b+iµ)|u|2σu

)
(t), t∈ (0,T).

First we show that A maps XR to itself and is a contraction. Applying Proposi-

tion 2.1 with

q1= p, q2=(2σ+1)p, λ1=λ2=λ,
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we obtain

‖U(t)u0‖X =‖U(t)u0‖Cβ((0,T);M(2σ+1)p,λ)
≤C0‖u0‖Mp,λ

. (3.7)

Using Proposition 2.1 and (2.2) leads to
∥∥G

(
(b+iµ)|u|2σ u

)∥∥
X

= tβ
∥∥G

(
(b+iµ)|u|2σ u

)∥∥
M(2σ+1)p,λ

≤ tβ
∫ t

0

∥∥U(t−τ)(b+iµ)|u|2σ u
∥∥

M(2σ+1)p,λ
dτ

≤ tβCeAt
∫ t

0
(t−τ)−β

∥∥|u|2σu(τ)
∥∥

Mp,λ
dτ

≤ tβCeAt
∫ t

0
(t−τ)−β‖u(τ)‖2σ+1

M(2σ+1)p,λ
dτ,

where

β=
(n−λ)σ

pα(2σ+1)
.

Therefore
∥∥G

(
(b+iµ)|u|2σu

)∥∥
X

≤CtβeAt
(

sup
τ∈(0,t)

τβ‖u‖M(2σ+1)p,λ

)2σ+1∫ t

0
(t−τ)−βτ−(2σ+1)βdτ

≤Ct1−β(2σ+1)eAt‖u‖2σ+1
X

∫ 1

0
(1−s)−βs−(2σ+1)βds.

The integral in the last inequality can be written as the Beta function B(1−β,1−
(2σ+1)β). Using the fact that the Beta function B(a,b) is finite if a> 0 and b> 0,

we conclude that ‖G((b+iµ)|u|2σ u)‖X is finite if T and R are properly chosen.

Furthermore, for any ũ and u∈XR, since

|u|2σu−|ũ|2σũ=
∫ 1

0

[
(σ+1)(u− ũ)|Z|2σ+σ(u− ũ)Z2|Z|2σ−2

]
dλ,

where Z=λu+(1−λ)ũ, we have

‖A(u)−A(ũ)‖X =C
∥∥G(|u|2σu)−G(|ũ|2σũ)

∥∥
X

≤Ct1−β(2σ+1)eAt
(
‖u‖2σ

X +‖ũ‖2σ
X

)
‖u− ũ‖X

≤Ct1−β(2σ+1)R2σeAt‖u− ũ‖X.
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Hence, A maps XR to itself for some T and R properly chosen and is a contraction,

which means (1.1)-(1.2) admits a unique solution u∈Cβ((0,T);M(2σ+1)p,λ).
To show that u satisfies (3.3), we first note that

u=Au=U(t)u0−G
(
(b+iµ)|u|2σu

)
.

For u0∈Mp,λ,

U(t)u0 ∈BC
(
(0,T);M̈p,λ

)

as implied by Proposition 2.1. Moreover, we have

U(t)u0 ∈BC
(
[0,T);L− k

p ,q

)

for

1<q≤ p, k>n−
q

p
(n−λ)

due to

Mp,λ →֒Mq,n−
q
p (n−λ) →֒L− k

q ,q,

and the fact that U(t) is a C0 semigroup on L−k/q,q.

For the nonlinear term G((b+iµ)|u|2σ u), we apply Lemma 2.2 with

A=0, λ1=λ2=λ, q1=q2=(2σ+1)p, q= p,

h= l=
σ(n−λ)

pα(2σ+1)
, m=

σ(n−λ)

pα
−1<0

to show that G((b+iµ)|u|2σ u)∈BC([0,T);M̈p,λ), which means G((b+iµ)|u|2σ u)→
0 as t→0 in Mp,λ and L−k/p,p. The application of Lemma 2.2 with

A=0, λ1=λ2=λ, q1=q2=(2σ+1)p, q=
p

1+η
,

h= l=
σ(n−λ)

(2σ+1)pα
, m=

(n−λ)σ

pα
−
(n−λ)η

2pα
−1<0

shows that G((b+iµ)|u|2σ u)∈Cm((0,T);Mq,λ) for q≤ p, which implies that

G
(
(b+iµ)|u|2σu

)
→0 as t→0 in Mq,λ.

We get

G
(
(b+iµ)|u|2σu

)
→0 in L− k

q ,q
as t→0,
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due to the embedding

Mq,λ →֒L− k
q ,q for k>n−

q

p
(n−λ).

We now prove that u satisfies (3.5). The linear term U(t)u0 satisfying (3.5) is

an easy consequence of Proposition 2.1. We apply Lemma 2.2 to G((b+iµ)|u|2σ u)
with

h= l=
(n−λ)σ

pα(2σ+1)
, q1=q2=(2σ+1)p,

m′=
(n−λ)σ

pα
+
(n−λ)

2α

(
1

p
−

1

p′

)
−1,

q= p′, λ1=λ2=λ,

and use the fact that u∈C (n−λ)σ
pα(2σ+1)

((0,T);M(2σ+1)p,λ) to show that G((b+iµ)|u|2σ u)

is in the class defined by (3.5). This conclusion, combined with the uniqueness of

u in C (n−λ)σ
pα(2σ+1)

((0,T);M(2σ+1)p,λ) indicates the uniqueness of u in (3.5). The proof

of the Lipschitz property is standard and is therefore omitted.

4 Further regularity

In this section we prove that the solution u in Theorem 3.1 can be of higher regu-
larity, which is actually smooth.

Theorem 4.1. Let u be the solution in Theorem 3.1. Then any derivatives of u can be in

the same Morrey space as u, namely, for any 1< p≤q<∞ and k, j=0,1,.. .

∂k
t∇

ju∈C
(
(0,T);M̈q,λ

)
, (4.1)

where ∇· represents the spatial derivative and C((0,T);X) is the space of X-valued con-

tinuous function on (0,T).

Proof. The smoothness of u can also be proved by contraction mapping argument

and building the regularity index in to the working space. First we consider the

case when k= 0. For j= 0, (4.1) can be seen from (3.2)-(3.5) in Theorem 3.1. We

now prove that (4.1) still holds true for k= 0, j= 1. We take any t1 > 0 and show

the results for t> t1.
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First, let p<q and X be the space consisting of function u satisfying

u∈C
(
[t1,T);M̈q,λ

)
, ∇u∈C 1

2α

(
(t1,T);M̈q,λ

)
, (4.2)

and XR be the closed ball of radius R in X. The idea is to apply contraction map-

ping principle to A on XR with T and R to be determined later. First, we choose

R appropriately such that Uu1 ∈ XR, in which u1 = u(t1) is the value of u at t1.

Similar to the proof of Theorem 3.1, we apply Lemma 2.2 to show that for u∈XR

G
(
(b+iµ)|u|2σu

)
∈Cγ

(
(0,T);M̈q,λ

)
, (4.3)

∇G((b+iµ)|u|2σ u)∈C 1
2α+γ

(
(0,T);M̈q,λ

)
, (4.4)

where

γ=
σ(n−λ)

αq
−1.

Notice that γ is negative under the condition (3.1). The relations (4.3) and (4.4)

imply not only Uu0∈XR, but also that ‖G((b+iµ)|u|2σ u)‖ in XR has small factor

(T−t1)
−γ if T−t1 is small.

If T−t1 is chosen small and R is set as described above, then A maps XR to

itself and is a contraction. So A admits a fixed point u in XR, which solves (2.6).

The uniqueness result in Theorem 3.1 indicates that this u is exactly the original

u obtained in Theorem 3.1. Therefore we have proved that u ∈ C((t1,T);M̈q,λ),
which means that u∈C((0,T);M̈q,λ) due to the randomness of t1.

Continuing to implement the same argument for higher space derivatives of

u, we can obtain the result ∇ju∈C((0,T);M̈q,λ). This completes the proof for k=0.

We now prove (4.1) for k= 1. It can be easily seen from the regularity result

we have just obtained that

∇ju, Λ
2α∇ju, ∇j

(
|u|2σu

)
∈C

(
(0,T);M̈q,λ

)
,

where j=0,1,.. . for any p≤q<∞. Turning to Eq. (1.1)

∂u

∂t
=Au−(a+νi)Λ2αu−(b+µi)u|u|2σ ,

and the Hölder inequality for the Morrey space (i.e. (ii) of Lemma 2.1), we obtain

for j=0,1,2,.. .

∂t∇
jθ∈C

(
(0,T);M̈q,λ

)
.

The result for general k can be established by an inducting process. This com-

pletes the proof of Theorem 4.1.
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