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Travelling Wave Solutions and Conservation Laws
of the (2+1)-dimensional

Broer-Kaup-Kupershmidt Equation∗

Lijun Zhang1,†, Innocent Simbanefayi2 and Chaudry Masood

Khalique2

Abstract The travelling wave solutions and conservation laws of the (2+1)-
dimensional Broer-Kaup-Kupershmidt (BKK) equation are considered in this
paper. Under the travelling wave frame, the BKK equation is transformed to a
system of ordinary differential equations (ODEs) with two dependent variables.
Therefore, it happens that one dependent variable u can be decoupled into
a second order ODE that corresponds to a Hamiltonian planar dynamical
system involving three arbitrary constants. By using the bifurcation analysis,
we obtain the bounded travelling wave solutions u, which include the kink,
anti-kink and periodic wave solutions. Finally, the conservation laws of the
BBK equation are derived by employing the multiplier approach.

Keywords The (2+1)-dimensional Broer-Kaup-Kupershmidt equation, Trav-
elling wave solutions, Conservation laws, Multiplier method.

1. Introduction

A significant amount of mathematical research has been dedicated to developing
tools for the treatment of nonlinear partial differential equations (NLPDEs). This
is necessitated by the fact that NLPDEs have diverse applications in the physical
world and their solutions help to shed light on the various phenomena with which we
interact. The research has been in part vested in developing methods of obtaining
their exact solutions. Here, we give a few of these methods: the Lie symmetry
method [5, 18, 19], the inverse scattering transform method [1], the tanh-function
method and extended tanh-function method [17], Symbolic methods [9], the Riccati
equation method [16], the Jacobi elliptic function method [20], the exp-function
method [8], the homogeneous balance method [23], Hirota’s bilinear method [10],
simple transformation method [13], F-expansion method [26], dynamical system
method [27] and so on.
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The Broer-Kaup-Kupershmidt (BKK) system of equations

uty − uxxy + 2(uux)y + 2vxx = 0,

vt + vxx + 2(uv)x = 0.
(1.1)

is one of the most popular system of NLPDEs to emerge in the past few decades.
This is evidenced by the vast array of scholars who have researched various as-
pects of the system. It has applications in fluid dynamics where it models disper-
sive shallow water waves travelling in equal depth. By using a convenient scaling
transformation, it has been shown in [6,24] that the (2+1)-dimensional asymmetric
Davey-Stewartson system [15]

q̄t +
q̄xx
2

+ 2q̄∂−1
y (q̄r̄)x = 0, r̄t +

r̄xx
2

+ 2r̄∂−1
y (q̄r̄)x = 0,

transforms into (1) under the transformation

q̄ = exp

(
−
∫ x

udx

)
, r̄ = −v exp

(∫ x

udx

)
.

Solitoff and dromion solutions are obtained in the same work [6]. Also, the Kadomtsev-
Petviashvili equation transforms into the BKK equation under a symmetry con-
straint, see for example [15, 26]. In [26], the modified extended Fan sub-equation
method is used to obtain soliton-like and Jacobi elliptic wave function-like solutions
of (1). In [14], Bäcklund transformation and variable separation approach was used
to obtain dromions, lumps and peakons through the introduction of an arbitrary
function. Again, in [22, 25] an auxiliary equation method was utilised to obtain
its exact travelling wave solutions. His semi-inverse method was applied in [28] to
establish a variational principle of the BKK system. Several other researchers have
utilised different ad hoc methods to establish different solutions of (1). Kassem and
Rashed [11] came up with closed form solutions of (1) by using hidden symmetries
of its Lie optimal systems. The most recent work on the BKK system was by Tang
et al. [21] who presented the double Wronskian solutions by using Hirota’s method
and binary bell polynomials.

Conservation laws depict conserved quantities of physical interest. The most
common physical quantities that are conserved are energy, charge, momentum and
mass amongst others. Conservation laws also help in establishing the uniqueness,
stability and existence of solutions of differential equations. There are several meth-
ods available for deriving conserved quantities, see for example [2–4,7, 12].

Due to its undeniably vast applicability, continued study of the BKK system
remains necessary. In this paper, we further explore the (2+1)-dimensional BKK
system (1). Unlike most of the previous research on this NLPDE, we do not employ
ad hoc methods to obtain its analytic solutions, but utilise a standard Lie based
integration method [18]. Here, we provide a detailed outline of the derivation of the
bounded travelling wave solutions, which include kink and anti-kink profiles. We
also outline how periodic solutions of a snoidal nature are obtained. Moreover, the
homotopy integral approach to finding conservation laws is explored in details. To
the best of our knowledge, the literature is devoid of explicit applications of this
approach, moreso for nonlinear partial differential equations with mixed derivatives,
our work is novel in this regard.
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2. Bounded travelling wave solutions of the BKK
equations (1)

Let ξ = x+ by + ct, then the BKK equation (1) becomes

bcu′′ − bu′′′ + 2b(uu′)′ + 2v′′ = 0,

cv′ + v′′ + 2(uv)′ = 0.
(2.1)

Integrating (2.1) once with respect to ξ and letting the constants of integration be
zero, one gets

bcu′ − bu′′ + 2buu′ + 2v′ = 0,

(2u+ c)v + v′ = 0.
(2.2)

Integrating the first equation of (2.2) once again, and then solving for v gives

v =
1

2
(bu′ − bu2 − bcu+ g), (2.3)

where g is a constant of integration. Substituting the expression of v from (2.3)
into the second equation of system (2.2), we have for the case when b ̸= 0, that

u′′ = (2u+ c)
(
u2 + cu− g

b

)
+

g2
b
. (2.4)

Let u′ = y, then equation (2.4) is equivalent to the following planar dynamical
system:

u′ = y, y′ = (2u+ c)
(
u2 + cu− g

b

)
. (2.5)

Suppose u0 > − c
2 satisfies g = bu0(c+ u0), then system (2.5) has three equilibrium

points E1(−c − u0, 0), E2(− c
2 , 0) and E3(u0, 0), where −c − u0 < − c

2 < u0. By
determining the Jacobian determinant, we know that E1 and E3 are saddle points
and E2 is a center. Clearly, system (2.5) is a Hamiltonian system with Hamiltonian

H(u, y) =
y2

2
− 1

2
u4 − cu3 − 1

2

(
c2 − 2

g

b

)
u2 +

gc

b
u. (2.6)

Hence, H(E2) = h2 and H(E1) = H(E3) = h0, where h1 = 1
2u

2
0(u0 + c)2 and

h2 = − 1
32c

2(c2 + 8cu0 + 8u2
0). Therefore, we have the phase portrait of (2.5) (see

Figure 1). It shows that there are two heteroclinic orbits connecting the two saddle
points E1 and E3 which consist of the boundary of a family of periodic orbits. As
is known to us all, the two heteroclinic orbits of (2.5) which are determined by
H(u, y) = h1 correspond to a kink and an anti-kink for u of (1) respectively and
the periodic orbits given by H(u, y) = h with h2 < h < h1 correspond to periodic
travelling wave solutions. Hence, one sees easily from Figure 1 that there are a
family of periodic wave solutions and a kink and an anti-kink for u of (1). Note
that v is determined by (2.3) which is equivalent to

v =
b

2
(u′ − u2 − cu+ u0(c+ u0)), (2.7)
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so (u, v) is a periodic travelling wave solution of (1), if u is periodic.
To derive the kink and anti-kink, we integrate along the heteroclinic orbits

H(u, y) = h1. That is,
y± = ±(u− u0)(u+ c+ u0).

Substituting the above equation into the first equation of (2.5), and then integrating
the resulting differential equation yields

u±(ξ) = − c

2
± 1

2
(c+ 2u0) tanh

(
1

2
(c+ 2u0)(ξ − ξ0)

)
, (2.8)

where ξ0 is a constant of integration. It implies that for arbitrary constants ξ0, c
and u0 > − c

2 , (2.8) determine a kink and an anti-kink for u of (1) respectively.
Taking account of (2.7), we have the corresponding

v+(ξ) =
b

4
(c+ 2x0)

2sech2
(
1

2
(c+ 2u0)(ξ − ξ0)

)
(2.9)

and
v−(ξ) = 0.

That is to say, (u+(ξ), v+(ξ)) and (u−(ξ), v−(ξ)) are two travelling wave solutions
to (1).

Figure 1. Phase orbit of (2.5) and the corresponding bounded travelling wave
solutions.

For the periodic orbits determined by H(u, y) = h with h2 < h < h1, we
know from (2.6) that the periodic orbit passing through (u2, 0). For arbitrary
u2 ∈ (−c− u0,− c

2 ), is determined by

y = ±
√
(u− u1)(u− u2)(u3 − u)(u4 − u) (u2 ≤ u ≤ u3), (2.10)

where u1, u3 and u4 satisfying u1 < −c− u0 and − c
2 < u3 < u0 < u4 are three real

roots of the following cubic algebraic equation:

u3+(2c+u2)u
2+

(
(c+ u2)

2 − 2u0(c+ u0)
)
u+u2(c+u2)

2−2u0(c+u0)(c+u2) = 0.

Inserting equation (2.10) into the first equation of (2.5), and then integrating the
resulting differential equation yields

u(ξ) = u1 +
(u2 − u1)(u3 − u1)

(u3 − u1)− (u3 − u2)sn2(Ωξ, q)
, (2.11)
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where Ω = 1
2

√
(u4 − u2)(u3 − u1) and q =

√
(u3−u2)(u4−u1)
(u3−u1)(u4−u2)

. Therefore, we derive a

family of periodic travelling wave solutions u(ξ), v(ξ) to (1), where u(ξ) is given by
(2.11) and the associated v(ξ) is derived by inserting (2.11) into (2.7) for arbitrary
u2 ∈ (−c− u0,− c

2 ).

(1) u = u+(ξ) (2) v = v+(ξ) with b = 1 (3) v = v+(ξ) with b = −2

Figure 2. Bounded travelling wave solutions with c = −2 and u0 = 3.

Theorem For arbitrary real numbers b, c and u0 > − c
2 , let ξ = x + by +

ct. Then, the (2+1)-dimensional Broer-Kaup-Kupershmidt equation (1) has the
following bounded travelling wave solutions:

(1) Two families of travelling wave solutions (u+(ξ), v+(ξ)) and (u−(ξ), v−(ξ)),
where u+(ξ) is of kink shape but the associated v+(ξ) is of solitary shape whose
amplitude is determined by b (see Figure 2). However, u−(ξ) is of anti-kink shape
and u−(ξ) = 0;

(2) A family of periodic travelling wave solutions (u(ξ), v(ξ)) given by (2.11),
and the associated v(ξ) is determined by (2.7) for arbitrary u2 ∈ (−c−u0,− c

2 ) (see
Figure 3).

3. Conservation laws of the BKK equations (1.1)

A conservation law is a divergence expression DtT + DxX + DyY = 0 subject to
solutions of the BKK system (1). The conserved density T and the spatial flux
(X,Y ) are functions of t, x, y, u, v and the derivatives of u and v. The BKK system
(1) does not possess a variational principle as it does not satisfy the Helmholtz
conditions [3]. However, conserved quantities may be obtained by using a more
direct approach which does not require the existence of a variational principle.
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(1) u = u(ξ) (2) v = v(ξ) with b = 1 (3) v = v(ξ) with b = −2

Figure 3. Periodic travelling wave solutions with c = −2, u0 = 3 and u2 = 0.

In this work, we employ the multiplier approach to compute conservation laws.
This approach capitalises on the well-known correspondence between multipliers
and conservation laws [4]. Furthermore, we will employ the first homotopy integral
formula to compute conserved quantities. To update, the authors have not come
across an explicit application of this formula to a system with mixed derivatives.
Thus, This work will serve as an illustrative example, amongst other things. A
determining condition to find multipliers of the BKK equations

E1 ≡ uty − uxxy + 2(uux)y + 2vxx = 0,

E2 ≡ vt + vxx + 2(uv)x = 0.
(3.1)

is

δ

δu

[
Λ1E1 + Λ2E2

]
= 0,

δ

δv

[
Λ1E1 + Λ2E2

]
= 0,

(3.2)

where δ/δu and δ/δv are Euler-Lagrange operators

δ

δu
=

∂

∂u
−Dx

∂

∂ux
−Dy

∂

∂uy
+DtDy

∂

∂uty
+DxDy

∂

∂uxy
−D2

xDy
∂

∂uxxy
,

δ

δv
=

∂

∂v
−Dt

∂

∂vt
−Dx

∂

∂vx
+D2

x

∂

∂vxx
.

(3.3)
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Furthermore, Dt, Dx and Dy are total derivatives given by

Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utt

∂

∂ut
+ vtt

∂

∂vt
+ utx

∂

∂ux
+ vtx

∂

∂vx
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ uxx

∂

∂ux
+ vxx

∂

∂vx
+ uxt

∂

∂ut
+ vxt

∂

∂vt
+ · · · ,

Dy =
∂

∂y
+ uy

∂

∂u
+ vy

∂

∂v
+ uyy

∂

∂uy
+ vyy

∂

∂vy
+ uyt

∂

∂ut
+ vyt

∂

∂vt
+ · · · .

Here, we seek to compute first order conservation law multipliers

Λα = Λα(t, x, u, v, ux, vx, uy, vy), α = 1, 2.

Expanding (3.2) and splitting on derivatives of u and v, we obtain the following
system of fifteen multiplier determining equations:

Λ1
ty = 0, Λ2

ty = 0, 2Λ1
xx − Λ2

t = 0, Λ1
xy = 0, Λ2

x = 0, Λ1
u = 0, Λ2

u = 0, Λ2
ux

= 0,

Λ1
v = 0, Λ2

v = 0, Λ2
v = 0, Λ1

ux
= 0, Λ2

ux
= 0,

Λ1
vx = 0, Λ2

vx = 0, Λ1
uy

= 0, Λ2
uy

= 0.

Solving the above system for Λ1 and Λ2, we obtain

Λ1 =
1

4
F ′
2 (t)x

2 + F3 (t)x+ F4 (y) + F5 (t) ,

Λ2 =F1 (y) + F2 (t)
(3.4)

where Fi, i = 1, · · · , 5 are arbitrary functions of their respective arguments. Thus,
we have the following five multipliers

Λ1
1 = 0, Λ2

1 = F1(y);

Λ1
2 =

1

4
F ′
2(t)x

2, Λ2
2 = F2(t);

Λ1
3 = F3(t)x, Λ2

3 = 0;

Λ1
4 = F4(y), Λ2

4 = 0;

Λ1
5 = F5(t), Λ2

5 = 0.

(3.5)

The homotopy integral formula [3] is a revolutionary approach for computing con-
served vectors, and is given by

Φ =

∫ 1

0

k∑
j=1

∂λ∂
j−1um

(λ)

 k∑
l=j

(−D)l−j ·
(
∂EmΛm

∂u

) ∣∣∣um=um
(λ)

 dλ,

where m = 1, · · · , n, and n is the number of dependent variables. Also, Φ = (T,X)
is a conserved quantity composed of conserved density T and spatial flux X. In
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accordance with system (3.1) and multipliers (3.4) we have, in explicit form

T =

∫ 1

0

(
uDy

(
∂E1Λ1

∂uty

) ∣∣
u=u(λ)

+ v

(
∂E2Λ2

∂vt

) ∣∣
v=v(λ)

)
dλ,

X =

∫ 1

0

{
u

{(
∂E1Λ1

∂ux

) ∣∣
u=u(λ)

+

(
∂E2Λ2

∂ux

) ∣∣
u=u(λ)

−Dy

(
∂E1Λ1

∂uxy

) ∣∣
u=u(λ)

+DxDy

(
∂E1Λ1

∂uxxy

) ∣∣
u=u(λ)

}
− uxDy

(
∂E1Λ1

∂uxxy

) ∣∣
u=u(λ)

+v

{(
∂E2Λ2

∂vx

) ∣∣
v=v(λ)

−Dx

(
∂E1Λ1

∂vxx

) ∣∣
v=v(λ)

−Dx

(
∂E2Λ2

∂vxx

) ∣∣
v=v(λ)

}
+vx

(
∂E2Λ2

∂vxx

) ∣∣
v=v(λ)

}
dλ

Y =

∫ 1

0

{
u

(
∂E1Λ1

∂uy

) ∣∣
u=u(λ)

+ ut

(
∂E1Λ1

∂uty

) ∣∣
u=u(λ)

+ ux

(
∂E1Λ1

∂uxy

) ∣∣
u=u(λ)

+uxx

(
∂E1Λ1

∂uxxy

) ∣∣
u=u(λ)

}
dλ

(3.6)
Choosing the homotopy u(λ) = λu, and v(λ) = λv as is usually the case, we have
for Λ1

1 and Λ2
1

T1 =

∫ 1

0

vF1dλ

= vF1,

X1 =

∫ 1

0

(4λuvF1 + vxF1) dλ

=2uvF1 + vxF1,

Y1 =0.

T1 = vF1 is mass density, and X1 = 2uv + vxF1 is mass flux or momentum.
Similarly, the complete set of flux densities and spatial fluxes are derived to

obtain

T2 =
1

4
x2uyF

′
2 + vF2,

X2 =
1

2
uuyF

′
2x

2 + 2uvF2 +
1

2
xuyF

′
2 −

1

4
x2uxyF

′
2 − xvF ′

2 +
1

2
x2vxF

′
2 + vxF2,

Y2 =− 1

4
u (x2F ′′

2 + 2xuF ′
2 + 2F ′

2 );

T3 = = xuy F3,

X3 =2xuuyF3 + uy F3 − uxyF3x− 2 vF3 + 2xvx F3,

Y3 = − xuF ′
3 + uF3

T4 =uy F4,

X4 = = 2uuyF4 − uxyF4 + 2 vx F4,

Y4 =0;

T5 =uy F5,
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X5 =2uF5uy − uxy F5 + 2 vx F5,

Y5 = − uF ′
5;

The conservation laws obtained here are local and infinitely many for the presence
of arbitrary functions. Due the order of the dependencies of the adjoint symmetries
being of a lower order than the leading derivatives of the underlying system, the
conserved quantities are of low-order.
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