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Oscillation of 2nd-order Nonlinear Noncanonical
Difference Equations with Deviating Argument

George E. Chatzarakis1,† and Said R. Grace2

Abstract The purpose of this paper is to establish some new criteria for the
oscillation of the second-order nonlinear noncanonical difference equations of
the form

∆ (a (n) ∆x (n)) + q(n)xβ (g(n)) = 0, n ≥ n0

under the assumption
∞∑
s=n

1

a (s)
<∞.

Corresponding difference equations of both retarded and advanced type are
studied. A particular example of Euler type equation is provided in order to
illustrate the significance of our main results.
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cal, Oscillation.
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1. Introduction

In this paper, we are concerned about some new criteria for the oscillation of the
second-order nonlinear difference equation with deviating argument of the form

∆ (a (n) ∆x (n)) + q(n)xβ (g(n)) = 0, n ≥ n0 ≥ 0, (1.1)

where n ∈ N (n0) = {n0, n0 + 1, . . .}, β is the ratio of positive odd integers, (a (n))n≥n0

and (g (n))n≥n0
are sequences of positive real numbers, and (g (n))n≥n0

satisfies

g (n) ≤ n− 1 ∀n ∈ N (n0) and lim
n→∞

g(n) =∞, (1.2)

or
g (n) ≥ n+ 1 ∀n ∈ N (n0) . (1.3)

We study (1.1) under the condition

lim
n→∞

R(n) <∞ where R(n) :=

∞∑
s=n

1

a (s)
. (1.4)
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By a solution of (1.1), we mean a real sequence (x (n))n≥n0−m, m =
infn∈N(n0) {g(n)}, which satisfies (1.1) for all n ≥ n0. Such a solution is called
“oscillatory”, if the terms x(n) of the sequence are neither eventually positive nor
eventually negative. Otherwise, the solution is said to be “nonoscillatory”. Equa-
tion (1.1) is “oscillatory”, if all its solutions oscillate.

We also note that equation (1.1) is in canonical form if R(n0) = ∞, and is
in noncanonical form if R(n0) < ∞. The structure of nonoscillatory (eventually
positive) solutions x(n) of (1.1) in the canonical form is of one sign and is eventually
positive, while for the noncanonical form, we eventually find ∆x (n) > 0 or ∆x (n) <
0.

The problem of determining the oscillation and nonoscillation of solutions of
difference equations has been a very active area of research in the last decade, and
for the survey of recent results, we refer the reader to the monographs [1], [2], [5]. In
recent years, there has been much research concerning the oscillation and asymptotic
behavior of solutions of various classes of difference equations, and we mention
[1− 9] and the references cited therein as example of some recent contributions in
this area. There have been numerous studies on second-order difference equations
due to their use in the natural sciences and as well as for theoretical interests.
Recent results on the oscillatory and asymptotic behavior of solutions of second-
order difference equations can be found, for example, in [10− 24]. However, it
appears that there are very few results regarding the oscillation of solutions of
second-order difference equations of the form of equation (1.1) with (1.4) satisfied.

In view of this, our aim in this paper is to present some new sufficient conditions
that ensure that all solutions of (1.1) are oscillatory. Contrary to the most existing
results, oscillation of the studied equation is attained via only one condition. We
also consider both retarded and advanced difference equations of type (1.1).

2. Main results

2.1. Equation (1.1) with retarded argument

Theorem 2.1. Assume that (1.2) and (1.4) hold. If

lim sup
n→∞


R (g(n) + 1)

∑g(n)−1
s=n0

q(s)

+
∑n−1
s=g(n)R(s+ 1)q(s)

+R−β(g(n))
∑∞
s=nR(s+ 1)q(s)Rβ(g(s))

 >

1, if β = 1

0, if β ∈ (0, 1)
, (2.1)

then all solutions of (1.1) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x (n))n≥n0−m is a nonoscilla-
tory solution of (1.1). Then, it is either eventually positive or eventually negative.
As (−x (n))n≥n0−m is also a solution of (1.1), we may restrict ourselves only to
the case where x(n) > 0 for all large n. Let n1 ≥ n0 −m be an integer such that
x(n) > 0 for all n ≥ n1. Then, there exists n2 ≥ n1 such that x(g(n)) > 0, ∀n ≥ n2.
In view of this, equation (1.1) becomes

∆ (a (n) ∆x (n)) = −q(n)xβ (g(n)) ≤ 0, n ≥ n2, (2.2)
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which means that a (n) ∆x (n) is nonincreasing and of one sign. Therefore, there
exists a n3 ≥ n2 such that

∆x (n) > 0, n ≥ n3, Case (I)

or
∆x (n) < 0 and ∆ (a (n) ∆x (n)) ≤ 0, n ≥ n3, Case (II).

Case (I): Clearly, there exists a real constant k > 0 such that x(g(n)) > k for every
n ≥ n3. From (1.1), we get

∆ (a (n) ∆x (n)) + q(n)kβ < 0.

Summing up this inequality from n3 to n− 1, we obtain

− a (n) ∆x (n) + a (n3) ∆x (n3) > kβ
n−1∑
s=n3

q(s) ≥ kβ
n−1∑
s=n3

R(s)q(s). (2.3)

Claim. (2.1) guarantees that
∑∞
s=n3

R(s)q(s) =∞.
Indeed, it follows from (2.1) that there exists a positive constant c such that

R (g(n) + 1)

g(n)−1∑
s=n0

q(s) +

n−1∑
s=g(n)

R(s+ 1)q(s)

+R−β(g(n))

∞∑
s=n

R(s+ 1)q(s)Rβ(g(s)) ≥ c. (2.4)

Assume that
∑∞
s=n3

R(s)q(s) <∞. Then, there exists N ≥ n2 such that

∞∑
s=n3

R(s)q(s) < c/7.

Thus, for n ≥ N , we have

R (g(n) + 1)

g(n)−1∑
s=n3

q(s) = R (g(n) + 1)

N−1∑
s=n3

q(s) +R (g(n) + 1)

g(n)−1∑
s=N

q(s)

≤ R (g(n) + 1)

N−1∑
s=n3

q(s) +

g(n)−1∑
s=N

R(s)q(s) ≤ R (g(n) + 1)

N−1∑
s=n3

q(s) +
c

7

and

R−β(g(n))

∞∑
s=n

R(s+ 1)q(s)Rβ(g(s)) ≤
∞∑
s=n

R(s+ 1)q(s) ≤ c

7
.

Therefore,

R (g(n) + 1)

g(n)−1∑
s=n0

q(s)+

n−1∑
s=g(n)

R(s+1)q(s)+R−β(g(n))

∞∑
s=n

R(s+1)q(s)Rβ(g(s)) ≤ 3c

7
,
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which contradicts (2.4). Consequently,
∑∞
s=n3

R(s)q(s) = ∞. Our claim has been
proved.

In view of this, (2.3) gives

0 ≤ lim
n→∞

a (n) ∆x (n) = −∞,

which is a contradiction.
Case (II): First, we will show that limn→∞ x (n) = 0. Indeed, on the contrary,

there exists a constant b > 0 such that x (n) ≥ b > 0. Summing up (2.2) from n3
to n− 1, we get

−a (n) ∆x (n) ≥ bβ
n−1∑
s=n3

q(s).

Summing up the last inequality from n3 to ∞, we obtain

x (n3) ≥ bβ
∞∑

u=n3

1

a (u)

∞∑
s=u

q(s) = bβ
∞∑

u=n3

R(s)q(s) =∞,

which is a contradiction. Therefore, limn→∞ x (n) = 0.
Now, since

x (n) ≥ −
∞∑
s=n

a (s) ∆x(s)

a (s)
≥ −

( ∞∑
s=n

1

a (s)

)
a (n) ∆x(n)

= −R(n)a (n) ∆x(n),

we have
x (n) +R(n)a (n) ∆x(n) > 0. (2.5)

Thus, it follows that

∆

(
x(n)

R(n)

)
=
R(n)∆x(n) + x(n)

a(n)

R(n+ 1)R(n)
≥ 0,

i.e. x(n)/R(n) is eventually nondecreasing. Therefore,

x(n+ 1)

R(n+ 1)
≥ x(n)

R(n)
. (2.6)

It is easy to see that equation (1.1) is equivalent to the equation

∆ (a (n) ∆x (n)R(n+ 1) + x(n+ 1)) +R(n+ 1)q(n)xβ (g(n)) = 0. (2.7)

Now, in view of (2.6) and (2.5), we have

a (n) ∆x (n)R(n+ 1) + x(n+ 1) ≥ a (n) ∆x (n)R(n+ 1) +
R(n+ 1)

R(n)
x(n)

=

(
a (n) ∆x (n)R(n) + x(n)

R(n)

)
R(n+ 1) > 0.

Summing up (2.7) from n to u and letting u→∞, we get

a (n) ∆x (n)R(n+ 1) + x(n+ 1) ≥
∞∑
s=n

R(s+ 1)q(s)xβ (g(s)) . (2.8)
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Using the fact that x is nonincreasing, we have

a (n) ∆x (n)R(n+ 1) + x(n) ≥
∞∑
s=n

R(s+ 1)q(s)xβ (g(s)) . (2.9)

On the other hand, summation of (1.1) from n2 to n− 1 yields

− a (n) ∆x (n) ≥
n−1∑
s=n2

q(s)xβ (g(s)) . (2.10)

Combining (2.9) and (2.10), we get

x(n) ≥ R(n+ 1)

n−1∑
s=n2

q(s)xβ (g(s)) +

∞∑
s=n

R(s+ 1)q(s)xβ (g(s)) .

Therefore,

x(g(n)) ≥ R(g(n) + 1)

g(n)−1∑
s=n2

q(s)xβ (g(s)) +

n−1∑
s=g(n)

R(s+ 1)q(s)xβ (g(s))

+

∞∑
s=n

R(s+ 1)q(s)xβ (g(s)) . (2.1)

Taking into account the fact that x(n)/R(n) is nondecreasing, we obtain

x(g(n))

xβ(g(n))
≥ R(g(n) + 1)

g(n)−1∑
s=n2

q(s) +

n−1∑
s=g(n)

R(s+ 1)q(s)

+R−β(g(n))

∞∑
s=n

R(s+ 1)q(s)Rβ(g(s)).

Taking lim sup as n → ∞ on both sides of the above inequality, we are led to a
contradiction with (2.1).

The proof of the theorem is complete.

Theorem 2.2. Assume that (1.2) and (1.4) hold. If

lim sup
n→∞

n−1∑
s=g(n)

R(s+ 1)q(s) >

1, if β = 1

0, if β ∈ (0, 1)
, (2.12)

then all solutions of (1.1) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x (n))t≥t0−m is a nonoscilla-
tory solution of (1.1). Then, it is either eventually positive or eventually negative.
As (−x (n))n≥n0−m is also a solution of (1.1), we may restrict ourselves only to
the case where x(n) > 0 for all large n. Let n1 ≥ n0 −m be an integer such that
x(n) > 0 for all n ≥ n1. Then, there exists n2 ≥ n1 such that x(g(n)) > 0, ∀n ≥ n2.
In view of this, equation (1.1) becomes

∆ (a (n) ∆x (n)) = −q(n)xβ (g(n)) ≤ 0, n ≥ n2,
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which means that a (n) ∆x (n) is nonincreasing and of one sign. Therefore, there
exists a n3 ≥ n2 such that

∆x (n) > 0, n ≥ n3, Case (I)

or
∆x (n) < 0 and ∆ (a (n) ∆x (n)) ≤ 0, n ≥ n3, Case (II).

Case (I): We are led to a contradiction (see the proof of Theorem 2.1).
Case (II): As in the proof of Theorem 2.1, (2.5) is satisfied, i.e.

x (n) +R(n)a (n) ∆x(n) ≥ 0.

Thus,
0 ≤ x (g(n)) +R(g(n))a (g(n)) ∆x(g(n)) ≤ x (g(n)) .

Set
W (n) = x (n+ 1) +R(n+ 1)a (n) ∆x(n) ≤ x (n+ 1) ≤ x(n).

Therefore,
∆W (n) +R(n+ 1)q (n)W β (g(n)) ≤ 0.

Summing up the last inequality from g(n) to n− 1, we get

W (g(n)) ≥
n−1∑
s=g(n)

R(s+ 1)q (s)W β (g(s)) ≥W β (g(n))

n−1∑
s=g(n)

R(s+ 1)q (s) ,

or
W (g(n))

W β (g(n))
≥

n−1∑
s=g(n)

R(s+ 1)q (s) .

Taking lim sup as n → ∞ on both sides of the above inequality, we are led to a
contradiction with (2.12).

The proof of the theorem is complete.

2.2. Equation (1.1) with advanced argument

Theorem 2.3. Assume that (1.3) and (1.4) hold. If

lim sup
n→∞


R (g(n) + 1)

∑n−1
s=n0

q(s)

+R (g(n) + 1)R−β(g(n))
∑g(n)−1
s=n q(s)Rβ(g(s))

+R−β(g(n))
∑∞
s=g(n)R(s+ 1)q(s)Rβ(g(s))

 >

1, if β = 1

0, if β ∈ (0, 1)
,

(2.13)
then all solutions of (1.1) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x (n))n≥n0−m is a nonoscilla-
tory solution of (1.1). Then, it is either eventually positive or eventually negative.
As (−x (n))n≥n0−m is also a solution of (1.1), we may restrict ourselves only to
the case where x(n) > 0 for all large n. Let n1 ≥ n0 −m be an integer such that
x(n) > 0 for all n ≥ n1. Then, there exists n2 ≥ n1 such that x(g(n)) > 0, ∀n ≥ n2.
In view of this, equation (1.1) becomes

∆ (a (n) ∆x (n)) = −q(n)xβ (g(n)) ≤ 0, n ≥ n2,
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which means that a (n) ∆x (n) is nonincreasing and of one sign. Therefore, there
exists a n3 ≥ n2 such that:

∆x (n) > 0, n ≥ n3, Case (I)

or
∆x (n) < 0 and ∆ (a (n) ∆x (n)) ≤ 0, n ≥ n3, Case (II).

Case (I): We are led to a contradiction (see the proof of Theorem 2.1).
Case (II): As in the proof of Theorem 2.1, (2.8 and (2.9) are satisfied. Combining

(2.8) and (2.9), we have

x(g(n)) ≥ R(g(n) + 1)

n−1∑
s=n2

q(s)xβ(g(s)) +R(g(n) + 1)

g(n)−1∑
s=n

q(s)xβ(g(s))

+

∞∑
s=g(n)

R(s+ 1)q(s)xβ(g(s)).

Taking into account the fact that x(n)/R(n) is nondecreasing, we obtain

x(g(n))

xβ(g(n))
≥ R(g(n) + 1)

n−1∑
s=n0

q(s) +R(g(t) + 1)R−β(g(n))

g(n)−1∑
s=n

q(s)Rβ(g(s))

+R−β(g(n))

∞∑
s=g(n)

R(s+ 1)q(s)Rβ(g(s)).

Taking lim sup as n → ∞ on both sides of the above inequality, we are led to a
contradiction with (2.13).

The proof of the theorem is complete.

3. Examples

In this section, we provide two examples to illustrate our main results.

Example 3.1. Consider the second-order retarded difference equation

∆ (n(n+ 1)∆x (n)) +
α

n
xβ (n−m+ 1) = 0, n ≥ n0 > 1, (3.1)

where α is a positive real number and m > 1 is a positive integer.
Here, a (n) = n(n+ 1). Thus,

R(n) :=

∞∑
s=n

1

a (s)
=

∞∑
s=n

1

s(s+ 1)
=

1

n
.

That is, (1.4) holds.
Hence, (2.1) takes the form

lim sup
n→∞

 α
n−m+2

∑n−m
s=n0

1
s +

∑n−1
s=n−m+1

α
s(s+1)

+ (n−m+ 1)
β∑∞

s=n (s−m+ 1)
−β α

s(s+1)

 ≥ ∞∑
s=n0

α

s(s+ 1)
=

α

n0
.

That is, all conditions of Theorem 2.1 are satisfied if α > n0. Consequently, if
α > n0, then all solutions of (3.1) are oscillatory.
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Example 3.2. Consider the second-order advanced difference equation

∆ (n(n+ 1)∆x (n)) +
α

n
xβ (n+m+ 1) = 0, n ≥ n0 > 1, (3.2)

where α is a positive real number and m > 1 is a positive integer.
Here, a (n) = n(n+ 1). Therefore, R(n) = 1/n, i.e. (1.4) holds.
Hence, (2.13) takes the form

lim sup
n→∞


α

n+m+2

∑n−1
s=n0

1
s

+ 1
n+m+2 (n+m+ 1)

β∑n+m
s=n

α
s (s+m+ 1)

−β

+ (n+m+ 1)
β∑∞

s=n+m+1 (s+m+ 1)
−β α

s(s+1)


≥

∞∑
s=n0

α

s(s+ 1)
=

α

n0
.

That is, all conditions of Theorem 2.3 are satisfied, if α > n0. Consequently, if
α > n0, then all solutions of (3.2) are oscillatory.

4. Concluding remarks

The results of this paper is presented in a form, which is essentially new. Contrary
to the most existing results for second-order difference equations in the noncanonical
form, oscillation of the studied equation is attained via only one condition.

It will be of interest to investigate on the higher-order difference equations of
the form

∆
(
a (n) ∆m−1x (n)

)
+ q(n)xβ (g(n)) = 0, n ≥ n0 ≥ 0, m > 2,

where (a (n))n≥n0
, q(n) and (g (n))n≥n0

are as in equation (1.1).
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