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Nonlocal Interaction Induces the Self-organized
Mussel Beds∗

Guiquan Sun1,2,†, Shumin Liu2, Li Li3,4, Jing Li5 and Zhen Jin2

Abstract Mussel beds are important habitats and food sources for biodiver-
sity in coastal ecosystems. The predation of mussel on algae depends not only
on the current time and location, but also on the quantity of algae at other
spatial location and time. To know the impacts of such predation behavior on
the dynamics of mussel beds well, we pose a reaction-diffusion mussel-algae
model coupling nonlocal interaction with kernel function. By calculating the
critical conditions of Hopf bifurcation and Turing bifurcation, the conditions
for the generation of Turing pattern are obtained. We find that the diffusion
rate and predation rate of mussels have effect on the structure and density of
spatial pattern of mussels under the nonlocal interaction, and the predation
rate of mussels can produce different pattern types, while the diffusion rate
plays a more important role on the pattern density. Moreover, the nonlocal in-
teraction promotes the stability of the mussel beds. These results suggest that
the nonlocal interaction between mussels and algaes is one of the important
mechanisms for the formation of the spatial structure of mussel beds.

Keywords Nonlocal interaction, Mussel-algae system, Hopf bifurcation, Tur-
ing pattern, Multi-scale analysis.
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1. Introduction

Mussel beds provide an important habitat of biodiversity and food source of ma-
rine ecosystem, and the stability of mussel beds play an important role in marine
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ecosystem. Therefore, it is of great significance to mussel beds [20, 22, 23, 27, 45].
Mussels that accumulating in soft sediments usually survive by feeding on algaes
which in the lower water layers [38, 42]. Since mussel is largely dependent on the
density of the algae for their survival, and the low density of algae maybe leads
to the depletion of the mussel beds [8]. In addition, in order to compete for the
algae, the mussel usually tend to cluster in the water where the algae gathers [23].
Given that the algae is the main food source of mussel population, many ecolo-
gists and mathematicians have thus focused on the interaction between mussel and
algae [3, 23,30,40].

Experimental studies have shown that mussel gathers to form different spatial
distributions due to competition and survival [30], and such phenomenon is called a
self-organizing behavior, which is of great significance to the stability existence and
restoration of ecological environment [12,18,21,32–34,44]. In fact, mussel population
develops self-organizing patterns in two different spatial scales: mussel population
forms linear clusters driven by individuals’ aggregation behaviors in small spatial
scale, which is a rapid process, namely about a day [22,25]; while mussel population
produce large, regular zones perpendicular to the flow of water in large spatial scale
based on the ecological feedback mechanism (local promotion of algae and large-
scale competition of mussel) [30]. The coupling of two forms of self-organization
enhances the persistence and robustness of mussel beds compared to non-organized
river beds. Therefore, it is necessary to study pattern formation mechanism of
mussel beds [30]. Van de Koppel et al. studied the mussel-algae system by using
the reaction-diffusion-advection equation [23] for the first time:

∂A

∂t
= (Aup −A)f − c

h
AM − V ∂A

∂X
,

∂M

∂t
= ecAM − dM

kM
kM +M

M +D
∂2M

∂X2
.

(1.1)

This paper mainly reported regular spatial pattern of young mussel beds on soft
sediments in the Wadden Sea [24]. It has been also proposed that the scale depen-
dent mechanism leads to the spatial self-organization of mussels, which provides a
possible explanation for the spatial pattern. Based on this model, Wang et al. ana-
lyzed the differential-flow instability conditions that cause the formation of spatial
patterns and the influence of parameters on the spatial pattern, and it has also been
found that the spatial pattern is the result of the interaction of nonlinear terms [40].
The following literature mainly considered that movement of the algae depends on
the flow of water, while ignore the random diffusion of the algae. Thus, a new model
with respect to random diffusion of the algae was proposed by Cangelosi et al. [3]:

∂A

∂t
= (Aup −A)ρ− c

H
AM − V ∂A

∂X
+DA4A,

∂M

∂t
= ecAM − dM

kM
kM +M

M +DM4M,
(1.2)

the interaction between the young mussel beds and algaes has been studied by
using the weak nonlinear diffusion instability analysis method, and the transverse
diffusion coefficient of algae which introduced in this system has been obtained by
using the spectral analysis method [3].

In fact, many scholars have studied the spatial pattern formed by biological
interaction, which has important significance for exploring the possibility of coexis-
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tence, persistence and stability among species [14,19,35,36,39]. Many factors that
influencing the type and formation mechanism of the spatial pattern have been s-
tudied and considered, such as: time delay, noise, spatiotemporal delay, nonlocal
effect and so on [2, 6, 17, 26, 46, 47]. As for the mechanism of mussel’s spatial pat-
tern due to self-organizing, there are two possible explanations. The one is scale
dependent mechanism, which was proposed by Koppel et al. in 2005. He pointed
out that short distance can promote each other between mussels protection from
the impact of waves and currents, and long distance is beneficial for high density
mussels to compete algae so as to induce the spatial pattern [23]. The other one
is sediment accumulation mechanism, which was proposed by Liu et ai. in 2012,
indicating that there is a positive feedback effect between sediment accumulation
and mussel growth [1, 25, 27, 43]. The prediction of self-organized spatial pattern
and study of its formation mechanism have important influence on the improvement
of ecosystem productivity and the maintenance of biodiversity [40].

Above all analysis and researches are under the effect of local interaction, in
fact, due to the dispersal of the population itself and movement under the action
of the wave, the nonlocal effect is very common in the coastal ecosystem. In fact,
nonlocal interactions between populations have been introduced and studied not
only in coastal systems, but also in many systems [10, 28, 29, 31, 41, 48]. As we
know, mussels move in all directions of space to feed on the algae. Therefore,
in this paper, we will introduce the nonlocal interaction item in the mussel-algae
system to describe the spatial dynamics of mussels so as to describe the interaction
between them from the more perspectives. Meanwhile, it provides more possibility
explanations for the study of the spatial pattern.

The rest of this paper is introduced as follows: In the second part, a new mussel-
algae system with nonlocal interaction is constructed. In the third part, we carry
out the dynamics analysis to give the occurrence conditions of Hopf bifurcation
and Turing instability. In the fourth part, we use the multi-scale analysis method
to obtain the amplitude equation under different conditions of Turing instability.
In the last part, numerical simulations are utilized to verify the above theoretical
results. Besides, various Turing patterns are shown.

2. Mathematical model

In this section, we introduce the nonlocal interaction term into the mussel-algae
system proposed by Van de Koppel et al. [23] and construct a new model. Then,
we further analyze the conditions for the system to giving rise to Hopf bifurcation
and Turing instability.

It is well-known that the nonlocal reaction-diffusion equation can reflect the in-
teraction between populations more accurately and objectively [4, 13, 15, 37]. Non-
local interaction is common in coastal ecosystems. The previous analysis and re-
searches considered that algaes are captured by mussels at the same location and
time. In fact, it is worth noting that the mussels feed on algae are not only related
to the current position and time, but also depend on the density of algae on the
whole space at different time, and that is mussels can prey on algae at different
time throughout the whole space. As shown in Figure 1, the mussels can not only
feed on nearby algaes, but also prey on other algaes in the lower layer through
self-diffusion and water flow. Now, we describe the phenomenon by the following
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nonlocal interaction term:∫ t

−∞

∫
R2

K(x− y, t− s)A(y, s)dsdy,

and the kernel function is

K(x, t) =
1

4πt
e−

|x|2
4t

1

τ
e−

t
τ ,

we use the above kernel function to describe the spatial nonlocal interaction of the
mussel at the time of t− s and the position of x− y capturing the algae at the time
of s and the position of y.

Figure 1. Algae distributes in the lower layer water, the mussel does not only prey on the algae in the
local area due to local action, but also may prey on algae in other parts of the space.

In order to depict the non-local predation of the mussel for algae in whole space
and at different time, we introduce a nonlocal interaction term into the mussel-algae
system proposed by Van de Koppel et al. [23]:

∂M

∂t
= DM4M + ec(

∫ t

−∞

∫
R2

K(x− y, t− s)A(y, s)dsdy)M − dM
kM

kM +M
M,

∂A

∂t
= DA4A+ (Aup −A)ρ− c

H
(

∫ t

−∞

∫
R2

K(x− y, t− s)A(y, s)dsdy)M,

(2.1)
whereM is the density of mussel, A is the density of algae,4 = ∂

∂X2 + ∂
∂Y 2 represents

Laplace operator of classical random diffusion, e is a conversion constant relating
ingested algae to mussel biomass production, c is the consumption constant, dM is
the maximal per capita mussel mortality rate, kM is the value of mussel at which
mortality is half maximal, Aup describes the uniform concentration of algae in the
upper reservoir water layer, is the rate of exchange between the lower and upper
water layers, H is the height of the lower water layer, V is the speed of the tidal
current assumed to be acting in the positive X-direction and DM and DA are the
motility and lateral diffusion coefficients of the mussel and algae.

To analyze the dynamics of the spatial pattern, we transform a two-dimensional
system into a three-dimensional reaction-diffusion system by using the method de-
scribed in literature [5, 7, 9, 11] to deal with nonlocal interaction term. Let

V (x, t) =

∫ t

−∞

∫
R2

K(x− y, t− s)A(y, s)dsdy,
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and then system (2.1) is transformed into the following form:

∂M

∂t
= DM4M + ecVM − dM

kM
kM +M

M,

∂A

∂t
= DA4A+ (Aup −A)ρ− c

H
VM,

∂V

∂t
= ∆V +

1

τ
(A− V ).

(2.2)

To reduce the parameters and simplify the system, we introduce dimensionless
variables and parameters in the system (2.2),

(x, y) = (X,Y )

√
ω

DA
, s = dM t, m =

1

kM
M, a =

1

Aup
A, v =

1

Aup
V,

with ω = ckM
H , and

α =
ρ

ω
, β =

dM
ω
, γ =

1

dMτ
, r =

ecAup
dM

, µ1 =
DM

βDA
, u2 =

1

βDA
,

the system (2.2) can be rewritten as

∂m

∂t
= µ1∆m+ rvm− m

1 +m
,

∂a

∂t
=

1

β
4a+

α

β
(1− a)− 1

β
vm,

∂v

∂t
= µ2∆v + γ(a− v).

(2.3)

In the system (2.3), all parameters are not less than 0 based on the actual
biological significance. Next, we mainly carry out dynamic analysis on system
(2.3) to obtain the existence conditions for generating Hopf bifurcation and Turing
instability.

3. Dynamic analysis

3.1. Local stability at equilibrium point E0

When there is no diffusion, the ordinary differential system corresponding to the
system (2.3) is 

dm

dt
= rvm− m

1 +m
,

da

dt
=

1

β
(1− a)α− 1

β
vm,

dv

dt
= γ(a− v).

(3.1)

We get two equilibrium points of system (3.1): E0 = (0, 1, 1), E∗ = (m∗, a∗, v∗) =
(α r−1

1−αr ,
1−αr
r(1−α) ,

1−αr
r(1−α) ), where E0 represents exposed coastal rocks without mussel-

s, and the equilibrium point E∗ is the coexistence of the mussel and the algae.
From a biological point of view, the densities of the mussel and the algae cannot be
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negative. Therefore, if the condition (J1) 0 < α < 1 and 1 < r < 1
α ; or (J2) α > 1

and 1
α < r < 1 is satisfied, the m∗, a∗, v∗ are all greater than 0. Then, we know

that E∗ is a positive equilibrium point.
Next, we analyze the local stabilities of equilibrium points E0 and E∗. The

Jacobian matrix at E0 is

JE0 =


r − 1 0 0

− 1
β −

1
β 0

0 γ −γ

 .

The characteristic equation corresponding to this matrix is

(λ− r + 1)(λ+
1

β
)(λ+ γ) = 0.

We get the characteristic roots λ1 = r − 1, λ2 = − 1
β and λ3 = −γ, only when

the condition J2 is satisfied, all eigenvalues have negative real parts. Then, E0 is
locally asymptotically stable. However, E0 becomes unstable when J1 is satisfied.
According to the actual biological meaningful, the study is more meaningful, when
E0 becomes unstable. Then, we mainly analyze the condition J1.

3.2. Local stability at equilibrium point E∗

For the system (2.3), we can get the linearized model at equilibrium point E∗ as
follows: 

∂m

∂t
= b11m+ b12a+ b13v + µ14m,

∂a

∂t
= b21m+ b22a+ b23v +

1

β
4a,

∂v

∂t
= b31m+ b32a+ b33v + µ24v,

(3.2)

where

b11 =
(1− αr)α(r − 1)

(1− α)2
, b12 = 0, b13 =

αr(r − 1)

1− αr
,

b21 =− 1− αr
βr(1− α)

, b22 = −α
β
, b23 = − α(r − 1)

β(1− αr)
,

b31 =0, b32 = γ, b33 = −γ.

Next, we analyze the spatiotemporal dynamic behavior of system (3.2) by con-
ducting nonuniform perturbations at equilibrium point E∗:

m

a

v

 =


m∗

a∗

v∗

+ ε


C1
k

C2
k

C3
k

 exp(λt+ i−→κ ·
−→
ζ ) + c.c.+ o(ε2), (3.3)

where λ is the growth rate of perturbations in time t, i is the imaginary unit
satisfying i2 = −1, κx · κy = k2 and k is the wave number (k may not be an
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integer), ζ = (x, y) is the spatial vector in two dimensions. Then, we can obtain
the characteristic equation:∣∣∣∣∣∣∣∣∣

b11 − µ1k
2 − λ b12 b13

b21 b22 − 1
βk

2 − λ b23

b31 b32 b33 − µ2k
2 − λ

∣∣∣∣∣∣∣∣∣ = 0, (3.4)

which is equivalent to

λ3 + b1(k)λ2 + b2(k)λ+ b3(k) = 0, (3.5)

with

b1(k) =(µ1 +
1

β
+ µ2)k2 +

α

(α− 1)2
(αr2 + αγ − αr +

α2

β
− 2γ − r − 2α2

β

+
1

β
+ 1 +

γ

α
),

b2(k) =
(βµ1µ2 + µ1 + µ2)

β
k4 +

1

β(α− 1)2
(α2βµ2r

2 + α2βγµ1 − α2βµ2r + α3mu1

+ α3mu2 + α2r2 − 2αβγµ1 − αβµ2r + α2γ − 2α2µ1 − 2α2µ2 − α2r + αβµ2

+ βγµ1 − αr + γ + αµ1 + αµ2 + α− 2αγ)k2 +
α

(α− 1)2β(αr − 1)
(α2βγr3

+ α3r3 − α2βγr2 − α+ α3γr − α3r2 − 2αβγr2 − 3α2γr − 2α2r2 + 2αβγr

+ 2α2r + 3αγr + βγr + αr − βγ − γr),

b3(k) =
µ1µ2

β
k6 +

1

β(α− 1)2
(α3µ1µ2 + α2µ2r

2 + α2µ1γ − 2α2µ1µ2 − α2µ2r − γ

− 2αγµ1 + αµ1µ2 − αµ2r + αµ2 + µ1γ)k4 +
α

(α− 1)2β(αr − 1)
(α3r3µ2

+ α3γµ1r − α3µ2r2 + α2γr3 − 3α2γµ1r − alpha2r2γ − 2α2µ2r
2 − αµ2 + γr

+ 3αγµ1r − 2αγr2 + 2αγr + αµ2r − γµ1r + 2α2µ2r)k
2 +

γα(r − 1)(αr − 1)

β(α− 1)
.

Further, we can give

b1(k) · b2(k)− b3(k) = y3k
6 + y2k

4 + y1k
2 + y0,

where

y3 =
(µ1 + µ2)(βµ2 + 1)(βµ1 + 1)

β2
,

y2 =
1

β2(α− 1)2
(2α2β2µ1µ2r

2 + α2β2µ2
2r

2 + α2β2γµ2
1 + 2α2β2γµ1µ2 − 2α2β2µ1µ2r

− αr + α+ 2α3βµ2
1 + α3βµ2

2 + 2α2βµ1r
2 + 2α2βµ2r

2 − 2αβ2γµ2
1 + α3βµ2

1

− 2αβ2µ1µ2r + γ − αβ2µ2
2r + 2α2βγµ1 + 2α2βγµ2 − 2α2β − 4α2βµ1µ2

− 2α2βµ1r − 2α2βµ2
2 − 2α2βµ2r + 2αβ2µ1µ2 + αβ2µ2

2 + β2γµ2
1 + 2β2γµ1µ2

+ 2α3µ1 + 2α3µ2 + α2r2 − 4αβγµ1 − 2αγ − 4αβγµ2 + αβµ2
1 + 2αβµ1µ2
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+ 2αµ1 + αβµ2
2 − 2αβµ2r + α2γ − 4α2µ1 − 4α2µ2 − rα2 + 2αβµ1 + 2αβµ2

+ 2βγµ1 + 2βγµ2 − 2αβµ1r + 2αµ2 − α2β2µ2
2r − 4αβ2γµ1µ2),

y1 =
1

β2(α− 1)4(αr − 1)
(r(µ1 + µ2)α7 + (2r(r2 + γ − r)(µ1 + µ2)β − 2r2 + (−4µ1

− 4µ2 + 2γ)r + 2r3 − µ1 − µ2)α6 + ((α4µ2 − 2r3µ2 + ((2µ1 + µ2)γ + µ2)r2

− 2γ(µ1 + µ2)r + µ1γ
2)rβ2 + (r5 − 2r4 + (−4µ1 − 4µ2 + 2γ + 1)r3 − 2r2γ

+ (γ2 + (−8µ1 − 9µ2)γ + 4µ1 + 4µ2)r − 2γ(µ1 +
1

2
µ2))β − 4r3 + (6µ1 + 6µ2

− 9γ + 4)r + 4µ1 + 4µ2 − γ)α5 + ((−3r4µ2 + ((−4µ1 − 4µ2)γ + 6µ2)r3 − 3µ2r
2

− 4γ(µ1γ − µ1 − µ2)r − µ1γ
2)β2 + (−3r4 + (2µ1 + 2µ2 − 4γ + 6)r3 + (6µ1

+ 6µ2 − 3)r2 + (−4γ2 + (12µ1 + 16µ2 + 4)γ − 6µ1 − 6µ2)r − γ2 + (8µ1 + 4µ2)γ

− 2µ1 − 2µ2)β + 2r3 + 6r2 + (−4µ1 − 4µ2 + 16γ − 6)r − 6µ1 − 6µ2 + 4γ − 2)α4

+ ((((2µ1 + 2µ2)γ + 3µ2)r3 + ((6µ1 + 6µ2)γ − 6µ2)r2 + (6µ1γ
2 + 3µ2 + (−6µ1

− 6µ2)γ)r + 4γ(µ1γ −
1

2
µ1 −

1

2
µ2))β2 + ((2γ + 3)r3 + (−4µ1 − 4µ2 + 6γ − 6)r2

+ (3 + 6γ2 + (−8µ1 − 14µ2 − 6)γ)r + 4γ2 + (−12µ1 − 6µ2 − 2)γ + 4µ1 + 4µ2)β

− 4r2 + (µ1 + µ2 − 14γ)r + 4µ1 + 4µ2 − 6γ + 4)α3 + ((((−4µ1 − 4µ2)γ − µ2)r2

+ (−4µ1γ
2 + 2µ2)r − 6µ1γ

2 + (4µ1 + 4µ2)γ − µ2)β2 + ((−4γ − 1)r2 + (−4γ2

+ (2µ1 + 6µ2)γ + 2µ1 + 2µ2 + 2)r − 6γ2 + (8µ1 + 4µ2 + 4)γ − 2µ1 − 2µ2 − 1)β

+ (6γ + 2)r − µ1 − µ2 + 4γ − 2)α2 + (((µ1γ + 2µ1 + 2µ2)r + 4µ1γ − 2µ1

− 2µ2)β2 + ((−µ2 + γ + 2)r − 2µ1 − µ2 + 4γ − 2)β − r − 1)γα− βγ2(βµ1 + 1)),

y0 =h2γ
2 + h1γ + h0,

with

h2 =
α

β(α− 1)4(αr − 1)
(α4βr3 − α4βr2 − 2α3βr3 + α5r + α2βr3 − 5α4r

+ 2α3βr + 3α2βr2 + 10α3r − 3α2βr − 2αβr2 − α2β − 10α2r + 2αβ

+ 5αr + β2r − β2 − βr),

h1 =
α

β2(α− 1)4(αr − 1)
(α4β2r5 − 2α4β2r4 + 2α5βr3 + α4β2r3 − 3α3β2r4 − 2α5βr2

+ 6α6r − 4α4βr3 + 6α3β2r3 + α4βr2 − 3α3β2r2 + 2α3βr3 + 3α2β2r3 − 5α5r

+ 3α4βr − αβ2 − 6α2β2r2 + 10α4r − 4α3βr + 3α2β2r − α2βr2 − αβ2r2 − α3β

− 10α3r + 2αβ2r + βr + α2β + 5α2r + 3α3βr2 + αβ − αr − αβr2 − β),

h0 =
α

β2(α− 1)4(αr − 1)
(α5βr5 − 2α5βr4 + α6r3 + α5βr3 − 3α4βr4 − α6r2 − 2α5r3

+ α2r + α4r3 + α3βr3 + 2α4r + 3α4r2 − 6α3βr2 − 3α4r + 3α5βr − 2α3r2

− α2βr2 − α2β + 6α4βr3 − 3α4βr2 − α2 − α4 + 2α2βr + 2α3).

It can be drawn from the practical biological significance of the parameters:
y3 > 0.
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When we don’t consider space diffusion, namely k = 0, we can get

b1(0) =
1

β(α− 1)2
((α2β − 2αβ + β)γ + α3 − 2α2 + (r2 − r)βα2 + (1 + (−r + 1)β)α),

b2(0) =
α

(α− 1)2β(αr − 1)
(α2βγr3 + α3r3 − α2βγr2 + α3γr − α3r2 − 2αβγr2

− 3α2γr − α+ 2α2r + 3αγr + βγr + αr − βγ − γr − 2α2r2 + 2αβγr),

b3(0) =
α(αr − 1)(r − 1)γ

β(α− 1)
.

Let f(k) = b1(k)·b2(k)−b3(k), and then we can get: f(0) = b1(0)·b2(0)−b3(0) =
y0.

Next, we analyze the local stability at the coexistence equilibrium point E∗ of
system (3.1). Through calculation, the corresponding characteristic equation of the
Jacobian matrix at E∗ is:

λ3 + b1(0)λ2 + b2(0)λ+ b3(0) = 0.

Theorem 3.1. For the system (3.1), if
(H1) (α2β − 2αβ + β)γ + α3 − 2α2 + (r2 − r)βα2 + (1 + (−r + 1)β)α > 0; or
(H2) (i) h2 > 0, h1 > 0, h0 > 0, h2

1 − 4h2h0 > 0, and γ ∈ (0,+∞); or

(ii) h2 > 0, h0 < 0, and γ ∈ (
−h1+

√
h2
1−4h2h0

2h2
,+∞); or

(iii) h2 > 0, h1 < 0, h0 > 0, h2
1 − 4h2h0 > 0, and

γ ∈ (0,
−h1−

√
h2
1−4h2h0

2h2
) ∪ (

−h1+
√
h2
1−4h2h0

2h2
,+∞);or

(iv) h2 > 0, h0 > 0, h2
1 − 4h2h0 < 0 and γ ∈ (0,+∞); or

(v) h2 > 0, h0 > 0, h2
1 − 4h2h0 = 0 and γ ∈ (0,− h1

2h2
) ∪ (− h1

2h2
,+∞); or

(vi) h2 < 0, h0 > 0, γ ∈ (0,
−h1+

√
h2
1−4h2h0

2h2
); or

(vii) h2 < 0, h0 < 0, h2
1 − 4h2h0 > 0, and γ ∈ (

−h1−
√
h2
1−4h2h0

2h2
,
−h1+

√
h2
1−4h2h0

2h2
);

or
both of the above two conditions H1 and H2 are true, then the coexistence equilibrium
point E∗ of system (3.1) is locally asymptotically stable.

Proof. From H1, we can get b1(0) > 0, and from the conditions of the existence
of E∗, we know b3(0) > 0. However, the sign of f(0) is uncertain. Then, we mainly
discuss the sign of f(0) in the following:

(i) If h2 > 0, h1 > 0 and h0 > 0 hold, it is easy to get f(0) > 0 for any γ > 0
(see Figure 2(a));

Suppose that the roots of the quadratic function f(0) = 0 are γ1 =
−h1+

√
h2
1−4h2h0

2h2

and γ2 =
−h1−

√
h2
1−4h2h0

2h2
.

(ii) From the second condition in H2, we know
√
h2

1 − 4h2h0 > |h1|, and then
γ2 < 0 < γ1 is obtained. Therefore, we get f(0) > 0 because of h0 < 0 and γ > γ1

(see Figure 2(b)).

(iii) From the third condition in H2, we know 0 < γ2 < γ1. According to the

properties of quadratic function, we get f(0) > 0, when γ ∈ (0,
−h1−

√
h2
1−4h2h0

2h2
) ∪

(
−h1+

√
h2
1−4h2h0

2h2
,+∞) (see Figure 2(c)).
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(iv) From the fourth condition in H2, we know γ1 = γ2 = − h1

2h2
. Based on

h0 > 0, we get f(0) > 0, when γ ∈ (0,− h1

2h2
) ∪ (− h1

2h2
,+∞) (see Figure 2(d)).

(v) From the fifth condition inH2, there is no intersection point between quadrat-
ic function f(0) and x-axis. Then, f(0) > 0 holds for γ > 0 because of h0 > 0 (see
Figure 2(e)).

(vi) From the sixth condition in H2, we can give
√
h2

1 − 4h2h0 > |h1|, which

means γ2 < 0 < γ1. Therefore, when γ ∈ (0,
−h1+

√
h2
1−4h2h0

2h2
), we get f(0) > 0 due

to h0 > 0 (see Figure 2(f)).

(vii) From the seventh condition in H2, we get 0 < γ2 < γ1. Therefore, when

γ ∈ (
−h1−

√
h2
1−4h2h0

2h2
,
−h1+

√
h2
1−4h2h0

2h2
), we get f(0) > 0 because of h0 < 0 (see

Figure 2(g)).

Through the above analysis, as long as one condition in H2 holds, one can obtain
f(0) > 0. Then, E∗ of system (3.1) is locally asymptotically stable based on the
Routh−Hurwitz criterion.

(a)

f(0)

2 1
0

(b)

f(0)

0
2 1

(c)

f(0)

0
12

(d)

0

f(0)

-h
1
/2h

2

(e)

f(0)

0 -h
1
/2h

2

(f)

0

f(0)

12

(g)

f(0)

0
2 1

Figure 2. Schematic diagrams of the quadratic function f(0) in Theorem 3.1: (a) h2 > 0, h1 > 0,

h0 > 0, h2
1 − 4h2h0 > 0; (b) h2 > 0, h0 < 0; (c) h2 > 0, h1 < 0, h0 > 0, h2

1 − 4h2h0 > 0; (d) h2 > 0,

h0 > 0, h2
1 − 4h2h0 = 0; (e) h2 > 0, h0 > 0, h2

1 − 4h2h0 < 0; (f) h2 < 0, h0 > 0; (g) h2 < 0, h0 < 0,

h2
1 − 4h2h0 > 0.

3.3. Conditions for the generation of Hopf bifurcation and
Turing instability

Theorem 3.2. When system (3.1) satisfies both of the following conditions:
(H1) (α2β − 2αβ + β)γ + α3 − 2α2 − (r2 − r)βα2 + (1 + (−r + 1)β)α > 0;
(H3) : h2γ

2 + h1γ + h0 = 0;
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then system (3.1) undergoes Hopf bifurcation at the coexistence equilibrium point
E∗.

Proof. b3(0) = γα(r−1)(αr−1)
β(α−1) > 0 holds due to the conditions for the existence

of E∗. If condition H1 holds, then b1(0) > 0. From condition H3, we can get
f(0) = 0. According to the theorem in literature [9, 17], when b1(0) > 0, b3(0) > 0
and f(0) = 0 are satisfied, the Hopf bifurcation can be generated at E∗ for system
(3.1).

Meanwhile, we can get the critical bifurcation line H: f0 = h2γ
2 +h1γ+h0 = 0.

Next, we study the influence of space diffusion on the coexistence equilibrium
point E∗ of system (3.2). According to the condition of local stability in Theorem
3.1, then b1(k) = (µ1 + 1

β + µ2)k2 + b1(0) > 0 holds. However, the signs of b3(k)

and f(k) are uncertain. Then, we analyze these two expressions in the following.
Let z = k2 and F1(z) = b3(k), and then

F1(z) = f3z
3 + f2z

2 + f1z + f0, (3.6)

where

f3 =
1

β
µ1µ2,

f2 =
1

β(α− 1)2
(α3µ1µ2 + α2µ2r

2 + α2µ1γ − 2α2µ1µ2 − α2µ2r − 2αγµ1 + αµ1µ2 − αµ2r

+ αµ2 + µ1γ),

f1 =
α

(α− 1)2β(αr − 1)
(α3r3µ2 + α3γµ1r − α3µ2r2 + α2γr3 − 3α2γµ1r − α2r2γ − 2α2µ2r

2

+ 2α2µ2r + 3αγµ1r − 2αγr2 + 2αγr + αµ2r − γµ1r − αµ2 + γr − γ),

f0 =
γα(r − 1)(αr − 1)

β(α− 1)
.

Theorem 3.3. If condition
(H4) : f1 < 0, and 27f0f

2
3 + 6f1f3δ + f3

2 − 9f1f2f3 − 2δ < 0; or
f1 > 0, f2 < 0, f2

2 − 3f3f1 > 0, and 27f0f
2
3 + 6f1f3δ + f3

2 − 9f1f2f3 − 2δ < 0; or
f1 = 0, f2 < 0, and 27f0f

2
3 + 6f1f3δ + f3

2 − 9f1f2f3 − 2δ < 0;
is satisfied, then there exists some k, so that the coexistence equilibrium point E∗ of
system (3.2) is unstable.

Proof. It is easy to get f3 > 0 and f0 > 0, so is for the cubic function F1(z), we
know limz→∞ F1(z) = +∞. We can calculate the first order derivative of the F1(z):
dF1(z)
dz = 3f3z

2 + 2f2z + f1. Then, the two extreme points of F1(z) are

z11 =
−f2 + δ

3f3
, z12 =

−f2 − δ
3f3

, (δ =
√
f2

2 − 3f3f1), z11 > z12,

(i) if f1 < 0 holds, then we can get z11 > 0 > z12. f0 > 0 and 27f0f
2
3 + 6f1f3δ +

f3
2 − 9f1f2f3 − 2δ < 0 indicate F1(0) = f0 > 0 and F1(z11) < 0 respectively (see

Figure 3(a));
(ii) if f1 > 0, f2 < 0 and f2

2 − f3f1 > 0, it is easy to derive z11 > z12 > 0. f0 > 0
and 27f0f

2
3 + 6f1f3δ+ f3

2 − 9f1f2f3− 2δ < 0 hold, which shows F1(0) = f0 > 0 and
F1(z11) < 0 (see Figure 3(b));
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(iii) if f1 = 0, f2 < 0, and then z11 > z12 = 0 holds. Moreover, the expressions
f0 > 0 and 27f0f

2
3 + 6f1f3δ + f3

2 − 9f1f2f3 − 2δ < 0 are satisfied, which indicates
F1(0) = f0 > 0 and F1(z11) < 0 (see Figure 3(c)).

The above analysis shows that z11 is the minimum point of F1(z), and then we
can obtain F1(z) < 0 for some z > 0, which indicates that b3(k) < 0 for some k.
According to the Routh−Hurwitz criterion, E∗ of system (3.2) becomes unstable
for some k.

(a)
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11

zz
12

0

F
1
(Z)

(b)

z
11

zz
12

F
1
(Z)

0

(c)

z
11

z

F
1
(Z)

(z
12

)0

Figure 3. Schematic diagram of the cubic function F (z) (f13 > 0 and f10 > 0). (a) f11 < 0; (b)
f1 > 0, and f2 < 0; (c) f1 = 0, and f2 < 0.
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Figure 4. The relationship between the coefficient of the characteristic equation (3.5) and the square

of the wave number k2. For the Figure (a), the parameters we select are: α = 2
3 , β = 2

15 , r = 1.05,

µ1 = 0.025 and µ2 = 0.05. For the Figure (b), the parameters we select are: α = 4
5 , β = 1

5 , r = 1.05,
µ1 = 0.025 and µ2 = 0.05.

In Figure 4, the relationship between the characteristic equation (3.5) and the
square of the wave number k2 is depicted. As is seen in Figures 4(a) and 4(b), there
exist k2 > 0, making b3(k) < 0 and b1(k) · b2(k)− b3(k) < 0.

Now, we consider the sign of f(k) = b1(k)b2(k)− b3(k). Let e = k2, and then

f(e) = y3e
3 + y2e

2 + y1e+ y0.

It is obvious that y3 = (µ1+µ2)(βµ2+1)(βµ1+1)
β2 > 0. Based on condition H2 in Theo-

rem 3.1, one can obtain y0 > 0.

Theorem 3.4. If condition
(H5) y1 < 0, and 27y0y

2
3 + 6y1y3

√
y2

2 − 3y1y3 + y3
2 − 9y1y2y3 − 2

√
y2

2 + 3y1y3 < 0;
or
y1 > 0, y2 < 0, y2

2 − y3y1 > 0 and 27y0y
2
3 + 6y1y3

√
y2

2 − 3y1y3 + y3
2 − 9y1y2y3 −

2
√
y2

2 + 3y1y3 < 0; or
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y1 = 0, y2 < 0, and 27y0y
2
3 +6y1y3

√
y2

2 − 3y1y3 +y3
2−9y1y2y3−2

√
y2

2 + 3y1y3 < 0;
is true, then the coexistence equilibrium point E∗ of system (3.2) lose stability for
some k.

Through some analysis, we know that b3(k) and f(k) satisfy similar conditions
and structures. Therefore, the proof of the Theorem 3.4 is similar to that of Theorem
3.3, and the reader can verify it by yourself. According to the above analysis, we
give the Turing bifurcation line:

27f0f
2
3 + 6f1f3

√
f2

2 − 3f1f3 + f3
2 − 9f1f2f3 − 2

√
f2

2 + 3f1f3 = 0;

or

27y0y
2
3 + 6y1y3

√
y2

2 − 3y1y3 + y3
2 − 9y1y2y3 − 2

√
y2

2 + 3y1y3 = 0.

In summary, the conditions for system (3.2) to give rise to Turing instability
are: {

H1 and H2,

H4 or H5.
(3.7)

4. Nonlinear analysis

In this section, we apply the multi-scale analysis method to obtain the amplitude
equation based on the following three assumptions for the spatiotemporal dynamic
behaviors near the Turing bifurcation point. Assume (1) that the wave vector
near the bifurcation point is |kj | = kT , j = 1, 2, 3; (2) the pattern of the system is
described by mode of three pairs of wave vectors (kj ,−kj); (3) the angle of the three
pairs of wave vectors is 2π

3 [3,11,16,22]. By calculation, the amplitude equation can
be obtained in the following form:

τ0
∂A1

∂t
= νA1 + hA2A3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1,

τ0
∂A2

∂t
= νA2 + hA1A3 − [g1|A2|2 + g2(|A1|2 + |A3|2)]A1,

τ0
∂A3

∂t
= νA3 + hA1A2 − [g1|A3|2 + g2(|A1|2 + |A2|2)]A1.

(4.1)

To consider perturbations of the k around kT , we need to find the critical
wavenumber kT . The conditions for generating Turing instability are: Im(λk) = 0
and Re(λk) = 0 at k = kT 6= 0. For the b3(k) = 0, we get the critical wavenumber

kT =
√
−f2+δ

2f3
, where δ =

√
f2

2 − 3f3f1. Then, we derive the critical value γT of

parameter γ by inserting k = kT into b3(k) = 0. In the following, we shall give the
solution process the amplitude equations. System (2.3) at E∗ is rewritten as the
following form:

∂m

∂t
= µ1∆m+ b11m+ b12a+ b13v +N1(m, a, v),

∂a

∂t
=

1

β
∆a+ b21m+ b22a+ b23v +N2(m, a, v),

∂v

∂t
= µ2∆v + b21m+ b22a+ b23v +N3(m, a, v),

(4.2)
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where 
N1(m, a, v) =

(1− αr)3

(1− α)3
m2 + rvm− (1− αr)4

(1− α)4
m3,

N2(m, a, v) = − 1

β
mv,

N3(m, a, v) = 0.

Since near the bifurcation point γ = γT , the solution of system (2.3) can be
expressed as:

U =


m

a

v

 = Σ3
i=1


Ami

Aai

Avi

 exp(i · −→κi ·
−→
ζ ).

Let U = (m, a, v)T , N = (N1, N2, N3)T , the system (4.2) can be rewritten as:

∂U

∂t
= LU +N(c.c), (4.3)

where

L =


b11 + µ1∆ b12 b13

b21 b22 + 1
β∆ b23

b31 b32 b33 + µ2∆

 ,

N =


(1−αr)3
(1−α)3 m

2 + rmv − (1−αr)4
(1−α)4 m

3

−mvβ
0

 .

Let
L = LT + (γT − γ)M, (4.4)

where

LT =


b∗11 + µ1∆ b∗12 b∗13

b∗21 b∗22 + 1
β∆ b∗23

b∗31 b∗32 b∗33 + µ2∆

 ,

M =


c11 c12 c13

c21 c22 c231

c31 c32 c33

 ,

and

b∗11 =
(1− αr)α(r − 1)

(1− α)2
, b∗12 = 0, b∗13 =

αr(r − 1)

1− αr
,

b∗21 = − 1− αr
βr(1− α)

, b∗22 = −α
β
, b∗23 = − α(r − 1)

β(1− αr)
,
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b∗31 = 0, b∗32 = γT , b∗33 = −γT ,

c11 =
b11 − b∗11

γT − γ
, c12 =

b12 − b∗12

γT − γ
, c13 =

b13 − b∗13

γT − γ
,

c21 =
b21 − b∗21

γT − γ
, c22 =

b22 − b∗22

γT − γ
, c23 =

b23 − b∗23

γT − γ
,

c31 =
b31 − b∗31

γT − γ
, c32 =

b32 − b∗32

γT − γ
, c33 =

b33 − b∗33

γT − γ
.

For using the multiple scale analysis, let

γT − γ = εγ1 + ε2γ2 + ε3γ3 + o(ε4), (4.5)

U =


m

a

v

 = ε


m1

a1

v1

+ ε2


m2

a2

v2

+ ε3


m3

a3

v3

+ o(ε4), (4.6)

N = ε2h2 + ε3h3 + o(ε4), (4.7)

∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ o(ε3), (4.8)

∂A

∂t
=

∂A

∂T1
+ ε2 ∂A

∂T2
+ o(ε3), (4.9)

where T0 = t, T1 = εt, T2 = ε2t. According to the the expressions (4.3) and (4.4),
we get

∂U

∂t
= (LT + (γT − γM)U +N = LTU + (γT − γ)MU +N. (4.10)

Taking (4.5)-(4.8) into (4.10) , we get

∂

∂t

ε

m1

a1

v1

+ ε2


m2

a2

v2

+ ε3


m3

a3

v3


 = LT

ε

m1

a1

v1

+ ε2


m2

a2

v2

+ ε3


m3

a3

v3




+ (εγ1 + ε2γ2 + ε3γ3)M ×

ε

m1

a1

v1

+ ε2


m2

a2

v2

+ ε3


m3

a3

v3




+ ε2h2 + ε3h3 + o(ε4),

(4.11)



632 G. Sun, S. Liu, L. Li, J. Li & Z. Jin

where

∂

∂t

ε

m1

a1

v1

+ ε2


m2

a2

v2

+ ε3


m3

a3

v3




= ε2 ∂

∂T1


m1

a1

v1

+ ε3 ∂

∂T1


m2

a2

v2

+ ε3 ∂

∂T2


m1

a1

v1

+ o(ε4).

By comparing the coefficient of ε in (4.11), we get

LT


m1

a1

v1

 = 0. (4.12)

By comparing the coefficient of ε2 in (4.11), we get

∂

∂T1


m1

a1

v1

 = LT


m2

a2

v2

+ γ1M


m1

a1

v1

+ h2. (4.13)

By comparing the coefficient of ε3 in (4.11), we get

∂

∂T1


m2

a2

v2

+
∂

∂T2
= LT


m3

a3

v3

+ γ1M


m2

a2

v2

+ γ2M


m1

a1

v1

+ h3. (4.14)

Since LT represents the linear operator of the system near the critical bifurca-
tion point, (m1, a1, v1)T is the linear combination of eigenvectors corresponding to
eigenvalues of 0. For solving (4.12), we have

m1

a1

v1

 =


l2

l3

1

 (W1 · ei·k1·ζ +W2 · ei·k2·ζ +W3 · ei·k3·ζ) + c.c., (4.15)

where

l2 =
2f3b

∗
13

µ1(δ + f2)− 2f3b∗11

, l3 = 1 +
µ2(δ − f2)

2f2γT
.
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For the equation (4.13), we can get

LT


m2

a2

v2

 =
∂

∂T1


m1

a1

v1

− γ1M


m1

a1

v1

− h2

=
∂

∂T1


m1

a1

v1

− γ1


c11m1 + c12a1 + c13v1

c21m1 + c22a1 + c23v1

c31m1 + c32a1 + c33v1

−


(1−αr)3
(1−α)3 m

2
1 + rm1v1

− 1
βm1v1

0



=


Fm

Fa

Fv

 .

(4.16)

According to the Fredholm solvability conditions, the vector to the right of
equation (4.16) must be orthogonal to the zero eigenvector of L+

T (adjoint operator,
also called conjugate operator), and there is a nontrivial solution to equation (4.16).
We can calculate the zero eigenvector of L+

T is


l
′

2

1

l
′

3

+ c.c., (j = 1, 2, 3),

where

l
′

2 =
2f3b

∗
21

µ1(δ − f2)− 2f3b∗11

, l
′

3 =
δ − f2 − 2βf3b

∗
22

2βf3γT
.

Then, using the orthogonal string theorem

(l
′

2, 1, l
′

3)


F im

F ia

F iv

 = 0, (4.17)

where F im, F ia, F iv represent the coefficients corresponding to eikj ·ζ in Fm, Fa, Fv,
which means 

Fm

Fa

Fv

 =


F 1
m

F 1
a

F 1
v

 eik1·ζ +


F 2
m

F 2
a

F 2
v

 eik2·ζ +


F 3
m

F 3
a

F 3
v

 eik3·ζ .
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According to (4.15) and (4.16), we get
F 1
m

F 1
a

F 1
v

 =


l2
∂W1

∂T1

l3
∂W1

∂T1

∂W1

∂T1

−γ1


l2c11W1 + l3c12W1 + c13W1

l2c21W1 + l3c22W1 + c23W1

l2c31W1 + l3c32W1 + c33W1

−


2 (1−αr)3
(1−α)3 l

2
2 + 2rl2

− 1
β l2

0

W 2W 3,

(4.18)
F 2
m

F 2
a

F 2
v

 =


l2
∂W2

∂T1

l3
∂W2

∂T1

∂W2

∂T1

−γ1


l2c11W2 + l3c12W2 + c13W2

l2c21W2 + l3c22W2 + c23W2

l2c31W2 + l3c32W2 + c33W2

−


2 (1−αr)3
(1−α)3 l

2
2 + 2rl2

− 1
β l2

0

W 1W 3,

(4.19)
F 3
m

F 3
a

F 3
v

 =


l2
∂W3

∂T1

l3
∂W3

∂T1

∂W3

∂T1

−γ1


l2c11W3 + l3c12W3 + c13W3

l2c21W3 + l3c22W3 + c23W3

l2c31W3 + l3c32W3 + c33W3

−


2 (1−αr)3
(1−α)3 l

2
2 + 2rl2

− 1
β l2

0

W 1W 2.

(4.20)

Substituting (4.18)-(4.20) into (4.17), we get

(l2l
′

2 + l3 + l
′

3)
∂W1

∂T1
=γ1[l

′

2(l2c11 + l3c12 + c13) + l2c21 + l3c22 + c23 + l
′

3(l2c31

+ l3c32 + c33)]W1 + [2
(1− αr)3

(1− α)3
l2l

′

2 + 2rl2l
′

2 − 2
1

β
l2]W 2W 3,

(l2l
′

2 + l3 + l
′

3)
∂W2

∂T1
=γ1[l

′

2(l2c11 + l3c12 + c13) + l2c21 + l3c22 + c23 + l
′

3(l2c31

+ l3c32 + c33)]W2 + [2
(1− αr)3

(1− α)3
l2l

′

2 + 2rl2l
′

2 − 2
1

β
l2]W 1W 3,

(l2l
′

2 + l3 + l
′

3)
∂W3

∂T1
=γ1[l

′

2(l2c11 + l3c12 + c13) + l2c21 + l3c22 + c23 + l
′

3(l2c31

+ l3c32 + c33)]W3 + [2
(1− αr)3

(1− α)3
l2l

′

2 + 2rl2l
′

2 − 2
1

β
l2]W 1W 2.

(4.21)

Then, substituting the equation (4.15) into (4.16), we calculate
m2

a2

v2

 =


M0

A0

V0

+

3∑
i=1


Mi

Ai

Vi

 eiki·ζ +

3∑
i=1


Mii

Aii

Vii

 ei2ki·ζ +


M12

A12

V12

 ei(k1−k2)·ζ

+


M23

A23

V23

 ei(k2−k3)·ζ +


M31

A31

V31

 ei(k3−k1)·ζ + c.c.

(4.22)

The coefficients in equation (4.22) are obtained by solving the linear equation
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corresponding to ε0, εi2ki·ζ , eiki·ζ , ei(kj−km)·ζ . Therefore, we obtain
M0

A0

V0

 =


m0

a0

v0

 (|W1|2 + |W2|2 + |W3|2),

Mi = l2Vi, Ai = l3Vi,


Mii

Aii

Vii

 =


m11

a11

v11

W 2
i ,


Mij

Aij

Vij

 =


mij

aij

vij

WiW j .

For the equation (4.14), we get

LT


m3

a3

v3

 = −γ2M


c11m1 + c12a1 + c13v1

c21m1 + c22a1 + c23v1

c31m1 + c32a1 + c33v1

− γ1M


c11m2 + c12a2 + c13v2

c21m2 + c22a2 + c23v2

c31m2 + c32a2 + c33v2



+
∂

∂T1


m2

a2

v2

−


2 (1−αr)3
(1−α)3 m1m2 + rm1v2 +m2v1 − (1−αr)4

(1−α)4 m
3
1

− 1
β (m1v2 +m2v1)

0



+
∂

∂T2


m1

a1

v1

 =


Hm

Ha

Hv

 .

(4.23)

Similar to the above analysis, we take eik1·ζ , eik2·ζ , eik3·ζ of Hm and Ha, Hv in
system (4.23), and we get
H1
m

H1
a

H1
v

 =


l2
∂V1

∂T1

l3
∂V1

∂T1

∂V1

∂T1

+


l2
∂W1

∂T2

l3
∂W1

∂T2

∂W1

∂T2

− γ1


l2C11 + l3C12 + C13

l2C21 + l3C22 + C23

l2C31 + l3C32 + C33

V1

− γ2


l2C11 + l3C12 + C13

l2C21 + l3C22 + C23

l2C31 + l3C32 + C33

W1 +


G11|W1|2 +G12(|W2|2 + |W3|2)

G21|W1|2 +G22(|W2|2 + |W3|2)

0

W1

−


2 (1−αr)3

(1−α)3 l
2
2 + 2rl2

−2 1
β l2

0

W 2V 3 −


2 (1−αr)3

(1−α)3 l
2
2 + 2rl2

−2 1
β l2

0

W 3V 2.

(4.24)

The remaining two equations can be obtained by changing the subscript of W,

and G11 = 2(1−αr)3
(1−α)3 l2m0 + 2(1−αr)3

(1−α)3 l2m11 + rl2v0 + rl2v11 +m0 +m11 − (1−αr)4
(1−α)4 l

2
2,
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G12 = 2(1−αr)3
(1−α)3 l2m0 + 2(1−αr)3

(1−α)3 l2m12 + rl2v0 + rl2v12 +m0 +m11 − (1−αr)4
(1−α)4 l

2
2,

G21 = 1
β (l2v0 + l2v11 +m0 +m11),

G22 = 1
β (l2v0 + l2v12 +m0 +m12).

Similar to the second section, by using the Fredholm solvability conditions for
(4.24), we get equations as follows:

(l2l
′

2 + l3 + l
′

3)(
∂V1

∂T1
+
∂W1

∂T2
)

=(γ1V1 + γ2W1)[l
′

2(l2c11 + l3c12 + c13) + (l2c21 + l3c22 + c23) + l
′

3(l2c31 + l3c32

+ c33)]− l
′

2[G11|W1|2 +G12(|W2|2 + |W3|2)]W1 − [G21|W1|2 +G22(|W2|2

+ |W3|2)]W1 + [2
(1− αr)3

(1− α)3
l22 + 2rl2 − 2

1

β
l2)](W 2V 3 +W 3V 2).

(4.25)

The remaining two equations can be obtained by changing the subscripts of W
and V.

Let Ai = l3A
m
i = l2A

a
i = l2l3A

v
i be the coefficient of eiki·ζ(i=1,2,3), and then

we get 
Ami

Aai

Avi

 = ε


l2

l3

1

Wi + ε2


l2

l3

1

Vi + o(ε3), (i = 1, 2, 3). (4.26)

According to the (4.21) and (4.25), and using (4.9), (4.26) to merge the variables,
we can obtain the corresponding coefficients in equation (4.1):

B = l
′

2(l2c11 + l3c12 + c13) + (l2c21 + l3c22 + c23) + l
′

3(l2c31 + l3c32 + c33),

τ0 = − l2l
′

2 + l3 + l
′

3

γTB
,

h =
−2l

′

22 (1−αr)3
(1−α)3 l

2
2 + 2rl2 + 2 1

β l2

γTB
,

g1 = − l
′

2G11 +G21

γTB
,

g2 = − l
′

2G12 +G22

γTB
,

ν = −γT − γ
γT

.

(4.27)

5. Main results

5.1. Pattern selection

The amplitude equation has same form for different systems, but the difference is
that the coefficients of each term are different. Next, we use the amplitude equation
to analyze the dynamical system near the unstable point. A stable Turing pattern
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corresponds to the steady-state solution of the system (4.1), and each amplitude
in (4.1) can be decomposed into a phase angle ϕj and a mode ρj = |Aj |. Then,
by substituting (4.1) with Aj = ρjexp(jϕj) and separating the real and imaginary
parts, we can get four real variable equations in the following form:

τ0
∂ϕ

∂t
= −hρ

2
1ρ

2
2 + ρ2

1ρ
2
3 + ρ2

2ρ
2
3

ρ1ρ2ρ3
sinϕ,

τ0
∂ρ1

∂t
= νρ1 + hρ2ρ3cosϕ− g1ρ

3
1 − g2(ρ2

2 + ρ2
3)ρ1,

τ0
∂ρ2

∂t
= νρ2 + hρ1ρ3cosϕ− g1ρ

3
2 − g2(ρ2

1 + ρ2
3)ρ1,

τ0
∂ρ3

∂t
= νρ3 + hρ1ρ2cosϕ− g1ρ

3
3 − g2(ρ2

1 + ρ2
2)ρ1,

(5.1)

where ϕ = ϕ1 + ϕ2 + ϕ3. The system (5.1) has five pattern types and the stability
range, which can be obtained by calculation:

(i) The stationary state: ρ1 = ρ2 = ρ3 = 0, and when ν < ν2 = 0, the stationary
state is stable.

(ii) The stripe pattern: ρ1 =
√

ν
g1

, and ρ2 = ρ3 = 0, which exist when ν > 0.

When the stable range is ν > ν3 = h2g1
(g2−g1)2 , the unstable range is ν > ν3.

(iii) Two spots pattern: ρ+ =
|h|+
√
h2+4ν(g1+2g2)

2(g1+2g2) , ρ− =
|h|−
√
h2+4ν(g1+2g2)

2(g1+2g2) ,

which exist when ν > ν1 = −h2

4(g1+2g2) . For the ρ+, the stable range is ν < ν4 =
2g1+g2

(g2−g1)2h
2 and ρ− is always unstable.

(iv) The mixed state: ρ1 = |h|
g2−g1 , ρ2 = ρ3 =

√
ν−g1ρ21
g1+g2

, which exist when ν > ν3,

and the pattern always is unstable.

(a) (b) (c)

(d) (e) (f)

Figure 5. Corresponding mussel spatial distribution reaches steady state with the change of µ1.
(a) µ1 = 0.005; (b) µ1 = 0.015; (c) µ1 = 0.025; (d) µ1 = 0.035; (e) µ1 = 0.045; (f) µ1 = 0.05. For the
other parameters, we choose µ2 = 0.05, β = 2

15 , r = 1.32, α = 2
3 , γ = 0.45.

Table 1. Simulation parameters in Figure 5
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Order µ1 µ2 α β r γ h ν Scope of ν

1 0.025 0.05 2
3

2
15

1.39 0.5 −10.047329821 0.39504331002 (ν2, ν3)

2 0.05 0.05 2
3

2
15

1.35 0.167 −0.41790322403 0.07283500764 (ν3, ν4)

3 0.04 0.05 2
3

2
15

1.32 0.286 −0.88340742031 0.04807945028 (ν4,+∞)

5.2. Within a certain range, the higher the γ, the smaller the
average density of mussels

Next, we carry out numerical simulation for the spatiotemporal dynamic analysis
of the system (2.3). By analyzing the dynamics of the system and searching the
literatures, we obtain the conditions to occur the Turing instability and the values
of each parameters. After the parameters are determined, we simulate the spatial
distribution pattern of the mussel in the system (2.3), and study the influence of the
value of the parameter on the spatial pattern of mussels. In order to better display
the simulation effect, the forward difference scheme is adopted based on Neumann
boundary condition. Parameters such as time interval and step size are selected
as follows: the space area is [0, 50], the time interval of T is [0, 5000], the space
step is 4h = 1 and the time step is 4t = 0.005. The initial value is the random
perturbation value of the coexistence equilibrium point E∗. With the setting of the
above parameters, we get the following results.

Figure 6 describes the evolution process of the spatial pattern of mussels over
time. In this process, the mussel gradually aggregates into a connected strip distri-
bution (see Figure 6(b)) from the initial irregular scattered distribution (see Figure
6(a)). Then, it continues to evolve into a mixed distribution of square and short
strips (see Figure 6(c)), and finally forms a mixed distribution of short strips with
a small number of clusters (see Figure 6(d)), when it reaches the steady state.

(a) (b)

(c) (d)

Figure 6. Describe the evolution of mussel spatial pattern over time. (a) t = 10; (b) t = 300; (c) t =

650; (d) t = 5000. For the other parameters, we choose µ1 = 0.025, µ2 = 0.05, β = 2
15 , α = 2

3 , γ =
0.45, r = 1.05.

Figure 7 depicts the relationship between the spatial mean density of mussels
and parameter γ. Combined with the actual biological significance, γ represents
the spatial distance parameter between mussel and algae. From Figure 7, we find



Nonlocal Interaction Induces the Self-organized Mussel Beds 639

that with the increase of spatial distance γ, and the average density change rate of
mussel gradually approaches 0, because the nonlocal item has influence on pattern
formation of mussels within a certain range. When spatial distance parameter
continues to increase, nonlocal effects between mussels and algaes will become very
small. at this time, other parameters, such as mussel diffusion rate and predation
rate, affect the spatial pattern of mussels.

Figure 7. The density of mussels at steady state change with the parameter γ. For other parameters,

we select α = 2
3 , β = 2

15 and r = 1.05, µ1 = 0.025, µ2 = 0.05.

5.3. The r and µ1 respectively affect the pattern type and
average density of mussels

We take the parameter γ between (0, 0.5). When the nonlocal effect on mussels is
obvious, the influence of other parameters on the pattern of mussels is analyzed.

(a) (b) (c)

(d) (e) (f)

Figure 8. Corresponding mussel spatial distribution reaches steady state with the change of µ1.
(a) µ1 = 0.005; (b) µ1 = 0.015; (c) µ1 = 0.025; (d) µ1 = 0.035; (e) µ1 = 0.045; (f) µ1 = 0.05. For the
other parameters, we choose µ2 = 0.05, β = 2

15 , r = 1.1, α = 2
3andγ = 0.45.

Firstly, the influence of parameter µ1, which represents the diffusion rate of
mussels in the actual biological sense, and on the formation of mussel bed was
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simulated. Figure 8 describes the spatial structural change of mussels when reaching
steady state with the change of the mussel’s diffusion rate while other parameters
are quantified. As is seen from Figure 8(a) to Figure 8(f), with the increase of µ1,
the ”maze” spatial pattern of mussels which composed of irregular and dense strips
gradually forms short strips and square ”new mixed” pattern, and finally forms
regular square pattern. An interesting phenomenon here is the emergence of a new
type of “square” pattern in addition to strip, spot and mixed patterns. For “square”
pattern, they are similar to regular spot pattern on a small scale, but because of
the increased diffusivity, intraspecific competition is reduced, thus forming a more
stable square pattern. In large scale, the “square” distribution is closely related
to the “strip” distribution. Due to rapid diffusion, intraspecies competition and
intraspecies dependence were weakened and a discontinuous square pattern was
formed. Considering that there haven’t square pattern been found in previous
studies, we infer that the nonlocal interaction between mussels and algaes leads to
the generation of “square” pattern in the mussel beds.

In addition, it is worth mentioning that when the diffusion rate of mussels is
very high. If the nonlocal interaction is not taken into account, the predation of
mussels will be limited by space. Due to the influence of the nonlocal interaction,
the mussels can keep still predation and survive in space, which will not become
extinct.
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Figure 9. Depict the evolution of the spatial mean density of the corresponding algaes and mussels
over time when different values of µ1 are taken. For the other parameters, we chose: µ2 = 0.05, β =
2
15 , r = 1.1, α = 2

3 , γ = 0.45.

Figure 9 describes the change of the spatial mean density of algaes and mussels
with time when µ1 is different. It can be seen from these two figures that the average
density of mussels decreases when they reach steady state, while the density of
algae increases with the increase of µ1, which is consistent with the normal density
inhibition relationship between predation and prey. The reason for the decrease
of mussel density may be related to the structural characteristics of mussel itself.
Mussels depend on byssus for feeding and locomotion, when the diffusion rate of
mussels is lower, the mussel is essentially fixed to the sediment, which causes byssus
to be able to feed more fully. However, when the diffusion rate is higher, there is
less byssus available for feeding, which leads to the decrease of mussel density.

Next, we simulate the influence of parameter µ1 change on the spatial distribu-
tion structure of mussels when r = 1.32. As is seen from Figure 10(a) to Figure
10(f), the spatial distribution of mussels gradually evolves from the initial irregular



Nonlocal Interaction Induces the Self-organized Mussel Beds 641

(a) (b) (c)

(d) (e) (f)

Figure 10. Corresponding mussel spatial distribution reaches steady state with the change of µ1.
(a) µ1 = 0.005; (b) µ1 = 0.015; (c) µ1 = 0.025; (d) µ1 = 0.035; (e) µ1 = 0.045; (f) µ1 = 0.05. For the
other parameters, we chose: µ2 = 0.05, β = 2

15 , r = 1.32, α = 2
3 , γ = 0.45.

“maze” pattern to the “flower clusters” pattern (see Figure 10(c)) and eventually
evolves into the regular ”strip” pattern (see Figure 10(d), Figure 10(e) and Figure
10(f)). Parameter r can be understood as the predation rate of mussels to algaes.
With the increase of predation rate, intraspecies competition and intraspecies de-
pendence are enhanced, which leads to form a “strip” structure. By longitudinal
comparison with Figure 8, it can be found that predation rate is the main factor
that affects the pattern structure of mussels when r is different. That is because
although µ1 is also changing, the change of r leads to the change of pattern type.

In Figure 11, we still study the variation of the spatial average density of algaes
and mussels corresponding to different parameters µ1 over time. Considering the
high density of mussels at µ1 = 0.005, the isolation mapping and analysis are
therefore carried out. On the whole, the changing trend of the average density
of algaes and mussels is consistent with Figure 9, Figure 11(a) and Figure 11(b),
showing that the mussel have a better living environment due to its small diffusion
rate and high predation rate. Although the predation rate of mussels increases, the
larger diffusion rate still results in a decrease in mussel density.

Figure 12 analyzes the effect of predation rate r on the spatial distribution
structure of mussels. With the change of r, in addition to “new mixed” pattern
and “flower clusters” pattern, “hole” distribution pattern also appeared, as shown
in Figure 12(e). It can be seen that with the increase of predation rate, the mussel
aggregation degree gradually form from small clusters to short strips, then to long
strips, and finally to a larger “hole” aggregation degree. The intraspecies competi-
tion increase with the increase of predation rate, mussels gradually form strip and
band structures. As the predation rate continues to increase, due to the inhibitory
relationship between mussels and algaes, the band structure of mussels is destroyed,
and the uniform hole distribution is formed under the nonlocal interaction. It can
be seen that the change of parameter r has a great influence on the formation of
different pattern types of mussels in space. In addition, the nonlocal interaction
ensures the survival of mussels when the predation resources are limited.

From the above analysis, it can be seen that under the nonlocal interaction, the
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Figure 11. Depict the evolution of the spatial mean density of the corresponding algaes and mussels
over time when different values of µ1 are taken. For the other parameters, we cho0se: µ2 = 0.05, β =
2
15 , r = 1.32, α = 2

3andγ = 0.45.

predation rate of mussels has a great influence on the type of spatial pattern, while
the diffusion rate mainly affects the average density of mussels.

6. Conclusions

As an important habitat and food source of coastal ecosystem, the study of mussel
beds is of key significance. Many studies have simulated and analyzed the formation
mechanism and spatial structure of mussel beds, and obtained important theoretical
results, but these studies only consider the local effect, while in fact, mussels can
prey on algae at all locations in space, not just the current location and the current
time. Based on the model proposed by Van de Koppel et al., this paper introduces
the nonlocal interaction between mussels and algaes into the system, which hope to
study the spatial structure of the population from the internal relationship between
the populations. Through the dynamic analysis and simulation of the new system,
it is found that the nonlocal interaction can induce the generation of self-organizing
mussel beds. The effects of parameters on the spatial distribution of mussels are
studied under nonlocal interaction. The results show that the diffusion rate and
the predation rate of mussels have a great influence on the new pattern structure
of mussels. In addition, we also study the effects of nonlocal interaction parameters
γ on the spatial structure of mussels, and find that nonlocal interaction plays an
important role in the sustainable survival of mussels, which will help to study the
stability of mussel beds.
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(a) (b) (c)

(d) (e)

Figure 12. Corresponding mussel spatial distribution reaches steady state with the change of r.
(a) r = 1.05; (b) r = 1.19; (c) r = 1.25; (d) r = 1.32; (e) r = 1.39; (f) r = 0.05. For the other
parameters, we chose: µ2 = 0.05, β = 2

15 , µ1 = 0.025, α = 2
3 , γ = 0.45.

Based on the original system, this paper introduces a new action term and
combines the data for simulation analysis, we conclude that nonlocal interaction is
another mechanism for the spatial pattern of mussel beds. Compared with previous
studies, we find more pattern types, such as “square” pattern and “hole” pattern,
which will be helpful to study the ecological functions corresponding to the pattern.
However, we don’t take climate into account in this paper, and in fact, given the
high temperatures that mussel beds are now experiencing, climate is one of the
factors that needs to be taken into account. In addition, we haven’t analyzed and
studied the ecological function corresponding to the patterns for the time being.
In the future work, I hope to continue my research on mussel beds, and combine
the above problems with the model and practice to conduct more research so as to
make my research more meaningful and connected with the reality.
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