
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn

Volume 3, Number 4, December 2021, 647–661 DOI:10.12150/jnma.2021.647

Solvability and Stability for Singular Fractional
(p, q)-difference Equation∗

Zhongyun Qin1 and Shurong Sun1,†

Abstract In this paper, we initiate the solvability and stability for a class
of singular fractional (p, q)-difference equations. First, we obtain an existence
theorem of solution for the fractional (p, q)-difference equation. Then, by using
a fractional (p, q)-Gronwall inequality, some stability criteria of solution are
established, which also implies the uniqueness of solution.
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1. Introduction

The q-difference is a kind of discrete calculus. In the early 20th century, the q-
difference was first systematically studied by Jackson [9]. After the 1970s, the
theory of q-difference has been extensively studied. Mitlagel Leffler proposed the
theory of fractional q-difference operators, and later the related theories such as
q-Laplace and Fourier Transform, q-Sturm-Liouville theory, q-Taylor expansion, q-
Bernstein polynomial and so on attracted a great deal of attention [2,7,10]. In recent
years, q-difference has been more and more frequently used in natural science and
engineering. It plays an important role in mathematical physical models, dynamical
systems, quantum physics and economics. For more details, the reader may refer
to [8, 12,15].

Motivated by these applications of q-calculus which is also called quantum cal-
culus, many researchers have developed the theory of quantum calculus based on
two-parameter p and q. In 1991, Chakrabarti and Jagannathan first investigated
the (p, q)-calculus in quantum algebras [5]. For some results on the study of (p, q)-
calculus, we refer to [11, 13, 14, 17]. The (p, q)-calculus is used efficiently in many
fields such as physical sciences, hypergeometric series, lie group, special functions,
approximation theory, Bezier curves and surfaces and etc.

The problem of fractional calculus in discrete settings has become an active
research area [1,3,6]. Agarwal [1] and Al-Salam [3] introduced fractional q-difference
calculus, while Diaz and Osler [6] studied fractional difference calculus. Recently,
Brikshavana and Sitthiwirattham havd studied the fractional Hahn calculus [4]. In
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2020, Soontharanonl and Sitthiwirattham introduced the fractional (p, q)-calculus
[18]. In the meantime, they studied the existence of a fractional (p, q)-difference
equation. Compared with q-difference equations, (p, q)-difference equations have
two quantization parameters p and q, which are genuinely independent. They have
wider applicability in concrete mathematical models of quantum mechanics and
fluid mechanics [5].

Although many interesting results related to discrete analogues of some topics
of continuous fractional calculus have been studied, the theory of discrete fractional
calculus remains much less developed than that of continuous fractional calculus. In
particular, there are few papers about fractional (p, q)-calculus. As far as we know,
the stability of fractional (p, q)-difference equation has not been studied, even for
regular fractional (p, q)-difference equation. Up to now, no research has existed
about solvability for Caputo type fractional (p, q)-difference equations. The gap
mentioned is the motivation for this research.

In this paper, we consider the solvability and stability of the fractional (p, q)-
difference equation: {

cDα
p,qx(t) = f (t, x(t)) , t > 0,

x(0) = x0,
(1.1)

where 0 < α < 1, 0 < q < p ≤ 1, and cDα
p,q is Caputo type fractional (p, q)-difference

operator. In this paper, we first prove that the fractional (p, q)-difference equation
has at least one solution if tαf(t, x) is continuous on variables t and x by Ascoli-
Arzela’s lemma. Furthermore, we establish a fractional (p, q)-Gronwall inequality.
By the fractional (p, q)-Gronwall inequality, we obtain a stability criterion.

This paper is structured as follows: In Section 2, we present necessary definitions,
properties and lemmas. In Section 3 and Section 4, some results on the existence
of solution and stability are obtained. An example is given in Section 5. Finally,
we end the paper with a conclusion.

2. Preliminaries

In this section, we present basic definitions, notations, and lemmas that will be used
in this paper. Let 0 < q < p ≤ 1. We introduce the notation [18]:

[k]p,q :=


pk − qk

p− q
= pk−1[k] q

p
, k ∈ N,

1, k = 0,

and the (p, q)-analogue factorial is defined as:

[k]p,q! :=


[k]p,q[k − 1]p,q · · · [1]p,q =

k∏
i=1

pi − qi

p− q
, k ∈ N,

1, k = 0.

The (p, q)-analogue of the power function (a− b)(n)
p,q with n ∈ N0 := {0, 1, 2, . . .} is

given by

(a− b)(0)
p,q := 1, (a− b)(n)

p,q :=

n−1∏
k=0

(apk − bqk), a, b ∈ R.
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If α ∈ R, the general form is given by

(a− b)(α)
q := aα

∞∏
i=0

[ 1− ( ba )qi

1− ( ba )qα+i

]
, a 6= 0.

Furthermore, for α ∈ R, the fractional (p, q)-analogue of the power function is given
by

(a− b)(α)
p,q = p(

α
2)(a− b)(α)

q
p

= aα
∞∏
i=0

1

pα

[ 1− ( ba )( qp )
i

1− ( ba )( qp )
α+i

]
, a 6= 0,

where
(
α
2

)
= α(α−1)

2 , and (a − b)
(α)
p,q = aα(1 − b

a )
(α)
p,q . For 0 < q < p ≤ 1, the

(p, q)-gamma and (p, q)-beta functions are defined by

Γp,q(x) =


(p− q)(x−1)

p,q

(p− q)x−1
=

(1− q
p )

(x−1)
p,q

(1− q
p )x−1

, x ∈ R \ {0,−1,−2, · · · },

[x− 1]p,q!, x ∈ N,

Bp,q(x, y) :=

∫ 1

0

tx−1(1− qt)y−1
p,q dp,qt = p

1
2 (y−1)(2x+y−2) Γp,q(x)Γp,q(y)

Γp,q(x+ y)
,

respectively.

Definition 2.1. ( [16]) Let 0 < q < p ≤ 1. The (p, q)-derivative of the function f
is defined as

Dp,qf(t) :=
f(pt)− f(qt)

(p− q)t
, t 6= 0,

and (Dp,qf)(0) = limt→0(Dp,qf)(t), provided that f is differentiable at 0. Mean-
while, the high order (p, q)-derivative Dn

p,qf(t) is defined by

Dn
p,qf(t) =

{
f(t), n = 0,

Dp,qD
n−1
p,q f(t), n ∈ N+.

Definition 2.2. ( [16]) Let 0 < q < p ≤ 1, f be an arbitrary function, and x be a
real number. The (p, q)-integral of the function f is defined as∫ x

0

f(t)dp,qt = (p− q)x
∞∑
k=0

qk

pk+1
f

(
qk

pk+1
x

)
, (2.1)

provided that the series of right side in (2.1) converges. In this case, f is called
(p, q)-integrable on [0, x], and denote

Ip,qf(x) =

∫ x

0

f(t)dp,qt.

Definition 2.3. ( [16]) Let 0 < q < p ≤ 1, f be an arbitrary function, a and b be
two real numbers. Then, we define∫ b

a

f(t)dp,qt =

∫ b

0

f(t)dp,qt−
∫ a

0

f(t)dp,qt.
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Lemma 2.1. Let 0 < q < p ≤ 1, a and b be two real numbers. Then, the following
formulas hold that:

(a)
∫ a
a
f(t)dp,qt = 0;

(b)
∫ b
a
αf(t)dp,qt = α

∫ b
a
f(t)dp,qt, α ∈ R;

(c)
∫ b
a
f(t)dp,qt = −

∫ a
b
f(t)dp,qt;

(d)
∫ b
a
f(t)dp,qt =

∫ b
c
f(t)dp,qt+

∫ c
a
f(t)dp,qt, c ∈ R, a < c < b;

(e)
∫ b
a

[f(t) + g(t)]dp,qt =
∫ b
a
f(t)dp,qt+

∫ b
a
g(t)dp,qt.

By (2.1), the above lemma can be easily proved. Therefore, we omit it.

Definition 2.4. ( [18]) Let α > 0, 0 < q < p ≤ 1, and f be an arbitrary function
on [0,∞). The fractional (p, q)-integral is defined by

Iαp,qf(t) =
1

p(
α
2)Γp,q(α)

∫ t

0

(t− qs)(α−1)
p,q f

(
s

pα−1

)
dp,qs,

and I0
p,qf(t) = f(t).

Definition 2.5. ( [18]) Let α > 0, 0 < q < p ≤ 1, and f : (0,∞) → R be an
arbitrary function. For any t ∈ (0,∞), the fractional (p, q)-difference operator of
Caputo type of order α is defined by

cDα
p,qf(t) := IN−αp,q DN

p,qf(t)

=
1

p(
N−α

2 )Γp,q(N − α)

∫ t

0

(t− qs)(N−α−1)
p,q DN

p,qf

(
s

pN−α−1

)
dp,qs,

and cD0
p,qf(t) = f(t), where N − 1 < α ≤ N , N ∈ N.

Lemma 2.2. ( [18]) For α > 0, 0 < q < p ≤ 1, and f : (0,∞)→ R, we get

Dα
p,qI

α
p,qf(t) = f(t).

Lemma 2.3. ( [18]) For α, β > 0, and 0 < q < p ≤ 1, (p, q)-integral and (p, q)-
difference operators have the following properties:

(a) Iαp,q[I
β
p,qf(x)] = Iβp,q[I

α
p,qf(x)] = Iα+β

p,q f(x),
(b) Dp,qIp,qf(x) = f(x), and Ip,qDp,qf(x) = f(x)− f(0).

Lemma 2.4. (Variable substitution) Let 0 < q < p ≤ 1 and 0 < α < 1. Then, we
have ∫ t

0

(t− qs)(α−1)
p,q dp,qs = tα

∫ 1

0

(1− qτ)(α−1)
p,q dp,qτ, (2.2)

and ∫ t

0

(t− qs)(α−1)
p,q s−αdp,qs =

∫ 1

0

(1− qτ)(α−1)
p,q τ−αdp,qτ. (2.3)

Proof. According to Definition 2.2, we have∫ t

0

(t− qs)(α−1)
p,q dp,qs = (p− q)t

∞∑
k=0

qk

pk+1

(
t− q qk

pk+1
t

)(α−1)

p,q

= (p− q)t
∞∑
k=0

qk

pk+1
tα−1

(
1− q qk

pk+1

)(α−1)

p,q

= tα(p− q)
∞∑
k=0

qk

pk+1

(
1− q qk

pk+1

)(α−1)

p,q

,
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and ∫ 1

0

(1− qτ)(α−1)
p,q dp,qτ = (p− q)

∞∑
k=0

qk

pk+1

(
1− q qk

pk+1

)(α−1)

p,q

.

Hence, the equality (2.2) holds. Furthermore, according to Definition 2.2, we have∫ t

0

(t− qs)(α−1)
p,q s−αdp,qs = (p− q)t

∞∑
k=0

qk

pk+1

(
t− q qk

pk+1
t

)(α−1)

p,q

(
qk

pk+1
t)−α

= (p− q)t
∞∑
k=0

qk

pk+1
tα−1

(
1− q qk

pk+1

)(α−1)

p,q

t−α(
qk

pk+1
)−α

= (p− q)
∞∑
k=0

qk

pk+1

(
1− q qk

pk+1

)(α−1)

p,q

(
qk

pk+1
)−α,

and ∫ 1

0

(1− qτ)(α−1)
p,q τ−αdp,qτ = (p− q)

∞∑
k=0

qk

pk+1

(
1− q qk

pk+1

)(α−1)

p,q

(
qk

pk+1
)−α.

Hence, the equality (2.3) holds. This completes the proof.

3. The solvability of fractional (p, q)-difference equa-
tion

We consider the following Caputo type fractional (p, q)-difference equation with
initial value: {

cDα
p,qx(t) = f

(
t, x(t)

)
, t > 0,

x(0) = x0,
(3.1)

where 0 < α < 1, 0 < q < p ≤ 1, cDα
p,q is Caputo type fractional (p, q)-difference

operator, and tαf(t, x) is continuous on [0,∞)× (−∞,∞). If a continuous function
x(t) satisfies the (3.1), x(t) is called a solution of (3.1).

Lemma 3.1. Let 0 < q < p ≤ 1 and 0 < α < 1. Then, x(t) is a solution of (3.1),
if and only if it is the solution of the following integral equation

x(t) = x0+
1

p(
α
2)Γp,q(α)

∫ t

0

(t−qs)(α−1)
p,q f

( s

pα−1
, x
( s

pα−1

))
dp,qs, t ∈ (0,∞), x(0) = x0.

(3.2)

Proof. Assume x(t) is a solution of (3.1). Taking operator Iαp,q on both sides
of (3.1), and by Definition 2.5, we have

Iαp,qI
1−α
p,q Dp,qx(t) = Iαp,qf

(
t, x(t)

)
, t ∈ (0,∞).

By Lemma 2.3 and Definition 2.4, we get

Ip,qDp,qx(t) =
1

p(
α
2)Γp,q(α)

∫ t

0

(t− qs)(α−1)
p,q f

( s

pα−1
, x
( s

pα−1

))
dp,qs.
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Furthermore, from Lemma 2.3, we have

x(t)− x(0) = x(t)− x0 =
1

p(
α
2)Γp,q(α)

∫ t

0

(t− qs)(α−1)
p,q f

( s

pα−1
, x
( s

pα−1

))
dp,qs.

Next, we prove the sufficiency of this lemma. Assuming x(t) satisfies (3.2), from
Lemma 2.3, Definitions 2.4 and 2.5, we have

Iαp,q
cDα

p,qx(t) = Ip,qDp,qx(t) = Iαp,qf
(
t, x(t)

)
, t ∈ (0,∞).

Taking operator Dα
p,q on both sides of above formula, and by Lemma 2.2, we can

derive
cDα

p,qx(t) = f
(
t, x(t)

)
.

This completes the proof.

Lemma 3.2. Let 0 < q < p ≤ 1. Then, we can get(
1−

(
q

p

)k+1
)(α−1)

p,q

≤ p(
α−1
2 )

1− ( qp )α
,∀k ∈ N+, α > 0. (3.3)

Proof. By the definition of fractional (p, q)-power function, we have(
1−

(q
p

)k+1)(α−1)

p,q
= p(

α−1
2 )
(

1−
(q
p

)k+1)(α−1)

q
p

= p(
α−1
2 )

∞∏
i=0

[ 1− ( qp )k+1( qp )i

1− ( qp )k+1( qp )α−1+i

]
= p(

α−1
2 ) lim

N→∞

N∏
i=0

[ 1− ( qp )i+k+1

1− ( qp )i+k+α

]
= p(

α−1
2 ) lim

N→∞
SN .

Since

SN =

N∏
i=0

1− ( qp )i+k+1

1− ( qp )i+k+α
=

1

1− ( qp )k+α

1− ( qp )k+1

1− ( qp )k+α+1
· · ·

1− ( qp )k+N

1− ( qp )k+α+N

1− ( qp )k+N+1

1

≤
1− ( qp )k+N+1

1− ( qp )k+α
≤ 1

1− ( qp )α
,

the inequality (3.3) holds. This completes the proof.

Lemma 3.3. Let 0 < α < 1, 0 < q < p ≤ 1. Assume that function family{
tαfv

(
t
pα

)}
is equicontinuous on interval [0,∞) and

xv(t) = x0 +
1

p(
α
2)Γp,q(α)

∫ t

0

(t− qs)(α−1)
p,q fv

( s

pα−1

)
dp,qs, t ∈ (0,∞). (3.4)

Then, the function family {xv(t)} is also equicontinuous on [0,∞).
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Proof. For any t1, t2 ∈ [0,∞), by (3.4), Definition 2.2 and Lemma 3.2, we have

|xv(t1)− xv(t2)|

=

∣∣∣∣∣ 1

p(
α
2)Γp,q(α)

∫ t1

0

(t1 − qs)(α−1)
p,q fv

(
s

pα−1

)
dp,qs

− 1

p(
α
2)Γp,q(α)

∫ t2

0

(t2 − qs)(α−1)
p,q fv

(
s

pα−1

)
dp,qs

∣∣∣∣∣
≤ p− q
p(
α
2)Γp,q(α)

∞∑
k=0

qk

pk+1

(
1−

(
q

p

)k+1
)(α−1)

p,q

∣∣∣∣tα1 fv ( qk

pk+α
t1

)
− tα2 fv

(
qk

pk+α
t2

)∣∣∣∣
≤ p− q

Γp,q(α)p(
α
2)

1

1− ( qp )α

∞∑
k=0

qk

pk+1

(
p

q

)kα ∣∣∣∣(qkpk t1
)α

fv

(
qkt1
pk

1

pα

)

−
(
qk

pk
t2

)α
fv

(
qkt2
pk

1

pα

)∣∣∣∣ .
(3.5)

Let gv(t) = tαfv(
t
pα ). Then, we obtain

|xv(t1)− xv(t2)|

≤ p− q
Γp,q(α)p(

α
2)

1

1− ( qp )α

∞∑
k=0

qk

pk+1

(
p

q

)kα ∣∣∣∣gv (qkpk t1
)
− gv

(
qk

pk
t2

)∣∣∣∣ .
Since {gv(t)} is equicontinuous on [0,∞), 0 < ( qp )k < 1, and

∞∑
k=0

qk

pk+1

(
p
q

)kα
=

1

q
[
1−( qp )

1−α
] , by the equicontinuous definition, the function family {xv(t)} is also

equicontinuous. This completes the proof.

Now, we present the solvability of fractional (p, q)-difference initial value problem
(3.1).

Theorem 3.1. Assume that for 0 ≤ β < α < 1, any b > 0, function tαf(t, x)
is continuous on domain R0 = {(t, x) : 0 ≤ t ≤ b, |x − x0| ≤ d}. If |tαf(t, x)| ≤

d
Γp,q(1−α) when (t, x) ∈ R0. Then, the fractional (p, q)-difference equation (3.1) has

at least a continuous solution x(t) for t ∈ [0,∞).

Proof. Let 0 < δ < 1. For 0 < v ≤ δ, we define the function xv

(
t

pα−1

)
= x0

on [−δ, 0] and

xv(t) = x0 +
1

p(
α
2)Γp,q(α)

∫ t

0

(t− qs)(α−1)
p,q f

(
s

pα−1
, xv

(s− v
pα−1

))
dp,qs, xv(0) = x0,

(3.6)
on [0, γ1], where γ1 = min{b, v}. Here are two cases to prove it.

If γ1 = b, from (3.6), we obtain

|xv(t)− x0| =
pα(α−1)

p(
α
2)Γp,q(α)

∣∣∣∣∫ t

0

(t− qs)(α−1)
p,q s−α · ( s

pα−1
)αf

(
s

pα−1
, xv

(s− v
pα−1

))
dp,qs

∣∣∣∣ .
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Notice that by Definition 2.2,

∣∣∣∣∫ t

0

(t− qs)(α−1)
p,q s−α · ( s

pα−1
)αf

(
s

pα−1
, xv

(
s

pα−1

))
dp,qs

∣∣∣∣
= (p− q)

∣∣∣∣∣
∞∑
k=0

qk

pk+1

(
1− q qk

pk+1

)(α−1)

p,q

(
qk

pk+1

)−α(
1

pα−1

qk

pk+1
t

)α
×f
(

1

pα−1

qk

pk+1
t, xv

(
1

pα−1

qk

pk+1
t

))∣∣∣∣
≤ (p− q)

∞∑
k=0

∣∣∣∣∣ qkpk+1

(
1− q qk

pk+1

)(α−1)

p,q

(
qk

pk+1

)−α(
1

pα−1

qk

pk+1
t

)α
×f
(

1

pα−1

qk

pk+1
t, xv

(
1

pα−1

qk

pk+1
t

))∣∣∣∣
Since for any t ∈ [0,∞), tαf(t, x) is continuous, then

(
1

pα−1

qk

pk+1
t)αf

(
1

pα−1

qk

pk+1
t, xv

(
1

pα−1

qk

pk+1
t

))

is bounded. Besides, by D’Alembert’s test, we get

∞∑
k=0

∣∣∣∣∣ qkpk+1

(
1− q qk

pk+1

)(α−1)

p,q

(
qk

pk+1
)−α

∣∣∣∣∣
is convergent. Hence,

∞∑
k=0

∣∣∣∣∣ qkpk+1

(
1− q qk

pk+1

)(α−1)

p,q

(
qk

pk+1
)−α(

1

pα−1

qk

pk+1
t)αf

(
1

pα−1

qk

pk+1
, xv

(
1

pα−1

qk

pk+1

))∣∣∣∣∣
is also convergent. Thus, we have

∣∣∣∣∫ t

0

(t− qs)(α−1)
p,q s−α · ( s

pα−1
)αf

(
s

pα−1
, xv

(s− v
pα−1

))
dp,qs

∣∣∣∣
≤ (p− q)

∞∑
k=0

qk

pk+1

∣∣∣∣∣
(

1− q qk

pk+1

)(α−1)

p,q

(
qk

pk+1
)−α(

1

pα−1

qk

pk+1
t)α

×f
(

1

pα−1

qk

pk+1
t, xv

(
1

pα−1

(
qk

pk+1
t− v

)))∣∣∣∣
=

∫ t

0

∣∣∣∣(t− qs)(α−1)
p,q s−α · ( s

pα−1
)αf

(
s

pα−1
, xv

(s− v
pα−1

))∣∣∣∣ dp,qs.

(3.7)

Then, by (3.7), |tαf(t, x)| ≤ d
Γp,q(1−α) when (t, x) ∈ R0, Lemma 2.4, and the
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definition of (p, q)-beta function, we can get

|xv(t)− x0| ≤
pα(α−1)

p(
α
2)Γp,q(α)

∫ t

0

∣∣∣∣(t− qs)(α−1)
p,q s−α · ( s

pα−1
)α

× f

(
s

pα−1
, xv

(s− v
pα−1

))∣∣∣∣ dp,qs
≤ pα(α−1) · d
p(
α
2)Γp,q(α)Γp,q(1− α)

∫ t

0

(t− qs)(α−1)
p,q s−αdp,qs

=
pα(α−1) · d

p(
α
2)Γp,q(α)Γp,q(1− α)

∫ 1

0

(1− qτ)(α−1)
p,q τ−αdp,qτ

≤ pα(α−1) · d
p(
α
2)Γp,q(α)Γp,q(1− α)

Bp,q(1− α, α) = d, t ∈ [0, γ1].

(3.8)

Hence, the function family {xv(t)} is uniformly bounded on [0, γ1]. Noting that
xv(

s−v
pα−1 ) = x0 is equicontinuous for s ∈ [0, γ1] and tαf(t, x) is uniformly continuous

on R0, by Lemma 3.3, we conclude that function family {xv(t)} is equicontinu-
ous on [0, γ1]. By Ascoli-Arzela’s lemma, there exists a sequence {vn} such that
lim
vn→0

xvn(t) = x(t) uniformly on [0, γ1]. Since tαf(t, x) is uniformly continuous, we

have that tαf
(

t
pα−1 , xvn( t−vnpα−1 )

)
converges to tαf

(
t

pα−1 , x( t
pα−1 )

)
as vn → 0, and by

virtue of f
(

t
pα−1 , xvn( t−vnpα−1 )

)
= t−αtαf

(
t

pα−1 , xvn

(
t−vn
pα−1

))
, taking v = vn in (3.6)

and letting vn → 0, we can obtain that x(t) is a solution of equation (3.1) on [0, b].
If γ1 < b (or γ1 = v), we can employ (3.6) to extend xv(t) to interval [−δ, γ2]

where γ2 = min{b, 2v}. Similar to the argument of (3.8), we can get

|xv(t)− x0| ≤
pα(α−1) · d

p(
α
2)Γp,q(α)Γp,q(1− α)

Bp,q(1− α, α) = d, t ∈ [0, γ2]. (3.9)

Hence, the function family {xv(t)} is uniformly bounded on [0, γ2]. Besides, noting
that s−v

pα−1 ∈ [−δ, 0] when s ∈ [0, γ2], the above argument had shown that xv(
s−v
pα−1 )

is equicontinuous on [0, γ2]. By Lemma 3.3 and (3.9), we conclude that function
family {xv(t)} is equicontinuous and uniformly bounded on [0, γ2] again. Continuing
this process, we extend xv(t) over [0, b] such that {xv(t)} is equicontinuous and
|xv(t) − x0| ≤ d. Finally, as the same derivation process in first case, we get that
(3.1) at least has one solution on [0, b]. By the arbitrariness of b, we deduce that
(3.1) has at least a continuous solution x(t) on [0,∞). This completes the proof.

4. The stability of fractional (p, q)-difference equa-
tion

In this section, the result of stability for the (p, q)-difference equation (3.1) is given
by using a (p, q)-Gronwall inequality which also implies the uniqueness of solution.
Now, an integral operator is defined as follows:

Jx(t) := λIαp,qx(t) =
λ

p(
α
2)Γp,q(α)

∫ t

0

(t−qs)(α−1)
p,q x

(
s

pα−1

)
dp,qs, t ∈ [0,∞), (4.1)
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and Jnx(t) = JJn−1x(t).

Lemma 4.1. Let λ ≥ 0. Then, the following inequality holds

|Jkx(t)| ≤ λktαk

Γp,q(kα+ 1)
sup

0≤s≤t
|x(s)|, k ∈ N+, t ∈ [0,∞). (4.2)

Proof. Now, we use mathematical induction to prove. For k = 1, from (4.1),
we have

|Jx(t)| = λ

p(
α
2)Γp,q(α)

∣∣∣∣∫ t

0

(t− qs)(α−1)
p,q x

(
s

pα−1

)
dp,qs

∣∣∣∣ .
From Definition 2.2, we have

∣∣∣∣∫ t

0

(t− qs)(α−1)
p,q x(

s

pα−1
)dp,qs

∣∣∣∣ = (p− q)t

∣∣∣∣∣
∞∑
k=0

qk

pk+1

(
t− q qk

pk+1
t

)(α−1)

p,q

x(
qk

pk+α
t)

∣∣∣∣∣
≤ (p− q)tα

∞∑
k=0

∣∣∣∣∣ qkpk+1

(
1− q qk

pk+1

)(α−1)

p,q

x(
qk

pk+α
t)

∣∣∣∣∣ .

Since x(t) is a continuous function on t ∈ [0,∞), then for any fixed t, we can deduce

that x( qk

pk+α
t) is bounded. Besides, since

0 <

(
1− q qk

pk+1

)(α−1)

p,q

<
1

1− ( qp )k+1
≤ 1

1− q
p

,

and
∞∑
k=0

∣∣∣ qk

pk+1

∣∣∣ is convergent, then
∞∑
k=0

∣∣∣∣ qk

pk+1

(
1− q qk

pk+1

)(α−1)

p,q
x( qk

pk+α
t)

∣∣∣∣ is also con-

vergent. Hence,

∣∣∣∣∫ t

0

(t− qs)(α−1)
p,q x(

s

pα−1
)dp,qs

∣∣∣∣ ≤ (p− q)tα
∞∑
k=0

∣∣∣∣∣ qkpk+1

(
1− q qk

pk+1

)(α−1)

p,q

x(
qk

pk+α
t)

∣∣∣∣∣
=

∫ t

0

∣∣∣∣(t− qs)(α−1)
p,q x(

s

pα−1
)

∣∣∣∣ dp,qs.
(4.3)
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By (4.3), Lemma 2.4 and the definition of (p, q)-beta function, we have

|Jx(t)| ≤ λ

p(
α
2)Γp,q(α)

∫ t

0

∣∣∣∣(t− qs)(α−1)
p,q x

(
s

pα−1

)∣∣∣∣ dp,qs
≤ λ

p(
α
2)Γp,q(α)

sup
0≤s≤t

∣∣∣∣x( s

pα−1

)∣∣∣∣ ∫ t

0

(t− qs)(α−1)
p,q dp,qs

=
λ

p(
α
2)Γp,q(α)

tα sup
0≤s≤t

∣∣∣∣x( s

pα−1

)∣∣∣∣ ∫ 1

0

(1− qτ)(α−1)
p,q dp,qτ

=
λ

p(
α
2)Γp,q(α)

tαBp,q(1, α) sup
0≤s≤t

∣∣∣∣x( s

pα−1

)∣∣∣∣
≤ λ

p(
α
2)Γp,q(α)

tαBp,q(1, α) sup
0≤s≤t

|x(s)|

=
λp

1
2 (α−1)α

p(
α
2)Γp,q(α+ 1)

tα sup
0≤s≤t

|x(s)| = λ

Γp,q(α+ 1)
tα sup

0≤s≤t
|x(s)|.

Assume that inequality (4.2) holds for k = n− 1. Then,

∣∣∣∣Jn−1
( t

pα−1

)∣∣∣∣ ≤ λn−1( t
pα−1 )α(n−1)

Γp,q
(
(n− 1)α+ 1

) sup
0≤s≤ t

pα−1

|x(s)|

≤ λn−1tα(n−1)

pα(α−1)(n−1)Γp,q
(
(n− 1)α+ 1

) sup
0≤s≤t

|x(s)|.

(4.4)

When k = n, from (4.1), we obtain

|Jnx(t)| = |JJn−1x(t)| = λ

p(
α
2)Γp,q(α)

∣∣∣∣∫ t

0

(t− qs)(α−1)
p,q Jn−1x

( s

pα−1

)
dp,qs

∣∣∣∣
≤ λ

p(
α
2)Γp,q(α)

∫ t

0

∣∣∣∣(t− qs)(α−1)
p,q Jn−1x

( s

pα−1

)∣∣∣∣ dp,qs.

The above inequality can be easily proved by a similar method to (4.3). Therefore,
we omit the process. Then, by (4.4), Lemma2.4 and the definition of (p, q)-beta
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function, we get

|Jnx(t)| ≤ λn

pα(α−1)(n−1)p(
α
2)Γp,q(α)Γp,q

(
(n− 1)α+ 1

) sup
0≤s≤t

|x(s)|

×
∫ t

0

(t− qs)(α−1)
p,q sα(n−1)dp,qs

=
λntαn

pα(α−1)(n−1)p(
α
2)Γp,q(α)Γp,q

(
(n− 1)α+ 1

) sup
0≤s≤t

|x(s)|

×
∫ 1

0

(1− qτ)(α−1)
p,q τα(n−1)dp,qτ

≤ λntαn

pα(α−1)(n−1)p(
α
2)Γp,q(α)Γp,q

(
(n− 1)α+ 1

) sup
0≤s≤t

|x(s)|

×Bp,q
(
(n− 1)α+ 1, α

)
≤ p

1
2 (α−1)(2nα−α)λntαn

pα(α−1)(n−1)p(
α
2)Γp,q(nα+ 1)

sup
0≤s≤t

|x(s)| = λntαn

Γp,q(nα+ 1)
sup

0≤s≤t
|x(s)|.

The proof is completed.

Lemma 4.2. (The (p, q)-Gronwall Inequality) Let β(t) ≥ 0, and λ ≥ 0. Assume
that function x : [0,∞)→ R+ is continuous and satisfies

x(t) ≤ β(t) +
λ

p(
α
2)Γp,q(α)

∫ t

0

(t− qs)(α−1)
p,q x

(
s

pα−1

)
dp,qs, t ∈ [0,∞). (4.5)

Then, the following inequality holds

x(t) ≤ Ep,q(λ, t) sup
0≤s≤t

β(s), t ∈ [0,∞), (4.6)

where Ep,q(λ, t) =
∞∑
k=0

λktαk

Γp,q(kα+1) .

Proof. For any t ∈ [0,∞), by (4.5) and recurrence, it yields

x(t) ≤ β(t) + Jx(t) ≤ β(t) + Jβ(t) + J2x(t) ≤ · · · ≤
n−1∑
k=0

Jkβ(t) + Jnx(t). (4.7)

Hence, it follows from Lemma 4.1 that

x(t) ≤
n−1∑
k=0

λktαk

Γp,q(kα+ 1)
sup

0≤s≤t
β(s) +

λntαn

Γp,q(nα+ 1)
sup

0≤s≤t
|x(s)|. (4.8)

Since x(t) is continuous on [0,∞), λntαn

Γp,q(nα+1) sup0≤s≤t |x(s)| → 0 when n → ∞,

taking n→∞ in (4.8), then we derive

x(t) ≤ Ep,q(λ, t) sup
0≤s≤t

β(s),

where Ep,q(λ, t) =
∞∑
k=0

λktαk

Γp,q(kα+1) . This completes the proof.

Now, we present the stability criterion of (p, q)-fractional difference equation
(3.1).
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Theorem 4.1. Assume that function f(t, x) satisfies the Lipschitz condition:

|f(t, x)− f(t, x′)| ≤ λ|x− x′|, (4.9)

where t ∈ [0,∞), and x, x′ ∈ R. Then, the solution of (p, q)-difference equation
(3.1) is stable with respect to the initial value. That is,

|x1(t)− x2(t)| ≤ Ep,q(λ, t)|x1(0)− x2(0)|, t ∈ [0,∞), (4.10)

where x1 and x2 are solutions of Equation (3.1) with initial x1(0) and x2(0) respec-
tively.

Proof. Since x1 and x2 are solutions of Equation (3.1), by (3.2), we have

|x1(t)− x2(t)| ≤ |x1(0)− x2(0)|+ 1

p(
α
2)Γp,q(α)

∣∣∣∣∫ t

0

(t− qs)(α−1)
p,q f

(
s

pα−1
, x1

(
s

pα−1

))
− f

(
s

pα−1
, x2

(
s

pα−1

))
dp,qs

∣∣∣∣
≤ |x1(0)− x2(0)|+ 1

p(
α
2)Γp,q(α)

∫ t

0

(t− qs)(α−1)
p,q

∣∣∣∣f ( s

pα−1
, x1

(
s

pα−1

))
−f
(

s

pα−1
, x2

(
s

pα−1

))∣∣∣∣ dp,qs.
Notice that the above inequality can be easily proved by a similar method to (4.3).

Meanwhile, from (4.9), we derive

|x1(t)− x2(t)| ≤ |x1(0)− x2(0)|

+
λ

p(
α
2)Γp,q(α)

∫ t

0

(t− qs)(α−1)
p,q

∣∣∣∣x1

(
s

pα−1

)
− x2

(
s

pα−1

)∣∣∣∣ dp,qs.
Then, from Lemma 4.2, we can derive (4.10). Hence, the solution of (p, q)-difference
equation (3.1) is stable with respect to the initial value. This completes the proof.

Remark 4.1. From (4.10), we can see the solution of (3.1) is unique with respect
to given initial value if condition (4.9) holds.

5. Examples

Example 5.1. Consider the following Caputo type (p, q)-fractional initial value
problem: {

cD
2
3
p,qx(t) = t−

1
2x2(t), t > 0

x(0) = 0.
(5.1)

This corresponds to (3.1) with

α =
2

3
, β =

1

2
, f(t, x) = t−

1
2x2.

It is clear that 0 ≤ β < α < 1, and for any b > 0, t
2
3 f(t, x) is continuous on domain

R0 = {(t, x) : 0 ≤ t ≤ b, |x| ≤ d}, where d = 1

b
1
6 Γp,q(

1
3 )

. Then, we have

∣∣∣t 1
6x2
∣∣∣ ≤ b 1

6 d2 =
d

Γp,q(
1
3 )
, (t, x) ∈ R0.
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Therefore, by Theorem 3.1, (5.1) has at least a continuous solution x(t) for t ∈
[0,∞).

6. Conclusion

In this paper, the solvability for a class of fractional singular (p, q)-difference equa-
tion is studied. In addition, by a fractional (p, q)-Gronwall inequality, we obtain
the stability result, which also implies the uniqueness of solution. This paper in-
vestigates stability of fractional (p, q)-difference equation, and it generalizes the
existence of solution and stability results of a fractional q-differential. These results
can be further used in the fractional controlling or design of fractional controllers
of discrete time. For example, discrete fractional network, chaos synchronization
of discrete time and so on. We will continue to study the qualitative theory of
fractional (p, q)-difference equations in our future work.
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