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Mathematical Modeling and Analysis of an
Epidemic Model with Quarantine, Latent and

Media Coverage

Bilal Boulfoul1, Adlen Kerboua1 and Xueyong Zhou2,†

Abstract Epidemic models are very important in today’s analysis of dis-
eases. In this paper, we propose and analyze an epidemic model incorporating
quarantine, latent, media coverage and time delay. We analyze the local sta-
bility of either the disease-free and endemic equilibrium in terms of the basic
reproduction number R0 as a threshold parameter. We prove that if R0 < 1,
the time delay in media coverage can not affect the stability of the disease-
free equilibrium and if R0 > 1, the model has at least one positive endemic
equilibrium, the stability will be affected by the time delay and some condi-
tions for Hopf bifurcation around infected equilibrium to occur are obtained
by using the time delay as a bifurcation parameter. We illustrate our results
by some numerical simulations such that we show that a proper application of
quarantine plays a critical role in the clearance of the disease, and therefore a
direct contact between people plays a critical role in the transmission of the
disease.
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1. Introduction

For a long time, infectious and epidemics have been a great challenge to mankind,
and people have tried every means to prevent and control them. Therefore, the
analysis of the dynamics of diseases has always been a hot topic in people’s research.
At the same time, the frequent occurrence of HIV (see [34,38–41]), tuberculosis (TB)
(see [19, 20, 29]), swine flu (see [26, 47, 49, 56]), Avian flu (see [15, 24, 27, 33]), Ebola
(see [6, 16, 23, 59]), human influenza (see [4, 27, 58]), Zika virus (see [2, 3, 10, 11]),
severe acute respiratory syndrome (SARS) (see [5, 7, 14]) and COVID-19 (see [12,
30–32, 50, 52]) in recent years has made people more aware of the importance of
studying the prevention and transmission mechanism of diseases.

Many scholars rely on the transmission mechanism and impact of infectious and
epidemics diseases factors from the perspective of reality, establishing a reasonable
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infectious disease model, and through the specific analysis of each parameter in the
model, the specific measures should be taken so as to theoretically provide a strong
basis for the prevention and control of the occurrence and spread of disease. In
addition, people’s sense of self-protection has a positive effect on the prevention
and control of diseases.

In many parts of the world, the mass media plays an irreplaceable role of chang-
ing public health-related behaviour. For example, in the early stage of a disease
outbreak, the government and the Centers for Disease Control (CDC) can let people
know the harm of the disease and related prevention measures through various me-
dia in a timely manner so as to minimize the chance of catching disease and achieve
the purpose of curbing the epidemic. Therefore, it is particularly important to con-
sider the infectious disease models incorporating media impact. Media reports can
make the behavior of susceptible populations dependent on a continuous change in
the number of cases, which is reflected by a continuous differentiable infection rate
function. In [44], Liu et al. introduced an EIH epidemic model with media effects.
The function of impact factor is f(E, I,H) = e−a1E−a1I−a3H , where E, I, H are
the exposed, infectious and hospitalized individuals, and a1, a2, a3 are non-negative
parameters to measure the effect of psychological impact of media reported numbers
of exposed, infectious and hospitalized individuals. The rationality of the impact
factor in the model was tested by simulating the outbreak of SARS in the greater
Toronto area in 2003. In [43], Liu et al. constructed a novel saturation disease rate
function β(I) = β1− β2I

m+I to describe the intrinsic property of the continuous change
in the number of cases reported by media in public behavior, which reduces the pop-
ulation exposure rate to a certain limited level, where β1 is the contact rate before
media alert, and β2 is the maximal reduced effective contact rate due to mass media
alert in the presence of infective individuals. The term β2I

m+I measures the effect of
reduction of the contact rate when infectious individuals are reported in the media
(see [19, 42–46, 58, 61]). The function g(I) = I

m+I is continuous bounded function
which takes into account disease saturation or psychological effects (see [13,58,61]).
Because the coverage report cannot prevent disease from spreading completely we
have β1 ≥ β2 > 0. The half saturation constant m > 0 reflects the impact of
media coverage on the contact transmission ( [19, 42–46, 58, 61]). They propose
and analyze a mathematical model of tuberculosis (TB) transmission considering
social awareness effects during an epidemic. Das et al. [19] proposed and analyzed a
mathematical model of tuberculosis (TB) transmission considering social awareness
effects during an epidemic. To quantify the effect of media awareness in disease
transmission rate, they updated the transmission coefficient β1 both in susceptible
and exposed class by βa(I) = β1 − β2I

m+I and βb(I) = β1 − β3I
m+I respectively. Here,

β1 > β2, β3. In general, there are two approaches to account the effect of media
awareness: (i) updating the disease transmission rate to accumulate the significant
fall in transmission due to preventive measures (see [19, 43, 45, 46, 58]) and (ii) by
incorporating a mass media compartment to represent the public interaction with
mass media ( [17,36,60]).

On the other hand, the delays are in the media coverage. Media coverage of
an disease outbreak can be seen as following two major routes [5, 57, 61]. The
first route is when the media report directly to the public about the facts, and
the second has public health authorities that use the media or the Internet to
inform about an outbreak. For the second route, the number of infections and the
number of suspected infections reported by media today are often the statistical
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result of yesterday or the day before. Therefore, the effects of media coverage on

the transmission dynamics can be modified as follows β1 − β2
I(t−τ)

m+I(t−τ) .

Since no specific antiviral agent is available for treatment of the COVID-19
epidemic, and there is no vaccine. A metropolitan-wide quarantine of Wuhan and
nearby cities was introduced on 23-24 January, 2020 [12]. Several airports and
railway stations have started temperature screening to identify people with fevers
[12]. All public transportation was suspended in Wuhan from 10 a.m., 23 January.
After 23 January, strong government measures in all parts of China such as isolation,
quarantine and public closings strongly undermined the transmission of new cases.
In general, quarantine is one of the necessary measures taken by governments to
affect the transmission of other diseases. We give some examples related to the
COVID-19 pandemic as the model has the quarantine class (see [12,31,52] ).

Motivated by the above factors, we propose an epidemic model incorporated
with quarantine, latent and media coverage as follows:



dS

dt
=A−

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
SI − dS,

dE

dt
=(1− c)

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
SI − κ

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
EI − dE,

dI

dt
=c

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
SI + κ

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
EI

− (ε+ γ1 + µ+ d) I,

dQ

dt
=εI − γ2Q− dQ,

dR

dt
=γ1I + γ2Q− dR,

(1.1)
where S(t), E(t), I(t), Q(t) and R(t) are the number of the susceptible, the exposed,
the infected, the quarantined and the recovered at any time respectively. Thus, the
total population size at time t is denoted by N(t) equals to S(t) + E(t) + I(t) +
Q(t) +R(t).

The meaning of the remaining parameters used in the model is explained as
follows:

• A is the recruitment rate of susceptible population;

• d is the natural mortality rate of the population;

• c is the portion developing active disease directly after the first infection;

• κ is the level of exogenous re-infection;

• µ is the constant death rate which is related to disease;

• ε is the quarantine rate for patients;

• γ1 is the per capita recovery rate without quarantine;

• γ2 represent the cure rate (the per capita recovery rate wit quarantine).

Since the first three equations of system (1.1) are independent of the last two
equations of (1.1), the dynamics of system (1.1) is determined by the following sub-
system:
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

dS

dt
=A−

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
SI − dS,

dE

dt
=(1− c)

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
SI − κ

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
EI − dE,

dI

dt
=c

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
SI + κ

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
EI

− (ε+ γ1 + µ+ d) I.
(1.2)

For τ > 0, we denote by X = C([−τ, 0],R3) the Banach space of continuous func-
tions from [−τ, 0] to R3 equipped with the supremum norm. The nonnegative cone
of X is defined as X+ = {ϕ ∈ X : ϕ(θ) ≥ 0, θ ∈ [−τ, 0]} . By the standard theory
of functional differential equations (for example, see Hale and Verduyn Lunel [25],
Kuang [35]). For any ϕ = (φ1, φ2, φ3) ∈ X+, model (1.2) has a unique solution.
From the view of mathematical biology, we consider (1.2) with the initial conditions
in X+

0 , where
X+

0 =
{
ϕ = (φ1, φ2, φ3) ∈ X+ : ϕ(0) > 0

}
.

That is,

S (θ) = φ1 (θ) , E (θ) = φ2 (θ) , I (θ) = φ3(θ),

φi(θ) ≥ 0, θ ∈ [−τ, 0], φi(0) > 0, i = 1, 2, 3. (1.3)

Now, we prove positivity of solution of (1.2) with the initial condition (1.3).

Theorem 1.1. Let (S,E, I) be any solution of system (1.2) with the initial condi-
tion (1.3). Then, all S(t), E(t) and I(t) are non-negative for all t > 0, and they
are ultimately bounded.

Proof. Let (S,E, I) be a solution of system (1.2) with initial condition (1.3).
First, we prove that S(t) > 0, E(t) > 0 and I(t) > 0 for all t > 0. From the first
equation of system (1.2), we have

dS(t)

dt
≥ −

((
β1 − β2

I(t− τ)

m+ I(t− τ)

)
I(t) + d

)
S(t).

Integrating both sides of the precedent inequality on (0, t), we see that

S(t) ≥ S(0)e−
∫ t
0 ((β1−β2

I(s−τ)
m+I(s−τ) )I(s)+d)ds.

Then, from the initial condition (1.3), S(t) > 0 for all t > 0. From the third equation
of system (1.2), we obtain

dI(t)

dt
=

(
c

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
S(t)

+κ

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
E(t)− (ε+ γ1 + µ+ d)

)
I(t),

which gives after integration on (0, t) :

I(t) = I(0)e
∫ t
0 (c(β1−β2

I(s−τ)
m+I(s−τ) )S(s)+κ(β1−β2

I(s−τ)
m+I(s−τ) )E(s)−(ε+γ1+µ+d))ds.
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From the initial condition (1.3), we have I(t) > 0 , for all t > 0. The second equation
of (1.2) and since S(t) > 0 and I(t) > 0 for all t > 0 lead to

dE

dt
≥ −

(
κ

(
β1 − β2

I(t− τ)

m+ I(t− τ)

)
I(t) + d

)
E(t),

and we have E(0) > 0, which implies

E(t) ≥ E(0)e−
∫ t
0 (κ(β1+β2

I(s−τ)
m+I(s−τ) )I(s)−d)ds > 0, ∀t > 0.

Now, we show the boundedness of the solution of system (1.2). Denote M =
S + E + I. Then, from system (1.2), we have

dM

dt
= A− dS − dE − (ε+ γ1 + µ+ d) I

≤ A− dM.

By using the comparison principle, we obtain

lim sup
t→+∞

M(t) ≤ A

d
.

Define

G =

{
(S,E, I) ∈ X+ : S + E + I ≤ A

d

}
.

By Theorem 1.1, we conclude that for all (φ1, φ2, φ3) ∈ X+ :

d(Φt(φ1, φ2, φ3), G)→ 0, t→ +∞,

where Φt is the semiflow of system (1.2). Then, the semiflow Φt is dissipative, and
the solutions of system (1.2) are ultimately bounded.

The rest of the paper is organized as follows: In Section 2, we calculate the
reproduction number and determine the number of possible endemic equilibrium
by using the Descartes Rule of Signs. In Section 3, we prove that if the basic
reproduction number R0 is less than 1, the disease-free equilibrium is locally stable.
We discuss the existence of Hopf bifurcation around the endemic equilibrium under
certain conditions in terms of delay. In Section 4, we illustrate our results by some
numerical simulations. The paper ends with a discussion.

2. Equilibria and basic reproduction number R0

In this section, the number of equilibria of system (1.2) will be presented. To find
equilibria of (1.2), we solve the algebraic system:

A−
(
β1 − β2

I
m+I

)
SI − dS = 0,

(1− c)
(
β1 − β2

I
m+I

)
SI − κ

(
β1 − β2

I
m+I

)
EI − dE = 0,(

c
(
β1 − β2

I
m+I

)
S + κ

(
β1 − β2

I
m+I

)
E − (ε+ γ1 + µ+ d)

)
I = 0.

(2.1)
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If I = 0, then from the first and the second equations of (2.1), we get S = A
d and

E = 0. System (1.2) admits the disease free equilibrium P0

(
S0, 0, 0

)
with S0 = A

d .

Now, we define the basic reproduction number R0 of model (1.2). The basic
reproduction number R0 is one of the most crucial quantities in infectious diseases,
as R0 measures how contagious a disease is. System (1.2) always has a disease-free
equilibrium P0

(
S0, 0, 0

)
. Inspired by the method in Driessche and Watmough [22],

we define matrices F and V as:

F =

 0 (1− c)β1S
0

0 cβ1S
0

 , V =

d 0

0 ε+ γ1 + µ+ d

 .

The basic reproduction number, R0, is the spectral radius of the next generation
matrix FV −1, where

V −1 =

 1
d 0

0 1
ε+γ1+µ+d

 , FV −1 =

0 (1−c)β1S
0

ε+γ1+µ+d

0 cβ1S
0

ε+γ1+µ+d

 .

Therefore,

R0 = ρ
(
FV −1

)
=

cβ1S
0

ε+ γ1 + µ+ d
=

Acβ1

d(ε+ γ1 + µ+ d)
, (2.2)

where ρ represents the spectral radius.
Before investigating the stability dynamics of the system (1.2), it is instructive

to determine the number of equilibrium points of the system (2.1). To do so, let
P ∗ (S∗, E∗, I∗) be any arbitrary equilibrium of (1.2). To find conditions for the
existence of an equilibrium for which the infection is endemic in the population
(i.e., at least one of E∗, I∗ is positive).
Now, assume that I∗ 6= 0, from the first equation of (2.1), we have

S∗ =
A(

β1 − β2
I∗

m+I∗

)
I∗ + d

. (2.3)

From the third equation of (2.1) and (2.3), we get

E∗ =
ε+ γ1 + µ+ d

κ
(
β1 − β2

I∗

m+I∗

) − Ac

κ
((
β1 − β2

I∗

m+I∗

)
I∗ + d

) . (2.4)

By replacing (2.3) and (2.4) in the second equation of (2.1), after some straightfor-
ward calculation, we show that

C0I
∗4 + C1I

∗3 + C2I
∗2 + C3I

∗ + C4 = 0, (2.5)

where

C0 =κ (ε+ γ1 + µ+ d) (β1 − β2)
2
,

C1 = (β1 − β2) [(ε+ γ1 + µ+ d) (2β1mκ+ κd+ d)−Aκ (β1 − β2)] ,

C2 = (ε+ γ1 + µ+ d)
[
β2

1m
2κ+ κd (2β1m− β2m) + d (2β1m− β2m+ d)

]
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Table 1. Number of possible positive real roots of g(I∗) for R0 < 1 and R0 > 1

Cases C0 C1 C2 C3 C4 R0 Number of sign Number of possible

changes positive real roots

1 + + + + + R0 < 1 0 0

+ + + + − R0 > 1 1 1

2 + − − − + R0 < 1 2 0, 2

+ − − − − R0 > 1 1 1

3 + + − − + R0 < 1 2 0, 2

+ + − − − R0 > 1 1 1

4 + − + − + R0 < 1 4 0, 2, 4

+ − + − − R0 > 1 3 1, 3

5 + − − + + R0 < 1 2 0, 2

+ − − + − R0 > 1 3 1, 3

6 + + + − + R0 < 1 2 0, 2

+ + + − − R0 > 1 1 1

7 + + − + + R0 < 1 2 0, 2

+ + − + − R0 > 1 3 1, 3

8 + − + + + R0 < 1 2 0, 2

+ − + + − R0 > 1 3 1, 3

−A (β1 − β2) (2κβ1m+ cd) , (2.6)

C3 = (ε+ γ1 + µ+ d)
[
β1m

2κd+ d
(
β1m

2 + 2dm
)]

−Aκβ2
1m

2 −Acd (2β1m− β2m) ,

C4 =− d2m2 (ε+ γ1 + µ+ d) (R0 − 1) .

From (2.6), it is easy to see that C0 > 0 (since all the model parameters are
non-negative). Further, C4 < 0, if R0 > 1 (C4 > 0, if R0 < 1). Thus, the
number of possible positive real roots the polynomial (2.5) depends on the signs
of C1, C2 and C3. We can use the Descartes Rule of Signs on the quartic g(I∗) =
C0I

∗4 + C1I
∗3 + C2I

∗2 + C3I
∗ + C4 given in (2.5) to find out how many positive

real roots. The various possibilities for the roots of g(I∗) are tabulated in Table 1.
The following results (Theorem 2.1 and Lemma 2.1) follow from the various

possibilities enumerated in Table 1.

Theorem 2.1. The system (1.2):

(i) has a unique endemic equilibrium, if R0 > 1, and whenever Cases 1, 2, 3 and
6 are satisfied;
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(ii) could have more than one endemic equilibria, if R0 > 1, and Cases 4, 5, 7
and 8 are satisfied;

(iii) could have two or more endemic equilibria, if R0 < 1, and Cases 2-8 are
satisfied.

Lemma 2.1. The system (1.2) has at least one endemic equilibrium whenever R0 >
1, and could have zero, two, or four endemic equilibria whenever R0 < 1.

3. Local stability of equilibria and Hopf bifurcation
analysis

The characteristic equation of system (1.2) at disease-free equilibrium P0 is given
by 

λ+ d 0 β1S0

0 λ+ d −(1− c)β1S0

0 0 λ+ (ε+ γ1 + µ+ d)− cβ1S0

 = 0. (3.1)

Theorem 3.1. (i) If R0 < 1, the disease-free equilibrium P0 of the system (1.2)
is asymptotically stable for all τ ≥ 0.

(ii) If R0 > 1, the disease-free equilibrium P0 of the system (1.2) is unstable.

Proof. At the disease-free equilibrium P0 (S0, 0, 0), the characteristic equation
(3.1) takes the form:

(λ+ d) (λ+ d)

(
λ+ (ε+ γ1 + µ+ d)

(
1− cβ1S0

ε+ γ1 + µ+ d

))
= 0.

Then, λ1 = λ2 = −d < 0 and since R0 = cβ1S0

ε+γ1+µ+d < 1, λ3 = (ε+ γ1 + µ+ d)

(R0 − 1) < 0. Thus, P0 is locally asymptotically stable, when R0 < 1 for all τ ≥ 0.
On the other hand, λ3 > 0, when R0 > 1. Hence, P0 is unstable, when R0 > 1.

Next, we turn our attention to the endemic equilibrium P ∗ (S∗, E∗, I∗) . The
characteristic equation at this equilibrium has the form:

λ− a1 0 −a2 − a9e
−λτ

−a3 λ− a4 −a5 − a10e
−λτ

−a6 −a7 λ− a8 − a11e
−λτ

 = 0, (3.2)

where

a1 = −d− η1I
∗,

a2 = −η1S
∗,

a3 = (1− c)η1I
∗,

a4 = −d− κη1I
∗,

a5 = (1− c)η1S
∗ − κη1E

∗,

a6 = cη1I
∗,

a7 = κη1I
∗,
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a8 = − (ε+ γ1 + µ+ d) + cη1S
∗ + κη1E

∗,

a9 = η2S
∗,

a10 = −(1− c)η2S
∗ + κη2E

∗,

a11 = −cη2S
∗ − κη2E

∗,

η1 = β1 −
β2I
∗

m+ I∗
,

η2 =
β2mI

∗

(m+ I∗)2
.

After some calculations, the characteristic equation (3.2) takes the following form:

λ3 + b1λ
2 + b2λ+ b3 + (b4λ

2 + b5λ+ b6)e−λτ = 0, (3.3)

where

b1 = − (a1 + a4 + a8) ,

b2 = a1a4 + a8(a1 + a4)− a2a6 − a5a7,

b3 = a1a5a7 + a2a4a6 − a1a4a8 − a2a3a7,

b4 = −a11,

b5 = a11(a1 + a4)− a7a10 − a6a9,

b6 = a1a7a10 + a4a6a9 − a1a4a11 − a3a7a9.

When τ = 0, the characteristic equation (3.3) at the endemic equilibrium P ∗

takes the following form:

λ3 + b̂1λ
2 + b̂2λ+ b̂3 = 0, (3.4)

where

b̂1 = b1 + b4,

b̂2 = b2 + b5,

b̂3 = b3 + b6.

It is hard to verify the signs of the coefficients of (3.4). Routh-Hurwitz criterion
(see [9]) implies that when τ = 0, all roots of (3.4) have negative real parts, if and
only if the following conditions are satisfied:

∆1 = b̂1 > 0,

∆2 = b̂1b̂2 − b̂3 > 0, (H1)

∆3 = b̂3∆2 > 0.

Theorem 3.2. Assume R0 > 1. When τ = 0, the endemic equilibrium P ∗ is locally
asymptotically stable, if and only if (H1) holds.

Condition (H1) will be used to determine the stability of P ∗ at τ = 0. In the
following parts, we will let τ be bifurcation parameter and investigate Hopf bifur-
cation for system (3.3) and the stability of P ∗ by adapting the method in [51, 61].
For P ∗ to become unstable, characteristic roots have to cross the imaginary axis to
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the right when τ increases. Let λ = iω (ω > 0) be a purely imaginary root of (3.3).
Substituting it into (3.3) and separating the real and imaginary parts, we obtain

b1ω
2 − b3 =

(
b6 − b4ω2

)
cos(ωτ) + b5ω sin(ωτ),

−ω3 + b2ω =
(
b6 − b4ω2

)
sin(ωτ)− b5ω cos(ωτ).

(3.5)

Squaring and adding both equations of (3.5), it follows that

ω6 + pω4 + qω2 + r = 0, (3.6)

where

p = b21 − 2b2 − b24,
q = b22 + 2b4b6 − 2b1b3 − b25,
r = b23 − b26.

Let z = ω2, and then (3.6) becomes

F (z) := z3 + pz2 + qz + r = 0. (3.7)

We give some hypotheses on the parameters, under which (3.7) has at least one
positive root in the following lemma. To proceed, we further denote

∆ = p2 − 3q, z∗1 = −p+
√

∆
3 , z∗2 = −p−

√
∆

3 . (3.8)

Lemma 3.1. For the polynomial equation (3.7), we have the following results.

(i) If r < 0, then (3.7) has at least one positive root.

(ii) If r ≥ 0, we have the following two cases:

1) when ∆ < 0 or ∆ = 0, (3.7) has no positive root.

2) when ∆ > 0, (3.7) has positive roots, if and only if z∗1 > 0, and F (z∗1) ≤ 0.

Proof. (i) If r < 0, it is clear that F (0) = r < 0 and lim
z→+∞

F (z) = +∞. (3.7) has

at least one positive root by the intermediate value theorem.
(ii) Assume that r ≥ 0, and we have from (3.7):

F ′(z) = 3z2 + 2pz + q,

for which the discriminant is ∆ given by (3.8). Then, we have the following two
cases:
1) If ∆ < 0 or ∆ = 0, then the function F (z) is increasing on [0,+∞) and since
F (0) = r ≥ 0. Thus, if r ≥ 0 and ∆ ≤ 0, (3.7) has no positive real root.
2) When ∆ > 0, F ′(z) has two real roots z∗1 and z∗2 given by (3.8). On the other
hand, we know that F ′′(z∗1) = 2

√
∆ > 0 and F ′′(z∗2) = −2

√
∆ < 0. That is, z∗1 and

z∗2 are the local minimum and the local maximum of F (z) respectively. Therefore, if
r ≥ 0 and ∆ > 0, (3.7) has positive real roots, if and only if z∗1 > 0, and F (z∗1) ≤ 0.

Without the loss of generality, we assume that (3.7) has three positive roots zk
(k = 1, 2, 3) with zk > 0. Then, by the relation of z = ω2, (3.6) has three positive
roots:

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3. (3.9)



52 B. Boulfoul, A. Kerboua & X. Zhou

From the equalities in (3.5), we obtain

cos(ωτ) =
b5ω(ω3−b2ω)−(b1ω2−b3)(b4ω2−b6)

(b4ω2−b6)2+b25ω
2 = Gc(ω),

sin(ωτ) =
b5ω(b1ω2−b3)+(ω3−b2ω)(b4ω2−b6)

(b4ω2−b6)2+b25ω
2 = Gs(ω).

(3.10)

Then, for the imaginary root λ = iω of (3.3), we have from (3.10) the following
expression for delay τ :

τ
(j)
k =


arccos(Gc(ωk))+2πj

ωk
, Gs(ω) ≥ 0,

2π−arccos(Gc(ωk))+2πj
ωk

, Gs(ω) < 0,
(3.11)

where j = 0, 1, 2, ... and k = 1, 2, 3. Thus, ±iωk is a pair of purely imaginary roots

of (3.3) with τ = τ
(j)
k . Assuming

τ0 = τ
(0)
k0

= min
k∈{1,2,3}

{
τ

(0)
k

}
and ω0 = ωk0 , (3.12)

i.e., τ0 is the minimum value associated with the imaginary solution iω0 of the
characteristic equation (3.3).
From Theorem 3.2, if R0 > 1, the endemic equilibrium P ∗ is locally asymptotically
stable, when τ = 0. Now, we now consider the following exponential polynomial:

P (λ, e−λτ1 , ...e−λτm) =λn + p
(0)
1 λn−1 + ...+ p

(0)
n−1λ+ p(0)

n

+
(
p

(1)
1 λn−1 + ...+ p

(1)
n−1λ+ p(1)

n

)
e−λτ1

+ ...+
(
p

(m)
1 λn−1 + ...+ p

(m)
n−1λ+ p(m)

n

)
e−λτm ,

where τi ≥ 0 (i = 1, 2, ...,m) and p
(i)
j (i = 0, 1, ...,m; j = 1, 2, ..., n) are constants.

We need the following result in Ruan and Wei [51] to analyze (3.3).

Lemma 3.2 (Corollary 2.4, [51]). As (τ1, τ2, ..., τm) vary, the sum of the order of
the zeros of P (λ, e−λτ1 , ..., e−λτm) in the open right half plane can change only if a
zero appears on or crosses the imaginary axis.

By Lemmas 3.1 and 3.2, we obtain the following proposition.

Proposition 3.1. For the third degree transcendental equation (3.3), we have:

(i) If r ≥ 0 and either ∆ < 0 or ∆ = 0, then all roots of (3.3) have negative real
parts for all τ ≥ 0.

(ii) If either r < 0 or r ≥ 0, ∆ > 0, z∗1 > 0 and F (z∗1) ≤ 0, then all roots of (3.3)
have negative real parts for τ ∈ [0, τ0).

Let

λ(τ) = α(τ) + iω(τ)

be the root of (3.3) near τ = τ
(j)
k satisfying α(τ

(j)
k ) = 0 and ω(τ

(j)
k ) = ωk. We have

the following transversality condition.
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Proposition 3.2. Assume (H1) holds and F ′(ω2
k) 6= 0, when τ

(j)
k > 0 (correspond-

ingly ωk for some k = 1, 2, 3). Then, the characteristic equation (3.3) admits a pair
of simple conjugate pure imaginary roots λ = iωk and λ = −iωk, which crosses the
imaginary axis from left to right if δ > 0 and crosses the imaginary axis from right
to left if δ < 0, where

δ = sign

{
d(Reλ)

dτ

∣∣∣∣
τ=τ

(j)
k

}
= sign

{
F ′(ω2

k)
}
.

Proof. First, by differentiating the equation (3.3) with respect to delay τ, we get[
3λ2 + 2b1λ+ b2 + (2b4λ+ b5)e−λτ − τ(b4λ

2 + b5λ+ b6)e−λτ
] dλ
dτ

= λ(b4λ
2 + b5λ+ b6)e−λτ ,

which gives(
dλ

dτ

)−1

=
3λ2 + 2b1λ+ b2

λ(b4λ2 + b5λ+ b6)e−λτ
+

2b4λ+ b5
λ(b4λ2 + b5λ+ b6)

− τ

λ
. (3.13)

From (3.3), we have

e−λτ = −λ
3 + b1λ

2 + b2λ+ b3
b4λ2 + b5λ+ b6

. (3.14)

By replacing (3.14) in the equation (3.13), we have(
dλ

dτ

)−1

=
3λ2 + 2b1λ+ b2

−λ(λ3 + b1λ2 + b2λ+ b3)
+

2b4λ+ b5
λ(b4λ2 + b5λ+ b6)

− τ

λ
.

Evaluating
(
dλ
dτ

)−1
at τ = τ

(j)
k (i.e., λ(τ

(j)
k ) = iωk) and taking the real part, we

obtain

Re

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τ

(j)
k

=Re

[
3λ2 + 2b1λ+ b2

−λ(λ3 + b1λ2 + b2λ+ b3)

+
2b4λ+ b5

λ(b4λ2 + b5λ+ b6)
− τ

λ

]
λ=iωk

=Re

[
2b1ω

2
k + i

(
3ω3

k − b2ωk
)

ω2
k(b1ω2

k − b3 + i (ω3
k − b2ωk))

+
2b4ω

2
k − ib5ωk

ω2
k(b6 − b4ω2

k + ib5ωk)

]
=

2b21ω
4
k − 2b1b3ω

2
k + 3ω6

k − 3b2ω
4
k − b2ω4

k + b22ω
2
k

ω2
k((b1ω2

k − b3)
2

+ (ω3
k − b2ωk)

2
)

+
2b4b6ω

2
k − 2b24ω

4
k − b25ω2

k

ω2
k((b6 − b4ω2

k)
2

+ b25ω
2
k)
.

From (3.5), we have(
b1ω

2
k − b3

)2
+
(
ω3
k − b2ωk

)2
=
(
b6 − b4ω2

k

)2
+ b25ω

2
k.
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Thus,

Re

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τ

(j)
k

=
ω2
k

[
3ω4

k + 2
(
b21 − 2b2 − b24

)
ω2
k +

(
b22 + 2b4b6 − 2b1b3 − b25

)]
ω2
k((b6 − b4ω2

k)
2

+ b25ω
2
k)

=
3ω4

k + 2
(
b21 − 2b2 − b24

)
ω2
k +

(
b22 + 2b4b6 − 2b1b3 − b25

)
(b6 − b4ω2

k)
2

+ b25ω
2
k

.

Since zk = ω2
k and F ′(zk) 6= 0, then

Re

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τ

(j)
k

=
F ′(ω2

k)

(b6 − b4ω2
k)

2
+ b25ω

2
k

6= 0.

Meanwhile, noticing the fact

sign

{
d(Reλ)

dτ

∣∣∣∣
τ=τ

(j)
k

}
= sign

Re
(
dλ(τ

(j)
k )

dτ

)−1
 .

Therefore,

sign

{
d(Reλ)

dτ

∣∣∣∣
τ=τ

(j)
k

}
= sign

{
F ′(ω2

k)

(b6 − b4ω2
k)

2
+ b25ω

2
k

}
= sign

{
F ′(ω2

k)
}
.

From Proposition 3.1 and 3.2, we have the following theorem.

Theorem 3.3. Assume that R0 > 1, (H1) holds, and τ
(j)
k , ω0, and τ0 defined by

(3.11) and (3.12), respectively. Then,

(i) if r ≥ 0 and either ∆ < 0 or ∆ = 0, the endemic equilibrium P ∗ of system
(1.2) is locally asymptotically stable for all τ ≥ 0.

(ii) if either r < 0 or r ≥ 0, ∆ > 0, z∗1 > 0 and F (z∗1) ≤ 0, the endemic equilibrium
P ∗ of system (1.2) is locally asymptotically stable for τ ∈ [0, τ0).

(iii) if the conditions of (ii) are satisfied and F ′(zk) 6= 0, system (1.2) exhibits Hopf

bifurcation at the endemic equilibrium P ∗, when τ pass through τ = τ
(j)
k .

4. Numerical simulation

In this section, several illustrative numerical examples are presented to confirm the
theoretical results and to examine the dynamical behavior of system (1.2). Graphs
have been plotted for S, E and I for various values of τ . The parameters are given
in Table 2. Then, we associate systems (1.2) with the following initial conditions:

S(0) = 385, E(0) = 15 and I(0) = 0.6

In Figure 1, we have plotted the contour of the basic reproduction number
R0 in two parameter planes, Figure 1(a) illustrates the contour plot of the basic
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reproduction number R0 with respect to the disease transmission rate β1 varying
from 0 to 0.01 and the quarantine rate ε varying from 0 to 1. Figure 1(b) illustrates
the contour plot of the basic reproduction number R0 with respect to β1 varying
from 0 to 0.02 and the fraction of susceptible population acquiring direct route to
active disease c varying from 0 to 1. We can see that from Figure 1(a), the decrease
of ε and increase β1 can significantly increase the value of R0, which verifies that
proper application of quarantine plays a critical role in the clearance of the disease.
Whilst, from Figure 1(b), the increase of β1 and c can significantly increase the
value of R0, which confirms that direct contact between people plays a critical
role in the transmission of the disease. We can see also that in the blue region
(or equivalently R0 < 1), and Theorem 3.1 implies that the disease-free equilibrium
P0(333.3333333, 0, 0) is locally asymptotically stable. Hence, the infection is cleared
and in the region when R0 > 1, and by Theorem 3.3, the disease equilibrium P ∗ is
locally stable for some conditions on parameters of model (1.2).

Table 2. Parameters and values used for numerical simulation of model (1.2)

Parameter Meaning Value

A Recruitment rate of susceptible 20

β1 Disease transmission rate in the absence of media alerts 0.022

β2 Maximal reduction rate in effective contact (transmission) 0.021

m Half saturation constant 0.9

d Natural death rate of the population 0.06

c Fraction of susceptible population acquiring direct route 0.45

to active disease

κ Exogenous re-infection level 0.3

ε Quarantine rate for patients 0.8

γ1 Per capita recovery rate without quarantine 0.05

µ Disease induced death rate 0.03

In Figure 2, we have plotted the basic reproduction number, R0, in (a) as a
function of the parameters c ∈ [0, 1], β1 ∈ [0, 0.025], and (b) as a function of
ε ∈ [0, 1], β1 ∈ [0, 0.025]. Figure 2(a) confirms the results of Figure 1(a), and Figure
2(b) confirms the results of Figure 1(b).

For the model without delay, as predicted by Theorem 3.2 plots of Figure 3 show
that the endemic equilibrium P ∗(265.2204889, 34.78227204, 2.127483342) is locally
asymptotically stable, when R0 > 1. That is, if τ = 0, S, E and I converge to their
equilibrium, when R0 = 3.510638298 > 1.

Next, we use a same set of parameter values as those in Table 2, but we vary
the value of τ , so that the conditions (ii) or (iii) of Theorem 3.3 are satisfied.
Figure 4 shows that the endemic equilibrium P ∗ is stable for τ = 0.8, when R0 =
3.510638298 > 1. Figure 5 shows, as predicted by Theorem 3.3 (iii), that if τ = 0.95,
the endemic equilibrium E∗ is unstable and the system (1.2) has a periodic orbit,
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when R0 = 3.510638298 > 1. Plots of Figure 5 are the oscillations of S, E and
I. From Figures 3-5, we can find that for R0 < 1, the disease is expected to stop
spreading; the disease can spread and become epidemic if R0 is greater than 1 [28].
From Figure 6, we can find that the role of media impact is positive, and it can
reduce the number of infectious individuals.

(a) (b)

Figure 1. Contour plot of R0 in β1 − ε and β1 − c parameter plane

(a) (b)

Figure 2. Surface plot of the basic reproduction number, R0, in (a) for combination of the parameters
ε ∈ [0, 1], β1 ∈ [0, 0.025] and (b) for combination of the parameters c ∈ [0, 1], β1 ∈ [0, 0.025]
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Figure 3. When τ = 0, the endemic equilibrium E∗ is locally stable.
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Figure 4. When τ = 2, the endemic equilibrium E∗ is locally stable.
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Figure 5. When τ = 3, the endemic equilibrium E∗ is unstable and periodic solutions exist.
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Figure 6. When τ = 2, the endemic equilibrium E∗ is stable for β2 = 0.017, β2 = 0.019, β2 = 0.021.

5. Discussion

In this paper, we investigate a differential equation model of disease transmission
including quarantine susceptible, latent and media coverage with time delay. In
this analysis, the basic reproduction number R0 is identified and established as
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a threshold parameter. Numerical simulations show that the decrease of ε and
increase β1 can significantly increase the value of R0, which verifies that proper
application of quarantine plays a critical role in the clearance of the disease. Also,
we have proved that R0 is a increasing function of β1 and c which means that a
direct contact between people plays a critical role in the transmission of the disease.
Stability analysis shows that if the basic reproduction number R0 < 1, then the
disease free equilibrium P0 is locally asymptotically stable for all τ ≥ 0. That is to
say, the time delay in media coverage cannot affect the stability of the disease free
equilibrium. This means that we can ignore the effect of time delay for R0 < 1.
If R0 > 1, system (1.2) has at least one positive endemic equilibrium P ∗ and we
obtain the conditions for the Hopf bifurcation exists such that the time delay is
chosen as the bifurcation parameter, which can destabilize the positive equilibrium
when it increases.
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sessment of novel coronavirus COVID-19 outbreaks outside China, Journal of
Clinical Medicine, 2020, 9(2), 571, 12 pages.
DOI: 10.3390/jcm9020571

[13] V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deter-
ministic epidemic model, Mathematical Biosciences, 1978, 42(1-2), 43–62.

[14] J. Chen, F. Yang, S. Zhan, et al., Processing on the parameters and initial
values of SARS simulation model for Beijing, Journal of System Simulation,
2003, 15(7), 995–998.

[15] N. S. Chong, J. M. Tchuenche and R. J. Smith, A mathematical model of avian
influenza with half-saturated incidence, Theory In Biosciences, 2014, 133, 23–
38.

[16] J. P. Chretien, S. Riley and D. B. George, Mathematical modeling of the West
Africa Ebola epidemic, Elife, 2015, 4, e09186, 21 pages.
DOI: 10.7554/eLife.09186

[17] S. Collinson, K. Khan and J. M. Heffernan, The effects of media reports on
disease spread and important public health measurements, PLoS ONE, 2015,
10(11), e0141423, 21 pages.
DOI: 10.1371/journal.pone.0141423

[18] W. A. Coppel, Stability and Asymptotic Behaviour of Differential Equations,
Heat, Boston, 1965.

[19] D. K. Das, S. Khajanchi and T. K. Kar, The impact of the media awareness
and optimal strategy on the prevalence of tuberculosis, Applied Mathematics
and Computation, 2020, 366, Article ID 124732, 23 pages.
DOI: 10.1016/j.amc.2019.124732

[20] D. K. Das, S. Khajanchi and T. K. Kar, Transmission dynamics of tuberculosis
with multiple re-infections, Chaos, Solitons & Fractals, 2020, 130, Article ID
109450, 13 pages.
DOI: 10.1016/j.chaos.2019.109450

[21] O. Diekmann, J. A. P. Heesterbeek and J. Metz, On the definition and the
computation of the basic reproduction ratio R0 in models for infectious diseases
in heterogeneous populations, Journal of Mathematical Biology, 1990, 29(4),
365–382.

[22] P. van den Driessche and J. Watmough, Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease transmission,
Mathematical Biosciences, 2002, 180(1-2), 29–48.

[23] D. Gatherer, The 2014 Ebola virus disease outbreak in West Africa, Journal of
General Virology, 2014, 95(8), 1619–1624.

[24] A. B. Gumel, Global dynamics of a two-strain avian influenza model, Interna-
tional Journal of Computer Mathematics, 2009, 86(1), 85–108.

[25] J. K. Hale and S. M. Verduyn Lunel, Introduction to functional differential
equations, Springer-Verlag, New York, 1993.

[26] T. Hussain, M. Ozair, K. O. Okosun, M. Ishfaq, A. U. Awan and A. Aslam,
Dynamics of swine influenza model with optimal control, Advances in Difference



Mathematical Modeling of an Epidemic Model 61

Equations, 2019, 508, 22 pages.
DOI:10.1186/s13662-019-2434-4

[27] S. Iwami, Y. Takeuchi and X. Liu, Avian-human influenza epidemic model,
Mathematical Biosciences, 2007, 207(1), 1–25.

[28] S. Khajanchi, S. Bera and T. K. Roy, Mathematical analysis of the global
dynamics of a HTLV-I infection model, considering the role of cytotoxic T-
lymphocytes, Mathematics and Computers in Simulation, 2021, 180, 354–378.

[29] S. Khajanchi, D. K. Das and T. K. Kar, Dynamics of tuberculosis transmission
with exogenous reinfections and endogenous reactivation, Physica A, 2018, 497,
52–71.

[30] S. Khajanchi and K. Sarkar, Forecasting the daily and cumulative number of
cases for the COVID-19 pandemic in India, Chaos, 2020, 30, Article ID 071101,
17 pages.
DOI: 10.1063/5.0016240

[31] S. Khajanchi, K. Sarkar and J. Mondal, Dynamics of the COVID-19 pandemic
in India, 2021.
arXiv: 2005.06286v2

[32] M. A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus
(2019-nCov) with fractional derivative, Alexandria Engineering Journal, 2020,
59(4), 2379–2389.

[33] A. R. Kimbir, T. Aboiyar and P. N. Okolo, Numerical simulation for the trans-
mission dynamics of avian influenza, Mathematical Theory and Modeling,
2014, 4(14), 79–93.

[34] M. Kouche, B. Boulfoul and B. Ainseba, Mathematical analysis of an HIV
infection model including quiescent cells and periodic antiviral therapy, Inter-
national Journal of Biomathematics, 2017, 10(5), Article ID 1750065, 32 pages.
DOI: 10.1142/S1793524517500656

[35] Y. Kuang, Delay Differential Equations with Applications in Population Dy-
namics, Academic Press, San Diego, 1993.

[36] A. Kumar, P. K. Srivastava and Y. Takeuchi, Modeling the role of information
and limited optimal treatment on disease prevalences, Journal of Theoretical
Biology, 2017, 414, 103–119.

[37] J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.

[38] P. De Leenheer and S. Pilyugin, Virus dynamics: a global analysis, SIAM
Journal on Applied Mathematics, 2003, 63, 1313–1327.

[39] B. Li, Y. Chen, X. Lu and S. Liu, A delayed HIV-1 model with virus waning
term, Mathematical Biosciences and Engineering, 2016, 13, 135–157.

[40] F. Li and J. Wang, Analysis of an HIV infection model with logistic target-
cell growth and cell-to-cell transmission, Chaos, Solitons & Fractals, 2015, 81,
136–145.

[41] M. Li and H. Shu, Joint effects of mitosis and intracellular delay on viral dy-
namics: two-parameter bifurcation analysis, Bulletin of Mathematical Biology,
2012, 64, 1005–1020.



62 B. Boulfoul, A. Kerboua & X. Zhou

[42] W. Liu, A SIRS epidemic model incorporating media coverage with random
perturbation, Abstract and Applied Analysis, 2013, Article ID 792308, 10 pages.
DOI: 10.1155/2013/792308

[43] Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious
disease, International Journal of Biomathematics, 2008, 1(1), 65–74.

[44] R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks
of emerging infectious diseases, Computational and Mathematical Methods in
Medicine, 2007, 8(3), 153–164.

[45] W. Liu and Q. Zheng, A stochastic SIS model incorporating media coverage in a
two patch setting, Applied Mathematics and Computation, 2015, 262, 160–168.

[46] L. Mitchell and J. V. Ross, A data-driven model for influenza transmission
incorporating media effects, Royal Society Open Science, 2016, 3, Article ID
160481, 10 pages.
DOI: 10.1098/rsos.160481

[47] N. Nirwani and V. H. Badshah, Mathematical Analysis of a Swine Flu Model
with Mixed Transmission, Journal of Advances in Mathematics and Computer
Science, 2016, 14(5), 1–8.

[48] M. A. Nowak and R. M. May, Mathematical Principles of Immunology and
Virology, Virus Dynamics, Oxford University Press, Oxford, 2000.

[49] J. J. H. Reynolds, M. Torremorell and M. E. Craft, Mathematical Modeling of
Influenza A Virus Dynamics within Swine Farms and the Effects of Vaccina-
tion, PLoS ONE, 2014, 9(8), e106177.
DOI: 10.1371/journal.pone.0106177

[50] X. Rong, L. Yang, H. Chu and M. Fan, Effect of delay in diagnosis on trans-
mission of COVID-19, Mathematical Biosciences and Engineering, 2020, 17(3),
2725–2740.

[51] S. Ruan and J. Wei, On the zeros of transcendental functions with applica-
tions to stability of delay differential equations with two delays, Dynamics of
Continuous, Discrete & Impulsive Systems Series A, 2003, 10(6), 863–874.

[52] K. Sarkar, S. Khajanchi and J. J. Nieto, Modeling and forecasting the COVID-
19 pandemic in India, Chaos, Solitons & Fractals, 2020, 139, Article ID 110049,
54 pages.
DOI: 10.1016/j.chaos.2020.110049

[53] O. Sharomi and A. B. Gumel, Re-infection-induced backward bifurcation in
the transmission dynamics of Chlamydia trachomatis, Journal of Mathematical
Analysis and Applications, 2009, 356(1), 96–118.

[54] H. L. Smith, Monotone dynamical systems, an introduction to the theory of
competitive and cooperative systems, American Mathematical Society, Provi-
dence, 1995.

[55] Y. Song and J. Wei, Bifurcation analysis for Chen’s system with delayed feed-
back and its application to control of chaos, Chaos, Solitons & Fractals, 2004,
22(1), 75–91.

[56] A. K. Srivastav and M. Ghosh, Modeling and analysis of the symptomatic
and asymptomatic infections of swine flu with optimal control, Modeling Earth



Mathematical Modeling of an Epidemic Model 63

Systems and Environment, 2016, 2, 177, 9 pages.
DOI: 10.1007/s40808-016-0222-7

[57] C. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distanc-
ing on disease transmission in a two patch setting, Mathematical Biosciences,
2011, 230(2), 87–95.

[58] J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The
impact of media coverage on the transmission dynamics of human influenza,
BMC Public Health, 2011, 11(1), S5, 16 pages.
DOI: 10.1186/1471-2458-11-S1-S5

[59] G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi and P. Magal, A model of
the 2014 ebola epidemic in west Africa with contact tracing, PLoS Currents,
2015, 7.
DOI: 10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a

[60] Q. Yan, S. Tang, S. Gabriele and J. Wu, Media coverage and hospital noti-
fication: correlation analysis and optimal media impact duration to manage
pandemic, Journal of Theoretical Biology, 2016, 390, 1–13.

[61] H. Zhao, Y. Lin and Y. Dai, An SIRS epidemic model incorporating media cov-
erage with time delay, Computational and Mathematical Methods in Medicine,
2014, Article ID 680743, 10 pages.
DOI: 10.1155/2014/680743

[62] X. Zhao, Dynamical systems in population biology, Springer, Berlin, 2003.


	Introduction
	Equilibria and basic reproduction number R0
	Local stability of equilibria and Hopf bifurcation analysis
	Numerical simulation
	Discussion

