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Abstract. In this paper multigrid smoothers of Vanka-type are studied in the con-
text of Computational Solid Mechanics (CSM). These smoothers were originally de-
veloped to solve saddle-point systems arising in the field of Computational Fluid
Dynamics (CFD), particularly for incompressible flow problems. When treating
(nearly) incompressible solids, similar equation systems arise so that it is reason-
able to adopt the ‘Vanka idea’ for CSM. While there exist numerous studies about
Vanka smoothers in the CFD literature, only few publications describe applications
to solid mechanical problems. With this paper we want to contribute to close this
gap. We depict and compare four different Vanka-like smoothers, two of them are
oriented towards the stabilised equal-order Q1/Q1 finite element pair. By means of
different test configurations we assess how far the smoothers are able to handle the
numerical difficulties that arise for nearly incompressible material and anisotropic
meshes. On the one hand, we show that the efficiency of all Vanka-smoothers heav-
ily depends on the proper parameter choice. On the other hand, we demonstrate
that only some of them are able to robustly deal with more critical situations. Fur-
thermore, we illustrate how the enclosure of the multigrid scheme by an outer
Krylov space method influences the overall solver performance, and we extend
all our examinations to the nonlinear finite deformation case.
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1 Introduction

Multigrid solvers rank among the most efficient solvers in many application fields.
They are especially suited for solving large linear equation systems stemming from
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discretisations of elliptic partial differential equations. In this paper we deal with
such systems arising in the context of Computational Solid Mechanics (CSM). The
continuous problems are discretised using the Finite Element method.

The efficiency and the robustness of the (geometric) multigrid method crucially
depends on the smoothing operator. We want to examine a class of smoothers which
was originally introduced by Vanka [35] for solving the Navier-Stokes equations dis-
cretised by Finite Differences. Basically, the method can be described as a block Gauß-
Seidel iteration, which locally couples all field variables occuring in the formulation.
The smoother is sometimes denoted as symmetrically coupled Gauß-Seidel (SCGS) or box
iteration/relaxation. Compared to standard (point-wise) Jacobi or Gauß-Seidel smooth-
ers, the crucial advantage of the Vanka approach is the ability to deal with zero blocks
appearing on the diagonal of the system matrix. Saddle point systems stemming
from discretisations of the incompressible Navier-Stokes equations have this prop-
erty which is the main reason for the strong influence the method had (and still has)
in the field of Computational Fluid Dynamics (CFD). Other reasons are that it is not
too difficult to implement and at the same time efficient and robust for a wide class of
problem configurations.

The Vanka approach has to be seen in contrast to the class of multigrid smoothers
which treat the system in a global (and eventually decoupled) manner [8,24,32]. For a
comparison between the different approaches in the context of CFD see, for example,
the contributions of John, Tobiska [12, 15] and Turek [32]. For further references, see
the overview paper of Wesseling and Oosterlee [36].

While there seem to be only few papers dealing with theoretical aspects of the
smoother [20, 21, 29], much literature can be found presenting numerical studies of
different Vanka-type smoothers for solving the discretised Navier-Stokes equations
in CFD. John and Tobiska apply it to the non-conforming Crouzeix/Raviart element
P1/P0, Turek to the corresponding non-conforming rotated bilinear Rannacher/Turek
element Q̃1/P0 and Becker to the stabilised Q1/Q1 element [3, 12, 15, 32]. In all cases,
the smoother is extensively tested on the benchmark configuration ‘Flow around a
cylinder’ [33] for the steady and unsteady state. Ouazzi and Turek [22] transfer the
Vanka idea to edge-oriented storage- and stabilisation techniques for Navier-Stokes
equations. Zeng and Wesseling [38] compare Vanka-type smoothers to ILU methods
for the case of Navier-Stokes in general coordinates. To treat anisotropic grids more ro-
bustly, several extensions have been introduced. Thompson and Ferziger define sym-
metrically coupled alternating line (SCAL) versions for Finite Difference discretisations,
Becker uses a string-wise version for the stabilised Q1/Q1 discretisation, and Schmach-
tel develops an adaptive blocking strategy [3, 28, 31]. John and Matthies successfully
apply Vanka smoothers to higher order finite element methods [13, 14]. Comparative
solver studies including Vanka smoothers can be found in the articles of Benzi and
Olshanskii [4] and Larin and Reusken [18].

There are only few papers describing the use of Vanka-type smoothers in the con-
text of CSM. For many kinds of solid mechanical problems there is obviously no need
to refrain from standard (point-wise) multigrid smoothers. But for special formula-
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tions, which are used to treat (nearly) incompressible material effects, similar equa-
tion systems as for Navier-Stokes arise such that in this case the use of Vanka-type
smoothers makes sense. Suttmeier [30] applies the variant developed by Becker [3] to
elasto-plastic materials and compares it to standard Gauß-Seidel smoothing. Gaspar
et al. [9] compare Vanka-type smoothers to decoupled smoothers in the context of in-
compressible poroelasticity equations. Hron and Turek [11] employ Vanka smoothers
to solve coupled systems arising from the Q2/P1 discretisation of Fluid Structure In-
teraction problems.

The aim of this paper is to further close this gap by presenting extensive numerical
studies of Vanka-type smoothers applied to CSM problems. The scope of the paper is
described by the following aspects:

• Hyperelastic material behaviour (linear and nonlinear) is considered.

• Stationary computations are performed.

• As discretisation techniques pure displacement and mixed formulations with
(conforming) Q1 and stabilised Q1/Q1, respectively, are applied.

• For the (geometric) multigrid algorithm only ‘standard’ components are used
(e. g., no adaptive step-length control [12] or matrix-dependent grid transfer).

• Only the ‘standard’ block Gauß-Seidel iteration is applied, lining- or adaptive
patching-strategies as mentioned above are not considered.

• Four variants of Vanka-type smoothers are examined. A comparison to other
smoother classes like global (decoupled) Schur complement smoothers [32] is
beyond the scope of this paper and will be part of our future work.

The paper is organised as follows: In Section 2 the underlying partial differential
equations and their discretisations are described. In Section 3 different Vanka-type
smoothers are introduced and numerically investigated in the main Section 4. The last
section presents a summarising evaluation.

2 Elasticity equations

2.1 Linear elasticity

We consider a solid body Ω̄ ⊂ R
d (d = 2, 3) with Ω being a bounded, open set with

boundary Γ := ∂Ω. The boundary is split into the Dirichlet part ΓD where displace-
ments are presribed and the Neumann part ΓN where traction forces can be applied
( ΓD ∩ ΓN = ∅ ). Furthermore the body can be exposed to volumetric forces like grav-
ity. The current state of the body is described by a mapping Φ : Ω̄ → R

d, called
deformation in the case of det(∇Φ) > 0. It can be written as Φ = id + u, where

u(x) =
(

u1(x), . . . , ud(x)
)T

is the displacement of a material point x ∈ Ω̄. Assuming
only small deformations the kinematic relation between displacements and strains can
be described with the linearised strain tensor

ε =
1

2
(∇u + ∇uT). (2.1)
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The response of a body to an external load depends on the material the body consists
of. The material properties are reflected by the relation between the strains and the
stresses, the constitutive law. If the stresses only depend on the current strains (and
not on the history of strains and stresses) the material behaviour is called elastic. If,
additionally, for the displacements only terms of first order are considered and the
material is isotropic, we end up with the linear material law of Hooke:

σ = 2µε + λ tr(ε)I. (2.2)

Here, σ is the symmetric Cauchy stress tensor which depends linearly on the strain
tensor ε. µ and λ are the Lamé constants which are connected to Young’s modulus E and
the Poisson ratio ν via

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1 − 2ν)
.

The basic physical equation for problems of solid mechanics is given by the equilibrium
conditions: for a body in equilibrium, the inner forces (stresses) and the outer forces
(external loads) are balanced, i. e.

−div σ = f , in Ω. (2.3)

(Inertial forces are not considered here.) Using Hooke’s law (2.2) to substitute the
stress tensor, the problem of linear elasticity can be expressed in terms of the following
elliptic boundary value problem, called the Lamé equation:

−2µ div ε − λ grad div u = f , x ∈ Ω,

u = 0, x ∈ ΓD,

σn = t, x ∈ ΓN.

To simplify notation we consider only zero boundary conditions on ΓD; t denotes
given traction forces on ΓN with outer normal n. The only unknowns are the displace-
ments u, while strains and the stresses can be computed via relations (2.1) and (2.2).

Defining the space X :=
{

v ∈ H1(Ω)d
∣

∣ v
∣

∣

ΓD
= 0

}

and the products

ε(u) : ε(v) :=
d

∑
i,j=1

ε ij(u)ε ij(v), ( f , v)0 :=
∫

Ω
f · v dv,

(

ε(u), ε(v)
)

0
:=

∫

Ω
ε(u) : ε(v) dv, (t, v)Γ :=

∫

ΓN

t · v da,

the weak formulation reads: Find u ∈ X such that

2µ
(

ε(u), ε(v)
)

0
+ λ(div u, div v)0 = ( f , v)0 + (t, v)Γ, v ∈ X . (2.4)

To transform the continuous problem (2.4) into a discrete one, the domain Ω̄ is
approximated by a domain Ω̄h. In our case, Ω̄h consists of m non-overlapping patches
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Ω̄h
i , i. e. Ω̄h = ∪m

i=1Ω̄h
i . Each patch itself is a generalised tensor product mesh, i. e. inner

patch nodes have exactly four neighbouring nodes. The superscript h symbolically
denotes the refinement level of the grid. The approximate solution uh of equation (2.4)
is sought within a finite dimensional subspace Xh ⊂ X which is defined by nodal basis
functions φi, i = 1, . . . , n, with n = dim(Xh)/d. We use the standard bilinear element
Q1, so n coincides with the number of mesh vertices not lying on ΓD. Consequently,
the discrete analogon to equation (2.4) is: Find uh ∈ Xh such that

2µ
(

ε(uh), ε(v)
)

0
+ λ(div uh, div v)0 = ( f , v)0 + (t, v)Γ, v ∈ Xh, (2.5)

where the integrals are now evaluated over Ωh.
Based on equation (2.5) the linear system of equations Ku = f is assembled in the

usual manner. Here, u = (u1, . . . , ud)
T ∈ R

dn is the unknown coefficient vector with
uh

j = ∑
n
i=1(uj)iφi, j = 1, . . . , d, while K ∈ R

dn×dn and f ∈ R
dn are the stiffness matrix

and the discrete external load vector. Note, that throughout the paper bold upright
letters are used to describe discrete vectors v ∈ R

l and matrices M ∈ R
l×l, l ∈ N.

2.2 Nearly incompressible material

It is well known that the above formulation (2.5) fails for nearly incompressible materials
(e. g. rubber) for which the Poisson ratio ν is close to 0.5 and the Lamé constant λ tends
to infinity. When applying formulation (2.5) for such materials two severe problems
arise: First, iterative solving schemes deteriorate due to a high condition number of
the resulting system matrix. Second, the approximation error of the finite element
scheme (2.5) increases, a phenomenon widely known as volume locking (see [1,2,7]). To
overcome these deficiencies we translate the above pure displacement formulation (2.5)
into a mixed formulation. The idea is to treat the critical parameter λ by introducing a
new variable

p := −λ div u,

which can be interpreted as pressure. The Lamé equation thus turns into the following
mixed problem:

−2µ div ε + ∇p = f , x ∈ Ω,

−div u − λ−1p = 0, x ∈ Ω,

u = 0, x ∈ ΓD,

σn = t, x ∈ ΓN.

(2.6)

This means, the critical ‘large’ parameter λ has turned into the ‘small’ one λ−1 with
λ−1 → 0 for ν → 0.5. With M := L2(Ω) being the pressure space the weak formulation
of (2.6) reads: Find (u, p) ∈ X × M, such that

2µ
(

ε(u), ε(v)
)

0
− (div v, p)0 = ( f , v)0 + (t, v)Γ, v ∈ X , (2.7a)

− (div u, q)0 − λ−1(p, q)0 = 0, q ∈ M. (2.7b)
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In terms of the three continuous bilinear forms

a(·, ·) : X × X → R, a(u, v) := 2µ
(

ε(u), ε(v)
)

0
,

b(·, ·) : X × M → R, b(v, p) := −(div v, p)0,

c(·, ·) : M × M → R, c(p, q) := (p, q)0,

the weak formulation (2.7) can be rewritten as

a(u, v) + b(v, p) = ( f , v)0 + (t, v)Γ, v ∈ X ,

b(u, q) − λ−1c(p, q) = 0, q ∈ M,

revealing the structure of a saddle point problem with a penalty term, namely λ−1.
Equation (2.7) has a unique solution when the well known LBB conditions are ful-
filled [7]:

1. The continuous bilinear form a(·, ·) is X-elliptic;

2. For the continuous bilinear form b(·, ·) the inf-sup condition holds:

∃ β > 0 : inf
q∈M

sup
v∈X

b(v, q)

‖v‖1 ‖q‖0
> β.

Here, ‖·‖1 and ‖·‖0 are the usual norms induced by the scalar products of the spaces
H1(Ω)d and L2(Ω), resp. When discretising the problem, one has to pay attention
to the choice of the corresponding finite element spaces Xh and Mh. If they fulfill a
discrete analogon of the LBB conditions, the finite element approximation converges
robustly, i. e. independent of the parameter λ, to the real solution. It is known that
element pairs which are suitable for the Stokes equation can also be employed for
discretising equation (2.7).

The problem of finding efficient finite element pairs for the Stokes equation has
been studied intensively. Since the LBB condition is rather restrictive, many element
combinations drop out. For example, equal order element pairs, which are attrac-
tive from an implementational point of view, are known to be unstable (e. g., Q1/Q1).
Hence, many strategies were developed to stabilise such element combinations. Bochev
et al. [5] provide an overview and a classification. We use an extension of the method
introduced by Becker [3], which is robust even on highly anisotropic grids. The sta-
bilisation terms can be expressed with help of the bilinear form (assume d = 2 for
illustration):

cs,h(p, q) :=
α

2µ ∑
e

∫

Ωh
e

ξe
T∇p ξe

T∇q + ηe
T∇p ηe

T∇q dv. (2.8)

Here, e loops over all elements Ωh
e of Ωh, ξe and ηe describe the local coordinate system

of the element e (see Fig. 1), and α is a stabilisation parameter which is set to α = 0.1
throughout the paper. In case of a cartesian grid (where ξ and η are parallel to x-
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and y-axis, resp.) stabilisation (2.8) coincides with that of Becker [3]. As in the pure
displacement formulation, we end up with a linear system of equations

(

A B

BT C

) (

u

p

)

=

(

f

g

)

, (2.9)

where the matrix C contains the compressibility terms (2.7b) and the stabilisation
terms (2.8).

Figure 1: Local coordinate system of an element.

2.3 Finite elasticity

In many applications the assumption of small deformations is not realistic and has
to be dropped [19]. To formulate the balance equation with respect to the reference
configuration the first Piola-Kirchhoff stress tensor P can be used. It is connected to
the Cauchy stress tensor σ via the relation P := JσF−T where F := I + ∇u is the
deformation gradient and J := det(F). The resulting boundary value problem then
reads

−div P = f , x ∈ Ω,

u = 0, x ∈ ΓD,

Pn = t, x ∈ ΓN.

The corresponding weak formulation is

(P,∇v)0 = ( f , v)0 + (t, v)Γ, v ∈ X, (2.10)

where again the above definition (P,∇v)0 :=
∫

Ω
P : ∇v dv is used. In the context of

this paper we employ the constitutive law of hyperelastic Neo-Hooke material, which
in terms of the first Piola-Kirchhoff stress tensor has the form

P = µ(F − F−T) +
λ

2
(J2 − 1)F−T. (2.11)

With help of the residual vector r(u) measuring the imbalance of inner and outer
forces the discrete analogon of equation (2.10) can be expressed in compact form
r(u) = 0. We now face two kinds of nonlinearity. On the one hand there is the ge-
ometric nonlinearity resulting from the nonlinear kinematic relation between displace-
ments and strains. On the other hand, the constitutive law (2.11) shows a nonlin-
ear dependence of the stress tensor P on the deformation gradient F, called material
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or physical nonlinearity. Hence, a nonlinear solving mechanism is necessary to solve
equation (2.10). We use a standard Newton-Raphson scheme

r(uk) +
∂r(uk)

∂u
(uk+1 − uk) = 0,

where K(uk) := ∂r(uk)/∂u is the Jacobi matrix and ∆uk+1 := uk − uk+1 the update
for the solution vector. So, in every Newton-Raphson iteration a linear system of the
following form has to be solved:

K(uk)∆uk+1 = r(uk).

Incompressible material in the finite elasticity setting is characterised by the deforma-
tion gradient’s determinant J being close to 1. (Actually, the condition div u = 0 in
the case of small deformation is nothing else then the linearised form of the condition
det(F) = 1.) As in the linear case the arising critical term λ(J2 − 1)/2 in the constitu-
tive relation (2.11) is treated by introducing the pressure variable p := −λ(J2 − 1)/2,
such that the first Piola-Kirchhoff stress tensor takes the form P = µ(F − F−T)− pF−T.
Analogous to the pure displacement case we solve the resulting discrete residual equa-
tion r(u, p) = 0 with help of a Newton-Raphson scheme

r(uk, pk) +
∂r(uk, pk)

∂(u, p)

[ (

uk+1

pk+1

)

−

(

uk

pk

) ]

= 0.

The linear systems arising in each Newton-Raphson step have a similar saddle point
structure as in the small deformation setting, namely

(

A B

D C

) (

∆uk+1

∆pk+1

)

= r(uk, pk).

Depending on the constitutive law, we might have D 6= BT, resulting in an unsym-
metric system matrix.

Remark: For sake of simplicity we will from now on consider the two-dimensional
plane strain model only (d = 2): The body is assumed to be long in x3-direction while
load and geometry do not vary along this direction. Thus, it is justified to look at
a cross section in the (x1, x2)-plane. Applied forces must have zero x3-components,
and only displacements in x1- and x2-direction need to be considered. The concepts
described in the following sections can be transferred to the three-dimensional case
without any complications.

3 Vanka-type smoothers

A geometric multigrid solver is mainly characterised by three components, namely
the smoother, the grid transfer and the coarse grid solver. For the latter two we use
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standard operations, i. e. inclusion for prolongation, the adjoint operation for restric-
tion and a direct solver to treat the coarse grid problems. For a general introduction to
multigrid we refer to the book of Hackbusch [10].

The robustness of the multigrid algorithm mainly depends on the smoothing pro-
cedure. We compare four variants of Vanka-type smoothers whose basic common
idea is to decompose the mesh into small subdomains and treat these subdomains
separately. In more detail, one smoothing step consists of a loop over all subdomains
where in each iteration the following steps are performed:

1. Extract the entries of the global matrix corresponding to the degrees of freedom (DOFs)
of the current subdomain and assemble them into a small local matrix.

2. Build the corresponding local residual.
This is done in a Gauß-Seidel manner, i. e. information, which has been updated
in previously treated subdomains, is immediately incorporated into the assem-
bly process of the current local residual.

3. Solve the resulting system with the local residual as right hand side.
Note, that the resulting local matrices are always invertible: When the subdo-
main lies in the interior of the mesh the local matrix contains the ‘full’ entries of
the global matrix and can therefore be interpreted as arising from a mesh con-
sisting of the subdomain itself enclosed by a further element layer with zero
Dirichlet boundary conditions. When the subdomain lies at the boundary, the
local system ‘inherits’ the boundary information of the global matrix, i. e. unit
rows/columns in case of Dirichlet boundary and ‘half’ entries in case of Neu-
mann boundary, respectively. We employ direct solvers (e. g. LAPACK) to invert
the systems.

4. Update the corresponding parts of the global solution with this local correction.

The four Vanka variants differ in the choice of the subdomains and how the local
systems are built.

Remark: As mentioned in Section 2.1, the domain Ω̄h consists of one or more tensor
product patches Ω̄h

i . In the smoothing process these patches are treated consecutively.
Within one patch the small subdomains are traversed rowwise from the ‘lower left’ to
the ‘upper right’ corner.

The cell-based Vanka smoother

The first variant to be described is the cell-based Vanka smoother. Here, each subdo-
main consists of exactly one element and the local system matrix contains the DOFs of
the four element nodes (see Fig. 2, left). The smoother can be seen as a multiplicative
domain decomposition method with minimal overlap, i. e. the subdomains (=elements)
only intersect at their (element) boundaries. This minimises computational overhead.

Let e be the current element in the smoothing procedure, let the restriction of a
vector or a matrix to this element be denoted with the index e, and let ω be a relaxation
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parameter. Then the necessary calculations can be formulated as follows:

local residual rloc = fe − (Ku)e,

local correction xloc = K−1
e rloc,

update of global solution ue = ue + ωxe.

(3.1)

The advantage of this smoother variant is that, without any changes, it can be ap-
plied directly to the saddle point system (2.9) arising from the mixed formulation.
The additional matrix blocks B, BT and C are automatically taken into account by
simply incorporating the pressure as additional DOF, i. e. displacements and pressure
are treated equally (see Fig. 2, left). This makes the smoother very attractive from an
implementational point of view as it can be applied to arbitrarily coupled equation
systems without deeper knowledge about the underlying problem. It clearly distin-
guishes this Q1/Q1 variant of the Vanka smoother from the original version of [35]
where the pressure is represented in the local system with only one DOF.

Remark: The local relaxation with the parameter ω is different from global damp-
ing in the multigrid method: The local residuals corresponding to the subsequently
treated elements are immediately affected by the relaxation, whereas the damping
in the multigrid method scales the global correction vector after completion of the
smoothing procedure. We emphasise this since a popular strategy for improving
multigrid is to enclose the smoother by some Krylov space method [17]. The bene-
fit of doing so is the ‘automatic choice’ of the correct damping parameter such that
the multigrid’s robustness is considerably increased. The (locally acting) relaxation
parameter, however, can not be ‘adjusted’ this way and is set manually by the user.

Remark: The vector (Ku)e can be computed in O(1) time due to the sparse structure
of K. (In case of 2D pure displacement formulation on a tensor-product mesh there
are at most 18 non-zero elements per matrix row.)

The patch-based Vanka smoother

In [3] the standard Vanka smoother is adapted for the stabilised Q1/Q1-discretisation
and used for solving the incompressible Navier-Stokes equations. Due to the similar
structure of the linear equation systems arising in this context, the adapted smoother
can be applied to the mixed formulation in CSM, as well. This has been done, for
instance, in [30] for the case of elasto-plastic material.

Instead of looping over all elements in the mesh we iterate over all pressure DOFs,
i. e. over all nodes of the mesh. For each of them the displacements coupling with
the node are taken into account such that in case of a tensor product mesh a patch
consisting of the four adjacent elements has to be considered (see Fig. 2, center).

The corresponding local systems to be solved have the following form then:
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.
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In case of 2D and the patch center being an inner mesh node we have n = 18. For
linear elasticity di = bi, i = 1, . . . , n, holds.

The motivation behind this approach is that in case of Q1-discretisation the incom-
pressibility constraint div u = 0 can, in general, not be met locally in one element. It is
possible, however, to fulfill this condition locally by increasing the number of involved
displacement DOFs, e. g. by considering the whole patch around one node. Moreover,
the ratio between number of displacement and pressure DOFs better reflects the fact
that in (2.6) the order of displacement derivatives is higher than the order of pressure
derivatives, i. e. displacements should be approximated ‘more accurately’.

Figure 2: Subdomains for cell-, patch- and vertex-based Vanka smoother and the corresponding DOFs.
(• displacement DOFs, � pressure DOFs)

So, the patch-based Vanka smoother should be better suited for (nearly) incom-
pressible material behaviour, which will be confirmed numerically in Section 4. There,
we also examine whether simulations with compressible material also benefit from
this smoother modification.

Compared to the cell-based Vanka smoother described in the previous section the
patch-based variant has some disadvantages, where the last one is only a minor im-
plementational issue.

• The resulting local systems are larger such that more time for the LU decompo-
sition is needed.

• The patches overlap each other by one element layer which means some more
computational overhead.

• With its special form (taking the third DOF only in the patch center) the patch-
based variant is only applicable to the mixed u/p formulation, but not to the
pure displacement case. (The idea of overlapping patches, however, could be
transferred to the pure displacement case, of course. But this is not done in this
paper.)

• Assembling the local systems is more involved since a larger neighbourhood has
to be considered.

In Section 4 we will see in terms of iteration numbers and total computation times
if the numerical benefits of the patch-based approach outweigh these disadvantages.
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The patch-based diagonal Vanka smoother

Becker [3] and Suttmeier [30] apply a simplified variant of the patch-based Vanka
smoother. The idea is to couple each displacement DOF only with itself such that
the upper left n × n-part of the local matrix is a diagonal matrix:
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Denoting this system with
(

D b

dT c

) (

x
y

)

=

(

f
f

)

,

it can be solved very easily by eliminating x:

y =
dTD−1f − f

dTD−1b − c
, x = D−1(f − yb).

Basically, this can be performed with two scalar products and two vector-vector mult-
plications/additions which is much cheaper than applying an LU decomposition to
the whole (n + 1) × (n + 1)-system as in the full patch-based approach.

It has been observed that diagonal variants of the Vanka smoother are less ro-
bust with respect to mesh anisotropies in the context of incompressible Navier-Stokes
equations (e. g., [27]). In Section 4 we will examine this point for the elasticity case.

The vertex-based diagonal ‘Vanka smoother’

For sake of completeness we consider an even simpler smoother variant where the
‘subdomain’ consists of only one vertex (see Fig. 2, right). Now we let each DOF
only couple with itself, such that the system to be ‘solved’ looks, in case of 2D mixed
formulation, as following:
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0 a22 0
0 0 c
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f1
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f



 .

Actually, this describes the standard Gauß-Seidel smoother. But, according to the
above constructions it could also be interpreted as vertex-based diagonal Vanka smoother.
Thus, it can be seen as the first one in a Vanka smoothers’ hierarchy which is deter-
mined by the size of the subdomains:

vertex → cell → patch.

(Of course, one could further investigate variants of the vertex-based Vanka smoother
where the above local matrix is not diagonal, but this is not done here.)
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4 Numerical studies

In this section the four Vanka smoothers are tested and compared with respect to
the following aspects: mesh anisotropies, compressible and nearly incompressible
material, small and finite deformation, relaxation parameter ω, number of pre- and
postsmoothing steps τ.

4.1 Specifications

Usually we employ multigrid as stand-alone solver, but in some cases it is beneficial or
even necessary to use multigrid as a preconditioner within an outer iterative method.
In that case we use BICGSTAB [34] as outer solver and do exactly one multigrid step for
preconditioning. Abbreviations for the employed solver components are as follows:

• MG-GS: multigrid with standard Gauß-Seidel smoother (at the end of Section 3
denoted as vertex-based Vanka smoother);

• MG-VANKA-C: multigrid with cell-based Vanka smoother;

• MG-VANKA-P: multigrid with patch-based Vanka smoother;

• MG-VANKA-PD: multigrid with patch-based Vanka smoother, diagonal displace-
ment matrix;

• BICG-MG-VANKA-*: corresponding BICGSTAB solver with multigrid as precondi-
tioner.

We always use the F-cycle with equal number τ of pre- and postsmoothing steps and
a (global) damping parameter of 1.0.† The iteration is stopped either after 64 iterations
(32 iterations for the BiCG-variants, 128 iterations for standard Gauß-Seidel smoother)
or when the initial residual is reduced by a factor of 10−6. If the solver did not con-
verge within the 64 (32, 128) iterations, there are two possibilities: First, when the con-
vergence rate is less than 1, then this is indicated by the entry ‘> 64 ’(‘> 32’,‘> 128’),
i. e. the solver probably would have converged after more iterations. Second, when
the convergence rate is greater than 1, then this is indicated by the entry ‘-’, i. e. the
solver probably would have diverged after more iterations. Divergence within the
maximal iteration number is also denoted by ‘-’. The last table row shows the linear
solving times for the finest level computation. All simulations were performed on an
AMD Opteron 250 with a CPU frequency of 2400 MHz and 7.6 GB main memory.

We define several prototypical configurations which are characterised by the mesh,
the material parameters and the right hand side terms.

Configuration ANALYTIC: In this configuration the unit square with different de-
grees of mesh anisotropy is considered. The coarse grid is prerefined anisotropically
towards the lower left corner such that element aspect ratios of 1,4 and 16, respec-
tively, arise (see Fig. 3). The aspect ratio of an element is determined by measuring the

†We also tested other values for the damping parameter and found that its influence on the solver con-
vergence - compared to that of the relaxation parameter - can be neglected.
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distances between the midpoints of two opposing edges and then dividing the longer
distance by the shorter one.

Figure 3: Coarse grids for the configuration analytic with element aspect ratios 1, 4, 16.

The further refinement for the multigrid algorithm is done in an isotropic way. The
material parameters are µ = 0.5, ν ∈ {0.3, 0.5}. The prescribed right hand side terms
are computed from given analytic solutions, which in case of ν = 0.3 and ν = 0.5,
respectively, are

u1(x, y) = x(1 − x)y(1 − y), u1(x, y) = sin(πx − 0.7) sin(πy + 0.2),

u2(x, y) =
1

20
sin(4πx) sin(4πy), u2(x, y) = cos(πx − 0.7) cos(πy + 0.2),

p(x, y) = −λ div u(x, y), p(x, y) = sin(x) cos(y) + (cos(1) − 1) sin(1),

(taken from [30] and [6], resp.). On top, bottom and left side of the unit square domain
Dirichlet boundary conditions for the displacements are prescribed, while we have
Neumann boundary conditions corresponding to the analytical solution on the right
side.

Configuration BEAM: This configuration describes a flexible beam which is fixed at
its rounded left side (see Fig. 4(b)). The anisotropic version has a coarse grid of four
elements with an element aspect ratio of 16 while the coarse grid of the ‘isotropic’
version consists of 32 elements with a maximal element aspect ratio of 3 (see Fig. 4(a)).
The configuration stems from a Fluid-Structure-Interaction benchmark [11] where this
flexible beam is attached to a cylinder and exposed to a fluid in a channel. The material
constants are µ = 500000, ν = 0.4999, and the beam is loaded by a gravity force of
(0,−2000). What makes this pure structural part of the benchmark interesting is the
fact that the body is thin and only a small portion of its boundary is fixed which is
known to lead to numerical difficulties [7, 23].

Configuration CROSSOVER: This configuration is more like a ‘real life’ example. It
describes the cross section of a rubber-like crossover which is used to slow down street
traffic. Due to the two holes and the middle gap it has a rather complex geometry (see
Fig. 5). The material constants are µ = 80.194, ν = 0.4999, and the surface load is
only applied on the right half of the geometry. The standard version is isotropically
refined, while in a second version the elements around the holes are anisotropically
refined towards the holes to better resolve the arising stresses there (see Fig. 5(b)). This
means, that the maximal element aspect ratio increases with the multigrid level (see
Table 1).
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(a)

(b)

Figure 4: Configuration beam. (a) Coarse grids: iso and aniso, (b) deformed state (‖u‖ displayed).

(a)

(b)

(c)

Figure 5: Configuration crossover. (a) Coarse grids: iso and aniso; (b) Magnified upper part of a hole:
iso (level 3 + 4) and aniso (level 3 + 4); (c) Deformed state (pressure p displayed).

(a) (b)

Figure 6: Configuration block. (a) Coarse grids: iso and aniso, (b) Deformed state, load (0,−300) (u2
displayed).
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Configuration BLOCK: A rectangular block is loaded by a surface force acting on
the middle part of its top side (see Fig. 6). Reese et al. [26] employ this test to com-
pare different Finite Element formulations for high compression rates in the context
of finite deformation. Two different coarse meshes are used: BLOCK-ISO with 8 el-
ements and aspect ratio 1, BLOCK-ANISO with 32 elements and aspect ratio 4 (see
Fig. 6(a)). The material constants are µ = 80.194, ν = 0.4999, applied loads are (0, ty),
ty ∈ {−20,−300}.

In all configurations homogenous Neumann boundary conditions for the pressure
are prescribed. Other parameters and information about the configurations are listed
in Table 1.

Remark: The rather high aspect ratios of the configuration CROSSOVER-ANISO dis-
played in Table 1 only hold for the first two element layers enclosing the holes (see
magnifications in Fig. 5(b)). So, the vast majority of the elements has comparatively
mild aspect ratios. This distinguishes this configuration from the other anisotropic
configurations where exactly half the elements (ANALYTIC) or all elements (BEAM,
BLOCK) exhibit the listed high aspect ratios.

Remark: There is a vast number of possible combinations of configurations and
parameters. So, to keep the amount of information manageable, we show in the fol-
lowing tables only those ranges of values which contain the optimal setting.

4.2 Compressible material

Pure displacement formulation

Vanka-type smoothers were originally developed for saddle point systems with a zero
block on the diagonal. The systems stemming from the pure displacement formulation
in elasticity do not belong to this class but are much simpler to treat due to their posi-
tive definiteness. Nevertheless, we want to test if it pays off to apply the Vanka idea to
such systems as well. Therefore, we compare the cell-based Vanka and the standard
(vertex-based) Gauß-Seidel smoother. As test environment we choose at first the con-
figuration ANALYTIC with ν = 0.3. Table 2(a) clearly shows that it does not pay off
to use Vanka smoothing for this configuration. Though it needs less iterations than
Gauß-Seidel smoothing, it is slower in terms of total computation time. Especially the
slightly overrelaxed Gauß-Seidel smoother outperforms the Vanka smoother on more

Table 1: Number of elements on highest level, number m of patches, maximal element aspect ratios (AR),
loads and material parameters of the test configurations. (Note the level-dependent aspect ratios of the
Crossover-aniso configuration.)

Configuration # el m max. AR load µ ν
ANALYTIC1/4/16 262144 1 1 / 4 / 16 analytic 0.5 0.3, 0.5
BEAM-ISO 131072 8 3
BEAM-ANISO 65536 1 16

(0,−2000) (vol) 500000 0.4999

CROSSOVER-ISO 3.1
CROSSOVER-ANISO

63488 62
8.6 / 20.6 / 51.2 (lv 3/4/5)

(0,−20) 80.194 0.4999

BLOCK-ISO 8 1
BLOCK-ANISO

131072
32 4

(0,−20), (0,−300) 80.194 0.4999
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Table 2: mg-gs vs. mg-vanka-c; pure displacement formulation; ν = 0.3. (a) analytic with aspect
ratios 1, 4 and 16. (b) crossover-iso/aniso.

(a)

MG-GS MG-VANKA-C

ω 0.8 1.0 1.2 0.8 1.0 1.2
AR 1

τ 1 2 1 2 1 2 1 2 1 2 1 2
lv 6 12 7 9 5 12 7 5 4 5 4 5 4
lv 7 12 7 9 5 13 7 5 4 5 4 5 4
lv 8 12 7 9 5 13 7 5 4 5 4 5 4
sec 23 26 17 18 25 25 48 76 47 77 48 78

AR 4
τ 2 4 2 4 2 4 1 2 1 2 1 2

lv 6 57 28 41 20 29 14 23 12 22 11 22 12
lv 7 57 28 41 20 30 15 22 12 21 12 21 12
lv 8 56 28 40 20 30 14 22 13 21 12 22 13
sec 207 204 147 160 112 99 215 248 201 237 212 248

AR 16
τ 16 32 16 32 16 32 4 8 4 8 4 8

lv 6 67 33 48 24 35 17 52 25 48 24 49 24
lv 7 79 39 57 28 42 21 57 28 53 26 53 26
lv 8 82 41 59 30 44 22 55 27 50 25 51 26
sec 2337 2378 1802 1715 1224 1240 2278 2086 1867 1925 2027 2043

(b)

MG-GS MG-VANKA-C

ω 1.0 1.2 1.0 1.2
iso

τ 1 2 1 2 1 2 1 2
lv 3 23 13 18 11 10 6 10 6
lv 4 23 13 18 11 10 7 10 6
lv 5 22 13 17 11 9 6 10 6
sec 16 17 12 16 23 31 26 30

aniso
τ 4 8 4 8 2 4 2 4

lv 3 12 8 10 7 8 6 8 6
lv 4 35 18 24 13 13 7 12 6
lv 5 90 45 63 32 28 15 28 14
sec 227 222 160 159 143 146 141 143

anisotropic meshes. On the other hand, one can state that the Vanka smoother is not
as sensitive with respect to the relaxation parameter which can be seen as advantage.

As second test we consider the configuration CROSSOVER. In Table 2(b) one can
see that for the isotropic case the smoothers show a similar behaviour as in the first
test, but for the anisotropic case the Vanka smoother actually beats the Gauß-Seidel
smoother.

Mixed formulation

Suttmeier [30] states that in the case of linear elasticity with compressible material the
mixed formulation – although not necessary – can lead to better displacement approx-
imations. So, it is reasonable to compare the two above smoothers also for this setting.
The results for the configuration ANALYTIC are similar to the pure displacement case
(compare Table 2(a) with Table 3(a)).

The crucial difference is that here overrelaxation of Gauß-Seidel with ω = 1.2 leads
to divergence (not displayed in Table 3(a)) while the cell-based Vanka smoother is
still almost unaffected by the variations of the relaxation parameter. Consequently,
in terms of robustness the Vanka smoother should be preferred although the solution
process takes longer in case of the isotropic and mildly anisotropic configurations.
For the strongly anisotropic configuration the two solvers show comparable runtimes.
Table 3(b) partially confirms this for the configuration CROSSOVER. Here, it is remark-
able that MG-GS also fails for the ‘standard’ relaxation parameter ω = 1.0 (not shown
in Table 3(b)) and is much slower than MG-VANKA-C for the ANISO case.

In the mixed formulation setting we can also apply the two patch-based variants
of the Vanka smoother. We do this for the same configurations as before and can make
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Table 3: mg-gs vs. mg-vanka-c; mixed formulation; ν = 0.3. (a) analytic with aspect ratios 1, 4 and
16. (b) crossover-iso/aniso.

(a)

MG-GS MG-VANKA-C

ω 0.8 1.0 0.8 1.0 1.2
AR 1

τ 1 2 1 2 1 2 1 2 1 2
lv 6 9 5 20 9 6 4 8 4 8 4
lv 7 9 5 21 9 6 4 8 4 8 4
lv 8 9 5 21 10 6 4 8 4 8 4
sec 41 44 96 88 113 131 129 131 113 128

AR 4
τ 2 4 2 4 1 2 1 2 1 2

lv 6 33 16 23 11 18 10 17 9 17 10
lv 7 33 16 23 12 17 10 17 10 17 10
lv 8 32 16 23 12 18 10 17 10 17 10
sec 280 275 202 207 294 319 280 318 283 325

AR 16
τ 16 32 16 32 4 8 4 8 4 8

lv 6 39 19 27 14 39 19 37 18 36 18
lv 7 45 23 33 16 42 21 40 20 39 20
lv 8 47 23 34 17 40 21 37 20 37 20
sec 3266 3100 2381 2296 2608 2744 2372 2566 2361 2606

(b)

MG-GS MG-VANKA-C

ω 0.6 0.8 0.8 1.0 1.2
iso

τ 1 2 1 2 1 2 1 2 1 2
lv 3 28 16 20 12 9 6 8 6 8 6
lv 4 29 16 20 12 9 6 8 6 8 6
lv 5 28 16 19 12 8 6 8 6 8 6
sec 37 42 24 27 34 51 34 50 34 50

aniso
τ 4 8 4 8 2 4 2 4 2 4

lv 3 17 9 11 7 7 5 7 5 7 5
lv 4 28 25 32 16 13 7 11 6 10 5
lv 5 126 63 82 41 27 14 23 12 22 11
sec 568 535 355 346 216 229 192 198 182 182

some interesting observations. For the simple ANALYTIC isotropic case it does again
make not much sense to invest extra work into the smoothing process (Table 4(a)):
Both patch-based variants are by far slower than (the optimal) MG-GS. Compared to
the cell-based Vanka smoother they are slightly better in terms of iteration numbers,
but only the diagonal patch-based Vanka smoother is able to reflect this also in to-

Table 4: mg-vanka-pd vs. mg-vanka-p; mixed formulation; ν = 0.3 (a)analytic with aspect ratios 1, 4
and 16. (b) crossover-iso/aniso

(a)

MG-VANKA-PD MG-VANKA-P

ω 0.8 1.0 0.8 1.0 1.2
AR 1

τ 1 2 1 2 1 2 1 2 1 2
lv 6 6 3 4 3 5 3 4 3 6 4
lv 7 6 3 4 3 5 3 5 3 6 4
lv 8 6 3 4 3 5 3 5 3 6 4
sec 127 126 84 126 157 191 161 192 188 251

AR 4
τ 1 2 1 2 1 2 1 2 1 2

lv 6 12 7 15 9 7 4 6 4 7 4
lv 7 12 7 - - 7 4 6 4 7 4
lv 8 12 7 - - 7 4 7 4 7 5
sec 253 293 225 254 224 251 224 315

AR 16
τ 2 4 2 4 1 2 1 2 1 2

lv 6 50 25 - - 34 18 30 16 27 15
lv 7 55 28 - - 37 20 33 18 30 17
lv 8 55 29 - - 37 20 33 18 31 17
sec 2288 2636 1173 1256 1039 1155 1000 1089

(b)

MG-VANKA-PD MG-VANKA-P

ω 0.6 0.8 0.8 1.0 1.2
iso

τ 1 2 1 2 1 2 1 2 1 2
lv 3 11 6 10 5 9 5 9 6 9 6
lv 4 11 6 10 5 9 5 9 5 9 6
lv 5 10 6 10 5 9 5 9 5 9 5
sec 51 60 52 50 70 76 69 76 70 76

aniso
τ 2 4 2 4 1 2 1 2 1 2

lv 3 8 5 7 5 9 5 10 6 9 6
lv 4 18 9 14 7 9 5 9 6 9 6
lv 5 44 22 33 17 9 5 9 5 9 6
sec 442 438 332 338 67 76 69 76 69 90
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tal computation time. The results for the anisotropic meshes in Table 4(a) show that
for MG-VANKA-PD underrelaxation is clearly necessary, while MG-VANKA-P behaves
quite robustly with respect to the relaxation parameter. (MG-VANKA-PD converges for
AR 1 and ω = 1.2, though, but it needs more iterations than with ω = 1.0.) The com-
putation times, too, show a clear superiority of MG-VANKA-P over all other smoothers
despite being the most expensive one per smoothing step. This also holds for the
CROSSOVER configuration as can be seen in Table 4(b). (MG-VANKA-PD diverges for
ω = 1.0 which is not shown in the table.) Here, it is especially worth mentioning that,
in contrast to all other smoothers, the iteration number of MG-VANKA-P does not rise
with increasing multigrid level and simultaneously increasing aspect ratio. A reason
for this might be that the strong anisotropies of the two element layers around the
holes are, so to speak, hidden in the direct solution of the patch-system with the full
local displacement matrix.

4.3 Nearly incompressible material

In the remainder of the paper we will only deal with (nearly) incompressible material
and, consequently, do not employ the pure displacement formulation anymore. So, we
are now in a situation which resembles the incompressible flow setting and in which
the Vanka-type smoothers should tap their full potential. Due to the LBB stabilisation
terms the standard Gauß-Seidel smoother is still applicable also in the incompressible
case such that we can continue to compare the different approaches. The configuration
ANALYTIC is considered first. For MG-GS and MG-VANKA-C numbers for ω greater or
equal 0.7 are not listed in Table 5(a), since for these values MG-GS diverges on all levels
and MG-VANKA-C shows extremely slow or also no convergence.

So, for both smoothers a strong underrelaxation is mandatory to solve the problem
at all. (We also tested ω = 0.2, which showed worse results than ω = 0.4.) Conse-
quently, the number of iterations / smoothing steps are high compared to the com-
pressible case, resulting in significantly longer computation times, especially in case
of more anisotropic meshes. Again, for the isotropic case the Gauß-Seidel smoother
seems to be sufficient, while the cell-based Vanka smoother is faster on anisotropic
meshes. Regarding the relaxation parameter, the cell-based Vanka smoother shows a
more irregular behaviour now: For ANALYTIC1 and ANALYTIC4 ω = 0.4 is the better
choice, while it is ω = 0.6 for ANALYTIC16. For the Gauß-Seidel smoother, however,
ω = 0.6 always yields the best results. The results of the CROSSOVER configuration
confirm these observations (see Table 5(b)).

Both smoothers, in summary, have severe problems to efficiently treat the aniso-
tropic (nearly) incompressible case, so we have to examine if the patch-based Vanka
smoothers perform better.

Looking at the number of iterations / smoothing steps and total CPU times in
Tables 6(a) and 7(a), this is clearly the case. Even in the isotropic case they are now
able to compete with the optimally tuned MG-GS in terms of CPU times, which was
not true for the compressible configurations.
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Table 5: mg-gs vs. mg-vanka-c; mixed formulation; ν = 0.5 and ν = 0.4999, respectively. (a) analytic
with aspect ratios 1, 4 and 16. (b) crossover-iso/aniso

(a)

MG-GS MG-VANKA-C

ω 0.4 0.6 0.4 0.6
AR 1

τ 2 4 2 4 2 4 2 4
lv 6 18 10 17 11 8 7 21 9
lv 7 18 10 17 11 8 7 32 11
lv 8 18 10 17 11 8 7 33 11
sec 158 171 147 185 259 452 1072 723

AR 4
τ 8 16 8 16 2 4 2 4

lv 6 22 12 13 9 17 9 21 9
lv 7 23 13 14 10 18 9 34 11
lv 8 24 13 14 11 18 10 31 14
sec 1028 914 597 772 589 655 1021 901

AR 16
τ 64 128 64 128 16 32 16 32

lv 6 25 13 13 8 18 10 11 7
lv 7 27 15 18 10 17 11 13 8
lv 8 69 15 17 10 21 11 15 8
sec 18631 7933 4809 5640 5496 5838 3977 4308

(b)

MG-GS MG-VANKA-C

ω 0.4 0.6 0.4 0.6
iso

τ 4 8 4 8 1 2 1 2
lv 3 13 8 9 7 15 9 16 7
lv 4 14 8 11 7 14 9 27 11
lv 5 14 9 15 8 14 9 46 18
sec 60 77 65 68 63 75 197 150

aniso
τ 16 32 16 32 4 8 4 8

lv 3 8 6 6 5 6 5 6 5
lv 4 18 10 11 7 13 7 9 5
lv 5 46 24 28 14 29 15 19 10
sec 766 804 517 537 479 492 310 327

However, we have to perform underrelaxation here, as well, where a comparison
with the compressible case is interesting: There, the full patch-based Vanka smoother
is more robust with respect to the relaxation parameter than the diagonal variant, while
here, in the incompressible case, more underrelaxation is necessary. For MG-VANKA-
PD ω = 0.8 seems to be a good choice, while it is between ω = 0.6 and ω = 0.7

Table 6: Mixed formulation; ν = 0.5; configuration analytic with aspect ratios 1, 4 and 16. (a) mg-*,
(b) bicg-mg-*.

(a)

VANKA-PD VANKA-P

ω 0.6 0.8 0.6 0.7
AR 1

τ 1 2 1 2 1 2 1 2
lv 6 7 4 6 4 6 4 6 4
lv 7 7 4 5 4 6 4 6 3
lv 8 7 4 5 4 6 4 6 3
sec 146 167 105 167 190 256 197 195

AR 4
τ 1 2 1 2 1 2 1 2

lv 6 17 9 14 7 8 5 7 5
lv 7 17 9 14 8 8 5 7 5
lv 8 17 9 14 8 8 5 7 5
sec 356 382 293 348 256 317 230 327

AR 16
τ 4 8 4 8 2 4 2 4

lv 6 44 15 22 12 19 11 19 10
lv 7 >64 19 28 16 27 14 24 14
lv 8 - 21 30 17 >64 15 25 15
sec 3463 2482 2801 - 1913 1603 1913

(b)

VANKA-PD VANKA-P

ω 0.6 0.8 0.6 0.7
AR 1

τ 1 2 1 2 1 2 1 2
lv 6 4 2 3 2 3 2 3 2
lv 7 4 2 3 2 3 2 3 2
lv 8 4 2 3 2 3 2 3 2
sec 153 173 110 174 163 258 162 261

AR 4
τ 1 2 1 2 1 2 1 2

lv 6 6 4 5 4 4 3 4 3
lv 7 6 4 5 4 4 3 4 3
lv 8 6 4 5 4 3 3 4 3
sec 240 300 217 300 194 323 226 319

AR 16
τ 4 8 4 8 2 4 2 4

lv 6 9 6 7 5 7 5 8 5
lv 7 11 6 9 6 8 5 8 6
lv 8 >32 7 10 7 16 7 10 6
sec 2214 1710 2223 2100 1681 1337 1532
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Table 7: Mixed formulation; ν = 0.4999; configurations crossover-iso/aniso. (a)mg-*, (b)bicg-mg-*.

(a)

VANKA-PD VANKA-P

ω 0.6 0.8 0.6 0.7
iso

τ 1 2 1 2 1 2 1 2
lv 3 12 7 11 6 11 6 12 7
lv 4 12 6 11 6 10 5 12 6
lv 5 11 6 11 5 10 5 11 6
sec 57 61 56 50 76 76 84 98

aniso
τ 1 2 1 2 1 2 1 2

lv 3 13 7 13 7 11 6 12 7
lv 4 30 16 23 12 10 5 12 6
lv 5 74 38 55 28 10 5 11 6
sec 367 382 282 281 77 76 85 91

(b)

VANKA-PD VANKA-P

ω 0.6 0.8 0.6 0.7
iso

τ 1 2 1 2 1 2 1 2
lv 3 5 4 5 3 5 3 5 3
lv 4 5 4 4 3 4 3 5 3
lv 5 5 3 4 3 4 3 5 3
sec 47 61 41 50 61 91 70 93

aniso
τ 1 2 1 2 1 2 1 2

lv 3 5 4 5 3 4 3 5 3
lv 4 7 5 7 4 4 3 5 3
lv 5 11 7 12 7 4 3 5 3
sec 114 141 125 131 62 76 70 92

for MG-VANKA-P. (The latter still converges for ω = 0.8, though, but slightly worse
than for ω = 0.7, while MG-VANKA-PD diverges for ω = 1.0, which is not shown in
Tables 6(a) and 7(a).) That is why the superiority of the full variant over the diagonal
one in case of anisotropic meshes is clearly observable, though, but not as striking as
in the compressible situation.

BiCGstab as outer solver

A way to increase the robustness and the efficiency of multigrid is to use it not directly
as solver but as a preconditioner within an outer iteration scheme. For this, we employ
BICGSTAB and want to examine if this helps to better handle the above configurations.
The relaxation parameters can be chosen as for the corresponding stand-alone MG

solvers; only in rare cases different values lead to slightly better results.
When applying BICGSTAB as outer solver we can usually observe a decrease of

iteration numbers of at least 50 percent compared to corresponding stand-alone MG

solvers (see Table 6(a) vs. Table 6(b) and Table 7(a) vs. Table 7(b)). This is, of course,
not surprising as BICGSTAB does two preconditioning steps per iteration. However,
the interesting fact now is that for some configurations the iteration numbers decrease
by far more than 50 percent. Especially, the performance of the diagonal patch-based
Vanka smoother is significantly improved on anisotropic meshes. The solution of the
CROSSOVER-ANISO configuration, for instance, takes less than half of the time. The full
patch-based Vanka smoother clearly benefits from applying BICGSTAB, as well, even
though the improvement is not as striking as for the diagonal variant.

The positive influence of BICGSTAB is even more crucial in case of the BEAM config-
uration. As mentioned in Section 4.1, the thin shape and the small Dirichlet boundary
can lead to numerical difficulties. We can confirm this by comparing BEAM-ISO to the
configuration CROSSOVER-ISO, both having a maximal element aspect ratio of roughly
3. Although CROSSOVER-ISO exhibits a more complicated geometry and irregular ele-
ments, less iterations are needed for convergence (compare Tables 7 and 8). The effect
becomes even clearer for the BEAM-ANISO configuration. To solve the corresponding
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Table 8: Mixed formulation; ν = 0.4999; configurations beam-iso/aniso. (a)mg-*, (b) bicg-mg-*.

(a)

VANKA-PD VANKA-P

ω 0.8 0.7
iso

τ 1 2 1 2
lv 5 17 9 12 7
lv 6 17 9 11 7
lv 7 16 8 11 7
sec 162 161 173 213

aniso
τ 4 8 2 4

lv 6 394 208 213 121
lv 7 328 173 179 102
lv 8 281 148 156 88
sec 5765 6083 2453 2730

(b)

VANKA-PD VANKA-P

ω 0.8 0.7
iso

τ 1 2 1 2
lv 5 6 4 6 3
lv 6 6 4 5 3
lv 7 6 4 5 3
sec 125 165 153 184

aniso
τ 4 8 2 4

lv 6 27 18 24 15
lv 7 28 18 24 17
lv 8 29 17 24 15
sec 1196 1401 722 896

linear systems at all, we had to increase the maximal number of iterations (see Table 8,
aniso). In terms of element aspect ratios a comparison to the ANALYTIC16 configura-
tion (see Table 6) can be drawn. Considering MG-VANKA-PD on level 8 of BEAM-ANISO

and on level 7 of ANALYTIC16, the latter is solved roughly 10 times faster. Comparing
the results of MG-VANKA-P, one can observe a factor of roughly 6. (Of course, these
large differences are also due to the fact that in the ANALYTIC16 configuration only
half the elements exhibit the high aspect ratio.)

Now let us examine the influence of the outer BICGSTAB scheme in case of the BEAM

configuration. Beginning with the isotropic beam, the BICG-variants show a degree of
improvement which is similar to the configurations ANALYTIC4 and CROSSOVER-ISO

(all three having similar maximal element aspect ratios). For the anisotropic beam
configuration, however, we can make an interesting observation: Comparing the dif-
ferences between Table 6(a) (AR 16, level 7) and Table 8(a) (aniso, level 8) with the
corresponding differences between Table 6(b) and Table 8(b), one can observe that the
above factors of 6 and 10, respectively, are decreased to roughly 3 for both Vanka vari-
ants. This means, that the difference in solving these two comparable configurations
ANALYTIC16 and BEAM-ANISO significantly shrinks when multigrid is enclosed by an
outer BICGSTAB scheme, i. e. the numerical problems arising with the beam configura-
tion are considerably diminished.

Finite elasticity

To assess the Vanka smoothers in the context of finite elasticity we consider the BLOCK

configuration. Applying the two loads (0,−20) and (0,−300), leads to different com-
pression rates of the block and thus to different nonlinearities. Fig. 7 shows the result-
ing deformation and the von Mises stress.

In case of the higher load, line search for the Newton-Raphson schemes becomes
necessary. We consider two different coarse grids of the block configuration, exhibit-
ing aspect ratios of 1 and 4, respectively (see Fig. 6(a)). For the linear solvers we
only use the patch-based Vanka smoothers as the others already had problems dealing
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Table 9: Total number of linear iterations for mg-vanka-pd, mg-vanka-p, bicg-mg-vanka-pd, bicg-
mg-vanka-p; finite deformation; mixed formulation; configuration Block; load −20 and −300 (for the
smaller load 3 Newton iterations were performed, for the higher load 7 Newton iterations). (a) load −20,
(b) load −300.

(a)

MG- BICG-MG-
V.-PD V.-P V.-PD V.-P

BLOCK-ISO, τ = 1
ω 0.7 0.5 0.7 0.5

lv 5 8 9 5 5
lv 6 8 9 5 5
lv 7 8 9 5 5
sec 78 136 79 122

BLOCK-ANISO

ω 0.8 0.5 0.7 0.5
τ 1 1 1 1

lv 4 16 11 7 5
lv 5 14 11 7 6
lv 6 14 11 7 5
sec 137 166 121 139

(b)

MG- BICG-MG-
V.-PD V.-P V.-PD V.-P

BLOCK-ISO, τ = 1
ω 0.7 0.5 0.5 0.4

lv 5 17 17 10 9
lv 6 17 17 10 9
lv 7 17 18 10 9
sec 165 272 167 260

BLOCK-ANISO

ω 0.6 0.6 0.5 0.5
τ 4 2 1 1

lv 4 34 24 27 18
lv 5 34 21 32 14
lv 6 32 20 26 15
sec 1220 601 475 426

with the linear incompressible case. The nonlinear iteration is stopped when the initial
residual norm is decreased by a factor of 10−5, the linear solvers use a relative stopping
criterion of εrel = 10−2. Table 9 shows the total number of linear iterations. For the
small load always three Newton steps are performed, for the high load seven Newton
steps. The given times are the accumulated linear solving times on the finest level,
matrix assembling times are not contained. In most cases, performing exactly one
smoothing step is the best choice. Only for the MG solvers in the case of the anisotropic
block under higher load the number of smoothing steps had to be increased. For each
configuration we tested the relaxation parameters ω = 0.4, 0.5, . . . , 0.8, but for sake of
clarity we only show the one that performed best, respectively. In the following evalu-
ation we comment on the solvers’ robustness with respect to the relaxation parameter.

(a) (b)

Figure 7: Configuration block under two different loads (von Mises stress displayed). (a) Load (0,−20),
(b) Load (0,−300).

Most of the observations made for the linear test cases are confirmed in the finite
deformation setting. We first consider the results for the isotropic block (see the up-
per parts of Tables 9(a) and (b)). For both loading states the diagonal variant of the
patch-based Vanka smoother outperforms the full Vanka smoother in terms of run-
times, while they need roughly the same number of iterations. At least for the full
Vanka smoother the outer BICGSTAB scheme slightly improves the efficiency. Both
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smoother variants are robust with respect to the relaxation parameter ω within the
tested interval, only the full Vanka variant deteriorates for ω = 0.8 (not shown in the
table).

For the anisotropic block we get different results (see lower parts of Tables 9(a)
and (b)): In case of the small load, the diagonal Vanka smoother is still slightly faster,
though, but it needs more iterations than the full variant. In case of the second load-
ing state, however, the full Vanka smoother is clearly superior to the diagonal one, in
terms of iteration numbers, runtimes, and especially robustness: MG-VANKA-PD di-
verges when only one or two smoothings steps are applied, and both, MG-VANKA-PD

and BICG-MG-VANKA-PD, diverge for relaxation parameters ω = 0.7 and ω = 0.8, in-
dependent of the number of smoothing steps. MG-VANKA-P, however, shows robust
convergence behaviour for ω ∈ [0.4, 0.8] with two smoothing steps already and con-
verges in case of one smoothing step at least for ω = 0.4. BICG-MG-VANKA-P needs
only one smoothing step to converge robustly for all tested relaxation parameters.
(Again, the full Vanka variants slightly deteriorate for ω = 0.8.) The positive influ-
ence of the outer BICGSTAB scheme is much more significant for the anisotropic block
than for the isotropic one, especially for the high loading state, where – similar to the
small deformation case – the diagonal Vanka variant benefits more than the full Vanka
variant.

A comparison between the two block configurations with respect to the applied
surface force is interesting. For the small loading state the full Vanka smoother shows
only slight runtime differences between the isotropic and the anisotropic block, i. e.
factors of 1.2 and 1.1 for MG-VANKA-P and BICG-MG-VANKA-P, resp. For the high sur-
face force, these factors increase to 2.2 and 1.6, resp. For the diagonal Vanka smoother,
however, the dependence on the applied force is much more significant: While in case
of the smaller load the runtime of MG-VANKA-PD to solve the anisotropic configura-
tion is 1.8 times as high as for the isotropic one, it is 7.4 times as high in case of the
higher load. For BICG-MG-VANKA-PD the runtime differences increase from 1.1 to 2.8.

In summary, the test cases considered here indicate that both, the diagonal and the
full Vanka smoother are in principle able to handle large deformations. The difficulties
of the diagonal Vanka variant with higher aspect ratios seem to be amplified in the
presence of the resulting nonlinearities. The full Vanka variant, however, is capable
to robustly deal with the combined effects of strong nonlinearities and higher aspect
ratios.

5 Summary

In this paper we described the use of Vanka-like multigrid smoothers in the context of
Q1/Q1 finite element simulations in Computational Solid Mechanics. We presented
and compared four smoother types that are frequently considered in (CFD-) literature.
From the numerical tests we can draw the following main conclusions:

• All presented smoothers show a certain degree of sensitivity with respect to the
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relaxation parameter ω. A value that is optimal for one configuration may lead
to divergence in a different configuration. Consequently, a proper choice of this
parameter cannot be done automatically and requires some experience by the
user. This has to be seen as general drawback of all considered smoothers.

• For compressible material and fairly isotropic meshes the standard Gauß-Seidel
smoother provides good results and is often the most efficient. But as soon as
mesh anisotropies and/or incompressibility are involved it is advantageous or
even necessary to switch to one of the more sophisticated Vanka smoothers.

• The observation already made by other authors that the diagonal patch-based
Vanka smoother shows deficiencies on anisotropic meshes is clearly confirmed.
But: When the multigrid scheme is enclosed by an outer BICGSTAB (or similar)
method, this effect is significantly weakened. However, none of the presented
smoothers is robust with respect to higher aspect ratios as the comparisons be-
tween isotropic and anisotropic meshes show.

• For incompressible material it is mandatory to use one of the patch-based Vanka
smoothers. The standard Gauß-Seidel and the cell-based Vanka smoother have
to be strongly underrelaxed and solve only very simple, isotropic configurations
in reasonable time.

• Instead of using multigrid as stand-alone solver it is recommendable to apply it
as preconditioner of an outer Krylov space method. In many cases, robustness
and efficiency of the overall solving process are considerably increased as, for
instance, the BEAM configuration shows.

Future work has to focus on both, theoretical and practical aspects of Vanka-type
smoothing in elasticity. Often, the main difficulty in the convergence theory of multi-
grid schemes is to prove the smoothing property [8, 29]. Following the ideas of Kla-
wonn, Widlund and Pavarino who present theoretical results on domain decompo-
sition methods in elasticity (see references [16, 25, 37] for an overview of their work),
could be instructive to at least show that Vanka is an efficient solver. In this case, multi-
grid convergence is ensured as long as enough Vanka smoothing steps are performed.
From the practical point of view, the most important step in future work is the applica-
tion of the aforementioned lining- and patching-strategies to increase the smoothers’
robustness against mesh anisotropies. Furthermore, Vanka-type smoothers will be
compared to globally working (decoupled) smoothers/preconditioners for saddle
point systems. For this comparison, not only the numerical efficiency will be assessed,
but also the parallel efficiency in a multi-processor computer environment. Other rele-
vant topics are the inclusion of transient simulations into the test environment and the
application of the Vanka idea in connection with EAS (Enhanced Assumed Strains)
elements, which are very popular in the CSM community.
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