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Existence of Viscosity Solutions to a System of
Hyperbolic Balance Laws
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Abstract In this paper, the existence of viscous solutions of a hyperbolic
equilibrium law system derived from the nonlinear entropy moment closure of
a dynamic equation is established. In addition, by using the natural entropy
of the system, some higher order estimates of some viscosity solutions are
obtained.
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1. Introduction

In this paper, we consider viscosity solutions to the following system of hyperbolic
balance laws: 

ρt + ∂xJ = 0,

Jt + ∂x(ρψ(Jρ )) = −J,

ρ(x, 0) = ρ0(x), J(x, 0) = 0,

(1.1)

where ρ is the density and u = J
ρ is the the velocity. ψ is given by:

ψ : (−1, 1)→ (0,+∞)

u 7→ u2 + G′(G−1(u)) =
F′′

F
(G−1(

J

ρ
)). (1.2)

Here, F(β) = sinh β
β , G(β) = cothβ − 1

β = F′(β)
F(β) and G is C∞ diffeomorphism from

R onto (−1, 1). From the definition, we know that F, ψ are even functions, while G
is an odd function, and ψ is strictly convex with

F(0) = 1, G(0) = 0, ψ(0) = G′(0) =
1

3
, ψ′(0) = 0, (1.3)

lim
u→±1

ψ(u) = 1, lim
u→±1

ψ′(u) = ±2. (1.4)

†the corresponding author.
Email address: zhangqingning@zjnu.edu.cn (Q. Zhang), mcheng@zjnu.edu.cn
(M. Cheng)

1Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang
321004, China

http://dx.doi.org/10.12150/jnma.2022.198


Existence of Viscosity Solutions to Hyperbolic Balance Laws 199

Direct calculation implies that the eigenvalues satisfy:

λi(u) =
ψ′(u)±

√
[ψ′(u)]2 − 4uψ′(u) + 4ψ(u)

2
, i = 1, 2, (1.5)

with λ1(u) < u < λ2(u) and λ′i(u) > 0, and the corresponding eigenvectors are
given by

ri(u) =

 1

λi(u)

 . (1.6)

System (1.1) is strictly hyperbolic and genuinely nonlinear, and all the properties
mentioned above are given in [1]. Moreover, it is shown that the corresponding
homogeneous Riemann problem can be solved without smallness assumption. The
existence of global weak solutions with vacuum for the isothermal Euler equations
was proved in [4]. Diperna [2] gave the global weak solutions to the isentropic gas
dynamics system with the vanishing viscosity method. For the Broadwell model,
Lu [5] gave the existence of the viscosity solutions.

Now, we give the structure of the paper as follows: In Section 2, we review
the existence theorem of invariant region. In Section 3, we prove the existence of
invariant region and obtain the lower bound of the density. In Section 4, we apply
entropy-entropy flux pairs to establish higher order estimation of viscosity solutions.

2. Preliminaries

In this section, we review the definition of invariant region and the theorem that we
will apply to prove existence of invariant regions. Consider the following system:∂tv = εD(v, x)vxx +M(v, x)vx + f(v, t), (x, t) ∈ Ω× R+,

v(0, x) = v0(x), x ∈ Ω.
(2.1)

Here, ε > 0, Ω is an open interval in R, D = D(v, x), and M = M(v, x) are
matrix-valued functions defined on an open subset U × V ⊂ Rn × Ω, D ≥ 0.
v = (v1, v2 . . . vn), and f is a smoothing mapping from U × R+ into Rn.

Definition 2.1. [6] A closed subset
∑
⊂ Rn is called a (positively) invariant region

for the local solution defined by (2.1), if any solution v(x, t) with its boundary and
initial values in

∑
satisfies v(x, t) ∈

∑
, for all x ∈ Ω and t ∈ [0, σ).

We consider the region
∑

of the form

Σ =
⋂
{v ∈ V : Gi(v) ≤ 0}, (2.2)

where Gi are smooth real-valued functions defined on an open subset of U , and for
each i, the DGi never vanishes.

Theorem 2.1. [6] Let Σ be defined in (2.2), and suppose that for all t > 0 and
v0 ∈ ∂Σ (Gi(v0) = 0 for some i), the following conditions hold:

(1) DGi at v0 is a left eigenvector of D(v0, x) and M(v0, x), for all x ∈ R;
(2) If DGiD(v0, x) = λDGi with λ 6= 0, then Gi is strongly convex at v0;
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i.e., If DGi · ξ = 0, then

Giρρξ
2
1 + 2GiρJξ1ξ2 +GiJJξ

2
2 > 0. (2.3)

(3) DGif ≤ 0 at v0.
Then, Σ is invariant for (2.2) with every ε > 0.

3. Existence of viscosity solutions

The viscosity system corresponding to system (1.1) satisfies
ρεt + ∂xJ

ε = ερεxx,

Jεt + ∂x(ρεψ(J
ε

ρε )) = −Jε + εJεxx,

ρε(x, 0) = ρ0(x), Jε(x, 0) = 0,

(3.1)

Theorem 3.1. Suppose that ρ0(x) ≤M and for the system (3.1), we define region:

Σ = {(ρ, J) ∈ (0, ρ0)× R| Zi(ρ, J) ≥ Zi(ρ0, J0), i = 1, 2}, (3.2)

which means that Gi(ρ, J) = Zi(ρ0, J0)− Zi(ρ, J), i = 1, 2,

Zi = − ln ρ+ Λi(
J

ρ
), (3.3)

is the Riemann invariant, where Λi(u) =
∫ u
0

1
λ1(w)−wdw.

Then,
∑

is the invariant region.

Proof. Now, we check the conditions given in Theorem 2.1.

• Step 1. We can rewrite (3.1) as:Ut + F (U)x = f + εUxx,

U |t=0 = U0,
(3.4)

where U =
(
ρ
J

)
, f =

(
0
−J
)
.

Let mapping F : R2 → R2 be defined as

F (U) =

(
J

ρψ(Jρ )

)
.

Then,

DF (U) =

 0 1

ψ − J
ρψ
′ ψ′

 ,

i.e., M(U, x) = −DF (U), D(U, x) = I in (2.1).
By the definition of Riemann invariant, we have

∇Z1 · r1 = 0, ∇Z2 · r2 = 0. (3.5)

Hence,

∇Z1DF (U) = λ2∇Z1, ∇Z2DF (U) = λ1∇Z2. (3.6)
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• Step 2. A direct calculation leads to

Ziρ = −1

ρ
− J

ρ2
Λ′i(

J

ρ
),

ZiJ =
1

ρ
Λ′i(

J

ρ
),

Ziρρ =
1

ρ2
+
J2

ρ4
Λ′′i (

J

ρ
) + 2

J

ρ3
Λ′i(

J

ρ
),

ZiρJ = − J
ρ3

Λ′′i (
J

ρ
)− 1

ρ2
Λ′i(

J

ρ
),

ZiJJ =
1

ρ2
Λ′′i (

J

ρ
).

If ∇Zi · ξ = 0 with ξ = (ξ1, ξ2), then

∇Zi · ξ = Ziρξ1 + ZiJξ2 =
(
− 1

ρ
− J

ρ2
Λ′i(

J

ρ
)
)
ξ1+

(1

ρ
Λ′i(

J

ρ
)
)
ξ2 = 0,

which implies that

ξ1
ξ2

=
Λ′i(

J
ρ )

1 + J
ρΛ′i(

J
ρ )

=
1

λi(
J
ρ )
.

Thus, we have Ziρρξ
2
1 +2ZiρJξ1ξ2+ZiJJξ

2
2 =

−λ′i( Jρ )
ρ2 < 0. Then, Gi is strongly

convex at v0.

• Step 3. For every (ρ, J) satisfying Zi(ρ, J) = Zi(ρ0, 0), we have
∫ u
0

1
λi(w)−wdw =

ln ρ
ρ0

. As ρ ∈ (0, ρ0) and λ1(u) < u < λ2(u), we have u
λi(u)−u < 0. That is to

say,

DGif = DGi · (0,−J) = ZiJ · J =
J

ρ
Λ′i(

J

ρ
) =

u

λi(u)− u
< 0.

Now, we prove that the region Σ defined in (3.2) is invariant region. Thus, we have
the uniform L∞ estimates for (ρε, Jε), which yields the existence of the viscosity
solutions.

Along the curve Gi = 0 on the (ρ, J) plane, direct calculation we leads to dJ
dρ = −Giρ

GiJ
= − Ziρ

ZiJ
= λi(u),

d2J
dρ2 = λ′i(u)( 1

ρ
dJ
dρ −

J
ρ2 ) = λ′i(u)(λi(u)− u) 1

ρ .

Then, the level curve G1 = 0 is convex up, and the curve G2 = 0 is convex down
on the (ρ, J) plane. Therefore, we can deduce the Invariant region is behavior like
Figure 1.

In order to obtain a positive and lower bound ρε, the following lemma is useful.

Lemma 3.1. Under the same condition as in Theorem 3.1, the viscosity solutions
of the Cauchy problem (3.1) have a priori L∞ estimate |uε| ≤ 1.

Proof. In the invariant region
∑

, for Gi = 0, we have

uε = Λi
−1(ln

ρε

ρε0
),
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ρ

J

O
ρ0

G1(ρ, J) = 0

G2(ρ, J) = 0

Figure 1. Invariant region

and

Λ′i(u
ε) =

1

λi(uε)− uε
.

It is obvious that Λ1 is a decreasing function and Λ2 is an increasing function.
According to [1], one has

Λ1(1) =

∫ 1

0

1

λ1(w)− w
dw = −∞,

Λ2(−1) = −
∫ 0

−1

1

λ2(w)− w
dw = −∞.

Then, uε satisfies the following relationship in the invariant region:

−1 ≤ Λ2
−1(ln

ρε

ρε0
) ≤ uε ≤ Λ1

−1(ln
ρε

ρε0
) ≤ 1.

Lemma 3.2. If ρε0(x) > δ, then ρε(x, t) ≥ c(t, ε, δ) > 0. Here, δ is a positive
constant, and c(t, ε, δ) tends to zero as time t goes to infinity or ε goes to zero.

Proof. Consider the following systemρεt + ∂xJ
ε = ερεxx,

ρε(x, 0) = ρε0(x).
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Let θ = ln ρε, then we can deduce

θt = εθ2x + εθxx − θxuε − uεx

= εθxx + ε[θx −
uε

2ε
]2 − (uε)2

4ε
− uεx (3.7)

with the initial data θ(0, x) = ln ρε0.
The solution θ of (3.7) can be represented by Green function G(x − y, t) =

1√
4πεt

exp{− x2

4εt}:

θ =

∫ ∞
−∞

G(x− y, t)θ0(y)dy +

∫ t

0

∫ ∞
−∞
{ε[θy −

uε

2ε
]2 − (uε)2

4ε
− uεy}G(x− y, t− s)dyds

≥
∫ ∞
−∞

G(x− y, t)θ0(y)dy +

∫ t

0

∫ ∞
−∞

[− (uε)2

4ε
− uεy](y, s)G(x− y, t− s)dyds

=

∫ ∞
−∞

G(x− y, t)θ0(y)dy +

∫ t

0

∫ ∞
−∞

uε(y, s)Gy(x− y, t− s)

− (uε)2

4ε
(y, s)G(x− y, t− s)dyds

(3.8)

owing to the fact that∫ ∞
−∞

G(x− y, t)dy = 1,

∫ t

0

∫ ∞
−∞
|Gy(x− y, t− s)|dyds =

2
√
t√
επ

=
2t

1
2

ε
1
2

,

θ0(y) ≥ ln δ, uε ∈ [−1, 1].

It follows from (3.8) that

θ ≥ ln δ

∫ ∞
−∞

G(x− y, t)dy −
∫ t

0

∫ ∞
−∞

Gy(x− y, t− s)− 1

4ε
G(x− y, t− s)dyds

= ln δ − 2t
1
2

ε
1
2

−
∫ t

0

1

4ε
ds

= ln δ − 2t
1
2

ε
1
2

− t

4ε
. (3.9)

Then, we get

ρε ≥ δe
− 2t

1
2

ε
1
2

− t
4ε

= c(t, ε, δ) > 0.

For any t > 0, where δ is a positive constant and c(t, ε, δ) tends to zero, as the time
goes to infinity or ε goes to zero.

4. Entropy Estimation

With the help of a nature entropy and the corresponding flux:

η(ρ, J) = ρ ln ρ− ρ ln[F ◦G−1(u)] + JG−1(u), (4.1)
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q(ρ, J) = J ln ρ− J ln[F ◦G−1(u)] + ρψ(
J

ρ
)G−1(

J

ρ
), (4.2)

we give some higher order estimate of the viscosity solution.

Lemma 4.1. ρε and Jε are given in Section 3, and let η, q be defined by (4.1) and
(4.2), then it holds that ε(ρεx)2, ε(Jεx)2, εu2x, ε[u

ερεx − Jεx]2, and JεG−1(uε) all belong
to L1

loc(R× [0, T ]).

Proof. Multiplying the first and second formula of (3.1) by ηρ, ηJ and adding
them together, it yields

η(ρε, Jε)t + q(ρε, Jε)x = εη(ρε, Jε)xx − JεηJε + ε[ηρερ
ε
xx + ηJεJ

ε
xx − ηxx]

= εη(ρε, Jε)xx − JεηJε
− ε[ηρερε(ρ

ε
x)2 + 2ηρεJερ

ε
xJ

ε
x − ηJεJε(Jεx)2]. (4.3)

For η, q, a direct calculation concludes

ηρ = ln ρ+ 1− ln[F ◦G−1(u)]− ρF
′ ◦G−1(u)

F ◦G−1(u)

1

G′(G−1(u))
(− J
ρ2

) +
J

G′(Jρ )
(− J
ρ2

)

= ln ρ+ 1− ln[F ◦G−1(u)],

ηρρ =
1

ρ
+

u2

ρG−1(u)
,

ηJ = −ρF
′ ◦G−1(u)

F ◦G−1(u)

1

G′(G−1(u))
(
1

ρ
) + J

1

G′(u)
(
1

ρ
) + G−1(u) = G−1(u),

ηJJ =
1

ρG−1(u)
,

ηJρ = − u

ρG−1(u)
.

Then, one has

η(ρε, Jε)t + q(ρε, Jε)x = εη(ρε, Jε)xx − ε
1

ρεG′ ◦G−1(uε)
[ψ(

Jε

ρε
)(ρεx)2 − 2uερεxJ

ε
x + (Jεx)2]

− JεG−1(
Jε

ρε
).

For any ϕ ∈ C∞c ((0, T )× R), we have∫ T

0

∫ ∞
−∞
{ ε

ρεG′ ◦G−1(uε)
[ψ(uε)(ρεx)2 − 2uερεxJ

ε
x + (Jεx)2] + JεG−1(uε)}ϕdxdt

=

∫ T

0

∫ ∞
−∞
{ ε

ρεG′ ◦G−1(uε)
[(uε)2(ρεx)2 + G′ ◦G−1(uε)(ρεx)2 − 2uερεxJ

ε
x + Jεx]2dxdt

+ JεG−1(uε)}ϕdxdt

=

∫ T

0

∫ ∞
−∞

ε

ρεG′ ◦G−1(uε)
[uερεx − Jεx]2ϕdxdt+

ε

ρε
(ρεx)2ϕ+ JεG−1(uε)ϕdxdt

=

∫ T

0

∫ ∞
−∞

[εηϕxx + ηϕt + qϕx]dxdt ≤ C,
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where the constant C depends on ε.
In fact, η, q are smooth functions without the possible singular point ρε = 0 and

uε = ±1. From Theorem 3.1 and Lemma 3.2, we know

0 < δe
− 2t

1
2

ε
1
2

− t
4ε ≤ ρε ≤M

and
|Jε| ≤ ρε ≤M.

Since ln( c(T,ε,δ)M ) ≤ ln( δe
− 2t

1
2

ε
1
2

− t
4ε

M ) ≤ ln( ρ
ε

ρε0
) ≤ ln(Mδ ), t ∈ [0, T ], we have

−1 < r2(T, ε, δ) = Λ2
−1(ln

c(T, ε, δ)

M
) ≤ Λ2

−1(ln
ρε

ρε0
) ≤ uε ≤ Λ1

−1(ln
ρε

ρε0
)dxdt

≤ Λ1
−1(ln

c(T, ε, δ)

M
) = r1 < 1.

It is obvious that JεG−1(uε) ∈ L1
loc(R× [0, T ]).

Since

G′(β) ∈ (0,
1

3
],

we have

3ε

M

∫ T

0

∫ ∞
−∞

[uερεx − Jεx]2ϕdxdt ≤
∫ T

0

∫ ∞
−∞

ε

ρεG′ ◦G−1(uε)
[uερεx − Jεx]2ϕdxdt ≤ C.

Hence, ε[uερεx − Jεx]2 ∈ L1
loc(R× [0, T ]).

Notice that

1

M

∫ T

0

∫ ∞
−∞

ε(ρεx)2ϕdxdt ≤
∫ T

0

∫ ∞
−∞

ε

ρε
(ρεx)2ϕdxdt < C.

Then, we obtain (ρεx)2 ∈ L1
loc(R× [0, T ]) and

1

2

∫ T

0

∫ ∞
−∞

ε(Jεx)2ϕdxdt =
1

2

∫ T

0

∫ ∞
−∞

ε[(Jεx − uερεx) + uερεx]2ϕdxdt

≤ ε

∫ T

0

∫ ∞
−∞

[(Jεx − uερεx)2 + (uρεx)2]ϕdxdt

≤ ε

∫ T

0

∫ ∞
−∞

[(Jεx − uερεx)2 + (ρεx)2]ϕdxdt ≤ C.

Then, ε(Jεx)2 ∈ L1
loc(R× [0, T ]).

Since

c(T, ε, δ)

∫ T

0

∫ ∞
−∞

ε(uεx)2ϕdxdt ≤
∫ T

0

∫ ∞
−∞

ε(ρε)2(uεx)2ϕdxdt

=

∫ T

0

∫ ∞
−∞

ε(Jεx − ρεxuε)2ϕdxdt ≤ C,

we obtain ε(uεx)2 ∈ L1
loc(R× [0, T ]).

Remark 4.1. For the system (1.1), a nature entropy (4.1) and the corresponding
flux (4.2) can be given by the corresponding kinetic equation, but it is not enough
to obtain the convergence of viscous solutions.
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