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Existence of Solutions to a Class of Fractional
Differential Equations∗
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Abstract In this paper, the existence of solutions to a class of fractional
differential equations Dα

0+u(t) = h(t)f(t, u(t), Dθ
0+u(t)) is obtained by an ef-

ficient and simple monotone iteration method. At first, the existence of a
solution to the problem above is guaranteed by finding a bounded domain
DM on functions f and g. Then, sufficient conditions for the existence of
monotone solution to the problem are established by applying monotone it-
eration method. Moreover, two efficient iterative schemes are proposed, and
the convergence of the iterative process is proved by using the monotonici-
ty assumption on f and g. In particular, a new algorithm which combines
Gauss-Kronrod quadrature method with cubic spline interpolation method is
adopted to achieve the monotone iteration method in Matlab environment,
and the high-precision approximate solution is obtained. Finally, the main
results of the paper are illustrated by some numerical simulations, and the
approximate solutions graphs are provided by using the iterative method.

Keywords Fractional differential equation, Monotone iteration method, Nu-
merical simulation, Approximate solutions graphs.
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1. Introduction

At present, fractional differential equation (FDE) is a focused issue concerned by
many researchers around the world owing to their various applications in physics,
chemistry, biology, dynamical control, engineering and medicine, etc. [1, 10, 19, 22,
24, 28]. Although considerable attention has been paid to the solutions of FDEs
(see [3,6,9,14,16–18,21,25,27] and the references), there are few works [3,9,18] on
numerical methods which are used to compute approximate solutions of the FDEs
whose nonlinear term involves the derivative.

For integral order ordinary differential equations (ODEs), there are many effi-
cient numerical methods, such as Euler method, extrapolation method, monotone
iteration method, variational iteration method [2, 4, 5, 7, 12, 13, 20, 23, 26], but it
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is very difficult to solve or to compute approximate solutions of the ODEs whose
nonlinear term involves the derivative. For FDEs, it is even harder to obtain ap-
proximate solutions. Therefore, the study on numerical methods for FDEs whose
nonlinear term involves the derivative is of theoretical and practical significance.

In the first place, literature review has been made on some related studies.
In [23], Yao studied the following problemu(4) = f(t, u(t), u′(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

where f : [0, 1] × [0,∞) × [0,∞) → [0,∞) is continuous. With the help of the
improved monotonically iterative method, Yao dealt with the nonlinear boundary
value problem and obtained the existence and iteration of positive solution to the
nonlinear problem. He also provided a useful computational method.

In [7], Edson et al., investigated the following two fourth-order problems. The
first problem is 

u(4) = f (t, u(t), u′(t)) , t ∈ (0, 1) ,

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)).

The second one is 
u(4) = f (t, u(t), u′(t)) , t ∈ (0, 1) ,

u(0) = u′(0) = 0,

u′(1) = 0, u′′′(1) = g(u(1)).

By using monotone iteration method, the authors proposed a numerical method to
compute approximate solutions and obtained monotone positive solutions.

In [26], Zhang discussed an elastic beam equation with a corneru(4) = q(t)f(t, u(t), u′(t)), t ∈ (0, 1),

u(0) = u′(0) = u′(1) = u′′′(1) = 0,

where f : [0, 1] × [0,∞) × [0,∞) → [0,∞) is continuous, and q(t) : (0, 1) → [0,∞)

is a continuous function satisfying 0 <
∫ 1

0
s2q(s)ds < ∞. By applying monotone

iterative techniques, Zhang constructed a successive iterative scheme whose starting
point is a simple quadratic function or a zero function, and obtained the existence
and iteration of positive solutions to the above boundary value problem.

Motivated by the ideas mentioned above, in this paper, we consider the following
FDE whose nonlinear term involves the derivative

Dα
0+u(t) = h(t)f(t, u(t), Dθ

0+u(t)), t ∈ [0, 1] (1.1)

with either the boundary value conditions or the initial value conditions

Γ1(t, u(t), Dβ
0+u(t)) = 0, · · · , Γn(t, u(t), Dβ

0+u(t)) = 0, (1.2)
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where constants 0 < θ < α ≤ n, 0 < β < α, Dα
0+ , Dθ

0+ and Dβ
0+ are the standard

Riemann-Liouville fractional derivatives of orders α, θ and β. We assume that
Γ1, · · · , Γn : [0, 1]×R2 → R are continuous functions satisfying problems (1.1)-(1.2)
that can be reduced to the following integral equation

u(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s), Dθ
0+u(s))ds+ g(ξ, u(ξ), Dθ

0+u(ξ))ϕ(t) (1.3)

or

u(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s), Dθ
0+u(s))ds, (1.4)

where constants ξ ∈ [0, 1], and θ > 0, G(t, s) is the corresponding Green’s function
of the homogeneous linear problem Dα

0+u(t) = 0 with either the boundary value
conditions or the initial value conditions. We assume that f : [0, 1] × R2 → R, g :
[0, 1]× R2 → R, h(t) : [0, 1]→ [0,∞) are continuous, and G(t, s) is a.e. continuous
with respect s and continuous with respect t on [0, 1]× [0, 1].

First, according to the functions f and g, a specified bounded domain, where the
defined operator is completely continuous is discovered. This ensures that problems
(1.1)-(1.2) have at least one positive solution generated by the fixed point theorem.
Secondly, by applying monotone iteration method on a standard cone of increas-
ing positive functions, sufficient conditions for the existence of monotone solution
to problems (1.1)-(1.2) are established. Thirdly, two efficient iterative schemes are
proposed, and the convergence of the iterative process is proved by using the mono-
tonicity assumption on f and g. Moreover, the implementation of the algorithm
is presented. Finally, the main results of the paper are illustrated by some numer-
ical simulations, and the approximate solutions graphs are provided by using the
iterative method.

It is easy to find that (1.4) is the special case when g(ξ, u(ξ), Dθ
0+u(ξ)) = 0 or

ϕ(t) = 0 in (1.3). Therefore, we will only discuss integral equation (1.3).
In contrast to the prerequisite that f(t, u, v) meets locally Lipschitz condition in

u and v in other iterative methods [4, 5, 13, 20], we will remove the restriction and
consider the monotonicity on f only in a bounded domain. It should be noticed
that the monotone iteration method to obtain the existence of positive solution by
using the method of lower and upper solutions is not easy to implement [12,13,20].
Therefore, in this paper, we use a simple and efficient method to overcome the
limitation.

It is widely known that numerical integration methods are relatively mature
and of high precision. In Matlab environment, there are some classical algorithm
functions of numerical integration methods, such as Trapezoidal method, Simpson
method, Runge-Kutta method and Gauss method. However, for solving FDEs by
computer simulation, only Trapezoidal algorithm function of Matlab is directly uti-
lized to compile the program code, and it has a lower precision. Through theoretical
analysis and experiments, we first combine classical numerical integration algorith-
m functions with cubic spline interpolation method. Then, we design and compile
programs with the Matlab. As a result, we achieve the monotone iteration method
by means of a new algorithm, which combines Gauss-Kronrod quadrature method
of classical numerical integration with cubic spline interpolation method in Matlab
environment, and finally some of the approximate solutions graphs are obtained.

This paper is organized as follows. In Section 2, some preliminary definitions and
the related lemmas are given to help readers fully understand this paper. Further,
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the existence criteria of the solution to problems (1.1)-(1.2) is discussed in Section 3.
In Section 4, the sufficient conditions for existence of monotone solution to problems
(1.1)-(1.2) is established, and the iterative sequence is constructed. In Section 5,
two efficient iterative schemes are proposed, the convergence of the iterative process
is discussed and the implementation of the algorithm is presented. In Section 6,
some numerical simulations with the approximate solutions graphs are provided to
illustrate the efficiency of the iterative method.

2. Preliminaries

To fully appreciate this paper, in this section, we will introduce some basic defini-
tions and the related lemmas.

Definition 2.1 ( [15]). The Riemann-Liouville fractional integral of order α > 0
of a function y : (0, ∞)→ R is given by

Iα0+y(t) = 1
Γ(α)

∫ t
0
(t− s)α−1y(s)ds,

providing that the right side is pointwise defined on (0,∞).

Definition 2.2 ( [15]). The Riemann-Liouville fractional derivative of order α > 0
of a function y : (0,∞)→ R is given by

Dα
0+y(t) = 1

Γ(n−α)

(
d
dt

)n ∫ t
0
(t− s)n−α−1y(s)ds,

providing that the right side is pointwise defined on (0,∞), where n = [α] + 1.

Lemma 2.1 (Lemma 1, [11]). Assume α > 0, β > 0, u(t) ∈ L(0, 1) ∩ C(0, 1), then

(i) Dβ
0+I

α
0+u(t) = Iα−β0+ u(t), α > β;

(ii) Dα
0+I

α
0+u(t) = u(t);

(iii) Iα0+D
α
0+u(t) = u(t) +

∑n
i=1 cit

α−i, n− 1 < α ≤ n, ci ∈ R, i = 1, 2, . . . , n,
Dα

0+u ∈ L(0, 1) ∩ C(0, 1);

(iv) Dα
0+t

β = Γ(β+1)
Γ(β+1−α) t

β−α, β > −1, β > α− 1, t > 0.

Definition 2.3 ( [27]). Let E be a real Banach space. A nonempty closed convex
set P ⊂ E is called a cone for all x ∈ P and λ ≥ 0, λx ∈ P , and if x,−x ∈ P , then
x = 0.

Every cone P ⊂ E induces an ordering in E given by x � y, if and only if y−x ∈
P. Moreover, if there exists a constant N such that, for all x, y ∈ E, 0 � x � y
implies ‖x‖ � N‖y‖, P is called normal, where N is called normality constant of
P . Obviously, N ≥ 1.

Definition 2.4 ( [27]). Let E be a real Banach space. If x, y ∈ E, the set
[x, y] = {u ∈ E : x � u � y} is called the order interval between x and y.

Lemma 2.2 (Lemma 2, [7] (monotone iteration method)). Let P be a normal cone
of a Banach space E and x0 � y0. Suppose that

(H1) T : [x0, y0] ⊂ E → E is completely continuous;

(H2) T is a monotonous increasing in [x0, y0]. That is, x0 � y0. Then, Tx0 � Ty0;
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(H3) x0 is a subsolution of T . That is, x0 � Tx0;

(H4) y0 is a supersolution of T . That is, Ty0 � y0.

Then, the iterative sequences

x0 � x1 � · · · � xn � · · · � yn � · · · � y1 � y0,

and converge to respectively, x, y ∈ [x0, y0], which are fixed points of T .

3. Existence of solution

In this section, we will discuss the existence of solution to problems (1.1)-(1.2).
Let E = {u : u ∈ C[0, 1], Dθ

0+u(t) ∈ C[0, 1]} be a Banach space endowed with
norm

‖u‖ = max

{
max
t∈[0,1]

|u(t)|, max
t∈[0,1]

∣∣Dθ
0+u(t)

∣∣} . (3.1)

An operator T : C[0, 1]→ C[0, 1] is defined by

Tu(t) =

∫ 1

0

G(t, s)h(s)f(s, u(s), v(s))ds+ g(ξ, u(ξ), v(ξ))ϕ(t),

where v(t) = Dθ
0+u(t).

In the following, we discuss the existence of the solution to problems (1.1)-(1.2).
For the sake of convenience, we introduce the following notations:

a1 = max
t∈[0,1]

∫ 1

0

|G(t, s)h(s)|ds, b1 = max
t∈[0,1]

|ϕ(t)|,

a2 = max
t∈[0,1]

∫ 1

0

|Dθ
tG(t, s)h(s)|ds, b2 = max

t∈[0,1]
|Dθ

0+ϕ(t)|,

λ = max{a1 + b1, a2 + b2}.

Lemma 3.1. Given Ψ ∈ C[0, 1], for any M > 0, β > 0 and ξ ∈ [0, 1]. Let

u(t) =

∫ 1

0

G(t, s)h(s)Ψ(s)ds+ η(ξ)ϕ(t),

v(t) =

∫ 1

0

Dθ
tG(t, s)h(s) · Ψ(s)ds+ η(ξ) ·Dθ

0+ϕ(t).

If |Ψ | ≤M, |η| ≤M , then there exist the estimates

|u| ≤ (a1 + b1)M and |v| ≤ (a2 + b2)M.

Further, there holds ‖u‖ ≤ γ, where γ = λM.

Proof. Since G(t, s) and Dθ
tG(t, s) are a.e. continuous with respect s on [0, 1],

and G(t, s) and Dθ
tG(t, s) are integrable on [0, 1]. Thus, |G(t, s)| and |Dθ

tG(t, s)|
are also integrable on [0, 1].

Therefore, according to the assumption, we have

|u(t)| ≤
∫ 1

0

|G(t, s)h(s)| · |Ψ(s)|ds+ |η(ξ)| · |ϕ(t)|
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≤
∫ 1

0

|G(t, s)h(s)|Mds+ |ϕ(t)|M

≤M
[

max
t∈[0,1]

∫ 1

0

|G(t, s)h(s)|ds+ max
t∈[0,1]

|ϕ(t)|
]

=(a1 + b1)M.

Analogously,

|v(t)| ≤
∫ 1

0

|Dθ
tG(t, s)h(s)| · |Ψ(s)|ds+ |η(ξ)| · |Dθ

0+ϕ(t)|

≤
∫ 1

0

|Dθ
tG(t, s)h(s)| ·Mds+M · |Dθ

0+ϕ(t)|

≤M
[

max
t∈[0,1]

∫ 1

0

|Dθ
tG(t, s)h(s)|ds+ max

t∈[0,1]
|Dθ

0+ϕ(t)|
]

=(a2 + b2)M.

Finally, by (3.1), we have

‖u‖ ≤ max {(a1 + b1)M, (a2 + b2)M} = λM = γ.

For any M > 0, we denote

DM = {(t, u, v) : 0 ≤ t ≤ 1, |u| ≤ (a1 + b1)M, |v| ≤ (a2 + b2)M}

and

D+
M = {(t, u, v) : 0 ≤ t ≤ 1, 0 < u ≤ (a1 + b1)M, 0 < v ≤ (a2 + b2)M} .

Theorem 3.1. Assume that f and g are continuous, and there exists a number
M > 0 such that

(i) |f(t, u, v)| ≤M , for any (t, u, v) ∈ DM ;

(ii) |g(t, u, v)| ≤M , for any (t, u, v) ∈ DM .

Then, problems (1.1)-(1.2) have at least a solution u(t) ∈ C[0, 1].

Proof. Let

Bγ = {u ∈ E : ‖u‖ ≤ γ}.

Now, we prove that operator T has a fixed point in Bγ . First, for t ∈ [0, 1], by the
means of conditions (i) and (ii), for u ∈ Bγ , we have

|Tu| =
∣∣∣∣∫ 1

0

G(t, s)h(s)f(s, u(s), v(s))ds+ g(ξ, u(ξ), v(ξ))ϕ(t)

∣∣∣∣ (3.2)

≤
∫ 1

0

|G(t, s)h(s)| · |f(s, u(s), v(s))|ds+ |g(ξ, u(ξ), v(ξ))| · |ϕ(t)|

≤M
∫ 1

0

|G(t, s)h(s)|ds+M |ϕ(t)|
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≤M max
t∈[0,1]

∫ 1

0

|G(t, s)h(s)|ds+M max
t∈[0,1]

|ϕ(t)|

=M(a1 + b1) ≤ γ

and

|Dθ
0+Tu(t)| (3.3)

=

∣∣∣∣∫ 1

0

Dθ
tG(t, s)h(s)f(s, u(s), v(s))ds+ g(ξ, u(ξ), v(ξ))Dθ

0+ϕ(t)

∣∣∣∣
≤
∫ 1

0

|Dθ
tG(t, s)h(s)| · |f(s, u(s), v(s))|ds+ |g(ξ, u(ξ), v(ξ))| · |Dθ

0+ϕ(t)|

≤M max
t∈[0,1]

∫ 1

0

|Dθ
tG(t, s)h(s)|ds+M max

t∈[0,1]
|Dθ

0+ϕ(t)|

=M(a2 + b2) ≤ γ.

Thus,

‖Tu‖ = max

{
max
t∈[0,1]

|Tu(t)|, max
t∈[0,1]

∣∣Dθ
0+Tu(t)

∣∣} ≤ γ.
On the other hand, by the definition of the operator T , we know that Tu ∈

C[0, 1]. Then, we infer that Tu ∈ E, which implies TBγ ⊂ Bγ . Hence, T maps Bγ
into Bγ .

Finally, we prove that T (Bγ) is equicontinuous. We infer from the continuity of
ϕ(t), h(t), f(t, u, v) and g(t, u, v), and the almost everywhere continuity of G(t, s)
and Dθ

tG(t, s) with respect s and the continuity of with respect t that the operator
T is continuous.

Since G(t, s) and Dθ
tG(t, s) are continuous with respect t on [0, 1], G(t, s)h(s)

and Dθ
tG(t, s)h(s) are uniformly continuous with respect t on [0, 1]. Thus, for any

ε > 0, there exists δ1 > 0, whenever t1, t2 ∈ [0, 1] and |t1 − t2| < δ1,

|G(t2, s)h(s)−G(t1, s)h(s)| < ε
2M ,

|ϕ(t2)− ϕ(t1)| < ε
2M ,

and there exists δ2 > 0, whenever t1, t2 ∈ [0, 1] and |t1 − t2| < δ2,∣∣Dθ
tG(t2, s)h(s)−Dθ

tG(t1, s)h(s)
∣∣ < ε

2M ,

∣∣Dθ
0+ϕ(t2)−Dθ

0+ϕ(t1)
∣∣ < ε

2M .

By conditions (i) and (ii), ∀u ∈ Bγ , for ε > 0 above, take δ = min{δ1, δ2},
whenever t1, t2 ∈ [0, 1] and |t1 − t2| < δ, we have

|Tu(t2)− Tu(t1)|

=

∣∣∣∣∫ 1

0

[G(t2, s)h(s)−G(t1, s)h(s)]f(s, u, v))ds+ g(ξ, u, v)[ϕ(t2)− ϕ(t1)]

∣∣∣∣
≤
∫ 1

0

|G(t2, s)h(s)−G(t1, s)h(s)||f(s, u, v))|ds+ |g(ξ, u, v)||ϕ(t2)− ϕ(t1)|
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≤M
∫ 1

0

|G(t2, s)h(s)−G(t1, s)h(s)|ds+M |ϕ(t2)− ϕ(t1)|

<M
ε

2M
+M

ε

2M
= ε

and

|TDθ
0+u(t2)− TDθ

0+u(t1)|

≤
∫ 1

0

|Dθ
tG(t2, s)h(s)−Dθ

tG(t1, s)h(s)| · |f(s, u(s), v(s))|ds

+|g(ξ, u(ξ), v(ξ))| · |Dθ
0+ϕ(t2)−Dθ

0+ϕ(t1)|

≤ M

∫ 1

0

|Dθ
tG(t2, s)h(s)−Dθ

tG(t1, s)h(s)|ds+M |Dθ
0+ϕ(t2)−Dθ

0+ϕ(t1)|

< ε,

Thus, T (Bγ) is equicontinuous. By Arzela-Ascoli theorem, T is completely
continuous on E. Therefore, it has a fixed point by the Schauder’s fixed point
theorem.

Remark 3.1. Under all the assumptions of Theorem 3.1, if G(t, s)h(s) > 0, ϕ(t) >
0 for t, s ∈ [0, 1], and

(i) 0 < f(t, u, v) ≤M , for any (t, u, v) ∈ D+
M , t ∈ [0, 1];

(ii) 0 < g(t, u, v) ≤M , for any (t, u, v) ∈ D+
M , t ∈ [0, 1].

Then, problems (1.1)-(1.2) have at least a positive solution u(t) ∈ C[0, 1].

4. Monotone solutions

In this section, we will further explore existence criteria of monotone solution to
problems (1.1)-(1.2) by monotone iteration method.

Now, we define a cone P ⊂ E by

P = {u ∈ E : Dθ
0+u ∈ E, t ∈ [0, 1]}.

Then, the cone P induces an order relation � in E given by

x � y , if and only if x ≤ y and Dθ
0+x ≤ Dθ

0+y.

Theorem 4.1. Assume f and g are continuous, G(t, s)h(s) > 0, ϕ(t) > 0 for
t, s ∈ [0, 1], and there exists a number M > 0 such that

(C1) −M ≤ f(t, u1, v1) ≤ f(t, u2, v2) ≤ M , for 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ γ, 0 ≤
v1 ≤ v2 ≤ γ;

(C2) −M ≤ g(t, u1, v1) ≤ g(t, u2, v2) ≤ M , for 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ γ, 0 ≤
v1 ≤ v2 ≤ γ;

(C3) f(t, 0, 0) 6= 0 or f(t, γ, γ) 6= 0, for 0 ≤ t ≤ 1;
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Then, choosing

x0(t) =

∫ 1

0

G(t, s)h(s)f(s, 0, 0)ds+ g(ξ, 0, 0)ϕ(t)

and

y0(t) =

∫ 1

0

G(t, s)h(s)f(s, γ, γ)ds+ g(ξ, γ, γ)ϕ(t),

the iterative sequences

xn = Txn−1 and yn = Tyn−1, n = 1, 2, 3, · · · (4.1)

converge, in norm ‖ · ‖, to monotone positive solutions x, y of problems (1.1)-(1.2)
and satisfy

0 ≤ x0 ≤ x1 ≤ · · · ≤ xn ≤ x ≤ y ≤ yn ≤ · · · ≤ y1 ≤ y0 ≤ γ,

0 ≤ Dθ
0+x0 ≤ Dθ

0+x1 ≤ · · · ≤ Dθ
0+xn ≤ Dθ

0+x ≤ Dθ
0+y ≤ Dθ

0+yn ≤ · · ·
≤ Dθ

0+y1 ≤ Dθ
0+y0 ≤ γ.

Proof. It follows from the proof of Theorem 3.1 that the operator T is completely
continuous. We infer from (3.2) and (3.3) that ‖x0‖ ≤ γ and ‖y0‖ ≤ γ. Hence,
u ∈ [x0, y0] implies ‖u‖ ≤ γ.

Now, we show that T is monotone increasing. Suppose x � y. Then,

x ≤ y and Dθ
0+x ≤ Dθ

0+y, t ∈ [0, 1].

By assumptions (C1) and (C2), we have

f(t, x,Dθ
0+x) ≤ f(t, y,Dθ

0+y)

and
g(ξ, x(ξ), Dθ

0+x(ξ)) ≤ g(ξ, y(ξ), Dθ
0+y(ξ)).

Thus,

Tx =

∫ 1

0

G(t, s)h(s)f(s, x,Dθ
0+x)ds+ g(ξ, x(ξ), Dθ

0+x(ξ))ϕ(t)

≤
∫ 1

0

G(t, s)h(s)f(s, y,Dθ
0+y)ds+ g(ξ, y(ξ), Dθ

0+y(ξ))ϕ(t) = Ty. (4.2)

Analogously, we obtain
T (Dθ

0+x) ≤ T (Dθ
0+y). (4.3)

Hence, by (4.2) and (4.3), we have Tx � Ty, which implies that T is monotone
increasing.

Next, we check that x0 is a subsolution of T . By using 0 ≤ x0 ≤ x1, 0 ≤
Dθ

0+x0 ≤ Dθ
0+x1 and the monotonicity assumption on f and g, we have

x1 = Tx0

=

∫ 1

0

G(t, s)h(s)f(s, x0(s), Dθ
0+x0(s))ds+ g(ξ, x0(ξ), Dθ

0+x0(ξ))ϕ(t)
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≥
∫ 1

0

G(t, s)h(s)f(s, 0, 0)ds+ g(ξ, 0, 0)ϕ(t) = x0

and

Dθ
0+x1 = T (Dθ

0+x0)

=

∫ 1

0

Dθ
tG(t, s)h(s)f(s, x0, D

θ
0+x0)ds+ g(ξ, x0(ξ), Dθ

0+x0(ξ))ϕ(t)

≥
∫ 1

0

Dθ
tG(t, s)h(s)f(s, 0, 0)ds+ g(ξ, 0, 0)Dθ

0+ϕ(t) = Dθ
0+x0,

which mean that x0 � Tx0. Thus, by induction, we have xn � Txn, n = 0, 1, 2, · · · .
Analogously, we check that y0 is a supersolution of T . Again, by the means of

y1 ≤ y0 ≤ γ, Dθ
0+y1 ≤ Dθ

0+y0 ≤ γ and the monotonicity assumption on f and g,
we have

y1 = Ty0 =

∫ 1

0

G(t, s)h(s)f(s, y0, D
θ
0+y0)ds+ g(ξ, x0(ξ), Dθ

0+x0(ξ))ϕ(t)

≤
∫ 1

0

G(t, s)h(s)f(s, γ, γ)ds+ g(ξ, γ, γ)ϕ(t)

=y0

and

y1 =T (Dθ
0+y0)

=

∫ 1

0

Dθ
tG(t, s)h(s)f(s, y0, D

θ
0+y0)ds+ g(ξ, x0(ξ), Dθ

0+x0(ξ))ϕ(t)

≤
∫ 1

0

Dθ
tG(t, s)h(s)f(s, γ, γ)ds+ g(ξ, γ, γ)Dθ

0+ϕ(t)

=Dθ
0+y0,

which imply that Ty0 � y0. By induction, we have Tyn � yn, n = 0, 1, 2, · · · . Thus,
we obtain the iteration sequences (4.1). By Lemma 2.2, these sequences converge
to the monotone solutions x, y ∈ [x0, y0] ⊂ P of problems (1.1)-(1.2), with x ≤ y,
which are fixed points of the operator T .

Corollary 4.1. Assume that f and g are continuous, G(t, s)h(s) > 0, ϕ(t) > 0 for
t, s ∈ [0, 1], and there exists a number M > 0 such that

(C1) −M ≤ f(t, u1, v1) ≤ f(t, u2, v2) ≤ M for 0 ≤ t ≤ 1, −γ ≤ u1 ≤ u2 ≤
0, −γ ≤ v1 ≤ v2 ≤ 0;

(C2) −M ≤ g(t, u1, v1) ≤ g(t, u2, v2) ≤M for 0 ≤ t ≤ 1, −γ ≤ u1 ≤ u2 ≤ 0, −γ ≤
v1 ≤ v2 ≤ 0;

(C3) f(t, 0, 0) 6= 0 or f(t,−γ,−γ) 6= 0 for 0 ≤ t ≤ 1.

Then, choosing

x0(t) =

∫ 1

0

G(t, s)h(s)f(s, 0, 0)ds+ g(ξ, 0, 0)ϕ(t)
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and

y0(t) =

∫ 1

0

G(t, s)h(s)f(s,−γ,−γ)ds+ g(ξ,−γ,−γ)ϕ(t),

the iterative sequences

xn = Txn−1 and yn = Tyn−1, n = 1, 2, 3, · · ·

converge, in norm ‖ · ‖, to monotone negative solutions x, y of problems (1.1)-(1.2)
and satisfy

−γ ≤ y0 ≤ y1 ≤ · · · ≤ yn ≤ y ≤ x ≤ xn ≤ · · · ≤ x1 ≤ x0 ≤ 0,

− γ ≤ Dθ
0+y0 ≤ Dθ

0+y1 ≤ · · · ≤ Dθ
0+yn ≤ Dθ

0+y ≤ Dθ
0+x ≤ Dθ

0+xn ≤ · · ·
≤ Dθ

0+x1 ≤ Dθ
0+x0 ≤ 0.

5. Two iterative schemes

There exist two iterative schemes as follows. Considering the following iterative
process, we construct an increasing iterative sequence.

(A1) Given

u0(t) =

∫ 1

0

G(t, s)h(s)f(s, 0, 0)ds+ g(ξ, 0, 0)ϕ(t), t ∈ [0, 1],

v0(t) =

∫ 1

0

Dθ
tG(t, s)h(s)f(s, 0, 0)ds+ g(ξ, 0, 0)Dθ

0+ϕ(t), t ∈ [0, 1].

(A2) Update (k = 0, 1, 2, · · · )

uk+1(t) =Tuk(t)

=

∫ 1

0

G(t, s)h(s)f(s, uk, vk)ds+ g(ξ, uk(ξ), vk(ξ))ϕ(t), t ∈ [0, 1],

vk+1(t) =Tvk(t)

=

∫ 1

0

Dθ
tG(t, s)h(s)f(s, uk, vk)ds+ g(ξ, uk(ξ), vk(ξ))Dθ

0+ϕ(t), t ∈ [0, 1].

Suppose problems (1.1)-(1.2) can be reduced to the integral equation of the form
as (1.3), and has the positive solution. Then, we construct a decreasing iterative
sequence by considering the following iterative process.

(B1) Given

u0(t) =

∫ 1

0

G(t, s)h(s)f(s, γ, γ)ds+ g(ξ, γ, γ)ϕ(t), t ∈ [0, 1],

v0(t) =

∫ 1

0

Dθ
tG(t, s)h(s)f(s, γ, γ)ds+ g(ξ, γ, γ)Dθ

0+ϕ(t), t ∈ [0, 1].
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(B2) Update (k = 0, 1, 2, · · · )

uk+1(t) =Tuk(t)

=

∫ 1

0

G(t, s)h(s)f(s, uk, vk)ds+ g(ξ, uk(ξ), vk(ξ))ϕ(t), t ∈ [0, 1],

vk+1(t) =Tvk(t)

=

∫ 1

0

Dθ
tG(t, s)h(s)f(s, uk, vk)ds+ g(ξ, uk(ξ), vk(ξ))Dθ

0+ϕ(t), t ∈ [0, 1].

Remark 5.1. Suppose problems (1.1)-(1.2) can be reduced to the integral equation
of the form as (1.3), and has the nonnegative solution. Then, we can construct an
increasing iterative sequence by replacing f(s, γ, γ) and g(ξ, γ, γ) with f(s,−γ,−γ)
and g(ξ,−γ,−γ) in (B1) and (B2) respectively.

Remark 5.2. Choosing one of the two iterative schemes above, we can construct
a successively iterative sequence and obtain the approximate solution to problems
(1.1)-(1.2).

Theorem 5.1. Under all the assumptions of Theorem 4.1, and there exists 0 <
σ < 1

λ such that

|f(t, un, vn)− f(t, un−1, vn−1)| ≤ σ‖un − un−1‖, (5.1)

|g(ξ, un, vn)− g(ξ, un−1, vn−1)| ≤ σ‖un − un−1‖,

for any 0 ≤ t ≤ 1, −γ ≤ u1 ≤ u2 ≤ γ, −γ ≤ v1 ≤ v2 ≤ γ, n = 1, 2, · · · . Then, the
iterative method above converges with the rate of geometric progression, and there
exists the estimate

‖un − uexact‖ ≤
λnσn

1− λσ
‖u1 − u0‖,

where uexact is the exact solution of problems (1.1)-(1.2).

Proof. According to (5.1), for any 0 ≤ t ≤ 1, un−1 ≤ un, vn−1 ≤ vn, we have

max
t∈[0,1]

|un+1(t)− un(t)| = max
t∈[0,1]

|Tun(t)− Tun−1(t)|

≤ max
t∈[0,1]

∫ 1

0

|G(t, s)h(s)| · |f(s, un, vn)− f(s, un−1, vn−1)| ds

+ |g(ξ, un(ξ), vn(ξ))− g(ξ, un−1(ξ), vn−1(ξ))| · max
t∈[0,1]

|ϕ(t)|

≤ max
t∈[0,1]

∫ 1

0

|G(t, s)h(s)| · σ‖un − un−1‖ds+ σ‖un − un−1‖

· max
t∈[0,1]

|ϕ(t)|

=σ‖un − un−1‖
[

max
t∈[0,1]

∫ 1

0

|G(t, s)h(s)|ds+ max
t∈[0,1]

|ϕ(t)|
]

=σ‖un − un−1‖(a1 + b1)

and

max
t∈[0,1]

|Dθ
0+un+1 −Dθ

0+un|
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= max
t∈[0,1]

|T (Dθ
0+un)− T (Dθ

0+un−1)|

≤ max
t∈[0,1]

∫ 1

0

|Dθ
tG(t, s)h(s)|σ‖un − un−1‖ds+ σ‖un − un−1‖ max

t∈[0,1]
|Dθ

0+ϕ(t)|

=σ‖un − un−1‖
[

max
t∈[0,1]

∫ 1

0

|Dθ
tG(t, s)h(s)|ds+ max

t∈[0,1]
|Dθ

0+ϕ(t)|
]

=σ‖un − un−1‖(a2 + b2).

Therefore,

‖un+1−un‖ ≤ max{a1+b1, a2+b2}·σ‖un−un−1‖ = λσ‖un−un−1‖, (n = 1, 2, · · · ).

Moreover,

‖un+1 − un‖ ≤ λσ‖un − un−1‖ ≤ (λσ)
2 ‖un−1 − un−2‖ ≤ · · · ≤ (λσ)

n ‖u1 − u0‖.

By the above estimation, we have

‖un+m+1 − un‖
≤‖un+m+1 − un+m‖+ ‖un+m − un+m−1‖+ · · ·+ ‖un+1 − un‖

≤ (λσ)
n+m ‖u1 − u0‖+ (λσ)

n+m−1 ‖u1 − u0‖+ · · ·+ (λσ)
n ‖u1 − u0‖

= (λσ)
n

[
1− (λσ)

m+1
]

1− λσ
‖u1 − u0‖.

Hence,

‖un − uexact‖ = lim
m→+∞

‖un − un+m+1‖ ≤
λnσn

1− λσ
‖u1 − u0‖.

In the following section, we provide some examples to illustrate the our theoret-
ical result. We choose four examples in which the exact solutions of the problems
are known or unknown. The first example is a simple and ordinary initial value
problem of FDE for verifying the applicability of our proposed approach. The sec-
ond one is the FDE problem, whose expression of the solution include a coefficient
that needs to be iterated and updated. The third one is a boundary value problem
of FDE with p-Laplacian operator. The last one is a boundary value problem for
a coupled system of FDE. Besides, the known exact solutions are used to compare
with approximation results on the basis of the absolute error for demonstrating the
applicability of our approach.

For realization of the iterative method, we use numerical integration method
for differential equations. Thus, we can use the classical method such as Trape-
zoidal method, Simpson method, Runge-Kutta method and Gauss method. To
obtain high-precision approximate solution, in this paper, we achieve the monotone
iteration method by a new algorithm, which combines Gauss-Kronrod quadrature
method of classical numerical integration with cubic spline interpolation method in
Matlab environment.

Finally, in all examples, we use the uniform grid with the number of grid points
N = 100. The simulations experiments are performed till the iteration error e(k) =
maxt∈[0,1] |uk+1−uk| ≤ 10−16. In addition, the absolute error is obtained by E(k) =
maxt∈[0,1] |u(t)− uexact|, where uexact is the exact solution.
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6. Examples

Example 6.1. Consider the following FDE
Dα

0+u(t) = h(t)f(t, u, u′), t ∈ (0, 1) ,

u(0) = 0, 0 < α ≤ 1,

(6.1)

where

h(t) = tµ,

and

f (t, u, u′) =
Γ(4 + µ)t3−α

Γ(4 + µ− α)
+

2Γ(3 + µ)t2−α

Γ(3 + µ− α)
+

Γ(2 + µ)t1−α

Γ(2 + µ− α)
−1.5tµ(t3+2t2+t)+1.5u.

By comparison, we obtain that the exact solution is

u(t) = tµ(t3 + 2t2 + t).

Below we will find the approximation of the solution for problem (6.1) by apply-
ing the proposed method in this paper, and then give a table of the absolute errors
between the approximation and the exact solution.

According to Definition 2.1 and Lemma 2.1, we have

Iα0+Dα
0+u(t) = u(t) + c1t

α−1 =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)f(s, u, u′)ds.

Thus, we have

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)f(s, u, u′)ds− c1tα−1.

By means of the initial condition u(0) = 0, we get c1 = 0. Hence,

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)f(s, u, u′)ds

=

∫ 1

0

G(s, t)h(s)f (s, u, u′) ds,

where

G(t, s) =


(t−s)α−1

Γ(α) , 0 ≤ s < t ≤ 1,

0, 0 ≤ t < s ≤ 1,

which is the corresponding Green’s function.
This means that problem (6.1) is equivalent to the integral equation

u(t) =

∫ 1

0

G(s, t)h(s)f (s, u, u′) ds.
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Thus,

∂G(t, s)

∂t
=


(t−s)α−2

Γ(α−1) , 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1.

Now, we take α = 0.5, µ = 2.5. Notice that

a1 = max
t∈[0,1]

∫ 1

0

|G(t, s)h(s)|ds

= max
t∈[0,1]

∫ t

0

(t− s)α−1sµds

Γ(α)

= max
t∈[0,1]

∫ 1

0

tα+µ(1− r)α−1rµdr

Γ(α)

= max
t∈[0,1]

tα+µΓ(µ+ 1)

Γ(α+ µ+ 1)

=
Γ(µ+ 1)

Γ(α+ µ+ 1)
≈ 0.5539

and

a2 = max
t∈[0,1]

∫ 1

0

∣∣∣∣∂G(t, s)

∂t
h(s)

∣∣∣∣ ds
= max
t∈[0,1]

∫ t

0

(t− s)α−2sµds

Γ(α− 1)

= max
t∈[0,1]

∫ 1

0

tα+µ−1(1− r)α−2rµdr

Γ(α− 1)

= max
t∈[0,1]

tα+µ−1Γ(µ+ 1)

Γ(α+ µ)

=
Γ(µ+ 1)

Γ(α+ µ)
≈ 1.6617.

Now, we choose a suitable M > 0 such that Theorem 3.1 holds in DM . In view
of Lemma ??, we have |u| ≤ a1M . Moreover, by condition (i) of Theorem 3.1, M
need satisfied the inequality

|f | ≤ Γ(4 + µ)

Γ(4 + µ− α)
+

2Γ(3 + µ)

Γ(3 + µ− α)
+

Γ(2 + µ)

Γ(2 + µ− α)
+ 1.5a1M ≤M.

Namely,
8.6996 + 1.5a1M ≤M.

Choosing M = 52, the above inequality holds. Thus,

γ = max{a1M,a2M} ≈ 86.4084.

On the other hand,

f(t, 0, 0) =
Γ(4 + µ)t3−α

Γ(4 + µ− α)
+

2Γ(3 + µ)t2−α

Γ(3 + µ− α)
+

Γ(2 + µ)t1−α

Γ(2 + µ− α)
−1.5tµ(t3 + 2t2 + t) 6= 0.
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This implies that all the conditions of Theorem 3.1 are satisfied in D52. Further, it
is easy to check that f satisfies the hypotheses of Theorem 4.1. Therefore, problem
(6.1) has at least a solution, and the iterative method converges.

Take the initial approximation u
(1)
0 (t) or u

(2)
0 (t), namely,

u
(1)
0 (t) =

∫ 1

0

G(s, t)h(s)f (s, 0, 0) ds

=

∫ t

0

(t− s)α−1sµ

Γ(α)

[
Γ(4 + µ)s3−α

Γ(4 + µ− α)
+

2Γ(3 + µ)s2−α

Γ(3 + µ− α)
+

Γ(2 + µ)s1−α

Γ(2 + µ− α)

−1.5sµ(s3 + 2s2 + s)
]
ds

or

u
(2)
0 (t) =

∫ 1

0

G(s, t)h(s)f (s, γ, γ) ds

=

∫ t

0

(t− s)α−1sµ

Γ(α)

[
Γ(4 + µ)s3−α

Γ(4 + µ− α)
+

2Γ(3 + µ)s2−α

Γ(3 + µ− α)
+

Γ(2 + µ)s1−α

Γ(2 + µ− α)

− 1.5sµ(s3 + 2s2 + s) + 1.5γ
]
ds.

Then, the following iteration formulation is obtained:

uk+1(t) =Tuk(t)

=

∫ 1

0

G(t, s)h(s)f (s, uk, vk) ds

=

∫ t

0

(t− s)α−1sµ

Γ(α)

[
Γ(4 + µ)s3−α

Γ(4 + µ− α)
+

2Γ(3 + µ)s2−α

Γ(3 + µ− α)
+

Γ(2 + µ)s1−α

Γ(2 + µ− α)

−1.5sµ(s3 + 2s2 + s) + 1.5uk
]
ds, (k = 1, 2, · · · ).

In the simulation experiment, we apply the new algorithm, which combines
Gauss-Kronrod quadrature method of classical numerical integration with cubic s-
pline interpolation method in order to achieve the monotone iteration method in
Matlab environment. The simulations experiment shows that for N = 100, the iter-
ative method achieves the accuracy E29 = 8.423179× 10−9, after k = 29 iterations.
Some approximations of the solution with different initial approximations are de-
picted in Figure 1. Comparison of the exact solution with two convergent solutions
is depicted in Figure 2. The absolute errors of the iterative method for problem
(6.1) are given in Table 1. From Figure 1, it is easy to see that the approximation
u29, and the exact solution uexact almost coincide. It implies that iterative method
converges very fast. This demonstrates the applicability of the proposed approach
and iterative method.
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Table 1. The absolute errors in Example 6.1

k E(k) for u
(1)
0 E(k) for u

(2)
0 k E(k) for u

(1)
0 E(k) for u

(2)
0

0 2.161494e+00 1.440907e+02 15 1.510522e-08 9.955413e-06

1 9.918582e-01 1.121701e+02 16 9.727701e-09 2.140874e-06

2 4.024119e-01 6.490936e+01 17 8.671249e-09 4.483431e-07

3 1.479056e-01 3.122171e+01 18 8.469188e-09 9.280373e-08

4 5.005708e-02 1.312655e+01 19 8.431512e-09 2.023788e-08

5 1.578279e-02 4.964196e+00 20 8.424655e-09 6.555607e-09

6 4.676833e-03 1.720364e+00 21 8.423436e-09 8.082831e-09

7 1.311419e-03 5.535028e-01 22 8.423224e-09 8.362568e-09

8 3.498916e-04 1.669293e-01 23 8.423187e-09 8.412621e-09

9 8.922243e-05 4.754241e-02 24 8.423181e-09 8.421379e-09

10 2.182583e-05 1.286248e-02 25 8.423181e-09 8.422879e-09

11 5.137024e-06 3.321573e-03 26 8.423180e-09 8.423131e-09

12 1.165373e-06 8.219867e-04 27 8.423179e-09 8.423173e-09

13 2.542763e-07 1.955889e-04 28 8.423179e-09 8.423179e-09

14 5.229353e-08 4.487812e-05 29 8.423179e-09 8.423179e-09
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Figure 2. Comparison of exact solution with two convergent solutions

Example 6.2. Consider the following problem whose solution includes variable
coefficient Dα

0+u(t) + f (t, u(t), u′(t)) = 0, t ∈ (0, 1) ,

u(0) = u′(0) = u′′(0) = 0,
[
Dβ

0+u(t)
]
t=1

= g(u′(1)),
(6.2)

whose exact solution is given by

u(t) = 2tα+1 + t4,

where 3 < α ≤ 4, 1 < β ≤ 2,

f(t, u, u′) = 2Γ(α+2)t+
24t4−α

Γ(5− α)
− 3
√

[2(α+ 1)tα − 4t3]2−2tα+1− t4 +u+ 3
√

(u′)2

and

g(u′(t)) =

[
2Γ(α+ 2)

Γ(α− β + 2)
+

24

Γ(5− β)

]
30 + u′(t)

2α+ 36
.

Now, by using the proposed method in this paper, we are to find the approximate
solution for problem (6.2). First, according to Definition 2.1 and Lemma 2.1, we
have

Iα0+Dα
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + c3t

α−3 + c4t
α−4

= − 1

Γ(α)

∫ t

0

(t− s)α−1f (s, u(s), u′(s)) ds.

Thus, we have

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1f (s, u(s), u′(s)) ds− c1tα−1− c2tα−2− c3tα−3− c4tα−4.

By means of the boundary condition u(0) = u′(0) = u′′(0) = 0, we obtain c2 = c3 =
c4 = 0. Hence,
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u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1f (s, u(s), u′(s)) ds− c1tα−1.

Considering the boundary condition
[
Dβ

0+u(t)
]
t=1

= g(u′(1)), by Lemma 2.1, we

have

Dβ
0+u(t) = − 1

Γ(α− β)

∫ t

0

(t− s)α−β−1f (s, u(s), u′(s)) ds− c1
Γ(α)

Γ(α− β)
tα−β−1.

Let t = 1, then

− 1

Γ(α− β)

∫ 1

0

(1− s)α−β−1f (s, u(s), u′(s)) ds− c1Γ(α)

Γ(α− β)
= g(u′(1)).

By the above equality, we have

c1 = − 1

Γ(α)

∫ 1

0

(1− s)α−β−1f (s, u(s), u′(s)) ds− Γ(α− β)

Γ(α)
g(u′(1)).

Therefore,

u(t) =− 1

Γ(α)

∫ t

0

(t− s)α−1f (s, u(s), u′(s)) ds+
Γ(α− β)

Γ(α)
g(u′(1))tα−1

+
1

Γ(α)

∫ 1

0

tα−1(1− s)α−β−1f (s, u(s), u′(s)) ds

=

∫ 1

0

G(t, s)f (s, u(s), u′(s)) ds+ g(u′(1))ϕ(t),

where

ϕ(t) =
Γ(α− β)

Γ(α)
tα−1,

G(t, s) =


tα−1(1−s)α−β−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−β−1

Γ(α) , 0 ≤ t ≤ s ≤ 1.

This means that problem (6.2) is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)f (s, u(s), u′(s)) ds+ g(u′(1))ϕ(t).

Then,

ϕ′(t) =
Γ(α− β)

Γ(α− 1)
tα−2,

∂G(t, s)

∂t
=


tα−2(1−s)α−β−1−(t−s)α−2

Γ(α−1) , 0 ≤ s ≤ t ≤ 1,

tα−2(1−s)α−β−1

Γ(α−1) , 0 ≤ t ≤ s ≤ 1.
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It is easy to check that G(t, s) ≥ 0, ∂G(t,s)
∂t ≥ 0 for each (t, s) ∈ [0, 1]× [0, 1]. Choose

α = 3.5, β = 1.8. Then, by calculation, we obtain

a1 = max
t∈[0,1]

∫ 1

0

|G(t, s)|ds

= max
t∈[0,1]

[∫ 1

0

tα−1(1− s)α−β−1

Γ(α)
ds−

∫ t

0

(t− s)α−1

Γ(α)
ds

]
= max
t∈[0,1]

[
tα−1

(α− β)Γ(α)
− tα

Γ(α+ 1)

]
=

1

(α− β)Γ(α)
− 1

Γ(α+ 1)
≈ 0.0910,

a2 = max
t∈[0,1]

∫ 1

0

∣∣∣∣∂G(t, s)

∂t
G(t, s)

∣∣∣∣ ds
= max
t∈[0,1]

[∫ 1

0

tα−2(1− s)α−β−1

Γ(α− 1)
ds−

∫ t

0

(t− s)α−2

Γ(α− 1)
ds

]
= max
t∈[0,1]

[
tα−2

(α− β)Γ(α− 1)
− tα−1

Γ(α)

]
=

1

(α− β)Γ(α− 1)
− 1

Γ(α)
≈ 0.1416,

b1 = max
t∈[0,1]

|ϕ(t)| = max
t∈[0,1]

Γ(α− β)

Γ(α)
tα−1 =

Γ(α− β)

Γ(α)
≈ 0.2734,

b2 = max
t∈[0,1]

|ϕ′(t)| = max
t∈[0,1]

Γ(α− β)

Γ(α− 1)
tα−2 =

Γ(α− β)

Γ(α− 1)
≈ 0.6835.

Now, we choose a suitable M > 0 such that Theorem 3.1 holds in DM . In
view of Lemma ??, we have |u| ≤ (a1 + b1)M and |v| ≤ (a2 + b2)M. Moreover, by
conditions (i) and (ii) of Theorem 3.1, M needs satisfied the inequalities

|f | =
∣∣∣∣2Γ(α+ 2)t+

24t4−α

Γ(5− α)
− 3
√

[2(α+ 1)tα + 4t3]2 − 2tα+1 − t4 + u+ 3
√

(u′)2

∣∣∣∣
≤M.

That is,

2Γ(α+ 2) +
24

Γ(5− α)
+ 3
√

(2α+ 6)2 + 3 + (a1 + b1)M + 3
√

[(a2 + b2)M ]2 ≤M

and

|g| ≤
[

2Γ(α+ 2)

Γ(α− β + 2)
+

24

Γ(5− β)

]
30 + (a2 + b2)M

2α+ 36
≤M.

By the two inequalities above, we chooseM = 280. Thus, γ = max{(a1+b1)M, (a2+
b2)M} ≈ 231.0354.

On the other hand,

f(t, 0, 0) = 2Γ(α+ 2)t+
24t4−α

Γ(5− α)
− 3
√

[2(α+ 1)tα + 4t3]2 − 2tα+1 − t4 6= 0.
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This implies that all the conditions of Theorem 3.1 are satisfied in D280. Further,
it is easy to check that f and g satisfy the hypotheses of Theorem 4.1. Therefore,
problem (6.2) has at least a solution, and the iterative method converges.

Let

∆(s) = 2Γ(α+ 2)s+
24s4−α

Γ(5− α)
− 3
√

[2(α+ 1)sα + 4s3]2 − 2sα+1 − s4.

Take the initial approximation u
(1)
0 (t) or u

(2)
0 (t), namely,

u
(1)
0 (t) =

∫ 1

0

G(s, t)f (s, 0, 0) ds+ g(0)ϕ(t)

=

∫ 1

0

tα−1(1− s)α−β−1

Γ(α)
∆(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
∆(s)ds

+
Γ(α− β)

Γ(α)
tα−1

[
2Γ(α+ 2)

Γ(α− β + 2)
+

24

Γ(5− β)

]
30

2α+ 36

or

u
(2)
0 (t) =

∫ 1

0

G(s, t)f (s, γ, γ) ds+ g(γ)ϕ(t)

=

∫ 1

0

tα−1(1− s)α−β−1

Γ(α)
(∆(s) + γ + 3

√
γ2)ds−

∫ t

0

(t− s)α−1

Γ(α)
(∆(s) + γ

+ 3
√
γ2)ds+

Γ(α− β)

Γ(α)
tα−1

[
2Γ(α+ 2)

Γ(α− β + 2)
+

24

Γ(5− β)

]
30 + γ

2α+ 36
.

Then, the following iteration formulation is obtained:

uk+1 =Tuk

=

∫ 1

0

tα−1(1− s)α−β−1

Γ(α)
(∆(s) + uk + 3

√
(u′k)2)ds−

∫ t

0

(t− s)α−1

Γ(α)
(∆(s)+

+ uk + 3

√
(u′k)2)ds+

Γ(α− β)

Γ(α)
tα−1

[
2Γ(α+ 2)

Γ(α− β + 2)
+

24

Γ(5− β)

]
30 + u′k(1)

2α+ 36

and

u′k+1 =Tu′k

=

∫ 1

0

tα−2(1− s)α−β−1

Γ(α− 1)
(∆(s) + uk + 3

√
(u′k)2)ds−

∫ t

0

(t− s)α−2

Γ(α− 1)
(∆(s)+

+ uk + 3

√
(u′k)2)ds+

Γ(α− β)

Γ(α− 1)
tα−2

[
2Γ(α+ 2)

Γ(α− β + 2)
+

24

Γ(5− β)

]
30 + u′k(1)

2α+ 36
,

(k = 1, 2, · · · ).

In the simulation experiment, we apply the new algorithm, which combines
Gauss-Kronrod quadrature method of classical numerical integration with cubic s-
pline interpolation method in order to achieve the monotone iteration method in
Matlab environment. The simulations experiment shows that for N = 100, the
iterative method achieves the accuracy E27 = 4.98125 × 10−7 after k = 27 itera-
tions. Some approximations of the solution with different initial approximations are
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depicted in Figure 3. Comparison of exact solution with two convergent solutions
is depicted in Figure 4. The absolute errors of the iterative method for problem
(6.2) are given in Table 2. From Figure 3, it is easy to see that the approximation
u27, and the exact solution uexact almost coincide. It implies that iterative method
converges very fast. This demonstrates the applicability of the proposed approach
and iterative method.

Table 2. The absolute errors in Example 6.2

k E(k) for u
(1)
0 E(k) for u

(2)
0 k E(k) for u

(1)
0 E(k) for u

(2)
0

0 2.710624e+00 2.424800e+01 14 2.281705e-04 3.021772e-03

1 1.415456e+00 1.765198e+01 15 1.167301e-04 1.545929e-03

3 3.650915e-01 4.710969e+00 17 3.055077e-05 4.046171e-04

4 1.861925e-01 2.431922e+00 18 1.562902e-05 2.069990e-04

5 9.513056e-02 1.251085e+00 19 7.995132e-06 1.059001e-04

6 4.864292e-02 6.420402e-01 20 4.089683e-06 5.417846e-05

7 2.487809e-02 3.289900e-01 21 2.091676e-06 2.771797e-05

8 1.272658e-02 1.684386e-01 22 1.069507e-06 1.418094e-05

9 6.510774e-03 8.620227e-02 23 5.465715e-07 7.255474e-06

10 3.330831e-03 4.410730e-02 24 2.790404e-07 3.712443e-06

12 8.717753e-04 1.154522e-02 26 7.215234e-08 9.725345e-07

13 4.459949e-04 5.906543e-03 27 3.633017e-08 4.981259e-07
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(1)
0 and u

(2)
0
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Figure 4. Comparison of convergent solutions with exact solution

Example 6.3. Consider the following FDE with p-Laplacian operator (see [27])
Dα

0+(ψp(D
α
0+u(t))) = f(t, u(t), Dα

0+u(t)), 1 < α ≤ 2, t ∈ (0, 1) ,

u(0) = 0, ψp(D
α
0+u)(0) = 0,[

Dβ
0+u(t)

]
t=1

= 0,
[
Dβ

0+(ψp(D
α
0+u(t)))

]
t=1

= 0, 0 < β < α,

(6.3)

where v(t) := Dα
0+u(t), ψp is the p-Laplacian operator, p > 1, ψp(v) = |v|p−2v,

ψ−1
p = ψq and 1/p+ 1/q = 1.

Let

f (t, u, v) = 2 + 3
√
u+

t2

2
.

It is easy to verify that problem (6.3) is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)ψq

(∫ 1

0

G(s, τ)f (τ, u(τ), v(τ)) dτ

)
ds, (6.4)

v(t) = −ψq
(∫ 1

0

G(t, s)f (s, u(s), v(s)) ds

)
, (6.5)

where the corresponding Green’s function is

G(t, s) =


tα−1(1−s)α−β−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−β−1

Γ(α) , 0 ≤ t ≤ s ≤ 1.

It is easy to check that G(t, s) ≥ 0, for each (t, s) ∈ [0, 1] × [0, 1] (see [8]). Choose
α = 1.8, β = 1.2, p = 2.25 and q = 1.8. Then, by calculation, we obtain

a1 = max
t∈[0,1]

∫ 1

0

|G(t, s)|ds
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= max
t∈[0,1]

∫ 1

0

tα−1(1− s)α−β−1ds

Γ(α)
−
∫ t

0

(t− s)α−1ds

Γ(α)

= max
t∈[0,1]

[
tα−1

(α− β)Γ(α)
− tα

Γ(α+ 1)

]
=

β

(α− β)Γ(α+ 1)

≈ 1.1930.

By (6.5), using a way similar to the proof of Lemma ??, we have

|ψp(v(t))| =
∣∣∣∣−∫ 1

0

G(t, s)f (s, u(s), v(s)) ds

∣∣∣∣ ≤ a1M.

Hence,
|v(t)| ≤ ψq(a1M) = (a1M)q−1.

By (6.4), we obtain

|u(t)| =
∣∣∣∣−∫ 1

0

G(t, s)[−v(t)]ds

∣∣∣∣ ≤ a1(a1M)q−1 = aq1M
q−1.

Moreover, we choose a suitable M > 0 such that

|f (t, u, v) | ≤ 2 + 3
√
aq1M

q−1 +
1

2
≤M.

Thus, choose M = 13. Then,

γ = max{aq1Mq−1, (a1M)q−1} ≈ 10.6932.

On the other hand,

f(t, 0, 0) = 2 +
t2

2
6= 0.

This implies that all the conditions of Theorem 3.1 are satisfied. Further, it is easy
to check that f satisfies the hypotheses of Theorem 4.1. Therefore, problem (6.2)
has at least a solution, and the iterative method converges. Let

Λ
(1)
0 (s) =

∫ 1

0

G(s, τ)f (τ, 0, 0) dτ

=

∫ 1

0

sα−1(1− τ)α−β−1

Γ(α)

(
2 +

τ2

2

)
dτ −

∫ s

0

(s− τ)α−1

Γ(α)

(
2 +

τ2

2

)
dτ,

Λ
(2)
0 (s) =

∫ 1

0

G(s, τ)f (τ, γ, γ) dτ

=

∫ 1

0

sα−1(1− τ)α−β−1

Γ(α)

(
2 + 3

√
γ +

τ2

2

)
dτ −

∫ s

0

(s− τ)α−1

Γ(α)

(
2 + 3

√
γ +

τ2

2

)
dτ

and

Λk(s) =

∫ 1

0

G(s, τ)f (τ, uk(τ), vk(τ)) dτ
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=

∫ 1

0

sα−1(1− τ)α−β−1

Γ(α)

(
2 + 3

√
uk +

τ2

2

)
dτ

−
∫ s

0

(s− τ)α−1

Γ(α)

(
2 + 3

√
uk +

τ2

2

)
dτ.

Take the initial approximation u
(1)
0 (t) or u

(2)
0 (t), and that is,

u
(1)
0 (t) =

∫ 1

0

G(t, s)ψq(Λ
(1)
0 (s))ds

=

∫ 1

0

tα−1(1− s)α−β−1

Γ(α)
ψq(Λ

(1)
0 (s))ds−

∫ t

0

(t− s)α−1

Γ(α)
ψq(Λ

(1)
0 (s))ds

or

u
(2)
0 (t) =

∫ 1

0

G(t, s)ψq(Λ
(2)
0 (s))ds

=

∫ 1

0

tα−1(1− s)α−β−1

Γ(α)
ψq(Λ

(2)
0 (s))ds−

∫ t

0

(t− s)α−1

Γ(α)
ψq(Λ

(2)
0 (s))ds.

Then, the following iteration formulation is obtained:

uk+1(t) = Tuk(t) =

∫ 1

0

G(t, s)ψq(Λk(s))ds

=

∫ 1

0

tα−1(1− s)α−β−1

Γ(α)
ψq(Λk(s))ds−

∫ t

0

(t− s)α−1

Γ(α)
ψq(Λk(s))ds (k = 1, 2, · · · ).

The simulations experiment shows that for N = 100, the iterative method
achieves the accuracy 10−16, after k = 34 iterations. Some approximations of the
solution with different initial approximations are depicted in Figure 5. Comparison
of the exact solution with two convergent solutions is depicted in Figure 6. The
absolute errors of the iterative method for problem (6.3) are given in Table 3. From
Figure 5, it is easy to see that the approximations u33, and u34 almost coincide. It
implies that iterative method converges very fast. This shows the effectiveness of
our proposed method.
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Figure 6. Comparison of two convergent solutions with different initial approximations

Table 3. The iterative errors in Example 6.3

k e(k) for u
(1)
0 e(k) for u

(2)
0 k e(k) for u

(1)
0 e(k) for u

(2)
0

1 3.107536e+00 9.527701e-01 18 1.049568e-08 1.653937e-09

2 1.429353e+00 2.759970e-01 19 3.220012e-09 5.074181e-10

3 4.954284e-01 8.307753e-02 20 9.878818e-10 1.556675e-10

4 1.577633e-01 2.533888e-02 21 3.030749e-10 4.776002e-11

5 4.895634e-02 7.759859e-03 22 9.297985e-11 1.465139e-11

6 1.507217e-02 2.379366e-03 23 2.852651e-11 4.496847e-12

7 4.629017e-03 7.298518e-04 24 8.751222e-12 1.381117e-12

8 1.420622e-03 2.239025e-04 25 2.684963e-12 4.227729e-13

9 4.358825e-04 6.869087e-05 26 8.242296e-13 1.314504e-13

10 1.337303e-04 2.107384e-05 27 2.549072e-13 4.263256e-14

11 4.102804e-05 6.465319e-06 28 7.904788e-14 1.598721e-14

12 1.258719e-05 1.983520e-06 29 2.575717e-14 5.329071e-15

13 3.861679e-06 6.085321e-07 30 1.243450e-14 5.329071e-15

14 1.184740e-06 1.866940e-07 31 3.552714e-15 1.776357e-15

15 3.634712e-07 5.727659e-08 32 5.329071e-15 2.664535e-15

16 1.115108e-07 1.757212e-08 33 1.776357e-15 0.000000e+00

17 3.421085e-08 5.391020e-09 34 0.000000e+00 0.000000e+00
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Example 6.4. Consider the following coupled system of nonlinear FDEs (see [16])
Dα

0+u(t) + f(t, w(t), Dq
0+w(t)) = 0, t ∈ (0, 1) ,

Dβ
0+w(t) + z(t, u(t), Dp

0+u(t)) = 0, t ∈ (0, 1) ,

u(0) = u(1) = w(0) = w(1) = 0,

(6.6)

where 1 < α, β < 2 and 0 < p, q < 1.

First, let

f
(
t, w,Dq

0+w
)

=

∣∣∣∣t− 1

2

∣∣∣∣√100w + 10(Dq
0+w)ρ + 1,

and

z
(
t, u,Dp

0+u
)

=
1

2

∣∣∣∣t− 1

3

∣∣∣∣√100u+ 10(Dp
0+u)δ + 1.

According to Definition 2.1 and Lemma 2.1, we have

Iα0+Dα
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 = − 1

Γ(α)

∫ t

0

(t− s)α−1f(s, w(s), Dq
0+w(s))ds.

Thus, we have

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1f(s, w(s), Dq
0+w(s))ds− c1tα−1 − c2tα−2.

By means of the boundary condition u(0) = u(1) = 0, we get c2 = 0, and

c1 = − 1

Γ(α)

∫ 1

0

(1− s)α−1f(s, w(s), Dq
0+w(s))ds.

Hence,

u(t) =− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, w(s), Dq
0+w(s))ds

+
1

Γ(α)

∫ 1

0

tα−1(1− s)α−1f(s, w(s), Dq
0+w(s))ds

=

∫ 1

0

G1(t, s)f
(
s, w(s), Dq

0+w(s)
)
ds,

where

G1(t, s) =


[t(1−s)]α−1−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,

[t(1−s)]α−1

Γ(α) , 0 ≤ t ≤ s ≤ 1,

which is the corresponding Green’s function.
Analogously, we can prove that

w(t) =

∫ 1

0

G2(t, s)z
(
s, u(s), Dp

0+u(s)
)
ds,
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where

G2(t, s) =


[t(1−s)]β−1−(t−s)β−1

Γ(β) , 0 ≤ s ≤ t ≤ 1,

[t(1−s)]β−1

Γ(β) , 0 ≤ t ≤ s ≤ 1.

This means that problem (6.6) is equivalent to the integral equations
u(t) =

∫ 1

0
G1(t, s)f

(
s, w(s), Dq

0+w(s)
)
ds,

w(t) =
∫ 1

0
G2(t, s)z

(
s, u(s), Dp

0+u(s)
)
ds.

(6.7)

Noticing (6.7), we have
Dp

0+u(t) =
∫ 1

0
Dp
tG1(t, s)f

(
s, w(s), Dq

0+w(s)
)
ds,

Dq
0+w(t) =

∫ 1

0
Dq
tG2(t, s)z

(
s, u(s), Dp

0+u(s)
)
ds,

where

Dp
tG1(t, s) =


tα−p−1(1−s)α−1−(t−s)α−p−1

Γ(α−p) , 0 ≤ s ≤ t ≤ 1,

tα−p−1(1−s)α−1

Γ(α−p) , 0 ≤ t ≤ s ≤ 1,

and

Dq
tG2(t, s) =


tβ−q−1(1−s)β−1−(t−s)β−q−1

Γ(β−q) , 0 ≤ s ≤ t ≤ 1,

tβ−q−1(1−s)β−1

Γ(β−q) , 0 ≤ t ≤ s ≤ 1.

It is easy to check thatG1(t, s) ≥ 0, G2(t, s) ≥ 0, Dp
tG1(t, s) ≥ 0 andDq

tG2(t, s) ≥
0 for (t, s) ∈ [0, 1]× [0, 1]. Choose α = 1.5, β = 1.75, p = 0.5, q = 0.25, ρ = 2 and
δ = 2. Then, by calculation, we obtain

a1 = max
t∈[0,1]

∫ 1

0

|G1(t, s)|ds

= max
t∈[0,1]

∫ 1

0

[t(1− s)]α−1

Γ(α)
ds−

∫ t

0

(t− s)α−1

Γ(α)
ds

= max
t∈[0,1]

[
tα−1

Γ(α+ 1)
− tα

Γ(α+ 1)

]
=

(α− 1)(α−1)

ααΓ(α+ 1)
≈ 0.2895

and

a2 = max
t∈[0,1]

∫ 1

0

|Dp
tG1(t, s)| ds

= max
t∈[0,1]

[∫ 1

0

tα−p−1(1− s)α−1

Γ(α− p)
ds−

∫ t

0

(t− s)α−p−1

Γ(α− p)
ds

]
= max

t∈[0,1]

[
tα−p−1

αΓ(α− p)
− tα−p

Γ(α− p+ 1)

]
=

2

3
.
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Analogously,

a1 = max
t∈[0,1]

∫ 1

0

|G2(t, s)|ds

= max
t∈[0,1]

∫ 1

0

[t(1− s)]β−1

Γ(β)
ds−

∫ t

0

(t− s)β−1

Γ(β)
ds

=
(β − 1)(β−1)

ββΓ(β + 1)
≈ 0.1882

and

a2 = max
t∈[0,1]

∫ 1

0

|Dq
tG2(t, s)| ds

= max
t∈[0,1]

[∫ 1

0

tβ−q−1(1− s)β−1

Γ(β − q)
ds−

∫ t

0

(t− s)β−q−1

Γ(β − q)
ds

]
= max

t∈[0,1]

[
tβ−q−1

βΓ(β − q)
− tβ−q

Γ(β − q + 1)

]
≈ 0.2298.

In view of Lemma (??), we have |u| ≤ a1M , |Dp
0+u| ≤ a2M , |w| ≤ a1M and

|Dq
0+w| ≤ a2M . Now, we choose a suitable M > 0 such that

|f | ≤ 1

2

√
100a1M + 10(a2M)2 + 1 ≤M,

|z| ≤ 1

3

√
100a1M + 10(a2M)2 + 1 ≤M.

By the two inequalities above, we choose M = 7.
On the other hand,

f(t, 0, 0) =

∣∣∣∣t− 1

2

∣∣∣∣ 6= 0 and z (t, 0, 0) =
1

2

∣∣∣∣t− 1

3

∣∣∣∣ 6= 0.

This implies that all the conditions of Theorem 3.1 are satisfied. Further, it is easy
to check that f and z satisfy the hypotheses of Theorem 4.1. Therefore, problem
(6.2) has at least a solution, and the iterative method converges.

Take the initial approximation (u0, w0), and that is,

u0(t) =

∫ 1

0

G1(t, s)f(s, 0, 0)ds

=

∫ 1

0

[t(1− s)]α−1

Γ(α)

∣∣∣∣s− 1

2

∣∣∣∣ ds− ∫ t

0

(t− s)α−1

Γ(α)

∣∣∣∣s− 1

2

∣∣∣∣ ds
and

w0(t) =

∫ 1

0

G2(t, s)z(s, 0, 0)ds

=

∫ 1

0

[t(1− s)]β−1

Γ(β)

1

2

∣∣∣∣s− 1

3

∣∣∣∣ ds− ∫ t

0

(t− s)β−1

Γ(β)

1

2

∣∣∣∣s− 1

3

∣∣∣∣ ds.
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Then, the following iteration formulation is obtained:

uk+1(t) =Tuk(t)

=

∫ 1

0

G1(t, s)f(s, wk, D
q
0+wk)ds

=

∫ 1

0

[t(1− s)]α−1

Γ(α)

∣∣∣∣s− 1

2

∣∣∣∣√100wk + 10(Dq
0+wk)ρ + 1ds

−
∫ t

0

(t− s)α−1

Γ(α)

∣∣∣∣s− 1

2

∣∣∣∣√100wk + 10(Dq
0+wk)ρ + 1ds, (k = 1, 2, · · · ),

Dp
0+uk+1(t) =

∫ 1

0

Dp
tG1(t, s)f(s, wk, D

q
0+wk)ds

=

∫ 1

0

tα−p−1(1− s)α−1

Γ(α− p)

∣∣∣∣s− 1

2

∣∣∣∣√100wk + 10(Dq
0+wk)ρ + 1ds

−
∫ t

0

(t− s)α−p−1

Γ(α− p)

∣∣∣∣s− 1

2

∣∣∣∣√100wk + 10(Dq
0+wk)ρ + 1ds,

(k = 1, 2, · · · ),

wk+1(t) =Twk(t)

=

∫ 1

0

G2(t, s)z(s, uk, D
p
0+uk)ds

=
1

2

∫ 1

0

[t(1− s)]β−1

Γ(β)

∣∣∣∣s− 1

3

∣∣∣∣√100uk + 10(Dp
0+uk)δ + 1ds

− 1

2

∫ t

0

(t− s)β−1

Γ(β)

∣∣∣∣s− 1

3

∣∣∣∣√100uk + 10(Dp
0+uk)δ + 1ds, (k = 1, 2, · · · )

and

Dq
0+wk+1(t) =

∫ 1

0

Dq
tG2(t, s)z(s, uk, D

p
0+uk)ds

=
1

2

∫ 1

0

tβ−q−1(1− s)β−1

Γ(β − q)

∣∣∣∣s− 1

3

∣∣∣∣√100uk + 10(Dp
0+uk)δ + 1ds

− 1

2

∫ t

0

(t− s)β−q−1

Γ(β − q)

∣∣∣∣s− 1

3

∣∣∣∣√100uk + 10(Dp
0+uk)δ + 1ds,

(k = 1, 2, · · · ).

The simulations experiment shows that for N = 100, the iterative method
achieves the accuracy 10−16, after k = 21 iterations. Some approximations of
the solution are depicted in Figure 7. Convergent solution and convergence of the
iterative process are depicted in Figure 8. The iteration errors for problem (6.6)
are indicated in Table 4. From Figure 7, it is easy to see that the approximations
(u20, w20) and (u21, w21) almost coincide. It implies that iterative method con-
verges very fast. This shows the applicability and the effectiveness of the proposed
approach and iterative method.
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Table 4. The iteration errors in Example 6.6

k eu(k) ev(k) k eu(k) ev(k)

0 8.438501e-02 3.560760e-02 11 2.511370e-09 8.104813e-10

1 2.447377e-02 8.243518e-03 12 4.987868e-10 1.609709e-10

2 5.168321e-03 1.678239e-03 13 9.906481e-11 3.197066e-11

3 1.035939e-03 3.345667e-04 14 1.967543e-11 6.349768e-12

4 2.059927e-04 6.648132e-05 15 3.907707e-12 1.261088e-12

5 4.091634e-05 1.320449e-05 16 7.761569e-13 2.504663e-13

6 8.126349e-06 2.622551e-06 17 1.541267e-13 4.980738e-14

7 1.613970e-06 5.208667e-07 18 3.066991e-14 9.964252e-15

8 3.205519e-07 1.034499e-07 19 6.133982e-15 2.081668e-15

9 6.366521e-08 2.054634e-08 20 1.276756e-15 5.273559e-16

10 1.264464e-08 4.080738e-09 21 4.440892e-16 2.220446e-16
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Figure 7. Some approximations of solutions u(t) and w(t)
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