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Abstract. In this paper, we study the flexural vibration behavior of single-walled
carbon nanotubes (SWCNTSs) for the assessment of Timoshenko beam models. Ex-
tensive molecular dynamics (MD) simulations based on second-generation reactive
empirical bond-order (REBO) potential and Timoshenko beam modeling are per-
formed to determine the vibration frequencies for SWCNTs with various length-to-
diameter ratios, boundary conditions, chiral angles and initial strain. The effective-
ness of the local and nonlocal Timoshenko beam models in the vibration analysis is
assessed using the vibration frequencies of MD simulations as the benchmark. It is
shown herein that the Timoshenko beam models with properly chosen parameters
are applicable for the vibration analysis of SWCNTs. The simulation results show
that the fundamental frequencies are independent of the chiral angles, but the chi-
rality has an appreciable effect on higher vibration frequencies. The SWCNTs is
very sensitive to the initial strain even if the strain is extremely small.

AMS subject classifications: 74H45
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1 Introduction

In recent years, carbon nanotubes (CNTs) have triggered intensive studies to fulfill
their potential applications in a variety of fields due to their exceptional mechani-
cal, electronic and chemical properties. Their high stiffness and strength, low density
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and good conductivity have made CNTs the foundation building element for nano-
electromechanical devices [1-7]. One of the promising applications is the CNT-based
unltrasensitive sensor. CNTs, in particular single-walled CNTs (SWCNTs), are small
in size with large surface, stable in harsh chemical environment [5] and can respond
to the external mechanical deformation rapidly with high sensitivity. In view of this,
it is of great significance to gain a full understanding of the vibration properties of
SWCNTs.

Vibration is one of the fundamental mechanical behaviors of CNTs. The vibration
frequencies of CNTs have been employed in the determination of the Young’s mod-
ulus of CNTs [14]. In the experiments conducted by Treacy et al. [1] and Poncharal
et al. [3], clamped-free multi-walled CNTs (MWCNTs) excited by thermal or electrical
loads were observed in a transmission electron microscope (TEM) for the resonance
frequency. The frequency equation of a vibrating Euler beam is then used to obtain
the Young’s modulus in a reverse manner. Molecular dynamics (MD) have also been
preformed on the thermal vibration of SWCNTs for the natural frequencies to predict
the Young’s modulus [4].

When compared with the extensive investigations of buckling or tensile behaviors
of CNTs under axial loadings [6-12] relatively fewer studies have been done to ana-
lyze the vibration behaviors of CNTs. Similar to the buckling analysis of CNTs, the
vibration behaviors of CNTs have usually been explored by two common methods,
i.e. continuum mechanics models and atomistic simulations. In continuum mechanics
modeling, the CNTs are treated as continuum and homogeneous structures without
considering their intrinsic atomic structures. For example, Yoon et al. [13] analyzed
the internal vibration of MWCNTs embedded in an external elastic medium by us-
ing the multiple-elastic beam model based on the Euler beam assumptions. Based on
Eringen’s nonlocal elasticity theory [14] and the Euler beam theory, a nonlocal double-
walled elastic beam model was developed by Zhang et al. [15] for the free transverse
vibrations of double-walled carbon nanotubes. The effect of the small length scale is
incorporated in the explicit expression of the natural frequency. Instead of the Eu-
ler beam theory, the more refined Timoshenko beam model [16] which allows for the
effects of transverse shear deformation and rotary inertia was applied for the free vi-
bration of MWCNTs [17]. Based on the nonlocal elasticity theory and the Timoshenko
beam theory, Wang et al. [18] derived the governing equations and boundary condi-
tions for the free vibration of nonlocal Timoshenko beams via Hamiltonian’s principle.
The exact vibration frequency values of nonlocal Timoshenko beam under various
boundary conditions were obtained. Ece and Aydogdu [19] employed the nonlocal
Timoshenko beam models to investigate the vibration problem of simply-supported,
double-walled CNTs (DWCNTs) under axial load. The influence of the axial load on
the natural frequencies of DWCNTs was quantified. Recently, Reddy and Pang [20]
reformulated the equations of motion of the Euler and Timoshenko beam theories
by using Eringen’s nonlocal elasticity theory. The equations of motion are then used
to evaluate the static bending, vibration, and buckling responses of CNTs with vari-
ous boundary conditions. Although the aforementioned beam models are simple and
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straightforward to use, the effectiveness of the continuum models in the vibration
analysis of CNTs under various conditions has not hitherto been verified by either
experiments or atomistic simulations, especially for SWCNTs. Therefore, the applica-
bility of the continuum beam model is still in doubt.

In addition to continuum mechanics models, atomistic simulations have been car-
ried out to explore the vibration characteristics of CNTs. Li and Chou [21] employed
the molecular structural mechanics method and model the SWCNT as an equivalent
space frame-like structure to examine the feasibility of using SWCNT as a nanores-
onator. The predicted fundamental frequencies of clamped-free or clamped SWCNTs
were sensitive to dimensions such as length, diameter as well as boundary conditions,
but the frequencies are relatively insensitive to chirality of the tubes. Later, Li and
Chou [22] extended their work to assess the vibration behavior of MWCNTs by con-
sidering the van der Waals interaction between the adjacent tubes. They observed
that the frequencies of SWCNTs and DWCNTs were not sensitive to vibration modes,
which are in contradiction with the results reported by Cao et al. [24]. By using the
same model, Li and Chou [23] assessed the SWCNTs as nanomechanical resonators
in the presence of the axial strain or pressure. It was reported that the fundamental
frequencies of the SWCNTs decreases with increasing tensile strain, a trend that is in
conflict with experimental results of Sazonova et al. [25]. The contradictory results
presented by Li and Chou [22,23] may be due to the simplified molecular structural
mechanics model in which only the deformed positions of carbon atoms are computed
while neglecting the more important stretching energy term which accounts for the ef-
fects such as bond length and angle changes caused by the surrounding atoms [24,26].
A comprehensive molecular dynamics study based on the COMPASS (Condensed-
phased Optimized Molecular Potential for Atomistic Simulation Studies) force field
and continuum analysis was carried out by Cao et al. [26] to investigate the funda-
mental frequency shift of deformed clamped-clamped SWCNTs under axial loadings,
bending and torsion. The results given by the beam model or the cylindrical shell
model are in good agreement with those obtained from MD simulations, provided that
the Young’s modulus and wall thickness are carefully selected. Yao and Lordi [4] per-
formed MD simulations using the universal force field (UFF) to determine the Young’s
modulus of various clamped-free SWCNTs from their thermal vibration frequencies
by using the frequency equations based on the Euler beam theory.

The atomistic studies performed on the vibration behaviors of CNTs so far are lim-
ited. Most of the available continuum beam models for the free transverse vibration
of CNTs provide analytical natural frequencies of CNTs under various boundary con-
ditions but the accuracy of the results is questionable. More experimental or atomistic
simulations works are required to validate the applicability of the continuum mod-
els. The aim of this paper is to provide complete characteristics of vibrating CNTs by
performing MD simulations based on the well-known reactive empirical bond-order
(REBO) potential [27]. In addition, the applicability and effectiveness of the Timo-
shenko beam models developed by Wang et al. [18] are assessed by MD simulations
vibration results. Furthermore, the effects of length-to-diameter ratio, chirality, bound-
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ary conditions, and initial strains on the vibration frequencies are investigated via the
MD simulations and Timoshenko beam results. The present comprehensive MD sim-

ulations results may also be used to clear the contradictory results presented by Li and
Chou [22,23].

2 Computational model

2.1 Timoshenko beam models

The Timoshenko beam models have been developed in the analysis of free vibration
of CNTs by considering the effects of transverse shear deformation and rotary inertia
in our previous works [17-20]. These effects neglected in Euler beam models become
significant for CNTs with small length-to-diameter ratio those are normally encoun-
tered in applications of CNTs such as nanotweezers [28] and nanoprobes [29]. For
the sake of completion, a brief overview on the local and nonlocal Timoshenko beam
models is presented first [17-20].

The governing equation for a vibrating Timoshenko beam given by Timoshenko
[16]is

dM
T Q —plwng, (2.1)
99— pavtu, 22)

where w is the transverse displacement, ¢ the slope of the beam due to bending defor-
mation alone, x the axial coordinate, I the second moment of area of cross-section, A
the cross-sectional area, p the mass density per unit volume, w the circular frequency
of the beam, M and Q are the bending moment and shear force, respectively. Based
on Erigen’s nonlocal elasticity, the bending moment and shear force are expressed as

d>M d
M — (eoa)Zﬁ = EI%, (2.3)

dw
Q=KGA (4> + dx) ’ (2.4)

where E is the Young’s modulus, G the shear modulus, K; is the shear correction in
the Timoshenko beam theory, and eqa is the scale coefficient that incorporates the small
scale effect. Note that a is the internal characteristic length (e.g., lattice parameter, C-C
bond length and granular distance) and ey is a constant appropriate to each material.

In view of Egs. (2.3) and (2.4), the governing equations for the vibration of nonlocal
Timoshenko beams are given by

d2¢ dw 2 5 d ZdZ(P B
Elﬁ — K;GA <<P+ dx) + plw ¢ — (eon) <pAw I +plw Tx 2) =0, (25)

d¢ 2
K;GA <d + dZ> +pAw w =0. (2.6)
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Note that the governing equations reduce to those of the local Timoshenko model
when the characteristic length a is set to zero. With the boundary conditions, the
frequencies can be furnishes by solving the eigenvalue problems. For more details,
one can refer to [18].

2.2 Molecular dynamics simulation

Molecular dynamics simulation is a powerful tool for the analysis of nanoscale sys-
tems. The basic concept of MD simulations is to simulate the time evolution of a
system of atoms. The atoms in the system are treated as point-like masses that interact
with one another according to an assumed potential energy. The second-generation
REBO potential [27] is adopted to simulate SWCNTs in the present work. This po-
tential can reproduce more accurately the realistic chemical bond properties of hy-
drocarbon molecules. The second-generation REBO potential relative to its earlier
version [30] contains improved analytical functions and an expanded database, which
leads to a significantly better description of chemical and mechanical properties for
hydrocarbon molecules and diamond [27, 31] that compare reasonably well to first-
principles prediction.

The REBO potential is given by the sum of energy over the bonds, i.e.

E, = ZZLVR<TZ]) — EijVA(rij)J/ (27)

ij>i

where Vi denotes the inter-atomic repulsion (core-core, etc), V4 the attraction from
the valence electrons, r;; is the distance between pairs of nearest-neighboring atoms i
and j, and b;; is the reactive empirical bond order depending on local bonding envi-
ronment.

In the present vibration simulations, the bonding atomistic interaction in SWCNTs
is described by the REBO potential while the non-bonding interaction is neglected to
enhance the computational efficiency since it has been proven to have minimal contri-
bution to the total strain energy [32]. The fifth-order Gear’s predictor-corrector inte-
gration scheme is adopted with a time step size of 1 fs. Since the temperature exerts
no effect on the vibration frequency but only it increases the amplitude of vibration,
all MD simulations are therefore carried out in a fixed temperature of 1 K maintained
by the Berendsen thermostat [33]. The low temperature is chose to avoid the coupled
transverse and longitudinal vibrations. After an initial equilibration at the specified
temperature, all atoms except those on the fixed end are allowed to vibrate. The his-
tories of the geometric center of the free atoms are recorded for a certain duration
(100-1200 ps depending on the size and the boundary conditions of the SWCNTs),
and then the vibration frequencies are computed by using the Fast Fourier Transform
(FFT) method.
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3 Simulation results

Fig. 1 illustrates the three different SWCNTs. It can be seen from Fig. 1 that the CNT
resembles a hollow tube structure. In the present study, a set of (5, 5) armchair SWC-
NTs with different length-to-diameter ratios under clamped-free (CF) and clamped-
clamped (CC) boundary conditions are considered. In order to examine the effect of
chirality on the vibration frequencies, we simulate SWCNTs with diameters close to
the (5, 5) SWCNTs but with different chiral angles. The vibration frequencies of ini-
tially pre-stressed SWCNTs under compression and tension are also investigated. All
the SWCNTs simulated herein are (5, 5) SWCNTs, unless otherwise stated. The suc-
cessful application of continuum models into CNTs depends strongly on the selected
Young’'s modulus E and effective thickness &. In order to determine the Young’s mod-
ulus, one needs to estimate the thickness first. However, the thickness of SWCNTs
with a single layer of atoms is ambiguous. Conventionally, the interlayer spacing of
graphite i = 0.34 nm is taken as the CNT thickness. On the other hand, consider-
able atomistic simulations in the literature have presented scattered thicknesses for
SWCNTs in the range of 0.066-0.34 nm. Huang et al. [34] bypassed atomistic simu-
lations and developed an analytical approach to explain the ambiguity. It is found
that the thickness, and therefore elastic moduli, depends on loading type, interatomic
potential, nanotube radius and chirality. This dependence explains why the thickness
obtained from prior atomistic simulations are scattered.

Figure 1: Examples of (5, 5) armchair, (9, 0) zigzag, and (7, 3) chiral nanotubes.

To apply the Timoshenko beam model in the vibration analysis of SWCNTs, it
is crucial to determine the Young’s modulus and effective thickness first. It is well-
known that the natural frequencies f, for longitudinal vibration of a clamped-free
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beam are given by [35]

fn = (Zﬂil)ﬁ n=1,2,3,.., (3.1)

where L is the length of the beam, 1 the mode of vibration and p the mass density of
the beam material which is a function of beam thickness /. Herein we use Eq. (3.1) to
determine the ratio of E and the mass density for the application of Timoshenko beam
model expressed in Egs. (2.1)-(2.6).

In Eq. (3.1), the ratio of E and the mass density p can be determined uniquely
and directly from the vibration frequency and the length of the beam by avoiding
the definition of the thickness h. Thus the E/p ratio may be employed directly in
the Timoshenko beam model for the analytical natural frequencies of free transverse
vibration. In view of this, MD simulation is first performed to obtain the natural fre-
quency of the longitudinal vibration of a clamped-free SWCNT with a length of 6.92
nm. The E/p ratio as calculated from MD simulation is 3.6481 x 10 m?/s?. In order
to examine the effect of the length on the ratio, a longer tube with a length of 14.4
nm is simulated by MD simulation. The ratio obtained for the longer tube was also
found to be identical, indicating the independence of the ratio on the length. Based on
the E/p ratio, the stiffness is calculated as Eh = 278.25 GPa-nm, in good agreement
with determined directly from the REBO potential by Huang et al. [34]. Throughout
this study, E/p = 3.6481 x 10® m?/s? is used to calculate the natural frequencies of
transverse vibration of the Timoshenko beam model.

3.1 Vibration of clamped-free SWCNTS

Clamped-free (CF) CNTs are often used in both experimental studies [1, 3, 36] and
atomistic studies for the prediction of mechanical properties [4,21-23,37]. In the
present simulations, a set of CF SWCNTs with length-to-diameter ratios varying from
4.67 to 35.34 are considered. Their natural frequencies of transverse vibration are ob-
tained using MD simulations and Timoshenko beam models. The natural frequencies
for the first five modes given by the MD simulations are shown in Fig. 2 and Table
1. It can be readily seen that the results generated from MD simulations predict the
similar frequency variations as the continuum vibration theory [38], i.e. higher modes
produce higher frequencies and the frequency decreases smoothly as the length-to-
diameter ratio increases at each mode as shown in Fig. 2. Since the SWCNTs are of al-
most the same diameter, the inversely proportional relationship between the frequen-
cies and the length-to-diameter ratio indicates that the longer tube is more sensitive to
vibration. In addition, the frequencies of the CF SWCNTs obtained by MD simulations
based on Brenner’s REBO potential are comparable to those given by MD simulations
based on COMPASS at room temperature [39]. For example, the frequencies of the
first fourth modes for the SWCNTs with calculated by Duan et al. [39] are 0.136, 0.716,
1.676 and 2.736 THz, respectively while the results obtained from the present MD sim-
ulations are 0.129, 0.684, 1.630 and 2.704 THz, respectively. It is clearly shown that the
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Table 1: Natural frequencies of CF SWCNTs by MD simulations.

Frequency (THz)

L/D " 1st [ 2nd | 3th | 4th | 5th
4.67 | 0.2319 | 1.1536 | 2.5909 | 4.0741 | 5.4291
6.47 | 0.1287 | 0.6836 | 1.6296 | 2.7039 | 3.8210
7.55 | 0.1000 | 0.5421 | 1.3105 | 2.2842 | 3.2316
8.28 | 0.0793 | 0.4486 | 1.1139 | 1.9134 | 2.7802
10.07 | 0.0549 | 0.3143 | 0.8056 | 1.4160 | 2.1057
13.69 | 0.0305 | 0.1770 | 0.4699 | 0.8606 | 1.3184
17.30 | 0.0183 | 0.1129 | 0.3052 | 0.5707 | 0.8942
20.89 | 0.0138 | 0.0794 | 0.2138 | 0.4069 | 0.6414
24.50 | 0.0092 | 0.0586 | 0.1586 | 0.3052 | 0.4828
28.07 | 0.0069 | 0.0448 | 0.1207 | 0.2344 | 0.3759
31.64 | 0.0061 | 0.0351 | 0.0961 | 0.1846 | 0.2991
35.34 | 0.0046 | 0.0282 | 0.0778 | 0.1495 | 0.2441

two sets of results are in good agreement with each other and the discrepancy between
them can be attributed to the different potential functions used in the MD simulations
and somewhat different geometries of the SWCNTs.

The nonlocal Timoshenko model based on Eringen’s nonlocal elasticity theory [14]
and Timoshenko beam theory was derived by Wang et al. [18] for the free transverse
vibration analysis of micro/nano beams. The small scale effect is taken into consider-
ation in the former theory while the effects of transverse shear deformation and rotary
inertia are accounted for in the latter theory. By neglecting the small scale effect (i.e.
setting the small scale parameter ¢y = 0), the nonlocal Timoshenko beam is reduced
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Figure 2: Frequencies of CF SWCNTs for the first five modes against length-to-diameter ratio L/D by MD
simulations (curves from top to bottom with decreasing value of n).
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to local Timoshenko beam. To make use of the nonlocal Timoshenko beam model as
shown in Eq. (2.5) and (2.6) for the theoretical prediction, the magnitude of the small
scale parameter must be established. Herein, we adopt the method introduced by
Zhang et al. [15] to predict the small scale parameter. It is found that ¢y = 1.25 by
matching the buckling strains obtained by MD simulations and the continuum shell
model reported by Yakobson et al. [6]. Using the ratio E/p = 3.6481 x 108 m?/s?,
egp = 1.25 and the assumed thickness & = 0.34 nm or 0.066 nm, the theoretical predic-
tions of the frequencies for the CF SWCNTs are furnished by the local and nonlocal
Timoshenko beam models.
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Figure 3: Frequencies of CF SWCNTs for first vibration mode obtained by MD simulations and Timoshenko
beam models with i = 0.34 nm and & = 0.066 nm. (LT-Local Timoshenko beam model; NT-Nonlocal
Timoshenko beam model).

To show the effect of the thickness on the theoretical frequencies as calculated by
the Timoshenko beam model, two different thicknesses are adopted, i.e. 0.34 nm the
interlayer spacing of graphite and 0.066 nm as suggested by Yakobson et al. [6]. The
typical frequencies of the first and third mode obtained by MD simulations and Tim-
oshenko beam models based on the local and nonlocal elasticity theory are presented
in Tables 2 and 3 and depicted in Figs. 3 and 4, respectively. The theoretical results
are compared with those by MD simulations and the percentage difference ¢ is given.
From Table 2, it can be observed that both the local and nonlocal Timoshenko beam
models with & = 0.34 nm produce higher frequencies than those obtained from MD
simulations. The largest percentage of difference is 0.1376 and it is associated with
the shortest tube of L/D = 4.67 . The consideration of small scale effect in nonlocal
Timoshenko beam model leads to relatively better results than its local counterpart in
the case for h = 0.34 nm. However, with the smaller thickness # = 0.066 nm, both
Timoshenko beam models underestimated the frequencies. Similarly, it is found from
Table 3 that both local and nonlocal Timoshenko beams also produce higher frequen-
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Table 2: Frequencies of CF SWCNTs for first vibration mode obtained by MD simulations and Timoshenko
beam models with 1 = 0.34 nm and h = 0.066 nm.

i = 0.34 nm i = 0.066 nm

L/D | MD LT* 5% NT* 5% LT 5% NT 0%
467 | 023193 | 0.26357 | 13.64 | 0.26386 | 13.76 | 0.23711 | 2.23 | 0.23739 | 2.35
6.47 | 0.12872 | 0.14134 | 9.81 | 0.14143 | 9.88 | 0.12721 | -1.17 | 0.12730 | -1.11
755 | 0.09766 | 0.10491 | 7.43 | 0.10496 | 7.48 | 0.09444 | -3.29 | 0.09449 | -3.25
828 | 0.07935 | 0.08760 | 10.40 | 0.08763 | 10.44 | 0.07885 | -0.62 | 0.07888 | -0.58
10.07 | 0.05493 | 0.05960 | 8.50 | 0.05962 | 8.54 | 0.05366 | -2.31 | 0.05367 | -2.29
13.69 | 0.03052 | 0.03248 | 6.43 | 0.03248 | 6.44 | 0.02924 | -4.17 | 0.02924 | -4.17
17.30 | 0.01831 | 0.02041 | 11.44 | 0.02041 | 11.45 | 0.01837 | 0.33 | 0.01837 | 0.34
20.89 | 0.01221 | 0.01401 | 14.77 | 0.01401 | 14.77 | 0.01261 | 3.30 | 0.01261 | 3.31
2450 | 0.00916 | 0.01020 | 11.32 | 0.01020 | 11.32 | 0.00918 | 0.27 | 0.00918 | 0.28
28.07 | 0.00690 | 0.00777 | 12.65 | 0.00777 | 12.65 | 0.00699 | 1.43 | 0.00700 | 1.43
31.64 | 0.00610 | 0.00612 | 0.20 | 0.00612 | 0.22 | 0.00551 | -9.77 | 0.00551 | -9.76
35.34 | 0.00458 | 0.00491 | 7.24 | 0.00491 | 7.24 | 0.00442 | -3.45 | 0.00442 | -3.45

*LT-Local Timoshenko beam model; NT-Nonlocal Timoshenko beam model.

cies for the third mode with /1 = 0.34 nm than those obtained by MD simulations. The
effect of small scale parameter is significant for stocky SWCNTs with small length-to-
diameter ratio L/ D but negligible for slender SWCNTs. In the case of & = 0.066 nm,
both beams give lower frequencies than MD simulations. The first and third mode
frequencies against L/D are also shown in Figs. 3 and 4, respectively. It is clearly
demonstrated that the thickness of CNTs plays a significant role in the application of
continuum mechanics models, as well as the Young’s modulus. The thickness of 0.066
nm adopted in the beam model can produce much better results than 0.34 nm. Re-
cently an attempt was made by Huang et al. [34] to derive the thickness of graphite
and SWCNTs directly from the interatomic potentials but the analytic approach fails
to give a unique thickness for SWCNTs. The thickness of SWCNTs is in the range of
0.06 0.09 nm. More works are needed to address this issue.

Despite the differences between the results given by the Timoshenko beam model
and MD simulations as shown in Tables 2 and 3, it may be reasonable to conclude that
the Timoshenko beam model with properly chosen Young’s modulus E and thickness
h can reproduce frequencies that are in reasonable agreement with those by MD sim-
ulations. For the CF SWCNTs, the adoption of thickness h = 0.066 nm can reproduce
much better results than 0.34 nm with the largest percentage of difference 9.77% and
6.22% for the first and third vibration modes, respectively.

3.2 Vibration of clamped-clamped SWCNTS

In applications as micro- or nanostrain sensors and micro-oscillators, the CNT sensor
is generally clamped at both ends [40]. Considerable atomistic simulations have been
performed on the clamped-clamped (CC) SWCNTs [21-23,26]. In this section, the
set of clamped-clamped (CC) SWCNTs is simulated by Timoshenko beam models and
MD simulations for their vibration frequencies. Again the frequencies of the CC SWC-
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Table 3: Frequencies of CF SWCNTs for third vibration mode obtained by MD simulations and Timoshenko
beam models with ik = 0.34 nm and h = 0.066 nm.

7 = 0.34 nm i = 0.066 nm

L/D | MD LT 5% NT 0% LT 0% NT 5%
467 | 259094 | 2.80678 | 8.33 | 2.71884 | 494 | 251329 | -3.00 | 2.43957 | -5.84
6.47 | 1.62964 | 1.76408 | 8.25 | 1.72720 | 5.99 | 1.58080 | -3.00 | 1.54924 | -4.93
755 | 1.31226 | 1.39518 | 6.32 | 1.37146 | 451 | 1.25114 | -4.66 | 1.23065 | -6.22
828 | 1.11389 | 1.20559 | 8.23 | 1.18758 | 6.62 | 1.08154 | -2.90 | 1.06591 | -4.31
10.07 | 0.80556 | 0.87329 | 8.41 | 0.86354 | 7.20 | 0.78413 | -2.66 | 0.77558 | -3.72
13.69 | 0.46997 | 0.51139 | 8.81 | 0.50791 | 8.07 | 0.45967 | -2.19 | 0.45659 | -2.85
17.30 | 0.30518 | 0.33334 | 9.23 | 0.33182 | 8.73 | 0.29980 | -1.76 | 0.29845 | -2.20
20.89 | 0.21362 | 0.23369 | 9.39 | 0.23294 | 9.04 | 0.21025 | -1.58 | 0.20958 | -1.89
2450 | 0.15862 | 0.17234 | 8.65 | 0.17193 | 8.39 | 0.15510 | -2.22 | 0.15426 | -2.75
28.07 | 0.12069 | 0.13243 | 9.73 | 0.13219 | 9.53 | 0.11920 | -1.24 | 0.11898 | -1.42
31.64 | 0.09613 | 0.10491 | 9.13 | 0.10473 | 8.95 | 0.09443 | -1.77 | 0.09429 | -1.92
35.34 | 0.07782 | 0.08456 | 8.66 | 0.08456 | 8.66 | 0.07611 | -2.19 | 0.07602 | -2.31
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Figure 4: Frequencies of CF SWCNTs for third vibration mode obtained by MD simulations and Timoshenko
beam models with i = 0.34 nm and h = 0.066 nm.

NTs obtained by MD simulations based on Brenner’s REBO potential are comparable
to those given by MD simulations based on COMPASS force field [24]. The frequen-
cies of the first fourth modes for the CC (5,5) SWCNTs calculated by Cao et al. [24] are
0.037, 0.104, 0.208 and 0.328 THz while the results obtained from the present MD sim-
ulations are 0.036, 0.108, 0.185 and 0.326 THz, respectively. It is observed that the two
sets of results are in good agreement with each other. With the view to compare the re-
sults with those of CF SWCNTSs, the same (5, 5) armchair SWCNT is used with similar
length-to-diameter ratios L/ D. The typical first and third mode frequencies obtained
from MD simulations are shown in Fig. 5 and Fig. 6, respectively and compared with
those obtained by using the Timoshenko beam models with thicknesses & = 0.34 nm
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Table 4: Frequencies of CC SWCNTs for first vibration mode obtained by MD simulations and Timoshenko
beam models with 1 = 0.34 nm and h = 0.066 nm.

h=0.34nm h = 0.066 nm

L/D MD LT 6% NT 6% LT 6% NT 0%

486 | 1.06812 | 1.14229 | 6.94 | 1.13240 | 6.02 | 1.01126 | -5.32 | 1.00309 | -6.09
6.67 | 0.64697 | 0.69764 | 7.83 | 0.69347 | 7.18 | 0.62092 | -4.02 | 0.61738 | -4.57
8.47 | 043335 | 0.46628 | 7.60 | 0.46428 | 7.14 | 0.41641 | -3.91 | 0.41469 | -4.31
10.26 | 0.30518 | 0.33214 | 8.83 | 0.33109 | 8.49 | 0.29726 | -2.59 | 0.29634 | -2.90
13.89 | 0.18311 | 0.18999 | 3.76 | 0.18963 | 3.56 | 0.17044 | -6.92 | 0.17012 | -7.09
17.49 | 0.11597 | 0.12255 | 5.67 | 0.12239 | 5.54 | 0.11007 | -5.09 | 0.10993 | -5.20
21.06 | 0.07629 | 0.08555 | 12.14 | 0.08548 | 12.04 | 0.07690 | 0.80 | 0.07684 | 0.71
24.66 | 0.05798 | 0.06285 | 8.40 | 0.06281 | 8.33 | 0.05652 | -2.52 | 0.05649 | -2.58
28.31 | 0.04578 | 0.04796 | 4.77 | 0.04793 | 4.71 | 0.04314 | -5.76 | 0.04312 | -5.81
31.85 | 0.03662 | 0.03800 | 5.85 | 0.03798 | 5.80 | 0.03419 | -4.76 | 0.03417 | -4.80
35.53 | 0.03052 | 0.03062 | 0.34 | 0.03061 | 0.30 | 0.02755 | -9.71 | 0.02754 | -9.74

Table 5: Frequencies of CC SWCNTs for third vibration mode obtained by MD simulations and Timoshenko
beam models with 1 = 0.34 nm and h = 0.066 nm.

h = 0.34 nm i = 0.066 nm

L/D | MD LT 0% NT 5% LT 5% NT 5%
486 | 3.75061 | 3.94940 | 5.30 | 3.78132 | 0.82 | 3.48932 | -6.96 | 3.35429 | -10.56
6.67 | 251110 | 2.63529 | 531 | 2.55534 | 2.11 | 2.33383 | -6.74 | 2.26795 | -9.37
847 | 1.79443 | 1.89364 | 553 | 1.84985 | 3.09 | 1.68149 | -6.29 | 1.64480 | -8.34
10.26 | 1.34280 | 1.42670 | 6.25 | 1.40065 | 4.31 | 1.26992 | -5.43 | 1.24780 | -7.07
13.89 | 0.83620 | 0.88150 | 5.42 | 0.87088 | 4.15 | 0.78744 | -5.83 | 0.77825 | -6.93
17.49 | 0.55540 | 0.59514 | 7.15 | 0.59009 | 6.25 | 0.53286 | -4.06 | 0.52844 | -4.85
21.06 | 0.38760 | 0.42745 | 10.28 | 0.42478 | 9.59 | 0.38333 | -1.10 | 0.38097 | -1.71
24.66 | 0.29600 | 0.32003 | 8.12 | 0.32073 | 8.36 | 0.28727 | -2.95 | 0.28592 | -3.41
2831 | 0.23193 | 0.24741 | 6.67 | 0.24649 | 6.28 | 0.22222 | -5.44 | 0.22141 | -5.78
31.85 | 0.18310 | 0.19780 | 8.03 | 0.19721 | 7.71 | 0.17776 | -2.92 | 0.17723 | -3.20
3553 | 0.15260 | 0.16051 | 5.19 | 0.16012 | 4.93 | 0.14429 | -5.44 | 0.14394 | -5.67

and h = 0.066 nm. The magnitudes of the first and third mode frequencies given by
the beam models as well as MD simulations are presented in Tables 4 and 5, respec-
tively. It can be seen from Tables 2 and 4 that the L/D of the set of CC SWCNTs is
slightly different from that of CF SWCNTs due to the influence of the boundary con-
ditions. For a similar L/ D, the frequencies of CC SWCNTs given by MD simulations
are higher than those of its CF counterpart due to the boundary condition. The re-
lationship between L/D and frequencies, the effect of thickness used in Timoshenko
beam model, the effect of boundary conditions in MD simulations, and the effect of
the small scale parameter on the frequencies of CC SWCNTs are similar to those ad-
dressed above for CF SWCNTs. Again, the Timoshenko beam models with or without
small scale effects can provide satisfactory frequencies for the CC SWCNTs since they
compare well with those given by MD simulations.

Based on the theoretical and atomistic predictions of frequencies for CC and CF
SWCNT5, it is clearly demonstrated that the Timoshenko beam models can be appli-
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Figure 5: Frequencies of CC SWCNTs for first vibration mode obtained by MD simulations and Timoshenko
beam models with i1 = 0.34 nm and & = 0.066 nm.
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Figure 6: Frequencies of CC SWCNTs for third vibration mode obtained by MD simulations and Timoshenko
beam models with # = 0.34 nm and & = 0.066 nm.

cable to the vibration analysis especially when the small thickness & = 0.066 nm is
used.

3.3 Effect of chirality

As shown in previous atomistic simulations [11] on a set of SWCNTs with various
chiral angles under compression, chirality of SWCNTs plays a significant role in the
buckling behaviors of CNTs. This finding urges us to explore further the possible role
of chirality in the vibration behaviors of SWCNTs.

Five CF SWCNTs with various chiral angles are simulated by MD simulations.
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Table 6: Frequencies of CF SWCNTSs with different chiral angles.

Frequency (THz)

SWCNTs | “CA 1st 2nd 3rd 4st 5st
9,0) 0.00 | 0.05493 | 0.30518 | 0.76904 | 1.31836 | 1.90430
(8,2) 10.89 | 0.05493 | 0.29907 | 0.75684 | 1.30615 | 1.91040
(7,3) 17.00 | 0.05493 | 0.29907 | 0.76904 | 1.34277 | 1.98364
(6,4) 23.41 | 0.05493 | 0.31128 | 0.78735 | 1.38550 | 2.02367
(5,5) 30.00 | 0.05493 | 0.31128 | 0.80556 | 1.41602 | 2.10571

*CA - Chiral angle (degree).

The five chiral indices, namely, (5,5), (6/4), (7,3), (8,2) and (9,0), are chosen so that the
nanotubes have approximately the same diameters and tube lengths. The length-to-

diameter ratio L/ D results in a value of 10.07. Under otherwise identical conditions,
the effect of chirality of SWCNTSs can be identified.

The vibration frequencies of the SWCNTs obtained from MD simulations are shown
in Table 6. From Table 6, it is clearly seen that the fundamental frequencies of the SWC-
NTs are same, i.e., independent of the magnitude of chiral angles. This means that
chirality has no effect on the fundamental frequency of SWCNTs. This observation is
in agreement with some findings reported by Li and Chou [21] using molecular struc-
tural model. As the vibration modes increase, the effect on frequency becomes distinct.
In addition, larger chiral angles would lead to an increase in frequency, and this in-
crease is amplified at higher vibration modes. For example, the percentage differences
between the smallest and largest frequencies at the higher vibration modes (from sec-
ond to fifth) are 3.923%, 6.048%, 7.759% and 9.565%, respectively. The percentage
difference is found to increase with higher vibration modes. Since the SWCNTs have
similar diameters and lengths, the frequencies calculated by using the Timoshenko
beam models are expected to be close. In other words, Timoshenko beam model fails
to capture the effect of chirality. However, it is demonstrated that the neglect of chi-
rality effect in the simple Timoshenko beam model only lead to 9.565% difference for
the fifth vibration mode and even a smaller difference for lower modes. This neglect
is acceptable from a practical viewpoint. In sum, the Timoshenko beam model cannot
capture the effect of chirality but it can predict vibration frequencies up to the fifth
vibration mode within an acceptable error of 10%.

In summary, chirality has no effect on the fundamental frequencies but it influ-
ences the frequencies of higher vibration modes. SWCNTs with larger chiral angles
have higher frequencies except for the first mode of vibration. The Timoshenko beam
model can be employed for the prediction of the fundamental frequencies of chiral
CNTs accurately since the fundamental frequencies are independent of chiral angles.
In addition, the Timoshenko beam model can also been used for the prediction of other
frequencies of higher vibration modes with acceptable errors.
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3.4 Effect of initial strain

The resonant frequency of CNTs is very sensitive to the external loads. This is the
basic principle of CNTs-based resonant strain sensor. The key issue of strain sensing
is to find the relationship between the resonant frequency of the CNTs and the applied
stress on the tubes. Therefore it is important to understand the vibration behaviors of
the CNTs in the presence of initial strains (compressive or tensile in nature) before
fulfilling CNTs potential as nano-sensors.

In this section, MD simulations are performed on CC SWCNTs of moderate length
with length-to-diameter L/D = 13.89 under either compressive or tensile strains to
study their sensitivity to the imposed strain. By considering the initial strain in the
vibration governing equations of the nonlocal Timoshenko beam model, the analyti-
cal frequencies can be calculated and compared with those given by MD simulations.
The fundamental vibration frequency is one of the most basic CNT mechanical prop-
erties. The two papers in the literature on the strain sensing of CNTs were focus on the
fundamental frequency at small strain level (< 1.3%) [23,26]. Herein we explore the
dependence of the fundamental frequency of CC SWCNTs on the initial strain by us-
ing MD simulations and nonlocal Timoshenko beam models with thicknesses of 0.34
nm and 0.066 nm. The sensitivity of the CNTs to initial strain is checked by applying
small strains (< 1.5%) to the CNTs.
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Figure 7: Variations of fundamental frequencies with respect to initial strains.

The typical fundamental frequencies given by MD simulations and nonlocal Tim-
oshenko beam models with the same mechanical parameters mentioned above are
depicted in Fig. 7. It is noted that negative strains denote compression while positive
ones tension. It is readily observed from Fig. 7 that the presence of a compressive
initial strain leads to a reduction in the frequencies whereas a tensile initial strain in-
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creases the frequencies, which is in agreement with the prediction of continuum vi-
bration theory [38]. However, this conflicts with the observation of Li and Chou [23].
The application of different thicknesses in nonlocal Timoshenko beam model results
in two different sets of frequencies and the larger thickness of 0.34 nm leads to higher
frequencies at different initial strain levels as shown in Fig. 7. This indicates the cru-
cial role that the thickness plays in continuum mechanics models. Fig. 7 shows that
the frequencies given by the MD simulations are between the two sets of results given
by Timoshenko beam model using thickness of 0.34 nm and 0.066 nm, respectively.
It is also observed from Fig. 7 that the frequencies under tension using thickness of
0.066 nm are close to those by MD simulations while the frequencies under compres-
sion using thickness of 0.34 nm instead agree well with those by MD simulations. This
indicates that the thickness of SWCNTs depends on the type of loading, in agreement
with the conclusion reached by Huang et al. [34].

4 Conclusions

The vibration behaviors of CF and CC SWCNTs are extensively investigated by means
of MD simulations based on Brenner’s REBO potential and the effectiveness of the
Timoshenko beam models are assessed. With properly chosen parameters, the Tim-
oshenko beam models can reproduce satisfactory frequencies that are in reasonable
agreement with those obtained by MD simulations. Through the comparison, it is
found that the smaller thickness of 0.066 nm in the Timoshenko beam model could
lead to better results than 0.34 nm in most of the cases studied in the present work.
The effects of the length-to-diameter ratio, boundary conditions, chirality and initial
strains on the frequencies are also examined via MD simulations and Timoshenko
beam models. Based on MD simulation results, it is found that the frequencies de-
crease with increasing tube lengths and that higher vibration modes possess higher
frequencies. The presence of the chirality has no influence on the fundamental fre-
quencies but has appreciable effects on the frequencies at higher vibration modes.
The introduction of initial compressive strains leads to a reduction of the frequencies
while the initial tensile strains lead to an increase of the frequencies.
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