Commun. Math. Anal. Appl. Vol. 1, No. 4, pp. 545-567
doi: 10.4208/cmaa.2022-0017 November 2022

Intrinsic Formulation of the Kirchhoff-Love
Theory of Nonlinearly Elastic Shallow Shells

Philippe G. Ciarlet! and Cristinel Mardare®*

! Hong Kong Institute for Advanced Study, City University of Hong Kong,
SAR, China.
2 Department of Mathematics, City University of Hong Kong, SAR, China.

Received 27 June 2022; Accepted 13 July 2022

Abstract. The classical formulation of the Kirchhoff-Love theory of nonlinearly
elastic shallow shells consists of a system of nonlinear partial differential equa-
tions and boundary conditions whose unknowns are the Cartesian components
of the displacement field of the middle surface of the shell subjected to ap-
plied forces. We show that this system is equivalent to a system whose sole
unknowns are the bending moments and stress resultants inside the middle
surface of the shell. This system thus provides a direct method for computing
the stresses appearing in such a shell, without any recourse to the displacement
field. To this end, we first establish specific compatibility conditions of Saint-
Venant type for the bending moments and stress resultants; we then identify
the boundary conditions that these fields must satisfy.
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1 Introduction

A shallow shell is a thin shell whose middle surface is “almost planar”, in the
sense that the principal curvatures of the middle surface of the shell are of the
order of its thickness (the precise definition is given in Section 2).
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If a shallow shell is made of an elastic material and is subjected to external
forces, the shell will undergo a deformation to reach an equilibrium state, where
the corresponding internal stresses are given in terms of the displacement field
and its partial derivatives by means of the constitutive equation of the elastic ma-
terial from which the shell is made. The displacement field then satisfies a specific
boundary value problem formed by a system of partial differential equations and
boundary conditions defined over a three dimensional domain representing the
reference configuration of the shell.

The classical Kirchhoff-Love theory for nonlinearly elastic shallow shells pro-
vides a way to compute the internal stresses and the displacement field inside
a shallow shell by solving a boundary value problem defined over a two-dimen-
sional domain, whose unknown is the vector field formed by the Cartesian com-
ponents of the displacement field of the middle surface of the reference configu-
ration of the shell.

More specifically, the classical formulation of the Kirchhoff-Love theory com-
putes the internal stresses in the deformed shallow shell in two stages: First, the
displacement field of the middle surface of the shallow shell is computed by solv-
ing a specific boundary value problem (Section 2); Second, the internal stresses
are computed in terms of this displacement field by using the constitutive equa-
tion of the elastic material constituting the shell.

The objective of this paper is to provide a simpler way to compute the internal
stresses in the deformed shallow shell by means of an intrinsic formulation, the
main feature of which is to entirely eliminate the need of computing the displace-
ment field. This is done by introducing a new boundary value problem whose
sole unknowns are the two-dimensional stresses, or equivalently the strains, of
the middle surface of the shell and by proving that the two-dimensional stresses
found in this way coincide with those found by solving the classical boundary
value problem of Kirchhoff-Love (Theorems 4.1 and 4.2).

More specifically, we show that the bending moments and stress resultants of
the middle surface of the deformed shell are the symmetric tensor fields (all the
notation used in this introduction is defined in Section 2)

(Mva,B) :w—>52, (Npcﬁ) :w—>52

that satisfy the following boundary value problem (see Theorem 4.1):

_aﬁNaﬁ:pﬂé ln CU,
—a“‘BM,Xﬁ—a,X (N,X‘B[algg3-|-€a‘3h]) =p3+9aqa in w,
Nzx/SVﬁ:sz/SVthﬁ =0 on i,

Naﬁvu (8[5534—88/3}1) + (8,XM,X,3)1/[3—|—8T(MM31/“T[5) = —(uaVy on i,
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uFso —dpFue =0 in w,
aﬂcﬁEUT+aaTEwﬁ_aIXO'E,BT_aﬁTElXO'

= FuoFyr — FapFor +€(uohFye +3pchFag —uphFrr —3ochFyg) i w,
E,X/;T,XT/;zagE“ﬁT“(Tﬁvg—ngv/;)—KEa/;vavl;:Fa/;Tﬁzo on 7o,

where

1 A
bzx,BUT = @ (5060'5‘BT+5DLT5‘BO') - 4 ( 50’[5945

1(3A+2pu)

denote the components of the inverse of the two-dimensional elasticity tensor of

the shell, and

1 3

sz/% bzx/%aer/ Faﬁ::_gblxﬁUTM(TT

€
denote the components of the strain tensors inside the middle surface of the shell.

The above system constitute our intrinsic formulation of the Kirchhoff-Love
theory of a nonlinearly elastic shallow shell.

The components (; : @w — R of the displacement field of the middle surface
of the shell found in the classical formulation of the same theory can then be
recovered a posteriori from the solution of our intrinsic formulation above by
solving the system

1 .

E(aaéﬁ-l-a/séa +£(0,h0g03+0ph0,03) +04030p03) =Enp  in w,
aaﬁgi%zl:pcﬁ in w,
(i=0y(3=0 on yo-

The main objective of this paper thus consists in showing that the intrinsic the-
ory of elasticity, whose origin goes back to the founding papers of Chien [3,4] and
Antman [2], can also be applied to nonlinearly elastic shallow shells, thus comple-
menting earlier works where it has been shown to apply to three-dimensional lin-
early elastic bodies [7], three-dimensional nonlinearly elastic bodies [9], linearly
elastic plates [10], nonlinearly elastic plates [8,12], and linearly elastic shells [11].

2 The classical formulation of the Kirchhoff-Love
theory of a nonlinearly elastic shallow shell

We briefly describe here the classical Kirchhoff-Love theory for nonlinearly elastic
shallow shells. For more details, see, e.g., Ciarlet [5].
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In all that follows, Greek indices vary in the set {1,2}, save in the notations 0,
and d, which respectively designate the tangential and normal derivative opera-
tors along the boundary of a domain w C R?, Latin indices vary in the set {1,2,3},
and the summation convention for repeated Greek or Latin indices is used. Vec-
tors and vector-valued functions are denoted by boldface letters.

The notations 3, -, A, and |-|, respectively designate the three-dimensional
Euclidean space, the inner product in IE3, the vector product in [E3, and the Eu-
clidean norm in IE3. The notation e; designate the i-th vector of a Cartesian basis
in [E3. A generic point in the “horizontal” plane spanned by the vectors e, is de-
noted y=(y.) and the variable along the “vertical” vector e3 is denoted x3. Partial
derivative operators are denoted dy :=9/0dy,, d3:=0/0x3, and dyg:= 02/ Y9y
The space of all real 2 x 2 symmetric matrices is denoted S?.

We adopt the definition of a shallow shell from Ciarlet and Miara [13] ex-
pressed in Cartesian coordinates (other definitions are possible, for instance us-
ing curvilinear coordinates as in, e.g., Ciarlet [6]). A shallow shell is a three-
dimensional body whose reference configuration is the closure of a set of the form

O:={0(y)+x3a3(y); yEw, x3€] —¢,e[},
where w is a bounded and connected open subset of IR?, ¢ >0, h € C?(w),

0(y):= (y1.y2,eh(y)) forall y=(y1,42) €w,
az(y) = 010(y) N028(y)
© 1010(y) N 920(y)|

The set 0(w) is called the middle surface of the shell and 2¢>0 is the thickness;
note that, at each y €@, a3(y) is a unit vector, normal to the middle surface at the
point 6(y).

We consider a shallow shell made of a homogeneous and isotropic nonlinearly
elastic material whose reference configuration is a natural state (i.e., stress-free).
Thus the two-dimensional constitutive equation relating the strains and stresses
inside the middle surface of the deformed shell is governed by two Lamé con-
stants A >0 and u >0 by means of the two-dimensional elasticity tensor whose
components are defined by

forall yew.

4Au

AyBor - = @50’[5&8 +2,u(5zw§/37 +51x75,8(f)/

where the notation 6,5 designates the Kronecker symbol.
We assume that the shallow shell under consideration is kept fixed on the
subset

o:= {6(y)+x3a3(y); Y €0, X3 €] —EIE[}
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of its lateral face, where 7 is a relatively open subset of the boundary <y of w, and
that the shell is subjected to applied body and surface forces whose densities per
unit volume and per unit area are respectively denoted by fie; € L>(();[E%) and
gie;c L2(I'_ul ;E3), where

[ :={6(y)—eas(y); yew},

[y :={0(y)+eas(y); ycw},
respectively denote the lower and upper faces of the shallow shell. Then the
resulting two-dimensional forces and momentums along the middle surface of

the shallow shell are defined by their densities p;e;€L?(w;E?) and g,e,€L? (w;E3)
per unit area along w, where

pily)= | filyxs)dxs+gi(y.e)+8i(y,—e),
qa(y):= /_ 03fa(yxs)dxs+e(ga(ye) — 8y, —e))
for all y € w, with

fily,xs):=aly,x3) fi (0(y) +x3a3(y)),
8i(y,x3):=a(y,x3)8i(6(y) +x3a3(y)),
a(y,x3):=|(016(y) xsalas(}/)) N (920(y) +x302a3(y)) |
forall yew and x3 €] —¢,¢].
Under the above assumptions, the classical Kirchhoff-Love theory (so named
after Kirchhoff [16] and Love [17]) asserts that the Cartesian components { = (;)

of the unknown displacement field (;e;:@ — E® of the middle surface of the shal-
low shell is a solution to the following minimization problem:

{eV(w) and J(T)=inf{J(n);neV(w)},

V(w):={n=(n;) € H'(w) x H(w) x H*(w); 1;=09,13=0 on 7o},
€ . . €3
](’7) = /a) (§aaﬁarEar(’7)Eaﬁ (77) +g“a/&afaoﬂﬁaa/ﬂﬁ_Pi’?i+ﬂaaa773) dy,

1
E,X'B(ij) = 5 (aaﬂlg+a/317a +€(a“ha/3173 +aﬁha,x173) +a,xn38/3173).
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The space V(w) is thus spanned by the Cartesian components #; of the ad-
missible displacement fields 7;e; of the middle surface of the shell, the func-
tional ] represents the total energy of the shallow shell, and the functions £, (1)
and d,p173 denote the Cartesian components of the strain tensor fields associated
with the displacement field 7;e; of the middle surface of the shallow shell, where
n=(n) €V (w).

The equations of the Kirchhoff-Love theory of a nonlinearly elastic shallow
shell are the Euler-Lagrange equations (e.g., [14, 15]) associated with the above
minimisation problem. These Euler-Lagrange equations can be recast as a bound-
ary value problem of partial differential equations and boundary conditions if the
boundary of the set w and the minimiser { are sufficiently smooth.

More specifically, assume that w is locally on only one side of its boundary
7:=0dw and that v is a Lipschitz-continuous boundary in sense of Adams [1], and
that { = ({;) € C?(w) x C?(w) x C*(w). Since for all = (1;) € V(w),

. A 1
E,X[; ((Z—H]) = Epcﬂ (0)+ 5 (aaﬂﬁ'i'aﬁﬁa +€(a(xha‘3173+aﬁha,ﬂ73)
1
+0a39p713+95G3041]3) + 50a7139p713,

one deduces that the Gateaux derivative of | at { (it is easily seen that J:V(w)—R
is Fréchet differentiable) in the direction # is given by

J@© = | Rup(@)apnady+ | Nup(@)(@pza+edph)aurady

- /w Mg (Z)dapiady — /w pinidy+ /w Ga9al3dY,

where
83

er/% (€):=eaupor Eo (D), Mlxﬁ (€):==— gaa/&mamg&

Note that the functions N,Xﬁ(g ) and M,Xﬁ(g ), which respectively represent the
stress resultants and the bending moments of the middle surface of the deformed
shallow shell associated with the displacement field (;e;, satisfy the symmetry
conditions

Ntxﬁ(g) = N/Stx (g)r sz/%(g) :M/Stx (g)

Consequently, if € V(w) is a minimiser of | over V(w), then it must satisfies the
Euler-Lagrange equations

J'(T)(y)=0 forall yeV(w).
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Let (v, ) denote the Cartesian coordinates of the unit inner normal vector field
along v, let (7, ) denote the Cartesian coordinates of the unit tangent vector field
along v defined by

Ti:=v, and T:=-—17 on 7,

and let d,:=v,0, and d,:=T,09, respectively denote the normal derivative operator
and the tangent derivative operator along y. Then the above Euler-Lagrange equ-
ations are equivalent to the boundary value problem

_a,BNzx/S(g):PlX in w,
— 9 Mg (§) — 0 (N () (983 +€9ph] ) = p3-+0uda in w
6i=0dvl3=0 on %Yo,
Nﬂéﬁ(g)vﬁzo on 71,
Ma/z(g)l/pﬂ//s=0 on 71,

Na/&(g) (0503 +€dgh]vy + (aaMa/z(g))V/s-i-aT (M,X/g(C)V,XT/;) =—(uVy  ONn 7.

This equivalence is a straightforward consequence of the integration by parts for-
mula and of the fundamental theorem in the calculus of variations.

3 Nonlinear Saint-Venant equations and boundary
conditions for the stress resultants and bending
moments

Given any smooth enough vector field = (77;) : v — R3, the corresponding stress
resultants and bending moments are defined by the functions (Section 2)

3
A A A~ &
Nﬂﬁ(’i) ::‘gatxﬁmEUT(ﬂ)/ Mtx/% (n):= _ga/xﬁmamﬁ?n

where

4
AyBor - = ﬁétﬁéuﬂ +2,u ((50405[37 +5DLT5‘BO')/

A

1
Epc,B(ﬂ) = B (aoﬂ’]ﬁ ‘|‘a,3771x +€(auhaﬁ773 +aﬁhau773) +azx773a,8773) .

The next theorem shows that the functions Nyg(7) and M,g(y) characterise
a vector field # belonging to the space V(w) appearing in the definition of the clas-
sical Kirchhoff-Love theory for nonlinearly elastic shallow shells (see Section 2).



552 P.G. Ciarlet and C. Mardare / Commun. Math. Anal. Appl., 1(2022), pp. 545-567

Theorem 3.1. Let w CIR? be a connected open set with a Lipschitz-continuous boundary
v, let 7o be a non-empty relatively open subset of <y, and let h € C?(@). Define the space

= {n= () € H'(w) x H () x H(w); 1i=y113=0 on 70}
Then the following assertions hold:
(i) Ifn,{ € H (w) x H (w) x H*(w) satisfy
Mug(n) =Mup(Z) and Nug(n)=Nug(Q) in L*(w),

then
Eap(11) =Eap(0) and Oupt3=0,505 in L*(w).

(ii) If n,{ € H'(w) x H'(w) x H?(w) satisfy
szﬁ(ﬂ) ZEA,X‘B(g) and aalgﬁ3=a“ﬁ€3 in L2(w),

then there exist six constants ay,a»,as,b,dq,d>» € R such that

C1(y) =m(y) —diys(y) +a —byz—%(dlyl +dayz) —edih(y),
C2(y) =1m2(y) —dans(y) +az+ by —%(dﬂ/l +day) —edah(y),
C3(y) =m3(y)+as+(diy1+day2)

for almost all y=(y1,y2) € w.

(iti) If 5,0 € V(w) satisfy
Eug(n)=Eup(0) and 0,p113=0,p03 in w,
then n=_.
Proof. If two symmetric tensor fields (S,5) and (T,p) satisfy
Tup=04pocSup,
then the definition of the functions a,4,; implies that

4An

pcﬁ )\+2“1/l SUU(Sa,B +4ﬂstx,8
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In particular then,

8A
Too= </\+g‘1/l —1—4“1/[) Seo-

Therefore, replacing Sy by this expression in the previous relation yields
Tep =33 5ap Tovdup F 415
or equivalently,
Stx,B = bzx/SaTTUT/

where
A

4u(3A+2p )‘S‘TT‘S"‘ﬁ‘

1
bzx,BUT = @ (5060'5‘BT+5D(T5[3(T) -

Assertion (i) is proved by replacing the pa1r (S aps T,p) in the above relations
successively by the pairs (Eug (1), Nug (1)), (Eup(2),Nup(£)), (9upr1a, Map (1)), and
(9upl3, Maup(L))-

To prove assertion (ii) let # and { be two vector fields in H!(w) x H' (w) x
H?(w) satisfying

Eap(n)=Eup(f) and Oup13=0,p03 in w.

Since w is connected, the last relations imply that there exist constants a3,d1,d»
€ R such that

Ga(y)=m3(y)+as+(diy1+dayz) forall y=(yu)€cw
Define the vector field &:= (&;):w —RR3 by

Ca(y):=Ca(y)tedah(y), &(y):=0(y), yeEw.
Then the relations E, g(n)= E. g(¢) imply that
1 1 :
5 (Qul]p+0p1ua+0utf30p13) = 5 (0alp +9plu+0aG30pC3)  In w.

By a theorem due to Ciarlet and Mardare (see [8, Theorem 4.2]; the theorem is
stated in ibid. for simply-connected domains, but the proof mentions that the one
conclusion used here holds in fact under the weaker assumption that w is only
connected, like here), there then exist constants a4,a4,,b € R such that

d
CL(y) =11 (y) —digs(y) + a1~ by2 — 5 (duyr +daya),

d
C2(y) =112(y) — darja(y) +ax+ by — 5 (duyr +daya)
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for almost all y=(y1,y2) € w. Consequently,

d

C1(y)=my) —dinz(y) +a; — by — 71(611}/1 +daya) —edih(y),
d

02(y)=12(y) —danz(y) +az+by; — 72 (diy1+day2) —edah(y),

03(y) =n3(y) +az+(diy1 +day)

for almost all y = (y1,y2) € w.

Assertion (iii) is a consequence of assertion (ii) together with the boundary
conditions appearing in the definition of the space V(w). To see this, let 5, €
V(w) be such that

Eup(n)=Eup(0) and 0up13=0,4{3 in w.

Then assertion (ii) shows that there exist constants aq,a5,a3,b,d1,d» € R such that
the above relations hold.

Furthermore, the assumption that the vector fields # and ¢ belong to the space
V(w) implies in particular that their components satisfy boundary conditions

0a3=0da3=0 and {3=73=0 on 7.

Since 79 is non-empty by assumption, this implies d, =0 and a3 =0.
Besides, the assumption that the vector fields 57 and { belong to the space V(w)
implies that their components satisfy boundary conditions

Ca=1na=0 on 7.
Therefore ay =a; =b=0. The proof is complete. O
The next theorem shows that the stress resultants and bending moments
. A . &3
Naug(n) :=eanpor Eor (1), Map(n):=— gﬂaﬁmam%,
or equivalently the components

A 1

EIX,B(”) = E

~ 3 ~
btxﬁt‘fTNtTT(”)/ Dupl]3:= _g_gba/%UTMUT(”)

of the strain tensor fields necessarily satisfy specific compatibility conditions of
Saint-Venant type, and that these conditions become sufficient if the set w is
simply-connected.
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Theorem 3.2. (i) Let w CIR? be a connected open set, let e>0, let he C? (w), and let
1= (n;) € H(w) x HY(w) x H?(w).

Then the functions

1
Exp =5 (0u11p+0p1a +¢(0uhdp113+0phdats) +0un130p7ya) € L* (w),
chﬁ = a,xlgﬁg, S L? (w)

satisfy the relations

Eap=Epa in L*(w),
Fup="Fpa in Lz(w),
0uFpr =0pFas in H'(w),

azx/SEUT +807E1x/3 - ath/ST - a,BTEtw
= FaoFgr — FupFor +€(0uohFpr +0pchFag —0uphFor —9ochFyg)  in H™*(w).

(ii) Let w CTR? be a simply-connected open set, let € >0, let h € Cz(w), and let E,X[g €
L?(w) and F,g € L?(w) be such that

Eop=Epe in L*(w),
Fup = Fga in L*(w),
aapﬁo-:aﬁpag' ii’l H_l(CL)),

aaﬂEUT+aUTEa[5_aME‘BT_a,BTEtxU
= FIXU'FﬁT _FaﬁFgT—i_e(a[xahFlBT—i_aﬁThF“U _a“'BthT _ag'ThFDC'B) in H_z(cl.)).

Then there exists a vector field §=(1;) € H' (w) x H' (w) x H?(w) such that

1 .
Enp= 5 (awﬁaﬁnﬁe(aahaﬁng +aﬁh8,x173) +8,x17385173) in Lz(w),
thﬁ:azx/ﬂﬁ n Lz(w).
Proof. (i) Given any vector field = (17;) € H' (w) x H' (w) x H?(w), let

1 .
Aalg:zE(aaﬂlg—l—aﬁﬁ“—kaaﬁg,a‘gﬁg,) n Lz(w),
Balglzaalgﬁg, in Lz(w).
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Then, by [8, Theorem 4.1], the functions A € L?(w) and B,g € L*(w) satisfy the
compatibility conditions

Anp=Ag, in L*(w),
Bup=Bgu in L*(w),
9uBgr=0gBus in H Y(w),
dap Aot 9ot Anp —ao Apr —IprAac

=BaoBgr— BupBor in H?(w).

Next, the definition of the functions E,g and F,g in assertion (i) implies that

& .
A,Xﬂ:E,X/;—E(aahaﬁng—kaﬁhamg) in L2(w),
ch,B:th,B in Lz(w).

Replacing the functions A,s and B,z by these expressions in the above compat-
ibility conditions yields the compatibility conditions for E,s and F,g stated in
assertion (i).

(i) Let Eqp € L*(w) and Fyg € L*(w) be functions that satisfy the compatibility
conditions stated in assertion (ii). In particular then
Fup="Fgs in L?(w),
duFpr =0pFsr in H '(w).
Since w is simply-connected, [8, Theorem 4.2] shows that there exists a function

173 € H2(w) such that
F,X,g =aa,3173 in Lz(w).

Define the functions

s .
Atxﬁ = Etxﬁ_ 5 (aahaﬁn3+aﬁhaa;73) in L2 (w)

Then replacing the functions Eyg by (Axs+5 (94913 +0shd,13)) in the compat-
ibility conditions stated in assertion (ii) shows that the functions A,z and Fyg
satisfy the relations

Awp=Apy in L*(w),

Fup=Fg in L*(w),
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aaFﬁo-:aﬁF“U il’l H_l((JJ),
aa,BAUT +a(7TAzxﬁ - aszAﬁT - aﬁTAaU
= FaoFpr — FupFoc in H*(w).

Consequently, since w is simply-connected, [8, Theorem 4.2] can again be applied
to prove the existence of functions 17, € H' (w) such that

1 .
App= E(awﬁawﬁaamawg) in L? (w).

Thus the vector field #= (7;) € H'(w) x H' (w) x H?(w) found in this fashion
satisfies

1 .
E“ﬁ = E (aaﬂﬁ—l—aﬁﬂa —|—€(alxha/3173 —|—a'3ha,ﬂ73) +8,x17385173) n Lz(w),
sz/% :azx/%’73 in Lz(w).
The proof is complete. O

The next theorem shows that if a smooth enough vector field y= (7;) :@w — R?
satisfies the boundary conditions

ni=dy13=0 on 7o,
then the stress resultants and bending moments

3
A A A 8
Ntx,B(ﬂ) ::EazxﬁarEUT(ﬂ)/ Mg () := —gﬂaﬁmam%,

or equivalently the strain tensor fields

N 1 ~ 3 ~
E/Xﬁ(’?) = EbaﬁUTNUT (m), dupl]3:= _E_g,bzxﬁmMm(ﬂ)

necessarily satisfy specific boundary conditions.

Theorem 3.3. Let w CIR? be a connected open set with a boundary <y of class C2, let g
be a non-empty relatively open subset of vy, and let h € C*(@). Let (1;) € C*(w;R®) be
a vector field that satisfies the boundary conditions

ni=0yn3=0 on 7.
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Then the functions
1 _
E,x/g = E (a,m/; +8/317,X +s(8ah85173 —|—a’3ha,ﬂ73) +8,x1738/3173) = Eﬁtx S c! (CL)),
szﬁ = aa/gﬂg = F/;,x S Co(w)
satisfy the boundary conditions

E,Xﬁ'r,x'r/;zagEaﬁT“(rﬁvg—ngv/;)—KEal;vavlgzo on o,
F,X/;TﬁZO on ‘yo,

where (vy) denotes the inner normal unit vector field along vy, T : =V, Tp:= —v1, and
K:=Vy 01Ty
denotes the signed curvature of the planar curve .
Proof. Let n=(1;) € C*(w;RR3?) be such that
ni=0dyn3=0 on 7.

Then [10, Theorem 4.1] implies that the functions

1 _ _
Cap = E(aaﬂﬁ—i-a'gﬂ,x)ECl(w), Faﬁ::a“’gﬂgéco(a))
satisfy the boundary conditions

CapTaTp :Bgc“ﬁ’r&(rﬁvg—ZTgvﬁ) —KcapVaVp=0 on 7y, (3.1a)

FDc,BTDéT,B = lelBTzXVﬁ =0 on yo. (3.1b)

The relation (3.1b), the definition of the vector fields (v,) and (1), and the
symmetries Fyg = Fp, in @, together imply that

ch,BT,B =0 on Y0

on the one hand.
The boundary conditions #3 =09,%3 =0 on o imply that

du13=0 on 7o,
9o (0a1139613) = 0ral139p13 +0al]305173=0 on 7p.
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Then the definition of the functions

¢ 1 o

implies that
Exp=cap and dgEng=0sCap oON 7.
Therefore,
EnpTaTp=CupTaTp=0 on 7o,
doEpTa (Tﬁvg—ZTgv/;) —KkEapVavp
=0CapTa (T/;vg — ZTUvﬁ) —KcapVaVp=0 on 7g
on the other hand. The proof is complete. O

The next theorem shows that the converse of Theorem 3.3 holds under the
additional assumption that g is connected.

Theorem 3.4. Let w CIR? be a connected open set with a boundary 7y of class C2, let 7o
be a non-empty, connected and relatively open subset of vy, and let h € C%(@).

Let functions E,g € C'(@) and Fug € CY(@) satisfy the following properties: There
exists a vector field (1;) € C*(w;R3) such that

1 . JR—
Evp = 5 (9a11p+0p1a+e(9u1dp13+03hduns) +9arsdpigs) - in @

~

8l

Fyp=0up3 in
and the following boundary conditions are satisfied:

E,X’BT,XT/;:agE“ﬁT“(TﬁVU—ZTUV/;)—KE,X/;V,XV/;:O on 7o,
Fup13=0 on o,

where (vy) denote the inner normal unit vector field along the planar curve 7y, T :=1»,
To:=—V1 and K:=Vy -0 Ty.
Then there exist constants ay,ap,a3,b,dq,d, € R such that the vector field { = ({;) :
@ — 1IR3, defined by
d
G1(y) ==m(y) —dins(y) +ar —by2— %(dlyl +dayz) —edih(y),
d
02(y) :=m2(y) —dans(y) +az +by: — f(dlyl +dayz) —edah(y),

03(y):=n3(y)+az+ (diyi+daya), y=W1y2) €W
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satisfies

1 .

5 (0ulp+0pLu+€(0xhdpl3+0ph04l3) +04030p03) =Enp in @,
a,xﬁgng,X/; in w,
Ci=0d,03=0 on yo.

Proof. Let functions E,g and Fyz satisfy the assumptions of the theorem. In par-
ticular then
F,x'BT/g =0 on Yo-
Consequently,
d7(9u13) =FopT=0 on 1y,
which means that the tangential derivative of each function (d,73) vanishes along
the connected curve g; hence there exist two constants d1,d, € R such that

9u13(y)+dy =0 forall yey.
Define the vector field (&;) € C?(w;RR3) by
d
&1 (y) =m(y) —dins(y) = (dry1 +dayo) —edih(y),
d
G2(y) == 112(y) — dans (v) — 5 (dry1+ddayz) —edah(y),

G3(y) =n3(y)+(diy1+day2), y=y1y2) €w.
Then

1 .
E(azxgﬁ +0p8a +€(0:h0p83+0ph0,C3) +0430883) =Enp  in @,

aa,@‘:3 :th,B in w,
aa€3:atx773 +dy=0 on 7o,
0o (00839583) = 0w (39563 +0uG39,583 =0 on 7o.

Define the functions ¢, € C' (@) by

1
Cap:= E(a“§ﬁ+aﬁ§a).

Then, combining the relations

€ 1
Cap=Eap—7 (021083 +0ph0nG3) — 594630563
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with the above boundary conditions satisfied by &3, we infer that
Coc,B:Epc,B and 8gca/3=80E,X/3 on yo.

Consequently, the boundary conditions for the functions E,g and F,g appear-

ing in the statement of the theorem imply that the functions c,s:=3(3.&s+9pCx)
and F,g:=09,p(3 associated with the vector field (¢;) satisfy the boundary condi-
tions

CapTaTp :Bgc“ﬁ’r&(fﬁvg—ZTgvﬁ) —KcapVaVp=0 on 7y,

PpcﬁTaTﬁIPpcﬁTaVﬁzo on yop.

Then a theorem due to Ciarlet & Mardare (see [10, Theorem 4.1]) implies that
there exists constants a7,a5,a3,b € R such that

(i=0dy3=0 on 7o,

where
G1(y):=81(y)+a1—by2, y=(ya) €@,
Co(y)=C(y)+ar+byr, y=(ya)cw,
C3(y):=083(y) +as, y=(Ya) €@.
This proves that the vector field { = ({;) € C?(w;RR3) satisfies all the announced
properties. The proof is complete. O

4 New intrinsic formulation of the Kirchhoff-Love
theory of a nonlinearly elastic shallow shell

We are now in a position to introduce our new intrinsic formulation of the Kirch-
hoff-Love theory of a nonlinearly elastic shallow shell and to justify it by prov-
ing its equivalence to the classical formulation of the same equations, cf. Theo-
rems 4.1 and 4.2 below.

An intrinsic formulation of the Kirchhoff-Love theory for a nonlinearly elastic
shallow shell consists in replacing the unknown displacement field appearing in
the classical approach by new unknowns, which are in effect either “measures
of strain” or “measures of stress” inside the deformed shell, with the property
that the displacement field can be recovered a posteriori from them, once the
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problem is solved in its intrinsic formulation. As we already proved in Section 3
that the displacement field can be recovered uniquely from the stress resultants
and bending moments of the middle surface of the deformed shell, it remains to
tind the equations satisfied by these new unknowns. This is the object of the next
theorem.

Recall that A >0 and y >0 denote the Lamé constants of the elastic material
constituting the shell,

4A

AnBot = ﬁgyéaréaﬁ +2p (51x¢75[zr + 5&75/30)
denote the components of the corresponding two-dimensional elasticity tensor,
2¢>0 denotes the thickness of the shell, and 1 €C?(w) denotes the function defin-
ing the middle surface of the shell as the graph of the function

x3=¢h(y), yew, wcCR%.

The stress resultants and bending moments associated with a displacement
field {=({;) €C?(w;RR3) of the middle surface of the shell are respectively denoted
and defined by

3
A A ~ 8
Nzxﬁ (g) ::eatxﬁa‘[EUT(C>1 M(xﬁ(g) = _gatxﬁo"rao"rg'jw

where

A

Ewp(0):= % (020p +0pGa +€(0ahdpl3+05h0ul3) +0aG30503).-

Theorem 4.1. Let w CIR? be an open and connected set with a boundary vy of class C?,
let yo be a nonempty relatively open subset of y, let y1:=\ yo, and let h € C?(w).
Assume that a vector field {=({;) € C?(w;R3) satisfies the boundary value problem

—9pNus(0) =pa in w, (4.1a)
_azx/Ssz/S(g)_aa(Na/ﬁ(g)[aﬁ@—i—Salgh]):P3+atx% n w, (4.1b)
Na/ﬁ@)vﬁzmaﬁ(g)%vﬁ:o on 1, (4.1¢)
N (0)va (933 +€dph) + (9 Mg (L))vg
+ 07 (Mo () VaTp) = —qaa on i, (4.1d)
0i=0y(3=0 on 7Yo. (4.1e)

Then the functions

A

sz,B::EArx,B(g)/ Falglza“‘[ggg,, M(Xﬁ::MIX,B(g)I NalglzNa[g(g)
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satisfy the boundary value problem

—0gNyg =P in w, (4.2a)
—0apMyp—0u(Nyp[0p03+€dph]) = p3+0aqa in w, (4.2b)
Nypvp=Moypvavg=0 on vy, (4.20)
NapVa (0503 +€dph) + (0u Mg ) Vg +07(MaplaTg) = —qaVa on vy, (4.2d)
daFgor —pFue =0 in w, (4.2e)

a(XﬁEO'T—i_a(TTE(Xﬁ _aaaEﬁT_aﬁTEaU
:FIXUF’BT_F“’BFU'T+€(aaghF’BT+aﬁThF“0'_alxﬁthT_ag'ThF[Xﬁ) ii’l a], (4.2f)
EwpTaTp =00 EapTu(Tpvoe —2T5vp) —kEgpvavp = FupTs =0 on yy. (4.2g)

Proof. Let { = ({;) € C*(w;R?) be a vector field that satisfies the boundary value
problem (4.1). Then

i) Egs. (4.2a)-(4.2d) are deduced from Egs. (4.1a)-(4.1d) by using the definition
of the functions M, :=1\7I,X/3(§) and Nyg:= N,Xﬁ((:).

ii) Egs. (4.2e) and (4.2f) are satistied thanks to the definition of the functions
Eup:= E",X/;(g) and F,g:=09,5(3 combined with Theorem 3.2 (i).

iii) Eq. (4.2g) was shown to hold in Theorem 3.3.
The proof is complete. O

The next theorem shows that the converse of Theorem 4.1 holds under the ad-
ditional assumptions that w is simply-connected and that 7y is connected. Recall
that

1 A
bupor:= @ (5w05ﬁr+51x75[50) - Méa'féﬂﬁ
are the components of the inverse of the two-dimensional elasticity tensor with
components a,pg;¢.

Theorem 4.2. Let wCIR? be an open and simply-connected set with a boundary v of class
C?, let 7o be a nonempty connected and relatively open subset of <y, and let h € C?(@).
Let y1:=7\ 0.

Assume that symmetric tensor fields (M,g) €C%(@;S?) and (N,g) €C*(@;S?) satisfy
the boundary value problem
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—dgNyp=pua in w, (4.3a)
—0apMoup—0u (Nyap[0p03+€9ph]) = p3+0ada in w, (4.3b)
Nypvp=Mypvavp=0 on vy, (4.3¢)
NopVa (0503 +€dph) + (0u Mg )Vp+07(MapVaTg) = —qaVa on vy, (4.3d)
doFgr —0pFur =0 in w, (4.3e)

dapEcr +0orEnp—dacEpr —9prEac
= FaoFpr — FupFor+€(uchFae +3pchFag —duphFor —dochFag)  in w,  (4.3)
EnpTaTp =00 EapTu(TpVe —2ToVp) —KEnpVavp = FapTp=0 on 7y, (4.3g)
where
1 3
Eyg:= EblxﬁmNar, Fup:=— 8_3bpc[30TM(TT-
Then there exists a unique vector field { = (Z;) € C?(w;R3) such that
Myp= sz/% (€) in w,
Nap=Nus(f) in w,
(i=0di3=0  on 7.
Consequently, the vector field T satisfies the boundary value problem

—0pNup (L) =Ppa in w, (4.4a)
— 0 Map(Z) =9 (Nup (D) [0p03+€0ph]) = p3+0uga  in w, (4.4b)
Nap(§)vp =M (T)vavp=0 on 1, (4.40)
Nug(0)va (9533 +€9ph) + (0aMap(Z)) v
+97 (Mg (Z)VaTg) = —GaVa on 1, (4.4d)
Ci=0dvi3=0 on yo. (4.4e)

Proof. Let (Nyg) € C1(@;5?) and (M,g) € C°(@;5?) be tensor fields satisfying
Egs. (4.3). In particular then, the functions
Eyp:= %ba/smNm, Fyp:=— %ba/zmMm
satisfy the compatibility conditions
doFgor —0pFur =0 in w,
dupEor+0orEnp— o Epr —9prEac
= Fuo Fgr — FapFor +€(0aghFpr +0pchFug — 0ahFer —0phFap)  in w,
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which are precisely the nonlinear Saint-Venant compatibility conditions appear-
ing in Theorem 3.2 (ii) established in Section 3. Hence, there exists a vector field
n=(17;) € H (w) x H'(w) x H?(w) such that

EA,X‘B (1]) = E,X[; and 8a/3173 = F/X,B in w.

Furthermore, 173€ C?(@) since M,g€C’(@) by assumption. Then the definition
of the functions E",X/; (1) given at the beginning of this section and the assumption
that N, € C (@) together imply that the functions

1
Cap*= 5 (9al]p+p]a)
belong to the space C!(@). Consequently, 7, € C?(@) since
aaﬁﬂg':ap(Cag'_Fachﬁg-_ag'caﬁ.

The functions
sz/% = sz/% (1), th,B = aa/s%
satisfy in particular the boundary conditions (see Eq. (4.3g))

EnpTaTp=00EapTa (Tﬁvg —2”((71//;) —KkEupvavp=Fyp73=0 on 7.

Then Theorem 3.4 implies that there exist constants a1,a2,a3,b,d1,d2 € R such that
the vector field { = (;) € C?(w;R3), defined for each y= (y1,y2) €@ by

C1(y):=m(y)—dup(y)+a —byz—%(dlyl +dayz) —edih(y),
C2(y):=n2(y) —danpz(y) +az+byy —%(dlyl +dayz) —edah(y),
C3(y):=13(y) +as+(dry1 +day2)
satisfies the boundary conditions
Ci=0dug3=0 on 7.
Besides, Theorem 3.4 shows that

1 .
E,X[; = E (aaglg—ka‘gg,x +€(aaha‘3€3+a‘3haag3) —|—a,x§38/3§3) n
Fug=04p03 in

&l

&l
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which in turn implies that

Y 1 1 . —_—
erﬁ (g) = §€3a06,BO'Ta(TTC3 =— 583004/307[“07 = M(xﬁ in w,
N’X,B(g) :zea“ﬁUTEUT(g) :gaaﬂUTEUT:Naﬁ in w.

Then Egs. (4.4a)-(4.4d) follow from Egs. (4.3a)-(4.3d). The proof is complete. [
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