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Abstract. In the present study, we consider the following parabolic-elliptic
chemotaxis system:

{

ut=∇·
(

γ(v)∇u−uχ(v)∇v
)

+λu−µuσ, x∈Ω, t>0,

0=∆v−v+uκ , x∈Ω, t>0,

where Ω⊂R
n (n≥2) is a smooth and bounded domain, λ>0, µ>0, σ>1, κ>0.

Under appropriate assumptions on γ(v) and χ(v), we obtain the global bound-
edness of solutions when κn< 2 or κn≥ 2, σ≥ κ+1, which generalize the pre-
vious result to the case with nonlinear signal secretion and superlinear logistic
term when n ≥ 2. Moreover, if adding additional conditions σ ≥ 2κ and µ is
sufficiently large, it is shown that the global solution (u,v) converges to

(

(

λ

µ

)
1

σ−1

,

(

λ

µ

)
κ

σ−1

)

exponentially as t→∞.
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1 Introduction

Chemotaxis, a kind of taxis, which refers to the phenomenon that cells, bacteria or
multicellular organisms direct their movements according to certain chemicals.
To describe the aggregation phase of amoeba cells in response to the chemical
signal emitted by cells, Keller and Segel [20] introduced the following system:

{

ut =∇·
(

γ(v)∇u−uχ(v)∇v
)

, x∈Ω, t>0, (1.1a)

τvt=∆v−v+u, x∈Ω, t>0, (1.1b)

where τ∈{0,1}, Ω⊂R
n (n≥1) is a bounded domain, u(x,t),v(x,t) denote the cell

density and the concentration of chemical signal, γ(v), χ(v) are the cell diffusion
function and chemo-sensitivity function respectively, which have the following
relation:

χ(v)=(α−1)γ′(v), (1.2)

where α is the ratio of effective body length to step size.
For the case that γ(v) = d, χ(v) = χ, where d and χ are positive constants,

(1.1) can be reduced to the minimal Keller-Segel model, whether model (1.1) or
its related variants, there has been a large number of research with regard to the
existence, boundedness, finite-time blow-up, asymptotic behavior et al. (see the
review literatures [2, 3, 10, 12] and the references therein). In particular, consider-
ing system (1.1) with nonlinear signal production and general growth source, that
is, adding the logistic term f (u)=λu−µuσ(λ∈R, µ>0, σ>1) on the right hand
side of Eq. (1.1a), and replacing the linear term u in Eq. (1.1b) by uk (k>0). When
k≥ 1, Galakhov et al. [9] considered the global dynamics of solutions, thereinto,
by assuming that σ>k+1 or σ=k+1, µ>((nk−2)/nk)χ, they obtained the global
boundedness result; and this boundedness result was extended to the borderline
case σ = k+1, µ = ((nk−2)/nk)χ, n ≥ 3 by Hu and Tao [13]; then Xiang [33] re-
moved the restrictions k≥1 and n≥3, under the condition k+1<max{σ,1+2/n}
or k+1=σ, µ≥ ((nk−2)/nk)χ, he proved that the solution is globally bounded;
afterwards, Xiang et al. [30] further extended the result in [33] to the case with
nonlinear diffusion function D(u) and nonlinear sensitivity function S(u); lately,
considering the chemo-repulsion case, Hu et al. [15] established the global bound-
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edness of solutions for the quasilinear case without any conditions on parame-
ters. As for the parabolic-parabolic case, one can refer to the literatures [14,24,26]
and the reference thereinto.

When the motility function γ(v) and χ(v) satisfy (1.2) with α=0, system (1.1)
can be written as

{

ut =∆(γ(v)u), x∈Ω, t>0, (1.3a)

τvt =∆v−v+u, x∈Ω, t>0, (1.3b)

which can also be used to describe the stripe pattern formation of bacterial move-
ments in the experiment when adding the logistic term f (u)= µu(1−u) [5]. In
such case, considering the cell growth or not, the global dynamics of solutions
were detected when γ(v) satisfies certain conditions, or for special γ(v), such as
γ(v)=c0/vk, e−χv, 1/(c+vk) et al.. On the one hand, considering µ=0 (i.e. no cell
growth), when τ=1, if γ(v)∈C3([0,∞)), γ1≤γ(s)≤γ2, |γ′(s)|≤γ′ (γ1,γ2,γ′>0)
for all s≥0, Tao and Winkler [27] demonstrated that system (1.3) admits a globally
bounded classical solution for all suitably regular initial data in two-dimensional
setting, and for n≥ 3, they also obtained the existence of global weak solutions;
while for γ(v) without lower or upper bound, such as, γ(v)= c0/vk (c0 > 0, k>
0), with a smallness assumption on c0, Yoon and Kim [34] proved that system
(1.3) possesses global classical solutions in all dimensions; choosing γ(v)= e−χv,
the critical mass phenomenon was detected for n = 2 [8, 18], especially in [8],
the infinite-time blow-up was identified; lately, the existence and uniqueness of
global weak solutions when n≥1, and the regularity as well as blow-up of solu-
tion when n≤2 were discussed in [4]. When τ=0, if γ(v)=1/vk , the global bound-
edness of classical solutions was established for 0<k<2/(n−2)+ [1]; considering
general motility function γ(v), if γ(v)∈C3([0,∞)), γ(v)>0, γ′(v)≤0 for all v>0,
and there exists l > 0 such that lims→∞ slγ(s)=+∞, then the uniform bounded-
ness of classical solution was derived when n=2 [6], in addition, for the specific
case γ(v)= e−v, the critical mass phenomenon was also observed for n=2, and it
was shown that the global solution becomes unbounded as t→∞; moreover, for
γ(v)∈C3([0,∞)), γ(v)>0, γ′(v)≤0 on (0,∞), if lims→∞ eαsγ(s)=+∞,∀α>0 when
n=2 or l1|γ

′(s)|2≤γ(s)γ′′(s),∀s>0 with some l1>n/2 when n≥3, it was proved
in [7] that the classical solution is globally bounded, typically, for γ(v)=v−k , n≥3,
the uniform boundedness of solutions was also established under the condition
k<2/(n−2); and very recently, assuming that γ(v)∈C3([0,∞)), γ(v)>0, γ′(v)≤0
on (0,∞), lims→∞ γ(s)=0, and γ(s)+sγ′(s)≥0,∀s>0, if there exists l2>(n+2)/4
such that l2|γ

′(s)|2 ≤ γ(s)γ′′(s) for all s > 0, Jiang [16] proved that the solution
is globally bounded for n ≥ 4, and the solution converges to the average of the
initial data u0 exponentially, specifically, when γ(v)= v−k , the same result holds
provided that k∈ (0,1) for n=4,5 or k∈ (0,4/(n−2)) for n≥6.
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On the other hand, adding logistic source f (u) = µu(1−u) (µ > 0) in (1.3),
for the parabolic-parabolic case, by imposing the hypothesis γ(v) ∈ C3([0,∞)),
γ(v)>0, γ′(v)<0 on [0,∞), limv→∞ γ(v)=0, and limv→∞(γ′(v)/γ(v)) exists, Jin
et al. [17] established the global boundedness of solutions for (1.3) when n = 2,
and further assuming that µ > L0/16 with L0 = max0≤v≤∞(|γ

′(v)|2/γ(v)), the
asymptotic behavior of solution was detected; as for the case n ≥ 3, when Ω is
convex and µ is large, it was shown that the solution is globally bounded by as-
suming that |γ′(v)|≤L in [0,∞) with L>0 [29], if n=3,γ1≤γ(v)≤γ2,|γ′(v)|≤L,
the global boundedness result was derived for sufficiently large µ, moreover, the
large time behavior of solution was proved under the same constraints on µ as
in [17]. As for the parabolic-elliptic case, when n = 2, Fujie and Jiang [6] estab-
lished the global boundedness result, where the existence of limv→∞(γ

′(v)/γ(v))
required in [17] was removed, and for the asymptotic behavior of solutions, the
same result as the fully parabolic case was obtained; in three or lower dimensions,
the existence or nonexistence of nonconstant steady states of (1.3) was derived for
small µ [23]; recently, if γ(v)∈C3([0,∞)), γ(v)>0, γ′(v)≤0, γ′′(v)≥0, γ′′′(v)≤0,
−2γ′(v)+γ′′(v)v≤µ0<µ, and |γ′(v)|2/γ(v)≤c for all v>0, Tello [28] established
the global boundedness and asymptotic behavior of weak solution when n≥1.

Lately, adding the logistic term f (u)= au−buσ(a>0,b>0,σ>1) on the right
hand side of Eq. (1.3a), Lyu and Wang [22] explored the global boundedness and
large time behavior of solutions, it was shown that if n≤2, σ>1, or n≥3, σ>2, or
n≥3, σ=2 and b is greater than some constant, then the corresponding solution
is globally bounded, also, the large time behavior of solutions was detected. Fur-
thermore, replacing Eq. (1.3b) by vt =∆v−v+uκ , Tao and Fang [25] established
the boundedness result when κ<(2/(n+2))σ, and under the additional assump-
tion that µ is sufficiently large, it was shown that the solution converges to the
constant steady state exponentially.

So far, most of the research results related to (1.1) are focused on the case
χ(v) =−γ′(v), there are few results on general γ(v), χ(v). Irrespective of the
logistic source, for the case τ=0, if (γ(v),χ(v))∈ [C2([0,∞))]2, γ(v)>0, χ(v)≥0,
χ′(v)< 0 for all v ≥ 0, it was shown in [31] that the solution of (1.1) is globally
bounded when n= 1, moreover, the global boundedness result was extended to
n≥2 by attaching the additional assumptions that

inf
v≥0

γ(v)|χ′(v)|

|χ(v)|2
>

n

2
, lim

v→∞
vχ(v)<∞ for n>3,

and
∫

Ω
χ(v)−pdx < ∞ for some p > n/2; for τ = 1, under the hypothesis that

(γ(v),χ(v))∈ [C2([0,∞))]2, γ(v)>0, χ(v)≥0, χ′(v)<0 for all v>0, and



572 X. Tu et al. / Commun. Math. Anal. Appl., 1 (2022), pp. 568-589

inf
v≥0

γ(v)

vχ(v)(vχ(v)+1−γ(v))+
>

n

2

the uniform boundedness was investigated for 2≤n≤4 [32]. Taking into account
the growth term, namely, adding µu(1−u)(µ> 0) on the right side of Eq. (1.1a),
the existence of globally bounded solutions and asymptotic behavior were es-
tablished by Jin and Wang [19], where the boundedness result was detected by
assuming that (γ(v),χ(v))∈ [C2([0,∞))]2, γ(v)>0, and |χ(v)|2/γ(v) is bounded
for all v≥0.

Yet there are no results for systems with both nonlinear signal production and
general logistic source when τ= 0, as compared with the work in [22], the pres-
ence of the nonlinear signal production makes it hard to obtain the boundedness
of v at the first time, so the method in [22] fails. Luckily, the method in [33] seems
to work, but the interaction between the motility function and the nonlinear sig-
nal production brings new difficulty, which needs finer analysis and estimates.

Motivated by the works in [19, 30, 31, 33], we consider the following chemo-
taxis system with nonlinear signal production and general logistic source:



























ut =∇·
(

γ(v)∇u−uχ(v)∇v
)

+λu−µuσ, x∈Ω, t>0, (1.4a)

0=∆v−v+uκ , x∈Ω, t>0, (1.4b)

∂u

∂ν
=

∂v

∂ν
=0, x∈∂Ω, t>0, (1.4c)

u(x,0)=u0(x), x∈Ω, (1.4d)

where λ>0, µ>0, σ>1, κ>0. Let the initial data satisfy

u0∈C0(Ω), u0>0, u0 6≡0. (1.5)

And the motility functions γ(v), χ(v) satisfy the following assumptions:

(H1)
(

γ(v),χ(v)
)

∈
[

C2([0,∞))
]2

, γ(v)>0, χ(v)>0, χ′(v)<0 for all v≥0.

(H2) inf
v≥0

γ(v)|χ′(v)|

|χ(v)|2
>

nk

2
, if nk≥2.

The main result may now be enunciated.

Theorem 1.1. Let Ω ⊂ R
n(n ≥ 2) be a bounded domain with smooth boundary, λ >

0, µ> 0, σ> 1, and the initial data satisfy (1.5). Assume that (H1) holds, if κn< 2, or

κn≥2, σ≥κ+1, γ(v), χ(v) satisfy (H2), then system (1.4) possesses a globally bounded

classical solution (u,v) satisfying

‖u(·,t)‖L∞ (Ω)+‖v(·,t)‖W1,∞(Ω)≤C for all t>0, (1.6)

where C>0 is independent of t.
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Remark 1.1. It is obvious that the set of functions satisfying (H1)-(H2) is not

empty, such as γ(v)=(v+1)−m , χ(v)=−γ′(v) with m>0, 1+1/m>nκ/2.

Remark 1.2. If the solution (u,v) of system (1.4) blows up at some time T̂>0, from

Lemma 3.2, it is obvious that u and v blow up at the same time, in the sense that

limsup
t→T̂−

‖u(·,t)‖Lp(Ω)=∞ for all p>
κn

2
,

limsup
t→T̂−

‖v(·,t)‖W1,∞(Ω)=∞.

Theorem 1.2. Let Ω⊂R
n(n≥2) be a bounded domain with smooth boundary, λ>0,µ>

0, σ>1, and the initial data satisfy (1.5). Suppose that the assumptions in Theorem 1.1

hold, (u,v) is the globally bounded solution of (1.4) obtained in Theorem 1.1. If σ≥2κ,

then one can find µ0>0, m̃>0, C>0, whenever µ>µ0, for all t>0 the following holds:

‖u(·,t)−u∗‖L∞(Ω)≤Ce−m̃t,

‖v(·,t)−v∗‖L∞(Ω)≤Ce−m̃t,
(1.7)

where

u∗=

(

λ

µ

)
1

σ−1

, v∗=

(

λ

µ

)
κ

σ−1

.

Remark 1.3. Actually, if the motility functions satisfy χ2(v)/γ(v)≤K1 for some

K1 > 0, then the lower bound of µ and the convergence rates in Theorem 1.2 can

be given precisely, that is,

µ0=
u2κ+1−σ
∗ K1

16
sup

s∈(0,1)∪(1,∞)

(sκ−1)2

(s−1)(sσ−1−1)
,

m̃=
(σ−1)uσ−1

∗ (µ−µ0)

n+2
.

This paper is organized as follows: in Section 2, we present the local well-
posedness result and some significant estimates for future use. In Section 3, we
establish the global boundedness of solutions for system (1.4). In Section 4, we
detect the large time behavior for system (1.4).

2 Preliminaries

In this section, we first state the local well-posedness result, which can be attained
by a similar discussion as in [1, 17], also the Gagliardo-Nirenberg interpolation
inequality [33] is given in preparation for the later proof.
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Lemma 2.1. Let Ω ⊂ R
n (n ≥ 1) be a bounded domain with smooth boundary, λ >

0, µ > 0, σ > 1, κ > 0, and the initial data satisfy (1.5). Suppose that the assumptions

(H1) and (H2) hold. Then there exists Tmax ∈ (0,∞] such that system (1.4) possesses a

unique non-negative classical solution (u,v)∈C0(Ω×[0,Tmax))∩C2,1(Ω×(0,Tmax))×
C2,1(Ω×(0,Tmax)), and if Tmax<∞, then

limsup
tրTmax

‖u(·,t)‖L∞ (Ω)=∞.

In addition, there exists C1>0 such that
∫

Ω
udx≤C1 for all t∈ (0,Tmax).

Lemma 2.2. Let Ω⊂R
n (n≥1) be a bounded domain with smooth boundary, 1≤r≤∞,

0<q<∞. Then for any α∈ (0,1), fixing

1

p
=α

(

1

r
−

1

n

)

+(1−α)
1

q
,

for any ϕ∈W1,r(Ω)∩Lq(Ω) one has

‖ϕ‖Lp(Ω)≤CGN‖ϕ‖α
W1,r(Ω)‖ϕ‖1−α

Lq(Ω)
.

The following lemma is an extension of [11, Lemma 2.2], which is essential for
the boundedness result.

Lemma 2.3. Suppose that the assumptions in Lemma 2.1 hold. Then for all t∈(0,Tmax),
the solution (u,v) of (1.4) satisfies

∫

Ω

vζdx≤η
∫

Ω

uκζdx+C2 (2.1)

for any η>0 and ζ>1, where C2>0.

Proof. Testing Eq. (1.4b) by vζ−1, ζ>1, one has

4(ζ−1)

ζ2

∫

Ω

∣

∣∇v
ζ
2
∣

∣

2
dx+

∫

Ω

vζdx

=
∫

Ω

uκvζ−1dx≤
1

ζ

∫

Ω

uκζ dx+
ζ−1

ζ

∫

Ω

vζdx, (2.2)

which indicates that

4(ζ−1)

ζ

∫

Ω

∣

∣∇v
ζ
2
∣

∣

2
dx≤

∫

Ω

uκζ dx. (2.3)
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It follows from Ehrling’s lemma that

∫

Ω

vζdx≤η1
4(ζ−1)

ζ

∫

Ω

∣

∣∇v
ζ
2
∣

∣

2
dx+C(η1,ζ)

(

∫

Ω

vdx

)ζ

≤η1

∫

Ω

uκζdx+C(η1,ζ)

(

∫

Ω

uκdx

)ζ

(2.4)

for any η1 > 0 and some C(η,ζ)> 0, where we have used (2.3) and the relation
∫

Ω
vdx=

∫

Ω
uκdx. If κ≤1, applying the L1 bound for u in Lemma 2.1, it is obvious

that (2.1) holds. If κ>1, for ζ>1, choosing positive constants a, b, κ1, κ2,

1

a
=

κ−1

κζ−1
,

1

b
=1−

1

a
=

κζ−κ

κζ−1
, κ1=κ−

1

b
, κ2=

1

b
,

then combing the Hölder inequality and Young inequality, and utilizing the fact

that κ2b=1, κ1a= ζκ, ζ/a<1 and
∫

Ω
udx≤C1, we find the following relation:

(

∫

Ω

uκdx

)ζ

=

(

∫

Ω

uκ1+κ2dx

)ζ

≤

(

∫

Ω

uκ1adx

)

ζ
a
(

∫

Ω

uκ2bdx

)

ζ
b

≤C
ζ
b
1

(

∫

Ω

uκ1adx

)

ζ
a

≤η2

∫

Ω

uκζ dx+C(a,b,ζ,η2,C1)

holds for any η2>0 and some C(a,b,ζ,η2 ,C1)>0. This completes the proof of the

lemma.

3 Global boundedness of solutions

To obtain the global boundedness result, we first establish the following inequal-
ity.

Lemma 3.1. Let Ω⊂R
n(n≥1) be a bounded domain with smooth boundary, λ>0, µ>

0, σ>1, κ>0, the initial data satisfy (1.5). Assume that (u,v) is the classical solution of

(1.4), and (H1) holds. Then for z=up/2, p>1, one has

1

p

d

dt

∫

Ω

z2dx+
p−1

p2

∫

Ω

∣

∣∇
(

γ
1
2 (v)z

)
∣

∣

2
dx+µ

∫

Ω

z
2(p+σ−1)

p dx

≤
p−1

2

∫

Ω

|χ(v)|2

γ(v)
z2|∇v|2dx+

p−1

2p2

∫

Ω

|γ′(v)|2

γ(v)
z2|∇v|2

+λ
∫

Ω

z2dx for all t∈ (0,Tmax). (3.1)
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Proof. Testing Eq. (1.4a) by up−1, and use the Young inequality, one obtains

1

p

d

dt

∫

Ω

updx=−(p−1)
∫

Ω

γ(v)up−2|∇u|2dx+(p−1)
∫

Ω

χ(v)up−1∇u·∇vdx

+
∫

Ω

(

λup−µup+σ−1
)

dx

≤−
p−1

2

∫

Ω

γ(v)up−2 |∇u|2dx+
p−1

2

∫

Ω

|χ(v)|2

γ(v)
up|∇v|2dx

+
∫

Ω

(

λup−µup+σ−1
)

dx

=−
2(p−1)

p2

∫

Ω

γ(v)|∇u
p
2 |2dx+

p−1

2

∫

Ω

|χ(v)|2

γ(v)
up|∇v|2dx

+
∫

Ω

(

λup−µup+σ−1
)

dx. (3.2)

Denoting z=up/2, it follows from (3.2) that

1

p

d

dt

∫

Ω

z2dx≤−
2(p−1)

p2

∫

Ω

γ(v)|∇z|2dx+
p−1

2

∫

Ω

|χ(v)|2

γ(v)
z2|∇v|2dx

+λ
∫

Ω

z2dx−µ
∫

Ω

z
2(p+σ−1)

p dx. (3.3)

Here, we notice that

γ(v)|∇z|2 =
∣

∣γ
1
2 (v)∇z

∣

∣

2
=

(

∇
(

γ
1
2 (v)z

)

−
1

2

γ′(v)

γ
1
2 (v)

z∇v

)2

≥
1

2

∣

∣∇(γ
1
2 (v)z)

∣

∣

2
−

1

4

|γ′(v)|2

γ(v)
z2|∇v|2. (3.4)

Consequently, utilizing the assumption (H2), it is thereby inferred that

1

p

d

dt

∫

Ω

z2dx+
p−1

p2

∫

Ω

∣

∣∇
(

γ
1
2 (v)z

)
∣

∣

2
dx+µ

∫

Ω

z
2(p+σ−1)

p dx

≤
p−1

2

∫

Ω

|χ(v)|2

γ(v)
z2|∇v|2dx+

p−1

2p2

∫

Ω

|γ′(v)|2

γ(v)
z2|∇v|2+λ

∫

Ω

z2dx.

The proof is complete.

Next, based on Lemma 3.1, we derive a boundedness criterion for system (1.4)
as follows.
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Lemma 3.2. Let Ω⊂R
n (n≥ 2) be a bounded domain with smooth boundary, and the

assumptions in Lemma 3.1 hold. If there exist ǫ∈ (0,κn/2) and L>0 such that

‖u(·,t)‖
L

κn
2 +ǫ ≤L (3.5)

for all t ∈ (0,Tmax), then (u,v) is a global classical solution of problem (1.4), which is

uniformly bounded in the sense that

‖u(·,t)‖L∞ (Ω)+‖v(·,t)‖W1,∞(Ω)≤C3 for all t∈ (0,Tmax),

where C3>0 is independent of t.

Proof. For any ǫ∈ (0,κn/2), let l :=κn/2+ǫ, due to the fact that n≥2, one finds

2kn

n+2
< l< kn. (3.6)

Under the hypotheses that ‖u(·,t)‖Ll (Ω) ≤ L, we have ‖uκ(·,t)‖
L

l
κ (Ω)

≤ Lκ , then

from the elliptic regularity estimate for the second equation, we deduce that

‖v(·,t)‖
W2, l

κ (Ω)
≤ c0 (3.7)

with c0>0. Therefore, in view of the Sobolev embedding theorem

W2, l
κ (Ω) →֒W1,q̂(Ω) with q̂=

ln

nκ− l
,

we obtain that ‖v(·,t)‖W1,q̂(Ω) is bounded, and a direct calculation yields that q̂>

n≥2. Employing the Sobolev embedding theorem again, one finds

‖v(·,t)‖L∞(Ω)≤ c1

with c1>0, therefore, one can find positive constants γ1, γ2, K such that

γ1≤γ(v)≤γ2,
χ(v)+|γ′(v)|

γ(v)
≤K. (3.8)

Then from (3.1) and (3.8), we arrive at

1

p

d

dt

∫

Ω

z2dx+
p−1

p2

∫

Ω

∣

∣∇(γ
1
2 (v)z)

∣

∣

2
dx+µ

∫

Ω

z
2(p+σ−1)

p dx

≤

(

p−1

2
+

p−1

2p2

)

K2
∫

Ω

γ(v)z2 |∇v|2dx+λ
∫

Ω

z2dx (3.9)
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with z=up/2. To handle the first term in the right-hand side of (3.9), we set

q=
q̂/2

q̂/2−1
=

ln

(n+2)l−2κn
.

It is clear that q>1. By the Hölder inequality and the boundedness of ‖v(·,t)‖W1,q̂ ,

we can find c2>0 such that

∫

Ω

γ(v)z2|∇v|2dx=
∥

∥

(

γ
1
2 (v)z

)2
|∇v|2

∥

∥

L1(Ω)

≤
∥

∥

(

γ
1
2 (v)z

)2∥
∥

Lq(Ω)

∥

∥|∇v|2
∥

∥

L
q̂
2 (Ω)

≤ c2

∥

∥γ
1
2 (v)z

∥

∥

2

L2q(Ω)
. (3.10)

Choose

ξ=
2(κn− l)p−

(

(n+2)l−2κn
)

(σ−1)
(

2p−(n−2)(σ−1)
)

l
,

Since l>κn/2, for

p>max

{

1,
(n−2)(σ−1)

2
,

(

(n+2)l−2κn
)

(σ−1)

2(κn− l)

}

it is clear that ξ∈ (0,1), then we can apply the Gagliardo-Nirenberg interpolation

inequality in Lemma 2.2 and the Young inequality to get

∫

Ω

γ(v)z2|∇v|2dx≤ c2

∥

∥γ
1
2 (v)z

∥

∥

2

L2q(Ω)

≤ c3

∥

∥γ
1
2 (v)z

∥

∥

2ξ

W1,2(Ω)

∥

∥γ
1
2 (v)z

∥

∥

2(1−ξ)

L
2(p+σ−1)

p (Ω)

≤ǫ1

∥

∥γ
1
2 (v)z

∥

∥

2(p+σ−1)
p

L
2(p+σ−1)

p (Ω)

+c4

∥

∥γ
1
2 (v)z

∥

∥

2ξ(p+σ−1)
ξ p+σ−1

W1,2(Ω)

≤ǫ1

∥

∥γ
1
2 (v)z

∥

∥

2(p+σ−1)
p

L
2(p+σ−1)

p (Ω)

+ǫ2

∥

∥γ
1
2 (v)z

∥

∥

2

W1,2(Ω)
+c5

≤ (ǫ1+ǫ2)
∥

∥γ
1
2 (v)z

∥

∥

2(p+σ−1)
p

L
2(p+σ−1)

p (Ω)

+ǫ2

∥

∥∇
(

γ
1
2 (v)z

)
∥

∥

2

L2(Ω)
+c6, (3.11)
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where c3, c4, c5, c6 > 0, ǫ1, ǫ2 are arbitrary positive constants. Note that we have

used the relations

∥

∥γ
1
2 (v)z

∥

∥

2

W1,2(Ω)
=
∥

∥γ
1
2 (v)z

∥

∥

2

L2(Ω)
+
∥

∥∇
(

γ
1
2 (v)z

)
∥

∥

2

L2(Ω)

≤
∥

∥γ
1
2 (v)z

∥

∥

2(p+σ−1)
p

2(p+σ−1)
p

+
∥

∥∇
(

γ
1
2 (v)z

)∥

∥

2

L2(Ω)
+c(|Ω|).

Utilizing the upper bound of γ(v) in (3.8), one can select sufficiently small ǫ1,ǫ2>

0 such that
(

p−1

2
+

p−1

2p2

)

K2ǫ2≤
p−1

p2
,

(

p−1

2
+

p−1

2p2

)

K2γ
p+σ−1

p

2 (ǫ1+ǫ2)≤
µ

2
,

now combining (3.9)-(3.11), one can apply the young inequality to obtain that

1

p

d

dt

∫

Ω

z2dx+
∫

Ω

z2dx≤ c7 (3.12)

with c7>0, which implies that

‖u(·,t)‖Lp(Ω)≤ c8 for

p>max

{

1,
(n−2)(σ−1)

2
,

(

(n+2)l−2κn
)

(σ−1)

2(κn− l)

}

(3.13)

with c8>0. Thanks to (3.13), the elliptic regularity estimate for the second equa-

tion directly yields

‖v(·,t)‖
W

2,
p
k (Ω)

≤ c9 for p>max

{

1,
(n−2)(σ−1)

2
,

(

(n+2)l−2κn
)

(σ−1)

2(κn− l)

}

with c9>0. In consequence, for

p>max

{

nκ,1,
(n−2)(σ−1)

2
,

(

(n+2)l−2κn
)

(σ−1)

2(κn− l)

}

it is found from the Sobolev embedding theorem W2,
p
κ →֒C1,1−nκ/p that

‖v(·,t)‖W1,∞(Ω)≤ c10
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for all t∈ (0,Tmax) with c10 >0. Then utilizing the boundedness of ‖v(·,t)‖L∞(Ω),

one can find γ0 > 0 such that γ0 ≤γ(v), thus, by virtue of the fact χ′(v)< 0 and

‖∇v(·,t)‖L∞(Ω)≤ c10, it follows from (3.2) that

1

p

d

dt

∫

Ω

updx+(p−1)γ0

∫

Ω

up−2|∇u|2dx

≤ (p−1)c10χ(0)
∫

Ω

up−1|∇u|dx+λ
∫

Ω

updx−µ
∫

Ω

up+σ−1dx

≤
p−1

2
γ0

∫

Ω

up−2|∇u|2dx+

(

c2
10χ2(0)

2γ0
(p−1)+λ

)

∫

Ω

updx. (3.14)

Therefore, applying the similar method in [19, Lemma 3.6], we can see that

‖u(·,t)‖L∞(Ω)≤ c11

for all t∈ (0,Tmax) with c11>0. This completes the proof of the lemma.

From Lemma 3.2 and the L1 bound for u in Lemma 2.1, it is obvious that the
boundedness result holds for kn<2, so we just need to consider the case kn≥2 in
the rest of the paper.

Lemma 3.3. Let Ω⊂R
n (n≥2) be a bounded domain with smooth boundary, λ>0, µ>

0,σ≥κ+1,kn≥2, the initial data satisfy (1.5). Assume that (u,v) is the classical solution

of (1.4), and (H1)-(H2) hold. Then there exist ǫ∈ (0,κn/2) and C4>0 such that

‖u(·,t)‖
L

nk
2 +ǫ(Ω)

≤C4.

Proof. Testing Eq. (1.4a) by pup−1, one obtains

d

dt

∫

Ω

updx+p(p−1)
∫

Ω

γ(v)up−2|∇u|2dx

= p(p−1)
∫

Ω

χ(v)up−1∇u·∇vdx+λp
∫

Ω

updx−µp
∫

Ω

up+σ−1dx. (3.15)

Multiplying Eq. (1.4b) by χ(v)up , it holds that

−p
∫

Ω

χ(v)up−1∇u·∇vdx−
∫

Ω

upχ′(v)|∇v|2dx

−
∫

Ω

upvχ(v)+
∫

Ω

up+κχ(v)dx=0, (3.16)
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which along with (3.15), gives

d

dt

∫

Ω

updx+(p−1)

(

p
∫

Ω

γ(v)up−2 |∇u|2dx−2p
∫

Ω

χ(v)up−1∇u·∇vdx

−
∫

Ω

upχ′(v)|∇v|2dx

)

=(p−1)
∫

Ω

χ(v)vupdx−(p−1)
∫

Ω

up+κχ(v)dx

+λp
∫

Ω

updx−µp
∫

Ω

up+σ−1dx. (3.17)

Let ~ω1=up/2−1∇u, ~ω2=up/2∇v, we find

pγ(v)up−2 |∇u|2−2pχ(v)up−1∇u·∇v−upχ′(v)|∇v|2

= pγ(v)|~ω1 |
2−2pχ(v)~ω1 ·~ω2−χ′(v)|~ω2|

2≥0 (3.18)

provided that p|χ(v)|2 ≤−γ(v)χ′(v). From (H2), we know that

inf
v≥0

γ(v)|χ′(v)|

|χ(v)|2
>

nk

2
.

Therefore, there exists ǫ∈ (0,κn/2) such that

1≤
nk

2
<

nk

2
+ǫ< inf

v≥0

γ(v)|χ′(v)|

|χ(v)|2
≤−

γ(v)χ′(v)

|χ(v)|2
.

Choosing p=nk/2+ǫ, we conclude that

d

dt

∫

Ω

updx≤ (p−1)
∫

Ω

χ(v)vupdx+λp
∫

Ω

updx−µp
∫

Ω

up+σ−1dx. (3.19)

Then utilizing the Young inequality and Lemma 2.3, we find
∫

Ω

χ(v)vupdx≤χ(0)ǫ̂
∫

Ω

up+σ−1dx+χ(0)c(ǫ̂)
∫

Ω

v
p+σ−1

σ−1 dx

≤χ(0)ǫ̂
∫

Ω

up+σ−1dx+χ(0)c(ǫ̂)η
∫

Ω

u
p+σ−1

σ−1 κdx+ ĉ1 (3.20)

holds for any ǫ̂ > 0 and η > 0, where c1 > 0 and c(ǫ̂)> 0. Due to the fact that

σ ≥ κ+1, choosing appropriate parameters ǫ̂ and η, it follows from the Young

inequality that

χ(0)ǫ̂
∫

Ω

up+σ−1dx+χ(0)c(ǫ̂)η
∫

Ω

u
p+σ−1

σ−1 κdx≤
µ

2

∫

Ω

up+σ−1dx+ ĉ2
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with c2>0, which gives rise to

d

dt

∫

Ω

updx≤λp
∫

Ω

updx−
µp

2

∫

Ω

up+σ−1dx+ ĉ2(p−1). (3.21)

Since σ>1, using the Young inequality and the Gronwall inequality, we can derive

that ‖u(·,t)‖Lp(Ω)≤ ĉ2 with ĉ2>0. This finishes the proof.

Proof of Theorem 1.1. Theorem 1.1 is a direct result of Lemmas 3.2 and 3.3.

4 Asymptotic behavior of solutions

In this section, motivated by the method in [30], we are devoted to establishing
the long time dynamics of solutions. We aim to show that the solution of (1.4)
converges to (u∗,v∗) exponentially, where

u∗=

(

λ

µ

)
1

σ−1

, v∗=

(

λ

µ

)
κ

σ−1

. (4.1)

To this end, we introduce the following Lyapunov functional:

F(t)=
∫

Ω

(

u−u∗−u∗ ln
u

u∗

)

dx. (4.2)

Lemma 4.1. Let (u,v) be the globally bounded solution of (1.4) obtained in Theorem 1.1,

(u∗,v∗) and F(t) be given by (4.1) and (4.2) respectively. If σ ≥ 2κ, then there exists

µ0>0, whenever µ>µ0, one has

‖u(·,t)−u∗‖L2(Ω)→0, ‖v(·,t)−v∗‖L2(Ω)→0 as t→∞. (4.3)

Proof. A simple computation directly yields that F(t)≥ 0 for all t> 0. It follows

from Eq. (1.4a) that

d

dt
F(t)=

∫

Ω

u−u∗

u
utdx

=−u∗

∫

Ω

γ(v)
|∇u|2

u2
dx+u∗

∫

Ω

χ(v)
∇u·∇v

u
dx+

∫

Ω

(u−u∗)(λ−µuσ−1)dx

=−u∗

∫

Ω

(

γ
1
2 (v)

∇u

u
−

χ(v)

2γ
1
2 (v)

∇v

)2

dx+
u∗

4

∫

Ω

χ2(v)

γ(v)
|∇v|2dx

+
∫

Ω

(u−u∗)(λ−µuσ−1)dx

≤
u∗

4

∫

Ω

χ2(v)

γ(v)
|∇v|2dx+

∫

Ω

(u−u∗)(λ−µuσ−1)dx. (4.4)
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Testing Eq. (1.4b) by v−v∗, and using the relation v∗=uκ
∗, we find

∫

Ω

|∇v|2dx=−
∫

Ω

(v−uκ)(v−v∗)dx

=−
∫

Ω

(v−v∗)
2dx+

∫

Ω

(uκ−uκ
∗)(v−v∗)dx, (4.5)

moreover, in view of the fact that v is bounded, it follows form the assumption

(H1) that

χ2(v)

γ(v)
≤K1 (4.6)

with K1>0. Therefore, combining (4.4)-(4.6), we can achieve that

d

dt
F(t)≤−

u∗K1

4

∫

Ω

(v−v∗)
2dx+

u∗K1

4

∫

Ω

(uκ−uκ
∗)(v−v∗)dx

+
∫

Ω

(u−u∗)(λ−µuσ−1)dx

≤
u∗K1

16

∫

Ω

(uκ−uκ
∗)

2dx−µ
∫

Ω

(u−u∗)(u
σ−1−uσ−1

∗ )dx. (4.7)

We notice that for u 6=u∗ , the following relation:

u∗K1

16

(uκ−uκ
∗)

2

(u−u∗)(uσ−1−uσ−1
∗ )

=
u2κ+1−σ
∗ K1

16

(

(u/u∗)κ−1
)2

(u/u∗−1)
(

(u/u∗)σ−1−1
)

≤
u2κ+1−σ
∗ K1

16
sup

s∈(0,1)∪(1,∞)

(sκ−1)2

(s−1)(sσ−1−1)
(4.8)

holds, and by a direct calculation, we have

sup
s∈(0,1)∪(1,∞)

(sκ−1)2

(s−1)(sσ−1−1)
<∞

provided that σ≥2κ. Choosing

µ>
u2κ+1−σ
∗ K1

16
sup

s∈(0,1)∪(1,∞)

(sκ−1)2

(s−1)(sσ−1−1)
, (4.9)
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and denoting

ς=µ−
u2κ+1−σ
∗ K1

16
sup

s∈(0,1)∪(1,∞)

(sκ−1)2

(s−1)(sσ−1−1)
, (4.10)

it is obvious that

(uκ−uκ
∗)

2
<

16µ

u∗K1
(u−u∗)(u

σ−1−uσ−1
∗ ) (4.11)

and
d

dt
F(t)≤−ς

∫

Ω

(u−u∗)(u
σ−1−uσ−1

∗ )dx. (4.12)

Integrating (4.12) over (t0,∞) and utilizing the nonnegativity of F(t), we have

ς
∫

∞

t0

∫

Ω

(u−u∗)(u
σ−1−uσ−1

∗ )dxdt≤F(t0)<∞,

which along with (4.11) yields that

∫

Ω

(uκ−uκ
∗)

2
<

16µ

u∗K1

∫

Ω

(u−u∗)(u
σ−1−uσ−1

∗ )dx→0 as t→∞. (4.13)

From the second equation of (1.4) and the Young inequality, we have

∫

Ω

|∇v|2dx=
∫

Ω

(uκ−uκ
∗)(v−v∗)dx−

∫

Ω

(v−v∗)
2dx

≤
1

2

∫

Ω

(uκ−uκ
∗)

2dx−
1

2

∫

Ω

(v−v∗)
2dx.

This indicates that
∫

Ω

(v−v∗)
2dx≤

∫

Ω

(uκ−uκ
∗)

2dx→0 as t→∞. (4.14)

Let R>max{u,u∗}, for the case 0<κ≤1, let f (y)=y1/κ , in light of the mean value

theorem that

u−u∗= f (uκ)− f (uκ
∗)=

1

κ
ζ

1
κ−1(uκ−uκ

∗)

for some ζ between u and u∗, consequently,

(u−u∗)
2≤

1

κ2
R

2
κ −2(uκ−uκ

∗)
2. (4.15)
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As for the case κ>1, let

M= sup
s∈(0,R)

(s−u∗)2

(sκ−uκ
∗)

2

it is clear that M<∞, therefore

(u−u∗)
2≤M(uκ−uκ

∗)
2. (4.16)

It then follows from (4.13), (4.15) and (4.16) that
∫

Ω

(u−u∗)
2dx→0 as t→∞. (4.17)

Thus, for µ satisfying (4.9), we obtain that (4.3) holds.

Now, we give the explicit convergence rates.

Lemma 4.2. Let (u,v) be the globally bounded solution of (1.4) obtained in Theorem 1.1,

(u∗,v∗) and F(t) be given by (4.1) and (4.2) respectively. If σ≥ 2κ, then one can find

µ0>0, m1>0, C>0, whenever µ>µ0, for all t>0 the following holds:

‖u(·,t)−u∗‖L∞(Ω)≤Ce−m1t,

‖v(·,t)−v∗‖L∞(Ω)≤Ce−m1t.
(4.18)

Proof. By the known regularity argument in [21], there exist δ ∈ (0,1) and C̃ > 0

such that

‖u(·,t)‖
C2+σ,1+ σ

2 (Ω̄×[t,t+1])
+‖v(·,t)‖

C2+σ,1+ σ
2 (Ω̄×[t,t+1])

≤ C̃, ∀t≥1,

thereupon, in light of the Gagliardo-Nirenberg interpolation inequality in Lem-

ma 2.2, the above inequality and (4.13)-(4.16), we have

‖u(·,t)−u∗‖L∞(Ω)≤CGN‖u(·,t)−u∗‖
n

n+2

W1,∞(Ω)
‖u(·,t)−u∗‖

2
n+2

L2(Ω)

≤C1

∥

∥uκ(·,t)−uκ
∗

∥

∥

2
n+2

L2(Ω)
, (4.19)

‖v(·,t)−v∗‖L∞(Ω)≤CGN‖v(·,t)−v∗‖
n

n+2

W1,∞(Ω)
‖v(·,t)−v∗‖

2
n+2

L2(Ω)

≤C2

∥

∥uκ(·,t)−uκ
∗

∥

∥

2
n+2

L2(Ω)
(4.20)

with C1, C2>0. By virtue of L’Hôpital’s rule, we find that

lim
u→u∗

u−u∗−u∗ ln(u/u∗)

(u−u∗)(uσ−1−uσ−1
∗ )

=
1

2(σ−1)uσ−1
∗

,
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which implies that there exists t1>0 such that

1

4(σ−1)uσ−1
∗

(u−u∗)(u
σ−1−uσ−1

∗ )

≤u−u∗−u∗ ln
u

u∗
≤

1

(σ−1)uσ−1
∗

(u−u∗)(u
σ−1−uσ−1

∗ )

for t≥ t1, it then follows from (4.12) that

d

dt
F(t)≤−ς

∫

Ω

(u−u∗)(u
σ−1−uσ−1

∗ )dx

≤−(σ−1)uσ−1
∗ ςF(t) for all t≥ t1, (4.21)

where ς is given by (4.10). Therefore, we have

F(t)≤F(t1)e
−(σ−1)uσ−1

∗ ς(t−t1), t≥ t1. (4.22)

Accordingly, applying (4.13), (4.19) and (4.20), we arrive at

‖u(·,t)−u∗‖L∞(Ω)≤C1

∥

∥uκ(·,t)−uκ
∗

∥

∥

2
n+2

L2(Ω)

≤C1

(

64µ(σ−1)uσ−2
∗

K1
F(t1)

)

1
n+2

e−
(σ−1)uσ−1

∗ ς
n+2 (t−t1) for all t≥ t1, (4.23)

‖v(·,t)−v∗‖L∞(Ω)

≤C2

(

64µ(σ−1)uσ−2
∗

K1
F(t1)

)

1
n+2

e−
(σ−1)uσ−1

∗ ς
n+2 (t−t1) for all t≥ t1, (4.24)

where µ satisfies (4.9), K1 satisfies (4.6). The proof of the lemma is complete.

Proof of Theorem 1.2. Theorem 1.2 is a direct result of Lemma 4.2.

Acknowledgments

X. Tu is funded by Chongqing Post-Doctoral Innovative Talent Support program.
C. Mu is partially supported by the NSFC (Grant 12271064, 11971082), the Chong-
qing Talent Support Program (Grant cstc2022ycjh-bgzxm0169), the Natural Sci-
ence Foundation of Chongqing (Grant cstc2021jcyj-msxmX1051), the Fundamen-
tal Research Funds for Central Universities (Grant 2020CDJQY-Z001, 2019CDJ-
CYJ001), and by the Chongqing Key Laboratory of Analytic Mathematics and
Applications. S. Qiu is funded by the Scientific Research Starting Project of SWPU
(Grant 2021QHZ016), by the Nanchong Municipal Government-Universities Sci-
entific Cooperation Project (Grant SXHZ045).



X. Tu et al. / Commun. Math. Anal. Appl., 1 (2022), pp. 568-589 587

References

[1] J. Ahn and C. W. Yoon, Global well-posedness and stability of constant equilibria in

parabolic-elliptic chemotaxis systems without gradinet sensing, Nonlinearity 32 (2019),

1327–1351.

[2] G. Arumugam and J. Tyagi, Keller-Segel chemotaxis models: A review, Acta Appl.

Math. 171 (2021), Paper No. 6.

[3] N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler, Toward a mathematical theory of

Keller-Segel models of pattern formation on biological tissues, Math. Models Methods

Appl. Sci. 25 (2015), 1663–1763.

[4] M. Burger, P. Laurencot, and A. Trescases, Delayed blow-up for chemotaxis models with

local sensing, J. Lond. Math. Soc. 103 (2021), 1596–1617.

[5] X. F. Fu, L. H. Tang, C. L. Liu, J. D. Huang, T. Hwa, P. Lenz, Stripe formation in bacterial

systems with density-suppressed motility, Phys. Rev. Lett. 108 (2012), 1981–1988.

[6] K. Fujie and J. Jiang, Global existence for a kinetic model of pattern formation with density-

suppressed motilities, J. Differential Equations 269 (2020), 5338–5378.

[7] K. Fujie and J. Jiang, Boundedness of classical solutions to a degenerate Keller-Segel type

model with signal-dependent motilities, Acta Appl. Math. 176 (2021), Paper No. 3.

[8] K. Fujie and J. Jiang, Comparison methods for a Keller-Segel-type model of pattern for-

mations with density-suppressed motilities, Calc. Var. Partial Differential Equations, 60

(2021), Paper No. 92.

[9] E. Galakhova, O. Salievab, and J. Tello, On a parabolic-elliptic system with chemotaxis

and logistic type growth, J. Differential Equations, 261 (2016), 4631–4647.

[10] T. Hillen and K. J. Painter, A user’s guide to PDE models for chemotaxis, J. Math. Biol.

58 (2009), 183–217.

[11] L. Hong, M. Q. Tian, and S. N. Zheng, An attraction-repulsion chemotaxis system with

nonlinear productions, J. Math. Anal. Appl. 484 (2020), Paper No. 123703.

[12] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its

consequences, I. Jahresber. Deutsch. Math.-Verein. 105 (2003), 103–165.

[13] B. R. Hu and Y. S. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system

under a critical parameter condition, Appl. Math. Lett. 64 (2017), 1–7.

[14] R. L. Hu and P. Zheng, On a quasilinear fully parabolic attraction or repulsion chemotaxis

system with nonlinear signal production, Discrete Contin. Dyn. Syst. Ser B, 27 (2022),

7227–7244.

[15] R. L. Hu, P. Zheng, and Z. Q. Gao, Boundedness of solutions in a quasilinear chemo-

repulsion system with nonlinear signal production, Evol. Equ. Control Theory 11(6)

(2022), 2209–2219.

[16] J. Jiang, Boundedness and exponential stabilization in a parabolic-elliptic Keller-Segel

model with signal-dependent motilities for local sensing chemotaxis, Acta Math. Sci. 42B

(2022), 825–846.



588 X. Tu et al. / Commun. Math. Anal. Appl., 1 (2022), pp. 568-589

[17] H. Y. Jin, Y. J. Kim, and Z. A. Wang, Boundedness, stabilization, and pattern formation

driven by density-suppressed motility, SIAM J. Math. 78 (2018), 1632–1657.

[18] H. Y. Jin and Z. A. Wang, Critical mass on the Keller-Segel system with signal-dependent

motility, Proc. Amer. Math. Soc. 148 (2020), 4855–4873.

[19] H. Y. Jin and Z. A. Wang, The Keller-Segel system with logistic growth and signal-

dependent motility, Discrete Contin. Dyn. Syst. Ser B 26 (2021), 3023–3041.

[20] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,

J. Theor. Biol. 26 (1970), 399–415.

[21] O. Ladyzhenskaya, V. Solonnikov, and N. Uralceva, Linear and Quasilinear Equations

of Parabolic Type, AMS, 1968.

[22] W. B. Lyu and Z. A. Wang, Logistic damping effect in chemotaxis models with density-

suppressed motility, ArXiv: 2111.11669, 2022.

[23] M. J. Ma, R. Peng, and Z. A. Wang, Stationary and non-stationary patterns of the density-

suppressed motility model, Phys. D 402 (2020), Paper No. 132259.

[24] E. Nakaguchi and K. Osaki, Global existence of solutions to an n-dimensional parabolic-

parabolic system for chemotaxis with logistic-type growth and superlinear production, Os-

aka J. Math. 55 (2018), 51–70.

[25] X. Y. Tao and Z. B. Fang, Global boundedness and stability in a density-suppressed motility

model with generalized logistic source and nonlinear signal production, Z. Angew. Math.

Phys. 73 (2022), Paper No. 123.

[26] X. Y. Tao, S. L. Zhou, and M. Y. Ding, Boundedness of solutions to a quasilinear parabolic-

parabolic chemotaxis model with nonlinear signal production, J. Math. Anal. Appl. 474

(2019), 733–747.

[27] Y. S. Tao and M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type

reaction-diffusion system, Math. Models Methods Appl. Sci. 27 (2017), 1645–1683.

[28] J. I. Teller, On a comparison method for a parabolic-elliptic system of chemotaxis with

density-suppressed motility and logistic growth, Rev. Real Acad. Cienc. Exactas Fis. Nat.

Ser. A-Mat. 116 (2022), Paper No. 109.

[29] J. P. Wang and M. X. Wang, Boundedness in the higher-dimensional Keller-Segel model

with signal-dependent motility and logistic growth, J. Math. Phys. 60 (2019), Paper No.

011507.

[30] X. Wang, T. Xiang, N. N. Zhang, Dynamics in a quasilinear parabolic-elliptic Keller-Segel

system with generalized logistic source and nonlinear secretion, Proceedings of the First

International Forum on Financial Mathematics and Financial Technology. Financial

Mathematics and Fintech, Springer, 2021. doi: 10.1007/978-981-15-8373-5 12.

[31] Z. A. Wang, On the parabolic-elliptic Keller-Segel system with signal-dependent motilities:

A paradigm for global boundedness and steady states, Math. Meth. Appl. Sci. 44 (2021),

10881–10898.

[32] Z. A. Wang and J. S. Zheng, Global boundedness of the fully parabolic Keller-Segel system

with signal-dependent motilities, Acta Appl. Math. 171 (2021), Paper No. 25.



X. Tu et al. / Commun. Math. Anal. Appl., 1 (2022), pp. 568-589 589

[33] T. Xiang, Dynamics in a parabolic-elliptic chemotaxis system with growth source and non-

linear secretion, Commun. Pure Appl. Anal. 18 (2019), 255–284.

[34] C. Yoon and Y. J. Kim, Global existence and aggregation in a Keller-Segel model with

Fokker-Planck diffusion, Acta Appl. Math. 149 (2017), 101–123.


