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Abstract. We introduce Besov spaces with general smoothness. These spaces unify
and generalize the classical Besov spaces. We establish the ¢-transform characteriza-
tion of these spaces in the sense of Frazier and Jawerth and we prove their Sobolev
embeddings. We establish the smooth atomic, molecular and wavelet decomposition
of these function spaces. A characterization of these function spaces in terms of the
difference relations is given.
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1 Introduction

Function spaces have been a central topic in modern analysis, and are now of increas-
ing applications in many fields of mathematics especially harmonic analysis and par-
tial differential equations. The most known general scales of function spaces are the
scales of Besov spaces and Triebel-Lizorkin spaces and it is known that they cover many
well-known classical function spaces such as Holder-Zygmund spaces, Hardy spaces and
Sobolev spaces. For more details one can refer to Triebel’s books [58—-60].

In recent years many researchers have modified the classical spaces and have gen-
eralized the classical results to these modified ones. For example: Function spaces of
generalized smoothness. These types of function spaces have been introduced by several
authors. We refer, for instance, to Bownik [8], Cobos and Fernandez [14], Goldman [30]
and [31], and Kalyabin [38]; see also Kalyabin and Lizorkin [39].

The theory of these spaces had a remarkable development in part due to its usefulness
in applications. For instance, they appear in the study of trace spaces on fractals, see
Edmunds and Triebel [22, 23], where they introduced the spaces B;’E, where ¥ is a so-
called admissible function, typically of log-type near 0. For a complete treatment of these
spaces we refer the readers to the work of Moura [46].
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Besov [2—4] defined function spaces of variable smoothness and obtained their char-
acterizations by differences, interpolation, embeddings and extension. Such spaces are
a special case of the so-called 2-microlocal function spaces. The concept of 2-microlocal
analysis, or 2-microlocal function spaces, is due to Bony [5]. These type of function spaces
have been studied in detail in [40]. We mention the papers [41, 42] and references given
therein.

More general function spaces of generalized smoothness can be found in Farkas and
Leopold [24], and reference therein.

Tyulenev has introduced in [62] a new family of Besov spaces of variable smoothness
which cover many classes of Besov spaces, where the norm on these spaces was defined
with the help of classical differences.

Based on this weighted class and the Fourier-analytical methods we introduce Besov
spaces of variable smoothness consisting of tempered distributions and present their es-
sential properties such as the ¢-transforms characterization, Sobolev embeddings, atom-
ic, molecular and wavelet decompositions.

The paper is organized as follows. First we give some preliminaries where we fix
some notations and recall some basic facts on the Muckenhoupt classes and the weighted
class of Tyulenev. Also we give some key technical lemmas needed in the proofs of the
main statements. We then define the Besov spaces as follows. Let S(IR") be the set of all
Schwartz functions ¢ on R”, i.e., ¢ is infinitely differentiable and

H(P|5MH = sup sup |aﬁ(p(x)|(1+ |x|)ﬂ+M+\l3| <00
BENG,|B|<MxER”

for all M € IN. Select a Schwartz function ¢ such that

1
suppFo C {¢:5 < ¢ <2}

and
3 5

[ Fo(8)|=c, if g§’6’§§/
where ¢ >0 and we put ¢, =2 ¢(2.), k € Z. Here F ¢ denotes the Fourier transform of
¢, defined by

]:go(C)::(27'()’”/2/ e " Co(x)dx, ¢eR".

n

Let
Seo(R") := {(p eS(R"): / xP g (x)dx =0 for all multi-indices g€ INJ }
Rn

Following Triebel [58], we consider S (R") as a subspace of S(IR"), including the topol-
ogy. Thus, S (IR") is a complete metric space. Equivalently, S (IR") can be defined as a
collection of all ¢ € S(R") such that semi-norms

@]l = sup sup [0Pe(&)] (1™ +[g] ™) <oo
|B|<MZeR"
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for all M € Ny, see [7, Section 3]. The semi-norms {H : H M} MeN, generate a topology
of a locally convex space on S (IR") which coincides with the topology of S (R") as a
subspace of a locally convex space S(R"). Let S, (IR") be the topological dual of Ss (R"),
namely, the set of all continuous linear functionals on S (R"). Let 0 < p<oo and 0 < g <
co. Let {f;} be a p-admissible sequence i.e. f; € LIPOC(JR”), k€ Z. The Besov-type space

B,,,(R",{t}) is the collection of all f € S/, (R") such that

1B R L= ( 1 [l 1Ly R7)]7) <

with the usual modifications if g =co. In this section several basic properties such as
the @-transform characterization are obtained and we extend well-known embeddings
to these function spaces. The main statements are formulated in Section 4, where we give
the atomic, molecular and wavelet decomposition of these function spaces. In Section 6
we study the inhomogeneous spaces B, ,(R",{t;}), and we outline analogous results for
these spaces. In addition we present an characterization of these function spaces in terms
of the difference relations.

2 Some fundamental maximal inequalities

Our arguments of this paper are essentially rely on the weighted boundedness of Hardy-
Littlewood maximal function. In this paper we will assume that the weight sequence {; }
used to define the space B, ,(IR",{t}) lies in the new weighted class X, ¢, (see Definition
2.3). Therefore we need a new version of Hardy-Littlewood maximal inequality.

2.1 Notation and conventions

Throughout this paper, we denote by IR" the n-dimensional real Euclidean space, N the
collection of all natural numbers and No=INU{0}. The letter Z stands for the set of all
integer numbers. The expression f S ¢ means that f <cg for some independent constant
¢ (and non-negative functions f and g), and f~g¢ means f S¢S f. As usual for any x€R,
| x| stands for the largest integer smaller than or equal to x.

For x € R" and r >0 we denote by B(x,r) the open ball in R" with center x and radius
r. By suppf we denote the support of the function f, i.e., the closure of its non-zero set.
If ECR" is a measurable set, then |E| stands for the (Lebesgue) measure of E and xr
denotes its characteristic function. By c we denote generic positive constants, which may
have different values at different occurrences.

A weight is a nonnegative locally integrable function on R” that takes values in (0,00)
almost everywhere. For a measurable set E C R” and a weight v, (E) denotes

/E'y(x)dx.
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Given a measurable set ECIR" and 0< p<co, we denote by L,(E) the space of all functions
f:E—C equipped with the quasi-norm

AL B = ( [17ColPdr) <oo

with 0 < p <oco and
| £ILeo(E)| - =ess-sup|f(x)| <e.

For a function f in LI°°(R"), we set

Ma(f):= 7 [, )l

for any A CIR". Furthermore, we put

1

MAP |A’/ |f |de ’
with 0 < p <oco. Notice that if 0 < p <g < oo, then

MA,p (f) < MA,q (f)

Further, given a measurable set E C R"” and a weight v, we denote the space of all func-
tions f:IR” — C with finite quasi-norm

IFILp @R )| = | frILp (R

by L,(R", 7).
Let 0 < p,q < co. The space ¢9(L,) is defined to be the set of all sequences {f;} of
functions such that

[ l=( £ I m)I)* <o

with the usual modifications if g =oo.
Let 0<p<co. The space ¢7(Z") is defined to be the set of all sequences u={u, } ez C

C such that
luler@) = ( ¥ |um|”) <o,

mezZ"

with the usual modifications if p=oc0. Let 0 < p,q <oo. The space ¢1(¢F(Z")) is defined to
be the set of all sequences a = {ay } ez, ax € (P (Z") such that

|al €907 (Z))]| < oo,
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where

et @)= X flader@|)

with the usual modifications if § =00 or p=co.

If 1<p<ooand %—F% =1, then p’ is called the conjugate exponent of p. In what
follows, Q will denote a cube in the space R" with sides parallel to the coordinate axes
and [(Q) will denote the side length of the cube Q. For all cubes Q and r >0, let rQ be
the cube concentric with Q having the side length r1(Q). For k€ Z and m € Z", denote by
Qk.m the dyadic cube,

Qum:=275([0,1)"+m).

For the collection of all such cubes we use
Q:={Qxm:keZmeZ"}.

For each cube Q, we denote by xy ,, the lower left-corner 2 Kmof Q= Qim- Also, we set
Xkm =XQuuk€EZ, meZl".

Recall that 7y, (x) := 2" (142K |x|) =™, for any x € R", k € Z and m > 0. Note that
m € L1 (R") when m >n and that ||7x ||, = ¢ is independent of k, where this type of
function was introduced in [18] and [35].

2.2 Muckenhoupt weights

The purpose of this subsection is to review some known properties of the Muckenhoupt
class.

Definition 2.1. Let 1<p<co. We say that a weight <y belongs to the Muckenhoupt class A,(IR")
if there exists a constant C >0 such that the following inequality holds:

sup  Mo(7)M,, (v 1) <C. 2.1)

v
Q: cube in R" Q P

The smallest constant C, for which (2.1) holds, is denoted by AP('y). As an example,
we can take
y(x)=|x]*, a€R.

Thenyc Ap(R"), 1<p<co, if and only if —n<a<n(p—1). For p=1 we rewrite the above
definition in the following way.

Definition 2.2. We say that a weight <y belongs to the Muckenhoupt class A1(IR") if there exists
a constant C >0 such that the following inequality holds:

sup  Mo(7)|v |Le(Q)]| <C. (2.2)
Q: cube in R"
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The smallest constant C, for which (2.2) holds, will be denoted by A;(7). The above
classes have been first studied by Muckenhoupt [47] and use to characterize the bound-
edness of the Hardy-Littlewood maximal function on L,(IR",7), see the monographs [28]
and [32] for a complete account on the theory of Muckenhoupt weights.

We recall a few basic properties of the class A,(IR") weights, see [21, Chapter 7], [32,
Chapter 7] and [57, Chapter 5].

Lemma 2.1. Let 1<p <co.
o (i) Ify€Ay(R"), then for any 1<p <q, v € A4(R").
o (ii) Let 1< p<oo. y€ Ap(IR") if and only if Y17 € Ay (R?).
o (iii) Let v € A,(R"). There is C >0 such that for any cube Q and a measurable subset

ECQ
[E[\rt
(’Q’) Mq(7) <CME(7)
e (iv) Suppose that v € A,(R") for some 1 < p < co. Then there exists 1 < p; < p < oo such
that y € Ay (R").

o (v) Let 1<p<ocoandycAy(R"). Then there exist 5 € (0,1) and C >0 depending only
onn, p, and A,(7y) such that for any cube Q and any measurable subset S of Q we have
Ms(7) S\
<C(-= .
Mqo(y) ~ ( !Q!)

The following theorem gives a useful property of A,(IR") weights (reverse Holder
inequality), see [32, Chapter 7] or [45, Chapter 1].

Theorem 2.1. Let 1< p <coand v A,(R"). Then there exist constants C >0 and &, >0
depending only on n,p and on A,(vy), such that for every cube Q,

Mg ite, (1) <CMg(7)-

2.3 The weight class X, ;

Let 0 < p <co. A weight sequence {t;} is called p-admissible if t; € L*(R") for all k€ Z.

We mention here that .
P
< /E t;j(x)dx> <c(k)

for any k € Z and any compact set E C R" with the usual modifications if p =co. For a
p-admissible weight sequence {t;} we set

tiom = ||tk Lp(Qim)

Tyulenev [61] introduced the following new weighted class and use it to study Besov
spaces of variable smoothness.

, keZ meZ".




24 Drihem D / J. Math. Study, 56 (2023), pp. 18-92

Definition 2.3. Let a1, ap €R, p, 01, 03 € (0,4+00], a = (aq,a2) and let o= (0q,02). We let
Xa,o,p=Xu,o,p(R") denote the set of p-admissible weight sequences {t;} satisfying the following
conditions. There exist numbers C1,Co > 0 such that for any k <j and every cube Q,

Mo,p(t) Mg, o, (£ 1) < Cr2 %), 2.3)
Mg, () Mg, o, (1) < G205, (2.4)
The constants C;,C; > 0 are independent of both the indexes k and j.

Remark 2.1. (i) We would like to mention that if {f;} satisfies (2.3) with o7 =7 (£)" and
0<r<p<oo,thent; € Ap(R") for any k€ Z with 0<r<p<ooand t_" € A;(R") for any
ke Z with p=oco.

(ii) We say that t, € A, (IR"), k€ Z, 1< p < oo have the same Muckenhoupt constant if
Ap(tk) =c, keZ,

where c is independent of k.

(iii) Definition 2.3 is different from the one used in [61, Definition 2.1] and Definition 2.7
in [62], because we used the boundedness of the maximal function on weighted Lebesgue
spaces.

Example 2.1. Let 0<r<p<oco, a weight w?€ A, (R") and {s; } ={2¥w? } ez, s€R. Clearly,
{sk}rez lies in Xyop for ey =ar=s, 0= (r(£)’,p).

Remark 2.2. Let 0< 0 <p<oo. Let a1, a2 €R, 07,02 € (0,4 0], 02 > p, a = (1,a7) and let

o=(01=0(8)",0). Let {ty} € Xur,p be a p-admissible weight sequence. Then

0(220(1.

Indeed, applying Holder’s inequality we find that for any cube Q

1 . ! -
= (@ /ij "W Wy)" < Mo, ()Mo (1), jEZ.
Hence
Mo, (1) < Mgyp(t))
and since {#} € Xa,g,p, we get for any k<j
Mgl () Mgy, (871) < €205,

Therefore, for some positive constant ¢ independent of k and j the following estimate is

valid:
2(“27“1)(]‘7]() Z C

7

that obviously implies a > ;.
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Lemma 2.2. Let 0<0<p<ooand {t} be a p-admissible weight sequence such that t| € A y (R"),
ke Z with
Ay (t/)<C, kez,

where C is a positive constant independent of k. Then
in(1—1
[ty n | Lp (R || < e 27" p)MB(O,2’f),p(tk)

holds for any N > § and any j,k € Z where the positive constant c is independent of k and j. In
addition and under the same assumption on N, we have

“tknf/N’LP(Rn) H <c 2jn(1_%)MB(O,1),p(tk)/ jSO/ kez,

where the positive constant c is independent of k and j.

Proof. This is probably a known result but we include the proof of the first estimate for
convenience. We can write

21" tagy 1L (R™) |7 < Mg 0,04 (£ >+/

p )
R"\B(0,277) tk (X)U],Np (x)dx'

The second integral can be rewritten as
(o]
ty (x)1;np(x)dx
g/i—j§x<2f—j+1 k( )’7], P( )

[ee]
< szinJrjn/
=0 2i—j§|x|<2i7j+l

< Mp(o0-i(1),

since N > 4 where in the second estimate we have used Lemma 2.1 (iii). O

ty (x)dx S szi(Nfg)pMB(o,z—i) ()
i=0

Further notation will be properly introduced whenever needed.

2.4 Auxiliary results

In this subsection we present some results which are useful for us. As usual, we put
1
M) (x)=supr [ F)ldy, feLI(R),
Q Q[ /g

where the supremum is taken over all cubes with sides parallel to the axis and x€ Q. Also
we set

Mo(f):=(M(If"))?, 0<0 <o,
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Theorem 2.2. Let 1 <p <oo. Then
ML (R SIFIL(R™)]]
holds for all f € L,(IR").

For the proof see [32, Chapter]. We need the following version of the Calderén-
Zygmund covering lemma, see [15, Lemma 3.3], [16, Appendix A] and [50, Chapter 7].

Lemma 2.3. Let f be a measurable function such that ﬁ fQ |f]—0as |Q|— oco. Given a>2"+1,

for each i € Z. there exists a disjoint collection of maximal dyadic cubes {Q""}), such that for each
h,

|th’/ x)|dx <2"d,
O;:={xeR": M(f)(x) >4"a'} C U, 3Q"".

Let

Ei = UhQi,h Ei,h = Qi,h\ (Qi,h mEi+l).
Then E"" C Q'M, there exists a constant p>1, depending only on a, such |E""|p>|Q""| and the
sets EVM are pairwise disjoint for all i and h.

Now we state the main result of this subsection.

Lemma 2.4. Let 1<0<p<oo. Let {t;} bea p-admissible weight sequence such that t! € Ay (R"),
k€Z. Assume that t}, k € Z, have the same Muckenhoupt constant, Ay (t/)=C,kEZ. Then

[M(fi) ILp(R" t) || < | fiel Lp (R", £) | (2.5)
for all sequences of functions fi € L,(R",ty), k€ Z, where c >0 is independent of k.

Proof. By duality the left-hand side of (2.5) can be estimated by

sup [ t(x)MUf) (x)Igi(x) ldx =supTi,
where the supremum is taken over all sequences of functions gi € L, (R") with
Hgk’Lp’(an) H <1, keZ,

where p’ is the conjugate exponent of p. Let Q be a cube. By Holder’s inequality,

keZ.

Mq(fi) < Htkfk’L )HHt,;lpr/(Q)H< 0] [t Ly ()],



Drihem D / J. Math. Study, 56 (2023), pp. 18-92 27
Since # € Ay (R"), ke Z, by Lemma 2.1 (i), t; € A,(R"), k€ Z and

1 -
gl L QI <Cliy (@1,

where the positive constant C is independent of k. Moreover ||t¢|L,(Q)|| — oo as Q| — oo
for any k€ Z, by Lemma 2.1 (v). Hence, we can apply Lemma 2.3. Let
OL:={xeR": M(fi)(x)>4"A"}, kicZ,
with A >2"*1 and
Hi:={x€R":4"\' < M(fy)(x) <4"A"T}, kicz.

We have

Te= ). /H,. Be(x) M (fie) (%) |gr (x) [dx <47 ) Ai“/ﬂ}_ be(x)| gk (x) |dx.
i=—oc0” Tk i=—o0 k
Let {Q"*"}}, be the collection of maximal dyadic cubes as in Lemma 2.3 with

O} CUy3Q"",

which implies that

Ty <4" i i)&“ / te(x)|gk(x)|dx, keZ. (2.6)

= —ooli=0 3Qi,k,h
Applying Holder’s inequality,

1
7

1
Jogualeaeldxs ([ ) ([ sl )"
= [3Q"" | Magikn < (tk) Magien v (k)

with t>1. Put 7= P(1+€tf ) with e i as in Theorem 2.1, which is possible since tyeA y (R™)
for any k€ Z. Obviously, we have

Magisn e (t) = Magisnp(i4e ) (i) < ¢ Magitnp(Ek),  kEZ.
k

Since t, k€ Z, have the same Muckenhoupt constant and from the proof of Theorem 7.2.2
in [32] the constant ¢ in (2.7) is independent of k. Therefore,

/3 s OIS 1O | Mo, () Macuss, o (30)-
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We deduce from the above that
N[ 0 ) QY M, (04 Mg o) Mg (55
By Holder’s inequality,
Mgiin(fi) < Mgk, 2 (t 1)M3foklh,g (tefr),
M3Q1}k,h,%1 (t < Msgikn g (e 1

with o3 =6(%)’. Hence
A /3 o EF) 8 ()X S | QY| Mg, b (b fi) Magian v (8k)-

Since |Qi'k'h| < ﬁ|Ei'k'h|, with EvkN = Qi'k'h\(Qi'k'hﬂ(Uh QiH'k'h)) and the family Eikh are
pairwise disjoint, the last expression is bounded by

c [ Msagien p (e fi) Magien v (8k)dx S /IR My (B fie) (%) Mo (i) () X i (x)dx.

Eikh

Therefore, (2.6) does not exceed

¢ Y Y [ My i) ()Mo (g0) (Dxgus (e [ My (112) (0) M () ().

i=—ooh=0 L
This implies that
TS [ My () () Mo (g0) (x)dx
for any k€ Z. By Holder’s inequality Ty can be estimated by
cl| M (tefi) ILp (R™) ||| Mo (810 1Ly (R™) | S ||t fel L (R™)

where we used Theorem 2.2 and the fact that

7

|gk|Ly(RM)[[ <1, keZz.
The proof is complete. -

Remark 2.3. (i) We would like to mention that the result of this lemma is true if we
assume that f; € Ay (R"), keZ,1<6<p<oowith

Ag(t,f)gc, keZ,

where c is a positive constant independent of k.

(ii) The property (2.5) can be generalized in the following way. Let 1 <6 <p <oo and {t;}
be a p-admissible sequence such that | € A 2 (R"), keZ.
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o If tf, k € Z satisfies (2.3), then
[ ML (R 1) [ < e 2 FD| L, (R, ) |

holds for all sequences of functions f; € L,,(lR”,tj), jE€Z and j >k, where ¢ >0 is
independent of k and j. Indeed, we use the same schema as in the proof of Lemma
2.4, we arrive at the inequality

‘ i jh
Al /3fo13" b (o) [gr ()| dx S 1Q7 [ Mygin (tk)MQi,f,h (fi)Magiin o (8k)- (2.7)
By Holder’s inequality and (2.3), we obtain
M i (f]) < Magijn g, (tj_l)MSQi,j,h’% (tjfj)
— -1 .
5 2% (k=) (M3Qi,j,h,p (tk)) M3Qi,]',/1,§p (t]f:])/ ] Z k. (28)

Plug (2.8) into (2.7). Then this gives
Al /3 1 IS 29 E ) Mg (117) Mg (50

The remaining arguments are similar to those in the proof of Lemma 2.4.

o If t,’f , k€ Z satisfies (2.4) with 0» > p, then
[ MFILp (R 1) || < e 225D 1L, (R 1)

holds for all sequences of functions f; € L,(R",t;), j € Z and k > j, where ¢ >0 is
independent of k and j. Indeed, we use again the same schema as in the proof of
Lemma 2.4, we arrive at the estimate (2.7). By (2.4), we obtain

Migiin () S 2207 My, ().

The remaining part of the argument is quite similar to those used in the proof of Lemma
24,

(iii) A proof of this result for t; =w, k€ Z may be found in [47].

(iv) In view of Lemma 2.1 (iv) we can assume that t;, € A,(R"), k€Z, 1< p <o with
Ap(t,’f) <c, keZ,

where c >0 is independent of k.

We need the following lemma, which is a discrete convolution inequality, see for ex-
ample [6, p. 135].
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Lemma 2.5. Let 0<a<1and 0<g<oo. Let {k;} be a sequences of positive real numbers and
denote

k )
Op:= Z ak_]Kj, kez, nk::Za]_kKj,
‘ ~

Then there exists constant ¢ >0 depending only on a and q such that

(Za)+( L) =e( X))

The next lemma is important for the study of our function spaces.

Lemma 2.6. Let K>0,1<0<p<00,1<q<ocoand a=(n,00) €ER% Let {t;} € Xy, bea p-
admissible weight sequence with o= (0, =0(5)',02> p). Then for all sequences {tfi} € £4(L,),

(£ (L 2 meninmol)’) s ( £ i)’

k=—0c0 "j=—o00

if K>y and
q 1 o 1
(v (Zz OK ML RE) ) S (X L, R 1))
k=—co "j= k=—0o0
ifK< o1.
Proof. This is a direct consequence of Remark 2.3 and Lemma 2.5. O

3 The space B, ;(R",{t})

In this section we present the Fourier analytical definition of Besov spaces of variable
smoothness and we prove their basic properties in analogy to the classical Besov spaces.

3.1 Definition and some properties

Select a pair of Schwartz functions ¢ and ¢ satisfy

suppF ¢, suppFp C {&:5 < [e] <2}, G.1)
Fp@LIFpE) = c it S<lel<?, 62
Y FoRFp =1 it A0, (3.3)
k=—00

where ¢ > 0. Throughout the paper, for all k € Z and x € R", we put gi(x) :=2"¢(2"x)

and ¢(x):=¢(—x).
Now, we define the spaces under consideration.
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Definition 3.1. Let 0< p <oo and 0<g<oo. Let {t} be a p-admissible weight sequence. Let 1
and ¢ € S be a function satisfying (3.1) and (3.2).The Besov space By, 4(R",{t;}) is the collection
of all f €S, (R™) such that

I71Bpa R D)= Z | te(@rx FILy(RM)|") " < o0

with the usual modifications if q = oco.

Remark 3.1. (i) We would like to mention that the elements of the spaces By, ,(IR",{f;})
are not distributions but equivalence classes of distributions, i.e., we have to calculate
modulo polynomials. If f is a polynomial then || f|B, ;(R",{t})|| =0.

(ii) In [61-63] Tyulenev introduced and investigated function spaces of generalised s-
moothness. These spaces are defined in terms of the difference relations. Let M € IN,0 <
p,r<ooand 0<g<oco. Let {f; } be a p-admissible weight sequence. The class BP or (R At })

of Tyulenev is defined to be the collection of all f € LI°¢(IR") satisfying

Hf’qur Rn/{tk})H <09,

where
1£1B g (R L) || =1 f1Byg (R Lt} ||+ [to[ F1Lr (-+ 1) [ | (R™)
with . .
1£1By (R {3 (Z HlloM (- +274 1) £ L (RM|7),
where

1
M k M ;
O (4271 f: 2- 2”"/ kln/x+2 K A fly )‘ dydh) ’

xe€R"keN and I":=(—1,1)". Here AM is the differences of order M, see Section 5.

(iii) The Triebel-Lizorkin version of B f\,/lq A(R",{tx}) is given in [20], see [64] for some prop-

erties of the inhomogeneous counterparts of B, 4(IR",{f¢}).

Using the system { ¢, } we can define the quasi-norms

1185 R") = X 27wty (RO’

for constants s€ R and 0< p,q < oo, with the usual modifications if §=co. The Besov space
B;’q(]R”) consist of all distributions f € S,,(R") for which

£1B3,q (R < co.
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It is well-known that these spaces do not depend on the choice of the systems {¢;} (up
to equivalence of quasinorms). Further details on the classical theory of these spaces,
included the nonhomogeneous case, can be found in [25-27, 52, 58-60].

One recognizes immediately that if {f;} = {25}, s€ R, then

B, 4(R",{2%}) = B 4(R").

Moreover, for {t;} = {2%w}, s € R with a weight w we re-obtain the weighted Besov
spaces; we refer, in particular, to the papers [10-13, 36, 51, 53, 54] for a comprehensive
treatment of the weighted spaces. See the papers [1, 17, 19, 42]for more information
about Besov and Triebel-Lizorkin spaces of variable smoothness and integrability.

A basic tool to study the above function spaces is the following Calderén reproducing
formula, see [67, Lemma 2.1].

Lemma 3.1. Suppose ¢, P € S(R") satisfying (3.1) through (3.3). If f € S}, (R"), then

fe Yo 2 Y G m)py(—2 m), (3.4

k=—c0 mezZ"

where ¢(x) = @(—x) for all xeR".

Let ¢, i € S(R") satisfying (3.1) through (3.3). Recall that the g-transform S, is de-
fined by setting

(S(Pf)k,m:<f/§0k,m>/ kEZIMGZn/
kn

where ¢y, (x) =27 ¢(2kx—m), k€ Z and m € Z". The inverse g-transform Ty is defined
by

o]

Tpri= ), Y AemWim

k=—ocomeZ"

where A= { Ay i tkezmezr CC, see [26].
Now we introduce the corresponding sequence spaces of B, 4(R",{}).

Definition 3.2. Let 0< p<oo and 0 < g <oo. Let {t;} be a p-admissible weight sequence. Then
for all complex valued sequences A ={ Ay }kez,mezn C C we define

bpg(R" (i} = { A: [ Albpg (R, {16} | <o},

where

==

\\A|bp,,,(w,{tk})”;:(kf 25| Y tkAk,mxk,mle(R”)Hq)

meZ"

with the usual modifications if q = co.
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Allowing the smoothness t;, k € Z to vary from point to point will raise extra diffi-
culties to study these function spaces. But by the following lemma the problem can be
reduced to the case of fixed smoothness. The proof is obvious.

Proposition 3.1. Let 0< p<ooand 0<g<co. Let {t;} be a p-admissible weight sequence. Then
e} 9.1
; * kng r\4
At = ( X 2% ( X Pl ) )
k=—o0 mezn"
is an equivalent quasi-norm in by o(R", {#}).

The following important properties of the sequence spaces will be required in what
follows.

Lemma 3.2. Let 0< 0 <p<ooand 0<q<oco. Let {t;} be a p-admissible weight sequence
satisfying (2.3) with oy =0 (5) and j=k. Let k€ Z,m € Z" and A € by, o(R",{t,}). Then there
exists ¢ >0 independent of k and m such that

Am] <c z—%t,;;\wbp,q(w,{tk}) -

Proof. Let A€by(R",{t})k€Z and m € Z". Since {t} is a p-admissible sequence satis-
fying (2.3) with o1 =6 (2)’, we get by Holder’s inequality

1 g
M| = —/ Ael?d
Al (|Qk,m| Qk,m’ kol y)

S MQk,m/p()\krm tk)MQk,mral (tk_l)
_kn .
<27 Tt ||A]bya (R {t})

7

where ¢ >0 is independent of k€ Z and m € Z". O

Lemma 3.3. Let a=(a1,02) ER?,0<0<p<ooand 0<g<co. Let {t;} € Xy, be a p-admissible
weight sequence with o= (o1 =0(5)",00> p). Let p € S(R") satisfy (3.1) and (3.2). Then for
all A€ by o(R", {t})

Tphi= Y Y MmPrm

k=—comeZ"

converges in S}, (IR™); moreover, Ty: by, o(R",{t}) — SL, (IR") is continuous.

Proof. Let A€by4(R",{t}) and ¢ € S (R"). We see that

[ee]

Z Z Mo | [(Wm @) | =1+ I,

k=—comeZ"
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where

0 o0
L= Z Z |Ak,mH<1/]k,m/§0>| and IZ:ZZ Z |Ak,mH<7~/Jk,m/§0>|'

k=—comeZ" k=1mezZ"

It suffices to show that both I; and I; are dominated by

c[[A1by,qa (R", {ti})].

(1) Estimate of I;. Let us recall the following estimate, see (3.18) in [8]. For any L >0,
there exists a positive constant M €N such that for all ¢, € S (R"),i,k€Z and m,heZ",

27 m =27 TR N LG knL (ki
i) |5 19 s, [191s,.., (14 oz ay) min (20795200

Therefore,

27 Fm|" NI e
|<¢k,mr§0>|§H§0H8M+1H¢HSM+1<1+W) 2~ lkint,

Our estimate employs partially some decomposition techniques already used in [26] and
[43]. For each je N we define

Qpi={mez": 27 <|m| <2}, Qo:={meZ":|m|<1}.

Thus,

Il< i 2knL |Ak,m’
e mez (14 |m))"™

_ 0 knLOO |Ak,m|
=c) 2"y ) 7);@

T Sy (14 |m

0 00
5 Z 2knL2271’le Z ’)\k,m’
j=0

k=—c0 H’IGQ]‘

We claim that there exists 0 < ¢ < min(1,0) such that % =14 Ull with 0 <t < p. Indeed, if
0 >1, then 07 >1 and we choose

(%1
Now, if 0 <60 <1, then we choose 0 < T < p and we obtain that

1 1>1
T o 0

1
0
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which proves the above claim. We have

1
11< Z 2knL22 nL]( Z ’)\km|e)g

k=—00 meQ
1
Yy 2’<”L22 G [ el m()dy)
k=—00 meQ);

UzerQk,z J

Let y € Uzeq;Qkz and x € Qoo. Then y € Oy, for some z€ () and 2i~1 <|z| <2/. From this
it follows that

ly—x| <|y—27%z| 4+ |x—27Fz| <V 27K |x|+27F|z| <21 FHO, 5, €N,
which implies that y is located in the ball B (x,Zf *k”“). In addition, from the fact that
Y| <ly—x[+[x| <P g1 <27 ¢, eN,

we have that y is located in the ball B(0,2/~%*¢). Therefore, by Holder’s inequality

1
(2(k_j)n / Z |/\k,m ’Q?Ck,m (y)dy) ’

Uze; Qkz men;
1
= (2 / Z ’Ak,m|TtI€Xk,m(y)dy) MB(O,Zj_k'*'””),Ul(tk_l)
B(x,2/—k+en) meQ;
. -1
MT Z tk’/\km|ka)(X)MB(O,ZJ_k+C’1),01(tk )
mezZ"

Since t, "' € Apy/(R"), k€ Z, by Lemma 2.1/(iii), (2.3) and (2.4) we obtain

_ i—k) L% _
My j-kseny o, (b ) S 20795 Mp(01) 0 (1)

for any k<0 and any j € Ny. Hence, for any L large enough,

O n
LS ), 2k(”L7“27)Mr( Y bl Akm Xim) (%), x€Qojp.

k=—o00 mezZ"

The last term is bounded in the L, (Qo0)-quasi-norm by

c[|[Mbpg(R" {t})
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with the help of Theorem 2.2.
(2) Estimate of I,. We have

B @) £27" |5, 19, (127 m") 7 k21,

For each j, k€N, define

Qjp:={mez2" 2Rl | < 27K,

Qop:={mezZ":|m| <2"}.
Then we find

L< isznL Ak m| _

k=1 mezr (14+2-*|m])
S Ak

_ Ciszn[‘ Z
k=1

Smen, (1427 K|m|)""
o] [e°] i
< szfkanzfnL] Z ’)\k,m|-
k=1 j=0 mey

Let 0 <o <min(1,0) be such that % =14 all with 0 <7 <p. Using the embedding /, — /1
we find that

LS Y2 Y 2 (Y ),
k=1 j=0

mer,k

o=

) ) . ) 1
=c) 27kt 22(3*“)1 <2(k_])” / Y. Mk,m|g?(k,m(y)dy> "
k=1 =0

meQ);
Uze()j/ka,z ik

Lety €Uz, Qk- and x€ Qoo. Then y € Qy , for some z€ Q) and 2/~1 < 27|z| <2/, From
this it follows that
ly—x| <|y—2"%z|+|x—27F| <vm 27K 4 |x|+27F|z| <27, 5, €N,
which implies that y is located in the ball B (x,2j +‘5"). In addition, from the fact that
Yyl <ly—x|+]x| <PT+1<2*, ¢ €N,
we have that y is located in the ball B(0,2/*¢"). Therefore,

1

(z(k—f)n / y |Ak,m’QXk,m(y)dy)E

meQ);
Uzeq;  Qk,z i*

IN

1
kL (o ! 3
2% (277" / )3 |/\k,m’Ttl:Xk,m(y)dy> MB(Oij“”)fffl(tkl)

B(x2i+n) ™€k

k1 _
2 QMT( Z tk/\k,ka,m) (X)MB(OQHC”),UI(tkl)'

mezZ"

A
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By (2.3) and Lemma 2.1 (v) we obtain

18 1

_ _ -1 i(n_ndy_ -
MB(0,21'+Cn),al(tkl)§2 kal(MB(O,Zf‘””),p(to)) <267y (Mg o),p(to)) -

Therefore

Zik(nLing“l)Mr(tk Y AemXim)(X), x€Qo0 (3.5)
1 mezZn

gk

LS
k

for any L large enough. Now we take the L,(Qo)-quasi-norm of both sides of (3.5) and
then use Theorem 2.2, we obtain

I 5 H)‘wp,q(]Rn/{tk}) H
The proof is finished. O

For a sequence A = { Ay }kezmezn CC,0<r<oo and a fixed d >0, set

1
r

Al
M rdi= -
km,rd (hezz (1 +2k|2kh—2kmy)d)

and A} ;:= {A;;m,r’ i Ykezmezr C C, with the usual modifications if g = co.

Lemma 3.4. Let a = (a,a2) ER%,0<0<p<00,0<g<oo,ycZ and d>n. Let {t;} bea
p-admissible weight sequence satisfying (2.3) with o =6 (%) and a; €R. Then

1254l bp.g (R {ti—o }) || 2 || Albpg (R, {t—s }) |- (3.6)
In addition if {t; } satisfies (2.4) with 0» > p and ap €R, then

H)‘;,d’bm(Rnf{tkw}) | S A[Aby,g(R", {t})

/ (3.7)
where
A 27, it <O,
Sl 27, if ¢ >0.
Proof. First we prove (3.6). Obviously,
[[A16p,g (R, {tx—q | < [|A},4lBp.q (R”, {tr—y 1)

Let “F <a < p. For each je N,m € Z" define

Fim={hezZ":2 ' <|h—m|<2},
Fom:={heZ":|h—m|<1}.
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Thus,
[Agnl? - [Ainl?
Tl Py Bl 8
nezr (1+|h—ml|)"  jZoner;,, (1+|h— m| =0 hel
which is bounded by

ng_dj( ) Mk,h|a> 51

heF jm

which can be rewritten as

o0 14
c22(7p’d)] (2("*’)” / Y Al i (y)dy) " (3.8)
j:0 UzeF ka th]m

Lety€Uzer ;, Qkz and x € Q. Therefore y € Qi , for somez€/f j,, and 21 < |z—m| <2
From this it follows that

ly—x < ly—2"%2|+|x—27%|
< Vn 275 |x =27 m| 427Kz —m|
<275, €N,

which implies that y is located in the ball B(x,2j *k”"). Therefore, (3.8) can be estimated

by .
Ma(Y Menxin) ()7,
hezn

where the positive constant c is independent of x and k. Consequently

[A3,albpq(R" {ti—o }) | (3.9)

does not exceed

0 1
ol Y Zquka M Z MinXin) | Lp(R™)]|7)”
(

k=—o0

(5 2% Mul T At LR ) )

k=—o00 hezn
Applying Lemma 2.4 we estimate (3.9) by
— knq n q % i n
o[ £ 2% T Meateal LRt )[[) ' =elA by (R {1 )
k=—oc0 hez"

To prove (3.7) we use again Lemma 2.4 combined with Remark 2.3 (ii)-(iii). O
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Now we have the following result which is called the ¢-transform characterization in
the sense of Frazier and Jawerth. It will play an important role in the rest of the paper.

Theorem 3.1. Let a=(n1,a2) €R?,0<0<p <o and 0<g<co. Let {t; } € Xy, 0, be a p-admissible
weight sequence with o= (01 =0 (5)',00> p). Let ¢, p € S(IR") satisfying (3.1) through (3.3),
The operators

S BP (R {tx}) = by (R {tr}),

Typ: byq(R" {tx}) = Bpq(R", {tx})
are bounded. Furthermore, TyoS,, is the identity on B, 4(R",{t;}).
Proof. The proof is a straightforward adaptation of [26, Theorem 2.2]. For any f € S/, (R")
we putsup(f):={supy , (f) }rczmez» where

Sup(f)izf% sup |gexf(y)|, k€ez, meZ".
k’m yer,m

For any y€INy, we define the sequence inf, (f):= {infy ,  (f) }xez,mez by setting

infy () =2 zmax{inf@z*f(yn:Qch,m,z@):zM}, keZ, mez",
€Q

where ¢ :=2Mg(—2k.).
Step 1. In this step we prove that
Hinfv(f)w;?,q(]Rn/{tk})H 5 Hf|Bp,q(]Rn/{tk})H-

Define a sequence A ={A; }icznez» by

jn

Aip=2"7 inf * , j€Z,heZ".
=2 i W),

Then for all 0 <7 < co, any ke Z,m € Z" and a fixed A >n, we have

. dyn %
infi sy (F)m S2707H )y Aoy d Xk
heanQker,hCQk,m

Picking r = p, we obtain
Hinf F)1bpq(R", {t:}) |

© kn 1
<27 ( Z 2z 7 Z tkAZJr“r,h,r,kaJr%h’LP(IRH)Hq>q
k=—o0 heZn

==

527%< Z 27“ Z tk ’Y)\khrkahu‘ ]Rn H )
k=—00 heZn
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Applying Lemma 3.4, we estimate the last expression by

. 1
c27%( Z 2¥H Z fk—y/\k,th,h’Lp(Rn)Hq>q
k=—0o0 hezm

$25( L @ niLm)|)’

< 277||£1Byg (R" (1))

Step 2. We will prove that

lingy (F) By (R, {6 1)[| = | F1Ba (R”, {8 = [sup (£ Byg (R™ (£ 1) (3.10)

Applying Lemma A 4 of [26], see also Lemma 8.3 of [8], to the function (g f)(27/x) we
obtain

infy (f),q~sup(f)pa-
Hence for 7 > 0 sufficiently large we obtain by applying Lemma 3.4,
Jint, (£ albpg (R”, (1) [ int, (1)l g (R”, 1))
[sup(f);,albpqg(R" {ti}) ||~ sup(£)[by,g(R", {t:}) |-

7

Therefore, _ _
Jing, (F) 1oy (R", {81 | ~ [[sup (1) by (R {11)]| @1
From the definition of the spaces B, ,(R",{t}) it follows that

| £1Bpg (R, {te}) || < [lsup(f)1bpq (R", {tic})]
Consequently (3.11) and Step 1 yield (3.10).
Step 3. In this step we prove the boundedness of S, and T,. We have
ko
|(Sof Vel =1(f, @) | =272 | fx@r(27"m))| Sskllp(f)

Step 2 yields that _ .
S 10p.g (R" At D) || S| 1Bpg(R™ {1 |
To prove the boundedness of Ty, suppose A ={A; }iczncz:- Then

Tlp)\Z: Z Z )\j,hll’j,h-

j=—occheZm"

Obviously
k+1

j=k—1hez"
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Since ¢ and ¢ belong to S(IR") we obtain

d
[Fixpyn (0] 25 (142 |x—2 k) " milin),  d>n,

where the implicit constant is independent of j,k, and x. Therefore, if x € Q41 C Qk» C
Qk-11, 2,1 €Z", then we obtain

kil Al
. kn h
[P TyA(x)| 27 .

j=k—1heZn (1+2j|x_27jh,)m'
Assume that 0 < p <1. Using the inequality

( )3 ’“h’>p§ Y lanlP, {antnezs CC,

hezn hezn

we obtain .

. o Mal? 3

|G TyA(x)| S22 e (3.12)

' 2 (L a2
Now if p>1, then by the Holder inequality and the fact that
)3 T
we (1+2/|x—27Th|)4
we also have (3.12) with p>1. Hence if x € Q1. C Qk » C Q_1,, then we have
—~ L. * *

[ Pex Ty A(X)[ S22 (Af_qpa+Mempat Mestzpa)-

Consequently
1
[Ty MR (DI S 1
i

where

oS} kng i %

Il:< Y 25| Y teeidip sl Ly (R)]] ) =-1,0,1.
k=—o00 heZn
Applying (3.7) we obtain
ITyA By (R {1 }) | S[[AIDpg (R {11 ]|

The proof is complete. O

This theorem can then be exploited to obtain a variety of results for the B, ;(R",{t;})
spaces, where arguments can be equivalently transferred to the sequence space, which is
often more convenient to handle. More precisely, under the same hypothesis of the last
theorem,

LF1Bpa(R" At D) |~ [{(f @) brezmezr Bpg (R A1) (3.13)
From Theorem 3.1, we obtain the next important property of the spaces By, o(R",{t;}).
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Corollary 3.1. Let a=(a1,a,) ER?,0<0<p<oo and 0<g<co. Let {t } € Xy, p be a p-admissible
weight sequence with o= (01 =0(8)',00 > p). The definition of the spaces B, 4(R", {t}) is
independent of the choices of ¢ € S(IR") satisfying (3.1) and (3.2).

The proof of the completeness of B, ,(IR",{t}) is based on the following lemma.

Lemma 3.5. Let 0< 0 <p<ooand 0<q<oco. Let {t} be a p-admissible weight sequence
satisfying (2.3) with o1 =6 (%),. bp,q(R",{t}) are quasi-Banach spaces. They are Banach spaces
if1<p<ooand1<g<oco.

Proof. Let {AU)} jeN, be a Cauchy sequence in by 4(R",{t}). We use the equivalent quasi-
norm given in Proposition 3.1. Then for any & >0 there exists no €N such

[AD =AWy, (R {te})||" <&, i,j>no.

This yields that

==
=

(X 2%( X A0 -2

)'<e ij=m.
k=—cc mezZ"

We put

kn

A=Az, AP =284, 0 Vez, KEZiEN,

it follows that {A()},cn, is a Cauchy sequence in £7(¢P(Z")), so it is converges to some
Aeli(Lr(Z")), where

A={Aitkez, Ac={Axm}mez, keZ.

Define .
Okm=2"2 tk”%Ak,m, keZ meZ" and o0={0kmtkczmezn-

Thus
IAD) —glbyq(R" {1 1)

- (£29( 5 tta-an))

meZn

==

[ee]

-(2(x rsz”tk,mA,E{;—Ak,m!p)z);

k=—oc0 meZm"

= AV - AP (z"))||<e,  jEm,

where 15 is large enough. Consequently {A()} jeN, converges to ¢, which belongs to the
space by 4(R",{t;}). This completes the proof. O
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Applying Lemma 3.5, Theorem 3.1 and by a similar argument before, see [29], we
obtain the following useful properties of these function spaces.
Theorem 3.2. Let o = (a1,02) € R%,0< 0 < p < oo and 0 <q<oo. Let {t;} € Xy, be a p-
admissible weight sequence with o= (01 =0 (%) ,02> p). Then By, 4(R",{t}) are quasi-Banach
spaces. They are Banach spaces if 1 <p < oo and 1 <g < co.

Let 0<p<ooand 0<g<oco. We know that
Seo(R") =+ By o(R",{2%}) = SL(R"), s€R,

see [58, Theorem 5.1.5]. We mention that Bp,q(lR”,{ZkS}) is just the classical Besov space
B,4(R"). Our aim is to extend this result to the above function spaces, but to this end
we need the weighted version of Plancherel-Polya-Nikolskij inequality. This inequality
(cf. [58,1.3.2/5, Rem. 1.4.1/4]), plays an important role in theory of function spaces and
PDE’s, and says that || f|L,(R")|| can be estimated by

e R 3)| F1L, (R

forany 0<p<g<co, R>0and any f <€ L,(IR")NS'(IR") with suppF f C {{€R": || <R}.
The constant ¢ >0 is independent of R.

Lemma 3.6. Let 1 <6 <p<ooand {t;} be a p-admissible weight sequence satisfying (2.3) with
o1 =0(5) and j=k. Let ¢y be as in Theorem 2.1 and fi € L,(R", t) such that suppF f C{g €
R":|¢| <2k}, k€Z. Then

fil Lr(RY, 1) | < 2=

felLp(R™, )| (3.14)

holds for any ke Z and p <r< p(1+st5 ), where ¢ >0 is independent of k.

Proof. Let we S(R") and B> 1 be such that Fw(x)=1if x € supp Ff,
r .
;<,3<1+8t£<00 if r<p(1+et£),
‘B:1+8t£ if V:p(l—i—iit];:).

We put wy=2"w(2%.),k€ Z. By duality || f|L,(R",t)|| can be rewritten as

sup [ () e fi ()94 () ldr=sup (g1,

where the supremum is taken over all functions g € L,/(IR") with ||g¢|L, (R")|| <1. Split-
ting the integration with respect to the cubes Qy ,, we obtain

)< ¥ [ te®)lwes (@)l [e()ldx. (3.15)

meZny <km
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Let x € Q. We have
e eI [ oglx=v) filw) dy
=¢ Z/ ke (X—=y) | ()| dy

hezZn km+h

5 Z 1+|h|) gMQk,n1+h(fk)
hezn

= Z (1+|h|)_gl9k,h,m, Q>0
hezn"

where the positive constant c is independent of x and k, and
Onm=Mo,,..,(fx), k€EZ,h, meZ".

Applying Holder’s inequality,

1
te(x x)|dx < / thde/ 7 dx
Jo, ilsilars ([ )" ([ st ax)”
= |Qim| Moy, (t) Mo, v (8k)
with 7> 1. Put T:%(1+€tp). Observe that T>r, £ <p. Then by Theorem 2.1, we obtain

1
7

Moy (t) =My, s1e,p) () <¢ Moy, p(t), kE€ZmeZ?,
where c >0 is independent of k and m. Therefore

B hm / te(20) 18k (20) dx S| Qi Mgy, p () My, (85) O i
k,

g

We derive from Holder’s inequality that

Oknm <Mg, o (t 1)MQk o (tefi), alzg(g)/,
Mg, () <Moo ()
Observe that
Qim CB(xpm, V275 and Qs C B(xpm, V1 (14 |1])275).

Hence
MQk,mrp(tk)MQk,nz+hr‘71 (tl: ) < C(1 + |h| ) 7

where ¢ >0 is independent of k,/ and m, and

O [ 1))l S (14 1) F1QunIMo, 5 (/i) Moy, (85)
k

= (U H)F [ Mo, 5 (1) Moy, e ().
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Now if x € Qy ,,, then we find that

S-S
ESASTN

Mo, o (efi) SHIRD (o ()P (0) T, 6>m,

/ L
Mag,,,(8) < (ks Igel™ (x)) 7, X € Qim-
Again by Holder’s inequality we estimate
O [ ()16 ()l

by

N n 0 , 1
C(1+!h|)0%+gH’7k,o‘*(fk|fk|)g|Lﬁ(Rn)H”H’7k,o‘*|gk|T|Lr;(1Rn) i

Put 7 +1=14 + . Since £—1<0and 6>1, we have 1 <y <co. Young’s inequality gives
P

6 T AT A -
%S 71,6 Ly (R || 7|62 | fil  |ILo (IR™) ||

FelLp(R™ 1) ||,

where the implicit constant is independent of k but depends on p and r. Consequently
(3.15) is bounded by

H’7k,o‘*(tk|fk|)g

< 2”"(%—%)

AILR% )| Y ( (1+|h))2r 0T <2mG—r)
hezn

k(1-1)
2Pr

SelLp (R ) |

for any ¢ large enough. O

Remark 3.2. (i) This lemma can be generalized to the case of 0 <0 <p<r<p(l+e¢ tf> in
view of the fact that :
|fk| SC(Uk,m*’ka) g’ 5>O, m>n

forany f€L,(R",t)NS’(R") such that suppF fy C{E€R":|¢|<2F} k€Z, see [17, Lemma
A7)

(ii) The property (3.14) can be generalized in the following way. Let 0<0<p<oo and {t; }
be a p-admissible weight sequence such that t;, € A p (R"), keZ. Let & be as in Theorem

2.1. Let fy € L,(R",)NS'(R") be such that suppF f C {¢ €R":|¢| <2F} ke Z.
o If t,’f , k € Z satisfies (2.3), then

[ fil Lo (R, £)]| < ¢ 20070 +kG =)

SelLp(R™, 1) |

holds for all p <r <p(1l+e¢,),k€Z and k> j, where the positive constant c is inde-
pendent of k and ;.
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o If t,’f , k€ Z satisfies (2.4) with 0» > p, then

felLe (R, 1) || < ¢ 220 0+G =)

fk|LP(Rn/tk) H

holds for all p<r<p(1 —H-Zt];: ),k €Z and j >k, where the positive constant c is inde-
pendent of k and ;.

Theorem 3.3. Let 0 <0 < p <ooand 0<g<oo. Let {t;} € Xy, be a p-admissible weight
sequence with o= (o1 =0(5)', 00> p) and a= (a1,a2) € R,

(i) We have the embedding
Soo(R") = By o(R", {t}).
In addition Se(R") is dense in By 4(IR", {t;}) with 1< <p<oo and 0 < q < co.
(ii) Let 1< 0 <p<ooand 0<g<oo. Then
Bpqg(R" {t}) = Se(R").

Proof. Proof of (i). Let f € S (IR"). Let us recall the estimate of [66, Lemma 2.2]. For any
M e N, there exists a positive constant C = C(M,n) such that for all ¢,ip € S (R"),i,j € Z
and x €IR",

2—(iN)M
(27i/\j_+_ |x|)n+M’

@i (x)| < C|| @l Sama ||| ] Saaca |27 M

where iAj=min(i,j). Let ¢ € S(R") satisfy (3.1) and (3.2). Then we easily obtain

@i £ S F1Smn [|2M i nsma(x), k<0,
[ prx f(x)] < Hf’SMHHz_kMUo,nJrM(X), k>0.

Using Lemma 2.2, we obtain that
| tto,n MLy (R™) || S Mg o), (tk), k>0, M> g
Similarly we obtain
et a Ly (R | S20-0 M1, (1), k<0, M>7.

We now consider two cases. If k>0, then by (2.4) we obtain

Mpo,1,p(te) SzkazMB(O,l),p(tO)'

If k<0, then by (2.3) we find that

Mg 0,1),p(t) MB(0,1),01 (tg 1) <2k,
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Taking M large enough we get

00 0 00
Z H§0k*f|Lp(]Rn/tk)Hq§ Hf’SM—HH ( Z 2k(ac1+nf§+M)‘7_|_ sz(asz)‘O
=—00 k=1

k=—o0 k =

S |f1Sma

which completes the proof of the embedding Seo (R™) < B, o(R", {#¢}).
Let us prove the density of So(R") in By, o(R",{t}) if 1 <8 <p<oco and 0<g<oo. Let
¢, p € S(R") satisfying (3.1) through (3.3) and f € By 4(IR", {f;}). Let

7

N
fni=) Prexgiexf, NeN.
KN

Because
q)]-*lﬁk:O, if k¢{j—1,j,j+1}
we have, see Lemma 2.4,

IwlBpaR (DI = (X Ilecpprdior o) Ly (RM]7)

| <N+1

==

(X [ Mlger) L RM])

|k|<N+1
S fIBpg (R, {tc}) || < o0

for any N €IN where ¢ = @r_1+ ¢+ @11,k € Z. Consequently,

==

|f = IBraR BN < (L [telgerter @x f)IL, (R)]|)

[k|>N+1

S( L ML, R
[k|>N+1

S( L Il@enIL, ),

[k|>N+1

where we have used again Lemma 2.4. The dominated convergence theorem implies
that fy approximates f in B, ,(R",{t;}). But fy, N €N is not necessary an element of
Sw(R"), so we need to approximate fy in So(R"). Let w € S(R") with w(0) =1 and
suppFw C{¢:|¢|<1}. Put

fnsi=fnw(d), 0<6<1.
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We have fy 5 € Seo(R") see [66, Lemma 5.3], and

N
fn—fus= ) ergerf)(1-w (o).

k=—N

After simple calculation, we obtain

¢j*[(¢k*¢k*f)(w(5'))](x)Z/]Rn¢k*f(y)§0j*(J’kW((S('ﬂLy))(X—y)d% x€R",
which together with the fact that
suppF (frew (8(-+y)) C{g:2° 2 < g <22}, yeR", k<N
if 0 <6 <27N=3 yield that
i (P pex f)(w(6:))]=0 if  [j—k|=2.
Therefore, we obtain that || fy — | Bp,¢(IR", {f¢})|| can be estimated by

2

(T [t X [siegrrimn 0ol 1))
k|<N+2 =,
$E( T Jul@emaempi-oenmm])

i=—2 "|k|[<N+2
Again, by Lebesgue’s dominated convergence theorem fy s approximates fy in the s-
paces B, ;(R",{t}). This prove that S, (IR") is dense in By, ¢(IR", {f}).

Proof of (ii). Let ¢, € S(R") such that supp F ¢, supp F ¢ are compact and bounded
away from the origin and (3.3) holds. If f € B, 4(R",{}}) and w € Sw(RR"), then (f,w)
denotes the value of the functional f of S, (IR") for the test function w. We obtain

[(frw)| < ku (P i+ frw)|
< Y ||@exfILp (R to) || ||| Ly (R 25 ) || (3.16)
k:—

The right-hand side of (3.16) can be rewritten as I; + I, where

0
Li= Y ||@exf|Lp(R™t0) ||| x| Ly (R™ 51|,

k=—c0

12::;||¢k*f|Lp<R”,to>HHtpk*wle%R”,tol)H-
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We estimate I;. Similarly, as in the proof of (i),
[prexw(x)| S2%m(x), k<0, M>0,
with L large enough. Observe that t) € A,(R") and from Lemma 2.1 (ii),
ty7 € Ay(RY).
By Lemma 2.1 (iv) there exists 1 <x < p’ such that t,” cA » (R"). Using Lemma 2.2, we
obtain that
Htalﬁk,MMP’ (R") H 5zkn(li%)MB(Orl),P’(tal)' k<0, M> %
These estimates guarantee that, I; is bounded by c|| f|Bp,eo(R", {t})]|-
We proceed in a similar way and by
()] S2 Fom(x), k>0,

the term I, can be estimated by c|| f|B,eo(R", {t(})

, which completes the proof. O

3.2 Embeddings

For our spaces introduced above we want to show some embedding theorems. We say
a quasi-Banach space A; is continuously embedded in another quasi-Banach space A,
Ay — Ay, if A1 C Ay and there is a ¢ >0 such that || f|Az|| <c||f|A1]| for all f€ A;. We
begin with the following elementary embeddings.

Theorem 3.4. Let 0< p<o00,0<q<r<oo, and {t} be a p-admissible weight sequence satisfying
(2.3) with o1 =0 (%)/ and j=k. We have

By (R, {t}) = By, (R", {t}).

The proof can be obtained by using the properties of sequence Lebesgue spaces. The
main result of this subsection is the following Sobolev-type embedding. In the classical
setting this was done in [37] and [58]. We set

1 1

wio(p1) = (/Qw,fl(x)dx>p_l and fro(po):= (/Qt,fo(x)dx>p_°, Qe

with £(Q) =27,

Theorem 3.5. Let 0<0<po<p; <ooand 0<g<oo. Let {t; } be a py-admissible weight sequence
satisfying (2.3) with p=py, 01 =6 (%), and j=k. Let {wy} be a p1-admissible weight sequence
satisfying (2.3) with p=py, o1 =0(8) and j=k. If wo(p1) Stro(po) for all Q € Q with
0(Q) =27, then we have

bpoq(R" {ti}) = bp, g(R" {wy}).
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Proof. By the embedding /) — £, and the fact that wy ,,(p1) < txu(po), k€ Z, me 2",
where

Wm(p1) =wkq,, (p1) and  tw(po) =trq,, (Po),
we obtain our embedding. Hence the theorem is proved. O

From Theorems 3.1 and 3.5, we have the following Sobolev-type embedding conclu-
sions for B, 4(R",{f}).

Theorem 3.6. Let 1 <0 < py<py <ooand 0<g<oo. Let {t;} € Xoyp, be a po-admissible

weight sequence with o= (01 =0 (1), 02> po) and wy=(a1,0,020) ER2. Let {wy} € Xuy 0,p, be

a py-admissible weight sequence with o= (o7 =0 (%) "oy > p1) and ay = (a1 1,&21) €R%. Then

Bpog(R" {t}) <> By, 4(R", {wy}),

holds if
wi,o(p1) Stro(po)
forall Qe Qandall ke Z.

From Theorem 3.6 we can obtain some special Sobolev embeddings.

Theorem 3.7. Let 1<0<pg<p;<co, 0<q<co. Let {t;} € X, 50, N X,X,,ﬂ,plwith a=(n1,00)€
R2,00 = (00 =0(2) 00> po) and o' = (o} =6 (2)',0} > p1). Let epo be as in Theorem 2.1,
Then

Byog(R" {1x}) = By, g (R”, 2700 })
holds if po<p1 < Po(1+€t£o).

4 Atomic, molecular and wavelet decompositions

In recent years, it turned out that atomic and molecular, as well as wavelet decomposi-
tions of some function spaces are extremely useful in many aspects. This concerns, for
instance, the investigation of (compact) embeddings between function spaces. The idea
of atomic and molecular decompositions leads back to M. Frazier and B. Jawerth in their
series of papers [25, 26], see also [33, 60, 68].

The main goal of this section is to prove atomic, molecular and wavelet decomposi-
tion results for B, 4(R",{f;}).

4.1 Atomic and molecular decompositions

We will use the notation of [26]. We shall say that an operator A is associated with the
matrix {ag,  p,, }koezmnezr, if for all sequences A = { Ay fkezmezn CC,

[ee]

AN ={(AN)km Ykezmezr ;:{ Yo ﬂQk,mPv,,,Av,h}

P keZ,meZ"'
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We will use the following notation

Ji=

n

We say that A, with associated matrix {aq, , p, , }x,vez,mnez, is almost diagonal on bp,q (R™,
{tx}) if there exists ¢ >0 such that

Sup ’an,mPv,h |

< 00,
koeZ,mhezr YQuumPon (8)

where

|XQy,, = Xp,, | \ ¢ p00-k)(aat23%) - if <k,
( )) 2l

OQunton (€)= 1+maX(2_k,2—” o)) i o>k

Due to Lemma 2.6, the following theorem is a generalization of [26, Theorem 3.3], see
also [68, Theorem 3.1].

Theorem 4.1. Let ay,0, €R, 0<0<p<ooand 0<g<oo. Let {t; }x € Xy, be a p-admissible

weight sequence with oy =0(5) and oy > p. An almost diagonal operator on by o(R",{t}) is
bounded.

Definition 4.1. Let aj,00 € R, 0<p <ooand 0 <g<oo. Let {t;} be a p-admissible weight
sequence. Let N=max{] —n—wq,—1} and ol =0 — [a2].
(i) A function oqg, ,, k€ Z,m € Z", is called an homogeneous smooth synthesis molecule for the

space By 4(R",{t}) supported near Qi ,, if there exist a real number § € (3,1] and a real number
M € (J,00) such that

| #Poq., (x)dx=0 if 0<|p<N, 1)
R” !
100, (%) <277 (1428 |x—xg, , ) ~mxMM-a), (4.2)
0P0q, , (x)| <2MPFD (142K |x—xq, V™M if || < [a2), (4.3)
0F 00, (x)—0F0g,,, ()] (4.4)
S2k(ﬁ'*"5”)!x—y|”mllp (1+25x—z—xg,, )™M if [B=az].
z|<|x—y

A collection {0q, , }rezmez» is called a family of homogeneous smooth synthesis molecules for
the space B, 4(R",{t}), if each 0q, , is an homogeneous smooth synthesis molecule for the space
B,,q(R",{t}) supported near Qy .

(ii) A function bg, ., k€ Z,m € Z", is called an homogeneous smooth analysis molecule for the
space Bp,o(R",{t}) supported near Qy,, if there exist a x € ((J—a2)*,1] and an M€ (], 00) such
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that such that

[, 300, (x)dx=0 if 0<Ip|<[wa], (45)
|ka,m (x)| S 2k% (1+2k ’x_ka,m ’)7maX(M,M+n+“27])’ (46)
0Pbg,, (x)| <P (1425 x—xq, )™M i |B[<N, (4.7)
0Pbg,,, (x) —0Pbg, ()] (4.8)
SZ"('“Z“)Ix—y!"Hsup |(1+2"!x—z—ka,m|)‘M if |B|=N.

z|<|x—y

A collection {bg,  kezmez» is called a family of homogeneous smooth analysis molecules for
the space B, q(R",{tx}), if each by,  is an homogeneous smooth synthesis molecule for the space

B,q(R",{t}) supported near Qy .
We will use the notation {b, } kez,mez» instead of {bg, , }rez,mez

Lemma 4.1. Let a1,a,],M,N,d,x,p and q be as in Definition 4.1. Let {t;} be a p-admissible
weight sequence. Suppose {0y Yvez,nezr is a family of smooth synthesis molecules for By (IR",
{tx}) and {by y Ykez,mezr is a family of homogeneous smooth analysis molecules for B, q(R",{t;}).
Then there exist a positive real number €1 and a positive constant c such that

|<Qv,h/bk,m>| <c WQs Poy (S), kveZ,h ,m ceZ"
ife<e.

Proof. The proof is a slight modification of [26, Corollary B.3]. Possibly reducing J, o, or
M, we may assume that 6 —a; = %} =k —(J—ap)* > 0. First we suppose that k> v and
ar > 0. We have

(00,1, brm) = o1 *bkm(Xp, ;)
with g, 5 (%) = 0o 1 (xp,, —x). Applying Lemma B.1 of [26] we obtain

(o bim) | < ¢ 27 k0Nl 2500 (1 4 90 |xp  —xg, )M
<c 2—(’<—v)(042+"7+8)(1+2”|xpvlh —ka’ml)_M

if (a2 ]| +0>ap+ 5 for some £ >0 small enough, but this is possible since § > a;. In view if
the fact that 6 <1, we will take e <2(d—a3).
Now if k> v and a; <0, then by Lemma B.2 of [26], we find that

(00,1 bim)| < € 2-(k=0); (1+2v’xpv,h ~XQum ’)_M
< c2 0t ) (1420 ]xp  —xq, )M

if0<e< —2a5.
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We suppose that k<v and N >0. We have (0, 1,bk,m) = &km* 0o (X0, ), With &g, (x) =
bm(xq,, —x). Again, using Lemma B.1 of [26], we obtain

[(Qo D) < ¢ 27 OTOWNFIR) (14 2K |3 —xg )M
S c 2(Uik) (“1717%) (1 +2k ’va,h - ka,m ’)7M/

since
n

N
+2

+K>E—|—]—E—tx
2 2 1

for any 0 <e < 2x.
Now if that k <v and N =—1, then we apply Lemma B.2 of [26], since N = —1 implies
n-+ay > ] so that n>—a1+ 54, and obtain

| <Qv,h/bk,m> ’ S C 2_(-‘)_1{)g (1+2k|'va,h - ka,m ’)_M
<c z(v—k)(otl—]—s%")(1_|_2k|valh —XQ,, ’)—M

if 0<e<2(ag —J+n). The proof is complete. O

As an immediate consequence, we have the following analogues of the corresponding
results on [26, Corollary B.3].

Corollary 4.1. Let a1,a2,],M,N,é,x,p and q be as in Definition 4.1. Let {t;} be a p-admissible
weight sequence. Let ® and ¢ satisfy, respectively (3.1) and (3.2).

(1) If {0k m tkez,mezn is a family of homogeneous synthesis molecules for the function space
Bp,q(lR”, {tx}), then the operator A with matrix entry AQp yPoy = (0o Pim), k,vEZ,m,he
7, is almost diagonal.

(ii) If {bkm tkez mezn is a family of homogeneous smooth analysis molecules for the function
space Bp,q(lR”,{tk}), then the operator A, with matrix entry ag,  p,, = <€”v,h/ka,m>/ kove
Z,m,heZ",is almost diagonal.

Let f€B,4(R",{t}) and {bi } kez,mez» be a family of homogeneous smooth analysis
molecules. To prove that (f,bg, .), k € Z,m € Z", is well defined for all homogeneous
smooth analysis molecules for Bp,q(lR”,{tk}), we need the following result, which was
proved in [7, Lemma 5.4]. Suppose that ® is a smooth analysis (or synthesis) molecule
supported near Q € Q . Then there exist a sequence { ¢ }xeny C S(R") and ¢ > 0 such
that cgy is a smooth analysis (or synthesis) molecule supported near Q for every k, and
¢r(x) = P(x) uniformly on R" as k— oo.

Now we have the following smooth molecular characterization of B, ;(R",{t;}).

Theorem 4.2. Let a1, 2 €R, 0<0 < p<ocoand 0<g<oo. Let {t} € Xo0,p be a p-admissible
weight sequence with o1 =0 (5)" and o2 > p. Let |,M,N,6 and x be as in Definition 4.1.
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(1) If f=Y0 o Xmezn Ok mAim, where {0 m }kez,mezn is a family of homogeneous smooth
synthesis molecules for By, o(R",{t}), then for all A € by, o(R",{t,})

| £1Bpq(R" {1 })[| S | Albp,q (R, {1}

(ii) Let {bxm}kez,mezr be a family of homogeneous smooth analysis molecules. Then for all
f€Bpq(R" {ti})

[{(F o bk ez mez Dpq(R™ {ti}) | S F1Bpg (R, {te}) |-

Proof. Proof of (i). By (3.4) we can write

Oon=3_ 27 Y G0y (2 m) (- —2 Fm)

k=—c0 mezn

for any v € Z,h € Z". Therefore,

=Y Y Seutm=TyS,

k=—comeZ"

where S = {5, }kezmezn, with

& . .
Skm=2" 2 Z Z(Pk*Qv,h(2 km))\v,h.

V=—00hcZ"

From Theorem 3.1, we have

| £1Bpg(R", {tx})|| = || TpS|Bpg (R, {tx })[| < || SIbp,q(R", {tc})]]-
But

Skm = Z Z Q1 Poy Mo
V=—0oheZ"
with
aQy Py = Qo s Phom), kOEZ,mheZ".
Applying Lemma 4.1 and Theorem 4.1 we find that

HS’BM(RHI{tk}) H S HA’BPr‘?(Rn’{tk}) H
Proof of (ii). We have

Frbem)= Y 277" Y ((-=27h), b)) Pox f(277h)
V=—00 mezZ"
= Y Y (Wonbim)Aon
v=—oomeZ"

= Z Z an,mPv,h/\Urh’

v=—ocohcZ"
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where
Qe Pop = (Yo bem),  Aop=2"2 @ox f(27°h).
Again by Lemma 4.1 and Theorem 4.1 we find that

[{(f brm) Yeezmeze 1bpq (RGBS [ {Aon Yoez ez by, (R" {8}
= ¢|{(Sg)ontoeznczr |bpg(R" {t})]]-

Applying Theorem 3.1 we find that

[{{F bk ez meze Dpq(R" {ti}) | S| f1Bpg (R, {te }) - O

Definition 4.2. Let a1, €R, 0< p <00, 0<g<ocoand N=max{]—n—waq,—1}. Let {t;}
be a p-admissible weight sequence. A function ag, , is called an homogeneous smooth atom for
B,q(R" {t}) supported near Qi m, k€ Z and me 2", if

supp aq,,, ©3Qkm, (4.9)
0Pag, , (x)| <2UFH1/2)if 0<|B| <max(0,1+ |az]), x€R” (4.10)

and if
/xﬁan/m(x)dx:O if 0<|B|<NandkeZ. (4.11)

A collection {ag,  }rezmez is called a family of homogeneous smooth atoms for
By (R",{t}), if each ag,  is an homogeneous smooth atom for B, ;(IR",{t}) supported
near Q,, . We point out that in the moment condition (4.11) can be strengthened into that

/ xﬁan/m(x)dxzo if 0<|B|<NandkeZ
and the regularity condition (4.10) can be strengthened into that
0Pag, , (x)| <2"UPFL/2) if 0<|B|<K, xeR?,

where K and N are arbitrary fixed integer satisfying K>max(0,1+ a2 |) and N>max{]—
n—aq,—1}. If an atom a4 is supported near Q, ,,, then we denote it by 4.

Now we come to the atomic decomposition theorem.

Theorem 4.3. Let a1, 2y €RR, 0< 0 < p <oo, 0<g<oo. Let {ty} € X0, be a p-admissible
weight sequence with oy =0 (7)) and o2 > p. Then for each f € By, o(IR", {t,}), there exist a family

{okmkezmezn of homogeneous smooth atoms for Byq(R" {ti}) and A = { A tkezmezn €
byq(R",{t}) such that

f= Z Z MemOkm,  converging in Si,(R"),

k=—comeZm
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and

H{)\k,m}kez,mGZ” ’bp,q(]Rnr{tk}) H 5 Hf|Bp,q(]Rnr{tk}) H
Conversely, for any family of homogeneous smooth atoms for B, (R",{t}) and A
={Akm trezmezr € by, (R", {tc})

Y Y Ak,m@k,mer,qw,{tk})H < hembeczmezslbpa (R {63)])

k=—ocomeZ"

The proof of this theorem can be obtained by repeating the arguments of [26, Theorem
4.1].

4.2 Wavelet decompositions

Based on the decomposition system for L,(IR"), the main aim of this section consists in
proving another characterization of the above spaces. We use the method developed by
Kyriazis [43]. First we give some notation which will be used here. Let E={1,---,j}, jeIN
be a finite set and

O={0kmi:i€cEkecZmeZ"}

a decomposition system for L, (IR") with dual functionals
®={Okmii€cEkEZmEL"}

and in addition '
] o]
=X X flomioimi (412)

i—1k=—comeZ"
in the sense of Ly(IR"). For every x € N we define

SK(IR”)::{q)eS(IR”):/

x"¢(x)dx =0 for all multi-indices |y| < K}
]Rn

and we identify the dual space of S¢(R") with S;.(R") the set of all continuous linear
functionals on S (R"). Let ¢ € S(R") satisfies (3.1)~(3.3) with  =¢. Let {t;} € X40p be a
p-admissible weight sequence with 0<6<p<oo, a=(ay,a,) ER? and o=(01=0 (§) /,(Tzzp).
From [43, Section 2]
=Y oexgexf, in S(R"),
k=—c0

with ¥ = max(|ap — %J,—l) and f € B, 4(R",{t}), where J is the positive constant ob-
tained by Lemma 2.1 (v). Indeed, again from [43, Lemma 6.2] we need only to prove
that

—1
Y 0P (prxgixf), (4.13)

k=—0c0

converges in S’ (R") for every |B| > . To do this we need the following lemma.
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Lemma 4.2. Let 0< 60 <p <o00,0<q<coand ¢ beasin Lemma 2.1 (v). Let {t;} € Xo 0, bea

p-admissible weight sequence with o= (o1 =0 (%)’ 02> p) and a= (a1,4,) €R?. Let 9 € S(R")
satisfies (3.1) and (3.2). Then

[(@r* frWmin(o0)) | S@k|| f1Bpg (R {1 }) ]

holds for any k€ Z, w € S(R") and any f € B, 4(R",{t}), where

o[ 25 i k<,
T 20 i ke

Proof. We have
(et fOmino) | < [ 1005 £ )] @min(os0 (0) Iy

Splitting the integration with respect to the cubes Qy ,, we derive

(g fomimoi)| < L [ sup |ox F@)] [Wninosy (1)1

mezn” QmzeQy

We recall the following estimate see (2.11) in [25],

sup g f(2) | S2%( 1 (4D ™ [ JpenflTax) ", @1

ze Qk,m hezZ"

with M >n,7>0. Taking % = %+ Ull, we get by Holder’s inequality that

1
T 1 -
([ e fol dx) " < |Quuminl* Moy, (@15 ) My i (1)

k,m-+h
1 _
< |Qk,m+h|‘71 Hgok*ﬂLP(]Rn/tk)HMQk,m+m171(tk 1)‘

From (2.3),
1

MQk,m+h/‘71 (tk_l) S C (MQk,m+h/P(tk)) - 7
where the positive constant C is independent of k, m and h. First assume that k<0. In
(2.4) putting Q= Qk o~ and j =0, where

n

Q, = T2 (mi+h:), 27" (mi+hi) +2'7F),
' i=1

we get
L e
Mg —_(th) < (Mg ()= S27 P Mg

km+h km-th km-th

(), k<0, mez".
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Obviously
Qk,m - Ek,m+h/ k S 0/ mlh S Z)’l,
where ;
Emn=] [(ai,bi)
i=1

with

a;=min(—2""%,~27¥|m+nl), =1, m,

bi=max(2' *|m+h|,2 7 m+n|+2175), i=1,--n
if m+h#0 and

n
Egmen=][[-2"%2"5),
i=1

if m+h=0. Since t,’z €A 2 keZ, from Lemma 2.1 (iii) there exists constant C > 0 such that

| Qi mn ) 671
MQk,m+;,(tlf)ZC(|Q - ) Mka(fp) k<0, m,heZ",
km+h

Qi j1
+h'\ ¢ p
Mka( )>C(’Ek,m+h’) MEk,nz+h(t0)
—np
9

+n
> 200 (27 42 K m+h|) " Mg, (1)

(Ek,m+h)/

P
[

> C2M (14 |m+h|)

where the constant C is independent of k,m and h. Using the fact that

A= H[ 1,1) C Ex s,

and Lemma 2.1 (v) we get
(Mo, p(te) " S22 5) S+ m+n) Y ML (k), k<O, mheZ",

where the implicit constant is independent of k,m and h. Therefore

( /QW (i f(y) ") %

does not exceed

2 =Dk o))

3p,00(R", {11}
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It is not difficult to see that the term (1 |m+h|) ¢~ ¥ does not exceed

on 5
pP

A+HD 7 (14291)° 7, veQum
We observe that we can ensure that the following bounds holds
H(1+2k!-!)gJ’fwk|L1<R”>H51, k<0
and we finally get that
[penfron)| 205 f1Byg (R”, {t))]|, k<0,

by taking M in (4.14) large enough. Now assume that k €IN. We have

_ _ -1
MQk,m-Hzral (tk 1) 5 2 ko (MQk,m-lep (to)) 4 k S N’

by (2.3). We have
Qim+h € Em+ns

but Ey =114 (a;,b;), with

ai=min(—1,-2Km+n|) and b;j=242"Km+n|, i=

59

if m+h##0and Ey =114 [— 1,1), if m+h=0. Again from Lemma 2.1 (iii) there exists

constant C > 0 such that

|Qm+n| 7
Moy, ()2 C(TE220) T M, (1)

n

> C2k”(1*§) (1—|—2fk|m—|—h|) ’ tg(Ek,m+h)-

Since A C Ey 1, We get

n_
0

MQk,m+lxral (tlzl) 52(%_%_0‘1)1( (1 —|—27k|m—|—h|)
By the argument same as in case k <0, we also obtain

{(gix f,w)] S25 ¥ £1B, (R {t})||, keN,

which completes the proof.

" Myl (t), kEN,mhez".
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From Lemma 4.2, we get
(0P (rx grx f),w)|
= 2P (BB G (25 ) gk few) |
= 2P| (g £, 0P (25 ) xaw) |

52(|.3\+”75*062)kHf’BPIS(]Rn,{tk}) , k<0,

which ensures that the series (4.13) converges in S’(R") for every || > k. Therefore the
elements of B, ;(R",{t}) can be regarded as equivalence classes of distributions modulo

polynomials in Py with x =max(|az— %J ,—1) and

f= ¥ 279 ¥ Gerf2Fm)ge(-—27Fm) in S(R").
k=—o0 mezZ"
The main result of this section is the following.

Theorem 4.4. Let E={1,---,j},j € N be a finite, 1,00 € R,0<0 < p <o00,0<g<oco. Let

te} € Xy o p be a p-admissible weight sequence with o, =6 (£ " and 09 >p. Let 6 be as in Lemma
0P P ght seq 0 p

2.1(v). Let
O={oxmi:icEkecZmeZ"},
S ={Gim:i€EkeZmeZ"}
be a decomposition system for L(IR") satisfying (4.12) in the sense of L(IR"),

— Mg

9 0 (x)] <c2¥ P (1428 =l ) IRl <ray
95 ()] <23 (142l ) 0, 1Bl <
[ 3P emi(x)dx=0 i 0<|p|<re—1,
/Wxﬁ()krmli(x)dxzo if 0<|B|<re—1

for every i€ E, k€ Z and m € Z" where ¢, € No with

n
re >0k, Tg>]—n—ag+—
01
and

0
Mo, Mg >max(]+g— %,n%—r@,n—kr@).

Then for each f € B, 4(R",{t}),

] o]

f:Z Z Z <f/§k,m,i>Qk,m,i/ in S;Q(]Rn)

i=lk=—comeZ"
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and in B, 4(R",{t;}) for 0<q < co. Moreover

. ] N .
| £1Bpa R™ {te )| = Y | f /G m,i) Yeez mezn | bp,q (R™,{tc})|-
i=1
The proof of this theorem is based on some technical results established in [43] for the

classical Besov and Triebel-Lizorkin spaces.

Lemma 4.3. Let r € INg and M >n+r. Let {0y }oeznezn and {b m kez mezr are families of
functions on R" satisfying

1 -M
|00 ()| <2°7 (142°[x—xo0]) ™,

n -M
0P by ()| < 2B IR (1425 x—xim] ), IBI <1,
/xﬁgvlh(x)dxzo if 0<|B|<r-—1
RTI

or every k,v € Z and h,m € Z". Then
f Y

| <bk,m/Qv,h> | < Cz(k_v)(H_g) (1 +2k’xv,h — Xk,m ’) _M/ k<wo.
For the proof, we refer the readers to [26], see also [43, Lemma 3.1]. Notice that for
r =0 there are no moment conditions on ¢, ;. Let r1, r» € Ny and M > n+max{ry,r},
{0vn }vez ez and {by y }kez,mezn are families of functions on R” satisfying

0P 00 ()] <2+ ) (1420 x—xo )M, |Bl<1, (4.15)
n n -M

10Pby  (1)] < 2K+ (1+zk|x_xk,m|) . IBI< (4.16)

/xﬁgvlh(x)dx:O if 0<|B|<r—1, (4.17)

]Rn

/xﬁbk,m(x)dx:o if 0<|pl<r—1 4.18)

Rn

for every k,v € Z and h,m € Z". We have the following:

Proposition 4.1. Let aj, ap €R, 0<0<p<ooand 0<g<oo. Let {t} € X0, be a p-admissible

weight sequence with o1 =0 (%)/ and o3 > p. Let {0y boez nezn and {by m Ykez,mezn be families

of functions satisfying (4.15)—(4.18) for some r1, ro € Ng and M > n+max{ry,r2 }. Assume that
rp>ny, r1>J]—n—uy, M>].

Then the matrix A= {(0un bkm) }okezhmezn is bounded on by ,(R",{ty}). Moreover, there
exists a positive constant ¢ such that

1AM B g (R, {ti )| <c[|A by, (R" {1} |
holds for all A € by, o(R", {t;}).
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Proof. Let A={Akm ez mezn € bpq(R", {tc}). We write A= Ao+ A; with

%

(AOA)v,h: Z Z <Qv,h/bk,m>)‘k,m/

k=—ocomeZ"
(A )on=Y_ Y (0o brm) Am-
k=v+1meZ"
From Lemma 4.3, we obtain
|(AO/\ ‘ i Z 2k v)(r2+3% ’)\k,m|
k=—comeZ" (1+2k|xk1m —xvlh|)M
v
¥ 20,

k=—o0
For each j€ N we define
Qjjon:={me2Z" 27 < 2K — x| <273,
Qopon:={mezZ" :2k|xk,m —Xy| <1}
Let 7 <7 <min(1,p) be such that r; > 2 —n—a;. We rewrite Sy, as follows

=0

meQ) i ko,h

- Mk,m |

Skon=y_, 3

j:OmeQ]}k’U,h (1 +2k | xk,m - xv,h | )

and by the embedding ¢+ — ¢; we deduce that

© . 1
Skon< Y 27M( Y Aw|)T

j:() mGijvh

= ZZ ( / Z ’)\k,m|TXk,m(y)dy> % (4'19)

MmeQikon
jko,
Uzeq; ), Qkz

We proceed as in Lemma 3.3. We easily obtain that (4.19) does not exceed

M () MemXim) (x)

mezn

for any x € Q,, and any k <v. Applying Lemma 2.6, because of r, > a,, we obtain
| AoAlby,q (R, {tc})]| is bounded by c||A|bp,q (R", {})||-

Again from Lemma 4.3, we see that
|/\k,m | _ E

(A1A)op] < 7 (0=k)(r1+3) 2R+ )
| | k:;i-lmé” (1422, g — o) ™ k:zv:H
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As before,
Tion <25 M (Y Akmiim) (%), k>0,x€Qyp,

meZn

where the positive constant ¢ is independent of k,v,x and h. Again applying Lemma 2.6,
because of r1>2%—n—ay, we obtain | A1A|by, o (R", {#}) || is bounded by c|[A|b,,4(R", {£})]|-
Hence the lemma is proved. O

Lemma4.4. Let aj, 1 €R, 0<0<p<oo,0<g<oo. Let {t;} € X0 be a p-admissible weight
sequence with o1 =0 (%), and 03 > p. Let 6 be as in Lemma 2.1 (v) and x =max( |ap — %J,—l).

Let { by tkez mezn be families of functions satisfying (4.16) and (4.18) for some 11, rp € Ny, and
M > ]. Assume that

n
T2 >y, r1>]—n—oc1+0—
1

and

M>max{]+g—n?f,n+r1,n+r2}.

If A€byq(R",{t;}) then the series

=Y Y bowrim (4.20)

k=—ocomeZ"

converges in S{(R") and in By, o(R",{t;}) for 0< g <o, and

1 £1Bpq(R", {ti})[| S [|A1Dp,q (R, {t:})]]. (4.21)

Proof. We have to subdivide the proof into three steps.

Step 1. We will prove the convergence of the series (4.20) in S, (R"). Let w € S¢(R").
We write

Z Z )\k,m<bk,m,(,0> ::Il+12/

k=—ocomeZ"
where
0 0o
Li= Y Y Mwlbgmw) and Li=Y Y Apu(bemw).
k=—comezZn k=1mez"
By Lemma 3.2, we find that

Mk,m]527k_2*1t,;71nH)\|l'7p,q(]R”,{tk}) . keZmeZ".

As in Lemma 4.2, we derive that

bk S22 (A ) My (o), k<Omez. (4.22)
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We see that
[ (B c0)| S2CHED) (14 |m]) M, k<0,

by Lemma 4.3, with the help of the fact that r, > x+-1. Using this estimate, by Lemma 3.2
and (4.22), we get

0
B (A Bpg (R 4D 32 30 200 (1t m])

k=—ocomeZm"

: O k(1 —ap 2
S |AMBpg(R: {1 1| Y 28t eet )

k=—00

S [[Albpg (R {ti}) |,

because of k¥ >« — 7 —1. To estimate I, notice that

[(bimw)| <208 (1427 K m]) ™, keN,
see again Lemma 4.3. For each j€IN we define

Q= {mezZ" Qi1 |m| §2j+k},
Qop:={mezZ":|m| <2"}.

Let 7M——+”" <t <min(1,p) be such that T > W Then we find
- 1 A
L< 22 k(ri+3) e

k=1 mez" (1+2*k|m])M

— Ciz k(’ﬁr’%)i Z ’Ak,m| -
k=1 j=omeny; (1-+2-K|m|)

SHIEES ZZ MY Al
k=1 mer,k

Let 0 <o <min(1,0) be such that % =14 all with 0 <7 <p. Using the embedding /, — /1
we find that

o 1
LSy 27kt 22 My V‘km’Q)Q
k=1 meQ)
N 1
_ Y ok Zz Wi [ e ()dy)
=1 mer,k

Uzeq;  Qk,z
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Let y €Uzeq;, Qkz and x € Qoo. Then y € Q. for some z€ (), and 2i=1 <27K|z| <2/. From
this it follows that

ly—x| <|y—27Fz|4+|x—27Fz| < V/n 27K |x|+27Fz| <20, 5,eN,
which implies that y is located in the ball B (x,2j +‘5"). In addition, from the fact that
Y <ly—x|+|x| <2 +1<27, ¢, €N,

we have that y is located in the ball B(0,2/*"). Therefore, by Holder’s inequality

1
(z(k—])n / Z ’)\k,m ’QXk,m (y)dy) ‘

meQ);
Uzeq; Qk.z ik

1

kg (o=in T4T T _
2 (27 / Z ’Ak,m’ tk (V)Xk,m(y)dy) MB(O,2j+C”),U’1 (tkl)

B(x,2ion) "€k

k2 _
2 QMT( Z tk)‘k,ka,m)(X)MB(O,ZHCn),gl(tkl),

mezZ"

IN

N

where the implicit constant is independent of k,j and x. By (2.3), Lemma 2.1/(v), we find
that

nd 1

_ _ —1 j(n_noy_f _
Mg aivon) o (1) 27 (Mg g p7+eny,(H0)) <2/G=%) " (Mpo,),p(to)) -

Therefore, since M > 24 % — ”75,

LS 27k(rl+%7gH‘l)/\/lr(fk Y MemXim) (x),  x€Qop.

meZ"

™

The last term is bounded in the L,(Qq,0)-quasi-norm by c||A[b,, o (R",{t;})||, with the help
of Lemma 2.4 and the fact that r; > ] —n—a; + 7. Hence we have proved the convergence
of

o]

Z Z bk,m)\k,m
k=—ocomeZ"
in S, (R").
Step 2. We will prove (4.21). From (3.13), it follows that
f1Bpq(R" At} || = [{(f @rm) Yrezmezr bpq(R™ {t})]]- (4.23)

Thanks to Proposition 4.1, the matrix

A={{@rmbon) Yokeznmez
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is bounded on by o(R",{t;}). But

fq)km Z Z)\vh Prk,ms vh> kez, meZ".
v=—0o0heZ"
Hence the right hand side of (4.23) is just
[AALDg (R” (b })[| S| A LBy, (R, {c})]]-

Step 3. We will prove the convergence of the series (4.20) in By, ,(R", {#;}) for 0<g<co.
Again from (4.23), we obtain that

‘f— Y Y bophosl Bra(RY {51

[o|<NhezZn

can be estimated by

H{ Z Z Ao (o, Picm)

} |bp,q(R", {t}) H (4.24)
|o|>Nhez" keZ,mezZ"

Now, we put

A:{<§0k,mrbv,h>}\v\>N,keZ,h,meZ” and )‘:{)‘k,m}\kbN,meZ”'

Therefore

AN= {(AA)k,m}kEZ,mEZ” = { Z Z )‘v,h <bv,h/§0k,m>}

0| >NhezZn keZ,mezZn"

Hence (4.24) is just
I n ) n knq p % %
| ANy (R, ()| S[IM g (R (D] = 3 28 ( X Wwal’t],) ")
|k|>N mezZ"
which tends to zero if N tends to infinity. This completes the proof of Lemma 4.4. O

Proof of Theorem 4.4. We will divide the proof into two steps.
Step 1. Let f € By, o (R",{t;}). We will prove that

j
f:Z Z Z <fr§k,m,i>Qk,m,i~
i=lk=—comeZ"

From (3.4), we obtain

f= Z Y o @rm) Piom-

k=—ocomeZ"
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Since @y, € Lo(R"), k€ Z,m e Z", we find that
j N
= Z Z Z <§0k,m/Qv,h,i>Qv,h,i
i=1v=—oopezn

in Ly(R") sense and consequently in the distributional sense as well as in the spaces
B,q(R",{t}) for 0< g <co. Indeed, by Lemma 4.4 it suffices to show that

{ <(Pk,m/§v,h,i> }veZ,heZ” € bp,q (an/ {tv})

for any ke Z,m e Z". Observe that

{{Prm Qo i) oz hezn = { ZZZ;OOZEZZ:H (@1,2:Q0,i) A1z } ez ez
where
o= 1, if I=k and z=m,
279 o, otherwise.

We put A={A;,}/cz ez From Proposition 4.1, we get

[{(PrmQuni) boez hezr g (R {te}) || S [|AIbp,g (R", {te}) || <co.

Now
f=Y Y {fPimPrm= Z Y. Z Z Y (o Prm) (PrmiOopi)0opi-  (4.25)
k=—ocomeZm k=—comeZ"i=1v=—0hcZ"
Define
dv,h,i: Z Z <f/¢k,m><¢k,m/§v,h,i>r UEZ,hEZ”,iE{L'“,j}
k=—ocomeZn"

and di={dy; }veznez, i€{1,---,j}. Thanks to Proposition 4.1, the matrix
Ai={{Prm Qo) Yokezpmezr, 1€{L, ]}
is bounded on by, o (R", {t}). Let A={(f, @ m) }kez mezr € bpq(R",{tr}). Then
[ dilp,g (R {tic}) || = [| Aid by, (R, {ti}) | S [|ABp,g (R”, {te})[| <co.

Therefore by Lemma 4.4, we have that

[ee] o0

Yo X Y Y K tkm) I @kmOonid | [{Qopiw) | < oo

V=—00he/ k=—comeZ"
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for any w € §¢(R"). So we can change the order of the summations in (4.25), and obtain

o] o]

J
f: Z Z Z Z Z <f/¢k,m><(Pk,m/(~’v,h,i>Qv,h,i

i=lv=—00heZ"k=—comecZ"

—Z Z Z vahl Qo,h,i-

i=lv=—0oheZ"

Step 2. In this step we prove that

j
| £1Bp.q(R" {8} %; [{{f 0m,i) Yrez,mezn 1bpqg(R" {te}) |-

From Step 1, we obtain

i e
Froem)=Y_ Y. Y (f.00ni)(QounisPxm), kEZ, meZ".

i=lv=—oohecZ"

Define

Ai={0onirPm) Yokeznmezn, Ai={Aopi={f,0uni) tveznczn,

o]

Aidi={(AiM)km tkezmezr :{ Yo Y (fOun) <Qa,h,i,€0k,m>}

v=—ocofcZn kEZ,mEZ”,

wherei€{1,---,j}. From (3.13) and Proposition 4.1 we have that

| £1Bpq(R", {tc})]|

J
5 H {<f/§0k,m> }keZ,meZ“ ’bp,q(]Rn/{tk}) H 5 Z; H Ai/\i’bp,q (]Rn/{tk}) H
J

S L[| Ailbp,q(R”, {te}) H—CZH{ fr8m,i) Yrezmezn|bpq(R", {ti})]]-

=1

~.

Similarly,

[ee]

<kam1 Z Z qovh/kaz><f %h> kEZ,mGZ”,iE{l,"',j}.

V=—00heZ"

Define now
Ai={(Pon,0kmi) Yorezpmezr, A={Aon={f, Pon) boczhczrs
AA={(AiN)im kezmezn = { Yo Y Qo Okmi) (s qf)v,h>}

——— keZmezZ"
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withie{1,---,j}. Again by Proposition 4.1 we obtain
H { <f/§k,m,z‘> }keZ,meZ" |bp,q (an/ {tk}) H

does not exceed

[{{f Prm) Yrezmezn by, (R" {1 D) S| f1Bpq (R", {1 })
where we have used (3.13). This finishes the proof of the theorem. O

7

Remark 4.1. (i) Further results, concerning, for instance, characterizations via oscilla-
tions, box spline and tensor-product B-spline representations are given in [20].

(ii) We mention that the techniques of [35] are not capable of dealing with spaces of vari-
able smoothness. Also our assumptions on the weight {t;} play an exceptional role in
the paper.

(iii) We draw the readers attention to paper [44] where generalized Besov-type and
Triebel-Lizorkin-type spaces are studied. They assumed that the weight sequence {t;}
lies in some class different from the class Xy,0,p-

5 The non-homogeneous space B, ,(IR",{t; }ren,)

In this section, we present the inhomogeneous version of our results given above. Let
®,1p,¢ and Y satisfy

D,¥,0,pS(R"), (5.1)
suppF®, suppFY CB(0,2), |FO(I)||FY(G)>c, (5.2)
if |¢| <3 and
suppF ¢, suppFp C B(0,2)\B(0,1/2), [Fe(5)|,|Fp(&)|>c, (5.3)
if 2 <|¢| <3, such that
FO()FY(E)+ Y Fo2 k) Fyp(2*g)=1, eR”, (5.4)
k=1

where ¢ >0. Recall that the ¢-transform S, is defined by setting (S, f)o,nm = (f,¥m) where

Y (x)="(x—m) and (S¢f)k,m={f, Pxm) where (pk,m(x):2k7" @(2fx—m), k€N and meZ".
The inverse ¢-transform Ty is defined by

Tlp)\ = Z Aom ¥+ Z Z MWk ms
mez" k=1mezZ"
where A = { Ay, } ke, mez C C, see again [26]. Let @, ¢ € S(R") satisfy, respectively, (5.2)
and (5.3). We recall that by [26, pp. 130-131] or [27, Lemma 6.9], there exist functions
Y € S(R") satisfying (5.2) and ¢ € S(IR") satisfying (5.3) such that (5.4) holds.
Now we present the inhomogenous version of Definition 2.3.
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Definition 5.1. Let a1, ap €R, 01, 03 € (0,400|, « = (a1,a2) and let o = (01,02). We let
Xo,0,p= Xu,0,p(R™) denote the set of p-admissible weight sequences {t; } ke, satisfying (2.3) and
(2.4) for any 0 <k <j, with constants C1,Cy > 0 are independent of both the indexes k and j.

Example 5.1. A sequence {7;}jcN, of positive real numbers is said to be admissible if
there exist two positive constants dy and d; such that

doy;j <7vj+1<d17yj, jE€No. (5.5)

For an admissible sequence {7;}jcn,, let

. Yitk _ Yi+k .
c=infZ2— and =sup——, J€Nj.
5 k>0 Yk Y] ;@g ye o IO
Let i
log7; 087,
Xy := lim g’h and B,:= lim —~,
j—oo ] j—r ]

be the upper and lower Boyd index of the given sequence {+;};cn,, respectively. Then
VSV =TT Jk€No

and for each ¢ >0, ‘ ‘
2P <y <7 <2, jeNg

for some constants ¢ =c1(¢) >0 and ¢, =c2(¢) > 0. Also, 7, and 7, are the best possible
constants dy and d; in (5.5), respectively.

Clearly the sequence {'yj }jeINo lies in X, ¢, for a1=p —¢,a0=a+eand 0<p,01,02 <co.
These type of admissible sequences are used in [24] to study Besov and Lizorkin-Triebel
spaces in terms of a generalized smoothness, see also [34].

Let us consider some examples of admissible sequences. The sequence {7;}en,,

7;:=2%(1+j)"(1+log(1+/))¢, j€Np
with arbitrary fixed real numbers s,b and c is a an admissible sequence with 8, =«, =s.
Example 5.2. Let0<r<p<eo,a weightwf €Ay (R") and {s¢}={2"wP(27F) }ten,, sER.
Obviously, {si }kew, lies in X0 p for oy =a=s, o= (r(£)’,p).

Now, we define the spaces under consideration.

Definition 5.2. Let 0 < p < oo and 0 <q<co. Let {t; }reN, be a p-admissible weight sequence.
Let @, € S(R") satisfy (5.2) and (5.3), respectively, and we put ¢ =2""@,k € Ny. The Besov
space By o (R", {t }reN, ) is the collection of all f € S’(R") such that

1£1Bpq (R™, {ts }ren, )| = (Ii\\fk(ﬁl’k*f)’Lp(Rn)“q) <o

with the usual modifications if q= oo, where @ is replaced by .
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Now we introduce the inhomogeneous sequence spaces by, ;(IR", { f } ke, )- Let 0<p <
co and 0 < g <oo. Let {f; }ren, be a p-admissible weight sequence. Then for all complex
valued sequences A = { Ay, ke, mezr C C we define

bpq(R" {tc}ren,) = {)\5 | A1bp,q (R, {ti Fen,) | <°°}/

where )
© kn r
M (R, {tidkena) | = (22%]| L tebemtin| Lo (RM|7)

k=0 mezZn

We have the following analogue of Theorem 3.1.

Theorem 5.1. Let a = (a1,0) €ER?,0<0 < p<ooand 0<g<oo. Let {t}xenN, € Xuo,p be a
p-admissible weight sequence with o= (o1 =6 (%)/,02 >p). Let ¢, P satisfying (5.1) through
(5.4). The operators

S¢:Bpg (R", {tx bkeny ) — byg (R, {tx treny ).
Ty:bpq(R" {trFren,) = Bpg(R" {tk ren,)

are bounded. Furthermore, TyoS,, is the identity on By q(IR", {t; }ren, )-

As a consequence the analogues of Corollary 3.1 are now clear. We obtain the follow-
ing useful properties of these function spaces.

Theorem 5.2. Let a = (a1,0) €ER?,0<0 < p<ooand 0<g<oo. Let {ty}xenN, € Xuo,p be a
p-admissible weight sequence with o= (0, =0 (%) Lo >p). By, (R", {t }keN, ) are quasi-Banach
spaces. They are Banach spaces if 1 <p < oo and 1 <g < co.

Let0<f<p<ooand 0<g<co. Let {f; }ren, € Xa,0,p be a p-admissible weight sequence

with o=(01=0(%),02>p) and a=(a;,a,) ER?. As in Theorem 3.3 we have the embedding

S(R") = B4 (R", {t ken, )-

In addition S(IR") is dense in B, ;(R",{t; } e, ) with 1< <p <co and 0<gq < 0. Also if
1<f<p<ooand 0<g<co, then

Bpq(R" {tx }ren,) = S’ (R").

All the results in Subsection 3.2 are true for the inhomogeneous case.
We shall say that an operator A is associated with the matrix {an’m Py YeoeNgm ez, if
for all sequences A = { Ay, }reNy,mezr CC,

AN ={(AN)m keNgmezr = { Yo ¥ ﬂQk,mPv,,,Av,h}

o—=0heZn ke]No,meZ”'
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We say that A, with associated matrix {an’m pv,h}k’veﬂ\]olm’hezrt, is almost diagonal on b, 4
(R",{t¢ }ken, ) if there exists e >0 such that

Sup |an,mPv,h’

< 0o,
k,veINg,m,heZ" ka,mPv,h (8)

where wq, p ,(€) asin Section 5. Let a1,a2 €R,0<0 <p<ooand 0<g<co. Let {t; }ren, €

Xu,0p be a p-admissible weight sequence with o1 =6 (%)/ and o» > p. It is obvious that an
operator A on by, ;(R",{t }ren,) given by an almost diagonal matrix is bounded.

Let ] be defined as in Section 5. we present the inhomogeneous versions of Definition
4.1.

Definition 5.3. Let aj,a0 €R, 0< p<ooand 0<g<oo. Let {t }xen, be a p-admissible weight
sequence. Let N=max{]—n—wq,—1} and ol =0, — [az].

(i) We say that oq,,, k € No, m € Z", is an inhomogeneous smooth synthesis molecule for
Byq(R", {t }reN, ) supported near Qy ,, if it satisfies, for some real number § € (x3,1] and
a real number M € (],00), (4.1)—(4.4) if k€IN. If k=0 we assume (4.3), (4.4) and

’QQO,m (x)’ S (1+ ’x_xQO,m |)7M

A collection {0, , } keNy,mezn is called a family of inhomogeneous smooth synthesis molecules
for By q(R" {tx bkew, ), if each 0, is an inhomogeneous smooth synthesis molecule for

By, (R", {tk } ke, ) supported near Qi .

(i) We say that bo, ., k € No, m € Z", is an inhomogeneous smooth analysis molecule for
Bpq(R", {tc}ren,) supported near Qy ,, if it satisfies, for some x € ((] —a2)*,1] and an
Me(],), (4.5)-(4.8) if keIN. If k=0 we assume (4.7), (4.8) and

’bQO,m (x)| < (1+|x_xQ0,m ’)_M

A collection {bg, , tkeNy,mezn is called a family of inhomogeneous smooth analysis molecules for
Byq(R" {tx}ken, )., if each b, is an inhomogeneous smooth synthesis molecule for Bp,(R",

{tk bken, ) supported near Q. .

As a consequence, we obtain the inhomogeneous version of Theorem 4.2.

Theorem 5.3. Let a1, 2, €R, 0<0<p<ooand 0<q<oo. Let {ty }kenN, € Xa,o,p bea p-admissible
weight sequence with oq =0 (g)/ and 05 > p. Let |,M,N,6 and « be as in Definition 5.3.

(i) If f =Y 020X mezn Ok mAkms Where {0 m fremy mezn is a family of inhomogeneous smooth
synthesis molecules for By ,(R",{t; }reN, ), then for all A€ by ,(R", {t }ken, )

1 £1Bp,g(R", {5 b remy) || S| A10p,q (R, { e ken,) |-
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(ii) Let {bim }keNy,mezn be a family of inhomogeneous smooth analysis molecules. Then for all
f€Bypqg(R", {ti}ren,)

[ (f bim) Yeemomezr [Bp,g R Lt bremo) || S || f1Bp.g (R™ { tic teens ) ||-

Now we present the analogue of smooth atomic decomposition. First we need the
definition of inhomogeneous smooth.

Definition 5.4. Let aq,00 €R,0< p<00,0<q<o00and N=max{]—n—wy,—1}. Let {t; }ren,
be a p-admissible weight sequence. A function agq, , is called an inhomogeneous smooth atom for
By (R", {tx }ken,) supported near Q. ,,, k € No and m € Z", if it is satisfies (4.9), (4.10) and
(4.11) if ke IN. If k=0 we assume (4.9) and (4.10).

A collection {ag, . }reN,,mezr is called a family of inhomogeneous smooth atoms for
Byq(R" {tk }reny ), if each ag,  is an inhomogeneous smooth atom for B, ;(R", {t; }ren,)
supported near Qy .

Now we come to the atomic decomposition theorem.

Theorem 5.4. Let a1, ;x €R, 0< < p<oo, 0<q<co Let {tr}ren, € Xaop be a p-

admissible weight sequence with oy =0 (5)" and oy > p. Then for each f € By (R",{ti }ren, ),
there exist a family { Ok m } keN,,mez Of inhomogeneous smooth atoms for By, q(IR", {t }ren, ) and
A={Akm }keNg,mezn € byqa(R", {tx ke, ) such that

= AkmOm, converging in S’ (R"
,m@k, gmg

k=0mezZ"
and
[ { Ak FeeNo mezr [bp,g (R At kemo ) || S| £1Bpg(R™ {t brew,) |-
Conversely, for any family of inhomogeneous smooth atoms for By ,(R", {t;}ren,) and A =
{ A teeNg mezn € by,q (R, {t tken,)

[ee]

Z Z Ak Qk,m | Bp,q (]Rn, {tk }ke]No )

k=0mezZ"

‘ 5 H {)\k,m }kGNO,mGZ” ’bp,q (]Rnr{tk}ke]No) H .

5.1 Characterization by differences

Let f be an arbitrary function on R"” and x,h € R". Then

Mf(x):=f(x+h)—f(x), AV (x):=A,(Af)(x), MeN.

These are the well-known differences of functions which play an important role in the
theory of function spaces. Using mathematical induction one can show the explicit for-
mula

Ay f(x) Z 1)/ Cluf (x-+(M=)h),
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where wa are the binomial coefficients. By the ball means of differences we mean the
quantity

df’lf(x)::t_”/

|n|<t

A%f(x)(th[B‘Af,f (x)| dn,

where B:={x€R":|x| <1} is the unit ball of R", >0 is a real number and M is a natural
number. Let 0 < p,q < oo,

1By = 1L (R + (L2 1L, (R )

with 0, <s <M, where

oy ::nrnax(1 —-1,0).

It was proven in [58] that ||f| B4 H* is an equivalent quasi-norm in Bj, .. Later on this type

of characterization was extended by Besov in [2] and [4] to spaces B;Z‘}k with p,g€ (1,00).
It was assumed that the weight sequence {f; }ren, lies in IOCYE‘EM. IOCY{,ﬁ‘fM is the set of all
weight sequences t = {t; }ren, = {t(-) } ke, satisfying for aq, 2 €R,

¢ 20 (k=1) < ttkég <221 for j<keNp, xeR"; (5.6)
j

and

te(x)<t(y) for x,yeR", keNy, [x—y|< 27k
under the condition 0 <&y <ap < M.

Kempka and Vybiral [42] gave a characterization of Besov spaces of variable smoothness
and integrability by the ball means of differences. The weight sequence satisfies (5.6) and

te(x) <cste(y) (142K x—y|)®  foraz>0,keNg, xyeR”,
under the condition
0<pgseo, op(1+°2p) <m<m<M.

They also gave the same characterization for Triebel-Lizorkin spaces of variable smooth-
ness and integrability.

In this subsection we want to extend this type of characterization to function spaces
of generalized smoothness. In the next we shall interpret LI°(IR") as the set of regular
distributions.
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Theorem 5.5. Let a = (a1,a0) ER?,1<0< p<oo,1<g<coand a; >0. Let {teken, € Xaop
be a p-admissible weight sequence with o1 =0 (4" and oy > p. Then

Bpg(R", {t }ren,) — LP¢(R™).

Proof. Let ®,¢ € S(R") satisfy (5.2) and (5.3), respectively. From Lemma 3.6 combined
with Remark 3.2, we immediately obtain

e FILp (R bo) | < 274K i fILp (R", 1) | (5.7)
holds for all k € Ng, with pg=®, where c >0 is independent of k. This guarantees that
Bpg(R", {ti}ken,) = Lp(R" fo) <> LY(R"),
because of a1 > 0. This finishes the proof. O

The following lemma plays a central role in the characterization of these spaces in
terms of the difference relations.

Lemma 5.1. Let a = (aq,a3) ER%,1<0<p<o0,1<g<coand ay >0. Let {te}ken, € Xu,o,p be
a p-admissible weight sequence with oq =0 (%)/ and op > p. There exists a constant c such that

Hf’ip(]Rn/tO)H SCHﬂBp,q(]Rn/{tk}ke]No) , (5.8)
| FILp(R™,t0) || <c| £1Bp,g(R™, {te }kem, ) | (5.9)

hold for all f € B, ;(R",{t; }rewN, ), where

L ]Rn to {f Hf’L ]Rn ,to H<OO}

where " := (—1,1)" and

1
1L, (R™, ) || := (/Rntg(x)Hf]Ll(x—H”)dex> ",
Proof. Let @,1p,¢ and ¥ satisfy (5.1) through (5.4), f € B, ;(R",{t; }ren,) and
k ~
k=Y _Pi*gxf, keNo,
i=0

where ¢;(-):=2"¢(-2-),j €N, ¢y=® and yp="Y. From Theorem 5.5 f is a regular
distribution.

Step 1. We prove (5.9). From Theorem 5.5 {0y }ren, converges to h € L,(IR",tg). Let
p€S(R™). We write

(f=he)=(f—on,¢)+(h—on,9), NEN,.
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Here (-,-) denotes the duality bracket between S’(R") and S(IR"). The first term tends to
zero as N — oo, while by Holder’s inequality there exists a constant ¢ > 0 is independent
of N such that

7

[{(h—on, @) | <[l —on|Ly (R" to) ||| @]y (R", 5 )] < [ —en|Lp (R, ko)

which tends to zero as N — oo, where the last inequality follows by Lemma 2.2. Then
f: ZIIJ]*GB]*]C’ a.e.
i=0
Step 2. We prove (5.8). We see that

k 1
[l ok Lp(R™, o) || Sj;)(/w tg(x)Hlp]-*@j*f]Ll(x%—I”)dex) "

We have
[y @y fILa (x+1") | Z/Mnlllij*(ﬁj*f(y)ldy,

which is bounded by
cM(M(@ixf))(x), x€R",jEN,
where c >0 is independent of j and x. Therefore

197 @ fILp(R" o) | < | M(M (g% f)) Ly (R o) |
< c||@j*fILp (R to)|- (5.10)

From Lemma 3.6, with the help of Remark 3.2, we obtain

k
l|ok|Lp (R, t0) || < C;)H(ﬁj*f’Lp(an/fo)H
=

k .
<o) 27| @i fIL, (R )|
j=0
< || f1Bpq(R" {ticbken, ) |-
Furthermore, {¢x} is a Cauchy sequence in L,(IR",t) and hence it converges to g €
L,(R"t), and
181Lp (R",t0) || S [| F1Bpg (R", {tic} ko) ||

Let us prove that f =g a.e. We have

| f—8ILy(R",to)|| < ||f —ek|Lp(R" t0) ||+ ||g— 0k Ly (R",t0)||, k&N
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and by (5.10) and (5.7) we have that

Hf oLy (R, to H< Z H%*%*ﬂL (R tO)H

j=k+1
S Y 9L R )|
j=k+1
S 1f1Bpg(R* {tiheen) || 30 27
j=k+1
Taking k to infinity, we get ¢= f a.e. This finishes the proof. O

Let M €N, ke Ny. For f € Lll"c(lR”),x €R" and a cube Q, we put

sMQ)f :=ﬁ /I(QW /Q \A,Af f(x)(dxdh,

5M(x+2—k1n)::22k1’l/ /
2=k Jx42-kn

where 27F[" = (—27k,27k)"_ Now we present the definition of Besov spaces of variable
smoothness BM o(R" {tx}ren,) as introduced recently in [62].

A F(y) | dyen,

Definition 5.5. Let M€ IN, 0< p,q <co, and let {t}reN, be a p-admissible weight sequence.
We set

By (R {t e, ) i= {fifELlf)C(an) o (R" {ti been,) H<°°}

where

I F1BM(R", (Y rems) | _(ZHtk(SM (4275 1) 1L, RY|) " +[|£Lp (R o) |,

making the obvious modifications for p = oo and/or q = co.

Let MEIN,0< p<o0,0<g<co, and let {t; }xen, be a p-admissible weight sequence.
We set

A1 R (3o | o= [ FIB R (b0 (3 A1 Qo)

mezn

where

==
<=

LB R {3l = (1 (X0 H(™(Qun) F)7)

k=1 "meZ"

Q)= 5o S S

with

M () ( dzdh.
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Theorem 5.6. Let ay,00 € R and a = (1,a2). Let MEN,1<0<p<ooand 1<g<oo. Let
{t Heem, € Xa,op be a p-admissible sequence with o= (01,02), 01 =0(5)" and o2 > p. Then

|- 1B (R™ {tickkens ) ||

is an equivalent norm in B (R {t ey )-

This theorem is given in [62].
The following lemma plays a central role in the characterization of B, ,(R", {t }reN, )
spaces in terms of the difference relations.

Lemma 5.2. Let a = (nq,00) ER?%,1 <0< p<oo,1<g<ocoand g >0. Let {t; frew, € Xuo,p be

a p-admissible weight sequence with o; =6 (—) and oy > p. Let f € B)L(R", {t }rew,). There
exists a constant ¢ such that

[ £ILy (R™,t0) || <c|| f1Bpy (R {tk Fkeny) |- (5.11)

Proof. We follow the arguments of [20] Let¥ be a function in S(IR") satisfying 0<% (x) <

1 for all x and ¥ (x) =0 for |x| > 4; and [, ¥(x)dx=1. We make use of an observation
made by Nikol’skij [49, 5.2.1, p. 185] (see also [56 Lemma 10, pp. 228-229] and [64, pp.
387-388]). We put

M1 i i 1 X
=(—1 —1)'Cj (- .
p(x):=(=1) ;)( ) MG M) =)
The function ¢ satisfies ¢(x) =0 for [x|>1and [, ¢(x)dx= [, ¥ (x)dx=1. Then, taking
po=1, p=19—2""y(3) and @;=2"¢(2/-) for j=1,2,3,--. From [51, Theorem 1.6, p. 152]
for any N > 0 there exist two functions @y, € D(IR”) such that [, xP@(x)dx =0 for all
multi-indices B with |f| <N and

f=Y @jxqixf (5.12)
j=0

for all f € D'(R") with @;=2"@(2-), j€N. Let f € B} (R",{} }ren, ) Obviously, we
need to proof the following estimate

zuto @y ) Ly (RY)|| < || £1BY, (R Lt emy ) | (519
j=

N

and the sequence of functions 'Eowj* @j*f converges to f almost everywhere which im-
]:

plys (5.11). Let us prove the estimate (5.13). We have

o f IS [ FOIAYS [ 1F0)ldy=c] fILa (1)

, x€R",
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which, together with Lemma 2.4, yield

|to(@o* @oxf)|Lp(R")|| < |[toM (@o* f)|L, (R™)]|
S ol FILL G+ [[ILp (R |-

Now, it holds for x€cR" and j=1,2,---,

P f(x)=(~)M127 [ AV F(x)F (@,

R

where ¥ (1) =¥(-) —27"¥(5). The function @;* f is the sum of

(—1)M+1n / AVF(x)¥ (2 h)dh =y (),

2]
<%

(_1)M+12(j—1)n/

[h|<

i AYF(x) ¥ (2 h)dh=w (x).

M

Assume that supp@ C {x € R": |x| <2/71},i € N. By similarity, we only estimate the first
term. Let x € IR". We have

@rwr ()] < /

x+2i=iTn

<2f”/ / @;(x—y)||AM dydh. 5.14
S22 HZ,._W! =) |18y f(y)|dy (5.14)

|@j(x=y)llw,i(y)ldy

Let j <i+1. Using the definition of AMf, we can estimate (5.14) by

e[ lfwlay

for some N €N, where the positive constant c is independent of x. Therefore
i+1
[[fo(@j*cw1,) | Ly (R™) || < [[fo|| fIL1 (-+2VT") || |Lp(R™) .
j=1

Let us prove that the last norm is bounded by

B R, b, |

We estimate
[[fo[ £1L1 (- +2NT") || ILp (R™) |7 (5.15)

by
Yt M FIL1(CQom) || (5.16)

meZn
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for some positive constant C. Let m’ € Z" be such that Qg ,y NCQo,m #D. Then
|m'—m| <c
for some positive constant ¢ independent of m and m'. Therefore

1121 (CQom)||” < ;n || £1L1(Qom) ||”
Qo NCBom 2

(5.17)

Substitute (5.17) into (5.16). This gives (5.15) can be estimated by

¢ Z tg,m Z Hf’Ll(QO,m’) g

mezZ" m'eZ"
Q[),m/mCQO n17é®

<)Y ) £y fIL(Qow)|I'S Y £l f1L1(Qo,m) .

mezZ" m' eZ" mezZ"
Qo NCQom#D

7

where for the first inequality we used Lemma 2.1 (iii). Now let j >i+1. Obviously,
@ran ()2 [ [ Ay ldyan
2701 Jx2 i

s [ [ () dydn
17]1” x+21*]1n
= coM(x 42771 f, x€R".
Letx€Qj_jm meZ". We find that x+2711" C Qj,i,m +2i=/1". Therefore

5 (x_|_21 ]In)f<5M(Q] zm+21 ]Iﬂ)f:

/Q M(Qi_sm+21711") fdy.

j—im

|Q] zm’

Obviously o o
Qi im T2 " =y+Qjim—y+2"71", yEQi—im-
We have Q;_;n—yC 2-i1" forall y € Qj—im and this implies that
Qjmim 2" Cy+2"II, yeQjim.

Therefore, for any x € Qj—im

SM(x+27T1 f < M(y+2"01) fdy

|Q] zm,/Q] im
S M(SM(-+2"1) ) (x),

where the implicit constant is independent of j,m and x, which yields that
[ to(@j*cwr ) |ILp(R")|| < Hto/\/l (M (421 £)| Ly (R |
< 2041 H(SM 21+i7jln)f’Lp(an,tj,i,1) ,
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by Lemma 2.4 combined with Remark 2.3 (ii). Consequently
Y to(@jreon )Ly (R S || £1Byg (R" {tbken, )|
j=i+2

Now we prove that
N
{ov=Y @ pj+f|
=0

converges to f almost everywhere. From (5.13), the sequence {oy } converges to
§=) @*¢j*f
j=0

almost everywhere and g belongs to L,(IR",t). Let ¢ € D(IR"). We write

(f=g9¢)={f—an,9)+(g—0on,¢), NEN,.

Here (-,-) denotes the duality bracket between D’(R") and D(R"). By (5.12) the first
term tends to zero as N — co, while by Holder’s inequality there exists a constant ¢ >0
independent of N such that

[{g—on @) < lg—onILp(R" bo) [[[[@ILy (R, t51) | S[lg—on|Lp(R" o)

which tends to zero as N — oo, where the last inequality follows by Lemma 2.2. Therefore
f =g almost everywhere. O

4

Remark 5.1. Let i be a function in S(IR") satisfying
1, if  |x[<1,
<yp< = -
0<yp<1 and @(x) { 0, if |x|>2.

We put Foo=1, Fp1=1p(5) —p and Fpp = F ¢ (217k.) for k=2, 3,---. Then {'F‘Pk}keNo is
a smooth dyadic resolution of unity,

Z ./r (Pk (x ) =1
k=0
for all x €IR". Thus we obtain the Littlewood-Paley decomposition
f=Y texf
k=0
of all feS'(R") (convergence in S’(IR")). We can easily prove that
) 1
1£1Bp.q (R", {tibreno) ||~ (1 [l te(@x ) ILp(RM)|1T)
k=0

fOI' any f - Bp,q (Rn/ {tk}kGNo)‘
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In the following theorem we will establish characterizations of B, ;(IR",{ }ken,) in

terms of the difference relations.

Theorem 5.7. Let a=(aq,02) €R?,1<0<p<00,1<g<coand MeIN\{0}. Let {t; }reN, € Xa,op
be a p-admissible weight sequence with oq =0 (%)/ and oy > p. Assume that

O<a; <ap <M.

Then
By (R {t bkemy) = By (R", {ti }ren, ),

in the sense of equivalent norm.

Proof. We will divide the proof into two steps.
Step 1. We prove that

£1Bs (R” Lt bren ) || < el f1Bpa (R {tibeens )|

for all f € By 4(IR", {tx }ren, )- L,(R",t)|| can be estimated from above
by c||f|Bp,g(R", {t¢ }ren, )| Let {]:‘Pf}je]No be a smooth dyadic resolution of unity. We
need to estimate

(ZHZMM (++27K1") (% f) Ly (R") )E (5.18)
k=1"j=
(S]] 55 toMe2- 41y gyen Ly R0 ) . 5.19)
k=1"j=k+1
We have
5M(x+2_kl”)f§2k”/x+2_kln %ka(z)dz, xeR".
Let

|9+ f ()]
yeIR” L 2=y

be the Peetre maximal function. As in [58, 2.5.10] we immediately obtain that

¢ f (x):=

A (94 ) (2) <2 IMgROf(2) < QUM £ ()

ifa>0,0<j<kkeN,xcR"and ze x+27%1", where ¢ >0 is independent of j,k and x.
Since ay < M, (5.18) does not exceed

(LA R then ") < 1B R tchieny) |
-
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by Lemma 2.6 combined with the fact that

¢ f S M(gjf),

where 7 is large enough. Let j > k. Let x € Qy,,,, for some m € Z". Recalling the definition
of dé\’l_k((pj*f), we can estimate

2 /m_k o B ef )y (5.20)

by

M
22kn Ct / / ) dydh < zkn/ ' dy,
ig(:) M 27k x4 N2k (P] *f(y) | yan s CQm ‘(Ib] *f(y) ‘ y

where the positive constants C and N do not depend on k and m. Therefore (5.20) is
bounded by cM(¢;*f)(x) for any j>k and x € R". Hence

te 3 SM(+271") (9% f)
j=k+1
can be estimated from above by
cte ), M(gj=f),
j=k+1

where the positive constant c is independent of k. We obtain that (5.19) is bounded by

7

(i!!tjM<¢j*f>er<w>H")ﬁ < || f1Bpg (R, i b,
-

where we used Lemma 2.6.

Step 2. Let ¥ be a function in S(IR") satisfying ¥(x) =1 for |x| <1 and ¥(x) =0 for
|x| > %, and in addition radial symmetric. We make use again of an observation made by
Nikol’skij [49] (see also [56]). We put

Pp(x):= ()" Y (1) Cly¥ (x(M~i)).

i=0

The function ¥ satisfies (x) =1 for |x| <1/M and ¢(x) =0 for |x| >3/2. Then, taking
Foo(x)=(x),Fo1(x) =9(x)—p(3) and Fey(x) = ¢1(2 ¥ 1x) for k=2,3, -, we obtain
that { ¢k}, is @ smooth dyadic resolution of unity. This yields that

(L Ito Ly ) 62
=0



84 Drihem D / J. Math. Study, 56 (2023), pp. 18-92

is an equivalent norm in B, ;(R", {t }ren, )- Let us prove that the last term is bounded by

c|| f1Bys (R, {tx bren, )| - (5.22)
We observe that
poef(0)= ()M [ FYEMMf(x)dz+ f(x) [ F ¥z, xeR”,
p(R",to) ||,
and k=1,2,--
Pixf(x MH/ A, ¥ (y)dy,

where ¥(-)=F 1¥(-)—2""F~ ¥ (). Obviously we need to estimate

[ 183, F )50y,

where g€ S(R"), x € R" and k€ INj. We split the last integral into two parts:

[ 3 syt [ 1834, £ ()80l

By similarity we estimate only the second integral. We write

)ld / t d
135, () 3L dy = Z sy B F N5y
< kn—Vj/ M
- CJZ(:)Z oiaipyeg-von 2 S ) AR

where the positive constant ¢ is independent of k, V > n is at our disposal and we have
used the properties of the function g,

g0 <e(1+|x))7"

for any x€IR" and any V >n. Let us recall the following useful estimate which essentially
from [55] and [68]. In [35], but traced back to Brudnyi [9] and Nevskii [48], is established
the following inequality. Let 7€ (0,00], MEN, 0€(0,1] and f € LI°°(IR"). Then there exists
a positive constant C =C(M,o,r,n) such that for any cube Q with side length a there is a
polynomial P € Py;—1(R") satisfying

/ f)-PWldy<ca™| | / ‘Aﬁ/lf(y)‘rdydh.

From this inequality and the fact that,

M
AV f ()= A (f=P)(x) = Yo (= 1)" " Cy(f —P) (x +0h),

v=0
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we obtain

[ =P aranans [ ((F-P) @)z

x4v2f kL

<atmf
- ‘h‘§2N+j—k x+2N+j—kpn

< Cz(j_k)n(SM(X+2N+j_kIn)f,

AN F(y) |y

where 0 <v<M,N €IN and the positive constant c is independent of j,k and x. Therefore

/|y|>1 ’Agd—kyf(x) ’ ’g(y) ’dygCZ2—(V—n)j5M(x+2N+]._kIn)f
j=0

and (5.21) can be estimated by

==

| £1Bpi (R" {te Hren, ) H+Zz (V=n)j (Zutk(sM (-+2NHR M £IL, (R™) H)

j=0
We put
[} o :
]l::ZZ—(V—n)j( Z HtkéM 2N+] kIn)f|L ]Rn H >‘7 (5.23)
=0 k= N1
1
22 (V- (zutk(sM +2N R £, (RY)7) . (5.24)

For the sake of simplicity we suppose N =0. We use the technique of [20].
Estimate of [;. Let x € Qi ,, with k>j+1 and m € Z". We find that

X271 C Q2K I

Therefore
1 .
SM(x 277k M) f <EM(Qup+2 K1) f = M (Qum+271") fdy,
|Qkﬂ1| ka
where
4207k m) —2(k= / / A )|dvdh.
(Qk f 2j— kI” Qk +2] kIn f ‘
Obviously

Qm+2 "=y +Qm—y+2 71", y€Qpm.
We have Qy ,,—y C 27k 27k for all Y € Qkm and this implies that

Qum+2 " Cy+27", ye Q.
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Therefore, for any x € Qy ,,,

1

M(x4-27FM) <
f |Qk,m| Qkm

M (y+27 M) fdy S MM (-+27FH ) £ (),

where the implicit constant is independent of k,j,m and x. Using this estimate, the quan-
tity

(L e+ AL, R, 525)
k=j+1

can be estimated from above by

c< f HtkM((sM(.uf*k“I")f)pr(lR”)Hq)?
k=j+1

Applying Lemma 2.4 combined with Remark 2.3 we get the estimate

[ MM (427 £) Ly (R[] 2%t joa 8™ (-+27 751" FI L (RY)

4

which yields that (5.25) does not exceed

7

[eS) 1 ) 5
291 (Y| t6M (427 1) FIL, (RN ) 29| FIBYL (R”, (i been,)
i=0

1

where the implicit constant is independent of j. Taking V' large enough, (5.23) is bounded
by
CHf|B;J\fIq(Rn/{tk}keNo) H
Estimate of J,. Observe that

M (x+ 271y £ <261 £IL1 (CQp—jm) |

if xe Qk—j,m, m € Z", where the positive constant C is independent of x,j,k and m. This
yields that ‘
[ 0™ (- 27751 FL, (R™) ||

can be rewritten as ‘
Yo [ ™M (2 FIL (Qp ) ||

mezZ"

which can be estimated by

26D el Ly (Qu ) ||| F 1L (C Qo) ||

mezZ"

= cplk=in(+p) 1 /
Q .

mezZm"” Kk—j

Htk’Lp(Qk—j,m) Hpr’Ll(CQk—jrm) dex’
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where the positive constant c is independent of j and k. From Lemma 2.1 (iii)

6| Lp (Qr—jm) || S2979% || te|Lp(Qoym) |

for any dyadic cube Qq,» such that Qo zNCQx_ ., #@. Therefore we obtain the following
chain of estimates

[l Lp (Qi—jm) ||| FIL1(CQx—jm) |
<2070 Y [l Lp(Qo) ||| F1L1(Qo) |

meZ"
Qo,nNCQk—jm#D
< 20K+ Y to,m|| f1L1(Qo,m)
mezZ"
QomNCQx—jm#D

7

where in the last estimate we used (2.4). This estimate and the fact that
(1+|x—m|)* 2070
for any x € Qx_;j,» and any d €N, such that Qo# NCQx_j,n #© yield that

[t I Lp Qi) ||| F1L1 (C Qi) |
< 2Rk Y (4 —g7|) "o | L1 (Qom) |-

mez"

Our estimate uses partially some decomposition techniques already used in [26]. For any
i€N and any x € Q¢ j,n, we define

O ={mecz":27 1 <|x—m| <2},
Qox={meZ":|x—m|<1}.

Then,
Y ton (1 |x—m)) ™| £1L1(Qom) |
mezZ"
_Z Y toum (1 |x—)) || fIL1(Qom) |
i=0mel); .
SY2 Y ton] fIL1(Qon)]-
i=0 me); »
The last expression can be rewritten as
¢y 2l igin / Y- toull FIL1(Qon) || 01 (v)dy. (5.26)
i=0 <~ heQ,

Unea; , Qon
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If y € Uneq,, Qom, then y € Qqn for some m € 0, and 27! < |x—si| <2, From this it
follows that
|y —x| < [y—mi|+|x—m|
< ly—m|+2'
SVn+2
<2ten, €N,

which implies that y is located in the ball B(x,2i+9"). By taking d large enough, (5.26)
does not exceed

MY ton| FIL1(Qop) || Xon) (%), X € Qi jm-

hezZ"
Hence

£ (8™ (- +277 54 L, (R

< 2O AL (Y to]| £ILa (Qon)[|x0 ) ILp (R
hez"

Clearly the last term is bounded by

. n n p
I (3 L (o))
hez"

< 2(f*k)(%+df§fn)+er2 Hf|B£/,Iq(Rn/{tk}keNo) H*
Therefore (5.24) is bounded by

[ - j+1 n n i 5] *
ey 2 FHV (2 E N T B (R (ke |
=0 k=0

*
7

5 Hf’BQfIq(]Rn/{tk}keNo)
by taking V' large enough. The proof is complete. O

Corollary 5.1. Let 1 <p <oo,1<q<ooand MecIN\{0}. Let w denote a positive, locally
integrable function. Suppose that w? € A,(R"). Assume that 0 <s< M. Then

Bpg(R" {2 w}eny,) = Byy (R", {2 w}ieny),

in the sense of equivalent norm.

Proof. Since w” € Ap(IR"), from Lemma 2.1 there exists 1 <6 < p < co such that
{2_Skw}k E XD(,U',F

with o= (01 =0 (%)/,(72 >p) and a=(s,s). Hence, this corollary is a special case of Theorem
5.7. O
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