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Abstract. We present a systematic two-step approach to derive temporal up to the
eighth-order, unconditionally maximum-principle-preserving schemes for a semilin-
ear parabolic sine-Gordon equation and its conservative modification. By introducing
a stabilization term to an explicit integrating factor approach, and designing suitable
approximations to the exponential functions, we propose a unified parametric two-
step Runge-Kutta framework to conserve the linear invariant of the original system.
To preserve the maximum principle unconditionally, we develop parametric integrat-
ing factor two-step Runge-Kutta schemes by enforcing the non-negativeness of the
Butcher coefficients and non-decreasing constraint of the abscissas. The order condi-
tions, linear stability, and convergence in the L∞-norm are analyzed. Theoretical and
numerical results demonstrate that the proposed framework, which is explicit and free
of limiters, cut-off post-processing, or exponential effects, offers a concise, and effective
approach to develop high-order inequality-preserving and linear-invariant-conserving
algorithms.
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1 Introduction

Many differential equations in fluid dynamics, physics, chemistry, biology, engineering,
and material science are naturally equipped with inequality constraints on the solution
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components, such as strong stability [30], positivity [78], maximum principle [19,54], and
contractivity [48] constraints. It is recognized that preserving these inequality structures
is not only important for solutions to be physically meaningful but also relevant for the
numerical stability of time integration methods. In the last three decades, the develop-
ment of high-order accurate and efficient algorithms that can preserve such inequalities
has been a serious research objective [10,36,39,40,55,66]. However, it still remains an out-
standing open problem [3] to develop numerical methods that are both (i) of high-order
accuracy and (ii) capable of preserving inequality structures for any time-step size. To
the best of our knowledge, the high-order methods that can unconditionally guarantee
these properties are very limited [4, 19, 28, 46]. This motivated us to pursue high-order-
accurate and stable explicit schemes that can preserve the above inequality structures for
any time step. In particular, we selected the preservation of the maximum principle for
newly developed semilinear parabolic sine-Gordon equations as an example.

Recently, starting from the semilinear parabolic Allen-Cahn (AC) equation [1] and hy-
perbolic sine-Gordon equation [23], Cheng et al. [11] proposed and analyzed a parabolic
sine-Gordon (pSG) equation. They rigorously analyzed the existence of a maximum prin-
ciple, bounded steady states, a conditionally maximum-principle-preserving (MPP) first-
order implicit-explicit (IMEX) scheme, and an energy-stable second-order backward dif-
ferentiation formula (BDF2) scheme. The pSG equation is interesting for a number of rea-
sons. First and foremost, Cheng et al. [11] demonstrated that the pSG model exhibits strik-
ing similarity with the classical AC equation (Ginzburg-Landau potential). Because of its
very benign nonlinear structure, one can develop unconditionally MPP schemes. Thus,
it is of purely mathematical interest as a suitable testbed for phase field simulations, and
is expected to have a ubiquitous presence [11]. Moreover, from a physical perspective,
the pSG equation (with a white noise term and suitable parameters) is closely related to
models of a globally neutral gas of interacting charges [31], most directly it is the natural
(Langevin) dynamics for the sine-Gordon (Euclidean) quantum filed theory [7]. Hairer
and Shen [31] showed that the pSG equation with white noise also arises naturally from
a class of equilibrium interface fluctuation models with periodic nonlinearities. In addi-
tion, it was also proposed as a model for the dynamics of crystal-vapour interfaces at the
roughening transition [56], and has attracted much attention [32] in recent years. There-
fore, the development of efficient and stable schemes for the pSG equation has practical
significance. Consider the semilinear pSG equation [11]

{

ut=ǫ2∆u+ f (u), x∈Ω, t∈ (0,T],

u(x,0)=u0(x), x∈ Ω̄,
(1.1)

where the unknown function u represents the difference between the concentrations of
the two components, Ω ∈ Rd is an open, connected, and bounded region with a Lips-
chitz boundary ∂Ω, and periodic or homogeneous Neumann boundary conditions. The
nonlinear function f (u)= sin(u) is the negative derivative of a cosine potential function
F(u)=cos(u).
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Note that the pSG equation does not conserve the phase variable, that is to say, the
total amount of the two components (e.g., gas and plasma when modeling a globally
neutral gas of interacting charges [31]) will change during the evolutions. To carry out
simulations that conserve the mass, we study the conservative pSG equation

ut=ǫ2∆u+ f̄ (u), (1.2)

following the work of Li et al. [52] where a Rubinstein-Sternberg-type Lagrangian mul-
tiplier [58] was introduced to the AC equation. The modified nonlinear term in (1.2) is
defined as f̄ (u):= f (u)−λ(t), with λ(t) being the non-local Lagrange multiplier proposed
by Rubinstein and Sternberg [58],

RSLM: λ(t)=
1

|Ω|
∫

Ω
f (u)dx, (1.3)

to enforce the conservation of mass M(u)=(u,1),

dM(u)

dt
=0, ∀t>0, (1.4)

under periodic or homogeneous Neumann boundary conditions. The symbol (·,·), which
denotes the standard L2 inner product, is defined as (u,v) =

∫

Ω
uvdx. We denote the

modification (1.2) with the Lagrange multiplier (1.3) as the RSLM formulation.
Cheng et al. [11] proved that the parabolic equation (1.1) with a cosine potential func-

tion admits a maximum principle, i.e., if the supremum norms of the initial and bound-
ary conditions are bounded by β=π, then the solution will always satisfy ‖u(x,t)‖L∞ ≤β,
∀t>0. In addition to the maximum principle, another intrinsic property of the pSG equa-
tion is the dissipation of energy, i.e.,

d

dt
E(u)=−

∫

Ω

∣
∣
∣
∣

∂u

∂t

∣
∣
∣
∣

2

dx≤0, ∀t>0

with the energy functional given by

E(u)=
∫

Ω

1

2
ǫ2|∇u|2+cos(u)dx. (1.5)

It is known that the introduction of the RSLM formulation in the classical AC equation
changes the maximum principle of the original equation, but retains the energy dissipa-
tion law [58]. As is shown in [44, 52, 57], it is of great importance to develop schemes to
preserve the structures of conservative AC-type equations, i.e., the preservation of the
maximum principle, conservation of mass, and dissipation of energy. Otherwise, the nu-
merical solution may be unstable, and the properties of the original equations will be
destroyed. In the literature, semilinear parabolic equations in the form of (1.1) with the
Ginzburg-Landau polynomial potential function

F(u)=
1

4
(u2−1)2
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or the Flory-Huggins logarithmic potential function

F(u)=
θ

2

[
(1+u)ln(1+u)+(1−u)ln(1−u)

]
− θc

2
u2

have been widely investigated [18,19,33,61,65]. Still, further studies on the pSG equation
and its RSLM formulation are lacking.

Parabolic equations are difficult to solve because of their strong stiffness. The stiffness
of such equations comes from high-order spatial derivatives. When a stiff partial differ-
ential equation is to be solved by a general explicit scheme, the stability usually forces
the time step to be much smaller than that imposed by the accuracy. Although implicit
schemes can overcome this limitation, for many practical problems, a fully implicit treat-
ment may be structurally difficult or computationally costly. As a compromise between
efficiency and stability at large time steps, the development of high-order-accurate and
stable linearly implicit/explicit schemes for stiff equations has received much attention
in recent years [6, 8, 18, 24, 45, 60, 73].

As demonstrated by Du et al. [19], as well as in earlier papers [15, 22, 34, 61, 62, 69],
a concise and effective technique for improving the stability of a numerical method is
to add and subtract a linear term to and from the original system. Such linearly sta-
bilized schemes have been widely used to construct unconditionally MPP and energy
stable schemes. Tang and Yang [65] proposed the first unconditionally MPP scheme, in
which the first-order IMEX Euler scheme was combined with a stabilization technique.
Using the energy factorization together with a stabilization approach, Wang et al. [67, 68]
developed first-order semi-implicit schemes with small stabilization parameters to pre-
serve the maximum principle unconditionally. However, traditional high-order tempo-
ral integrators fail to preserve the maximum principle because of the lack of strategies for
dealing with the stiff term and stabilization term. By utilizing exponential time difference
(ETD) methods and a stabilization technique, Du et al. [18] developed two uncondition-
ally MPP schemes for a non-local AC equation equipped a non-local operator, i.e., the
first-order ETD1 scheme and the second-order ETD2 scheme. The ETD schemes have be-
come popular in recent years. Du et al. [19] further proved that ETD schemes can preserve
the maximum principle unconditionally for a class of semilinear parabolic equations. Li
et al. [52] and Jiang et al. [44] showed these ETD schemes not only preserve the maximum
principle unconditionally but also conserve the mass when applied to conservative AC
equations. Very recently, Ju et al. [45] proved that the ETD schemes incorporated with
generalized scalar auxiliary variables unconditionally preserve the maximum principle
and are stable with respect to a modified energy.

The stabilization technique has also been introduced to the integrating factor Runge-
Kutta (IFRK) framework. To eliminate the exponential decay or growth in the integrating
factor approach, some novel strategies have been developed. Starting from the tradi-
tional integrating factor RK and multi-step schemes, Huang and Shu [38] first proposed
replacing the exponential functions with polynomial functions without destroying the
convergence, hence obtaining high-order modified exponential RK and multi-step meth-
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ods that can preserve the bounds for scalar hyperbolic equations with stiff source terms.
Du et al. [16, 17] proposed second- and third-order modified exponential RK schemes
by using conservative approximations that were combinations of linear and exponential
functions. Recently, a recurrent approximation that bypasses some typical challenges,
such as exponential effects and stability issues, was introduced by Zhang et al. [77] to
develop unconditionally MPP and mass-conserving parametric IFRK (pIFRK) schemes
up to the fourth-order. The above approaches simplify the design of explicit, high-order
accurate, stable schemes and are applicable to a wide range of applications [63, 72].

The objective of this work is to derive efficient, high-order-accurate, and stable ine-
quality-preserving schemes. Although the focus of this work is mainly on the maximum
principle and mass conservation of pSG equations, the proposed integrators can be ap-
plied to preserve other inequality structures without any difficulty. To achieve this goal,
we investigate the approximations of combining exponential and linear functions in the
integrating factor (IF) two-step Runge-Kutta (TSRK) framework and propose a new re-
current approximation incorporating Taylor expansions. When considering the preserva-
tion of the maximum principle, it is important to construct a spatial discretization that in-
herits the maximum principle. In the literature, the central finite difference (FD) method
plays a key role in constructing MPP schemes [18, 53, 71, 76], because of its diagonally
dominant property. Another popularly used spatial discretization method for semilin-
ear parabolic equations is the Fourier pseudo-spectral (FP) discretization [9, 21, 26, 35].
However, high-order spatial discretizations in general do not inherit the maximum prin-
ciple [71]. Therefore, it is also meaningful to explore the performance of high-order MPP
temporal integrators combined with high-order spatial discretizations. Compared with
the existing literature, the novel contributions of this work include the following:

• A new strategy to construct high-order stabilization schemes for stiff nonlinear
problems is proposed by adopting the integrating factor two-step Runge-Kutta
method.

• Two novel approximations are developed in a unified framework to eliminate expo-
nential decay/growth effects of integrating-factor two-step Runge-Kutta (IFTSRK)
schemes, which result in two types of linear-invariant-conserving parametric TSRK
(pTSRK) schemes up to the eighth-order.

• By incorporating an integrating factor e−tL, under suitable requirements of the sta-
bilization parameter, we derive sufficient conditions for the parametric IFTSRK
(pIFTSRK) schemes to be unconditionally MPP, i.e., the coefficients are non-negati-
ve, and the abscissas are non-decreasing.

• The proposed parametric schemes are explicit, free of limiters or cut-off post-pro-
cessing. In addition, they can unconditionally preserve many inequality structures
characterized by forward Euler conditions, such as strong stability, positivity, and
contractivity.
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The rest of this paper is organized as follows. Section 2 presents some preliminaries
for the model equations. In Section 3, we start with a linear-invariant-conserving im-
provement over the traditional integrating factor approach and illustrate the main ideas
to construct up to the eighth-order unconditionally inequality-preserving schemes. The
linear stability analysis and error estimates are analyzed in Section 4. In Section 5, various
experiments are considered to demonstrate the effectiveness and advantages of proposed
schemes. Some concluding remarks are presented in Section 6.

2 Preliminaries

The pSG equation and its conservative RSLM formulation belong to a family of semilin-
ear parabolic equations with the form

ut=Lu+N (u). (2.1)

Du et al. [19] investigated sufficient conditions for the abstract framework (2.1) to have
a maximum principle:

1. The linear operator L is dissipative in the sense that if a function w reaches its
maximum on Ω̄=Ω∪∂Ω at x0∈Ω, then it must hold that Lw(x0)≤0.

2. There exist a β > 0 and a κ > 0, such that the nonlinear term N (u) satisfies the
inequality

‖N(u)+κu‖L∞ ≤κβ, ∀‖u‖L∞ ≤β. (2.2)

Here, the inequality (2.2) is denoted as a circle condition (which also appeared in [29,48]),
which means that N (u) is bounded by a ‘circle’ measured by ‖·‖L∞ that is centered at
−κu with a radius κβ. Noting that the Laplacian satisfies the first condition, we have
following lemmas.

Lemma 2.1 ([19]). The linear operator L:=ǫ2∆ with periodic or homogeneous Neumann bound-
ary conditions generates a contraction semi-group {SL(t)= etL}t≥0 with respect to the infinity
norm ‖·‖L∞ on the subspace of C(Ω̄). Moreover, for κ≥0, let Lκ :=L−κ. It holds that

‖etLκ u‖L∞ ≤e−κt‖u‖L∞ , ∀t>0, u∈C2(Ω̄). (2.3)

Lemma 2.2. Under periodic or homogeneous Neumann boundary conditions, it holds that

(etLu,1)=(u,1), ∀t>0, u∈C2(Ω̄). (2.4)

Proof. Noting that v(t)=etLu is the analytical solution to
{

vt=Lv, t∈ (0,T],

v(0)=u,
(2.5)

and Eq. (2.5) is mass conservative under periodic or homogeneous Neumann boundary
conditions, it holds that (v(t),1)=(etLu,1)=(u,1).
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For the pSG equation with N (u) := f (u), for any β ∈ [(2n−1)π,2nπ],n ∈Z+, when
‖u‖L∞ ≤β and κ≥max|ξ|≤β | f ′(ξ)|=1, the circle condition is satisfied

−κβ≤ f (−β)−κβ≤ f
(

u(x)
)
+κu(x)≤ f (β)+κβ≤κβ, a.e. x∈ Ω̄.

For the conservative RSLM formulation (1.2), the following result holds.

Lemma 2.3. Let

β=

(

2n− 1

2

)

π, n∈Z
+ and κ≥max

|ξ|≤β
| f ′(ξ)|=1.

The nonlinear function

N (u) := f (u)− 1

|Ω|
∫

Ω
f (u)dx

satisfies the circle condition (2.2).

Proof. Noting that
‖ f (u)‖L∞ ≤ f (−β)=− f (β)=1,

we obtain

f (β)≤ 1

|Ω|
∫

Ω
f (u)dx≤ f (−β).

When κ≥max|ξ|≤β | f ′(ξ)| and ‖u‖L∞ ≤β, we obtain

f (−β)−κβ≤ f
(

u(x)
)
+κu(x)≤ f (β)+κβ, a.e. x∈ Ω̄.

Then, it holds that

−κβ≤ f (−β)−κβ− 1

|Ω|
∫

Ω
f
(
u(x)

)
dx≤N (u(x)

)
+κu(x)

≤ f (β)+κβ− 1

|Ω|
∫

Ω
f
(
u(x)

)
dx≤κβ, a.e. x∈ Ω̄.

This completes the proof.

By applying previous results in [19, 52], we have the following lemma.

Lemma 2.4. For the semilinear parabolic equation (2.1), suppose that

pSG/RSLM: κ≥max
|ξ|≤β

| f ′(ξ)|=1. (2.6)

Let Nκ(u) =N (u)+κu, where N (u) is given by f (u) for the pSG equation and f̄ (u) for the
RSLM formulation, respectively. It holds that

1) ‖Nκ(u)‖L∞ ≤κβ for any u(x)∈L∞(Ω) with ‖u‖L∞ ≤β,
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2) ‖Nκ(u1)−Nκ(u2)‖L∞≤lκ‖u1−u2‖L∞ for any uj(x)∈L∞(Ω) with ‖uj‖L∞≤β, j=1,2,

where β∈[(2n−1)π,2nπ],n∈Z+, l=2 for the pSG equation, and β=(2n−1/2)π,n∈Z+, l=3
for the corresponding RSLM formulation.

By applying Lemmas 2.1 and 2.4 and the abstract framework proposed by Du et al.
[19], we present the maximum principles for the pSG and RSLM formulations.

Theorem 2.1. For the pSG equation (1.1) and the RSLM formulation (1.2) with either periodic,
or homogeneous Neumann boundary conditions, supposing u0∈X, where X is L∞(Ω) or C(Ω̄),
then each problem has a unique solution u∈C([0,T];X) and admits the maximum principle

pSG: ∀β∈ [(2n−1)π,2nπ], n∈Z
+, it holds that

‖u(t)‖L∞ ≤β, ∀‖u0‖L∞ ≤β, ∀t∈ [0,T],

RSLM: ∀β=

(

2n− 1

2

)

π, n∈Z
+, it holds that

‖u(t)‖L∞ ≤β, ∀‖u0‖L∞ ≤β, ∀t∈ [0,T].

3 Structure-preserving discretizations

To construct efficient time integrators for general stiff, nonlinear differential equations,
three key design principles [2, 6, 12, 17] have been considered previously:

1) Linear invariants of the system are preserved.

2) The nonlinear term is handled simply and inexpensively.

3) The time-step size is selected to reflect the accuracy requirement rather than being
restricted by a stability requirement.

It is acknowledged that the more principles a numerical method can fulfill, the better
its applicability is. In this section, we investigate modifications of the integrating factor
approach and construct new parametric methods in which above principles are achieved.
To present the schemes in a unified framework and avoid the excessive introduction of
symbols, we remark that some symbols, for example, ψi(τκ), âi,j(τκ) and d̂i,j(τκ), have
different definitions in different modifications.

3.1 First parametric two-step Runge-Kutta method

By introducing a stabilization term κ(u−u),κ>0 to the abstract system (2.1), we consider
the system

{

ut=Lu+N (u)+κu−κu,

u(0)=u0
(3.1)
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with periodic or Neumann boundary conditions. When Eq. (3.1) is given by the RSLM
formulation (1.2), it holds that

(Lu+N (u),1
)
=(ǫ2∆u,1)+

∫

Ω

[

f (u)− 1

|Ω|
∫

Ω
f (u)dx

]

dx≡0.

Then, it is expected that a numerical method will conserve the mass M(u).
To better illustrate the construction of the proposed framework, we first treat both

the linear and nonlinear terms explicitly, although the stiff linear term could lead to se-
vere time-step restriction for the fully discrete system. Consider an s-stage, p-th order
explicit TSRK(s,p) scheme that does not rely on the stage values of the previous steps, as
presented in the form of a Butcher-like tableau

c D A

cs θT bT
=

c−1 1 0 0

c0 0 1 0 0

c1 d1,−1 d1,0 a1,−1 a1,0 0
...

...
...

...
...

. . .
. . .

cs−1 ds−1,−1 ds−1,0 as−1,−1 as−1,0 as−1,1 ··· 0

cs ds,−1 ds,0 as,−1 as,0 as,1 ··· as,s−1

, (3.2)

where

ai,j =0, i≤ j,
0

∑
j=−1

di,j =1, ci =−di,−1+
i−1

∑
j=−1

ai,j, i=−1,0,.. . ,s,

and coefficients are constrained by certain accuracy and stability requirements [40,42,43,
47]. Considering the Lawson transformation [49], with etκ being the integrating factor to
the unknown u(t), i.e., v(t)=eκtu(t), we obtain an equivalent system

{

vt =eκt
[
Le−κtv+N (e−κtv)+κe−κtv

]
, t∈ (0,T],

v(0)=u0.
(3.3)

Letting c−1 =−1, c0 = 0, and un+j = u(tn+cjτ), j =−1,0, we apply the TSRK method
to Eq. (3.3) and then perform the inverse Lawson transformation to obtain the IFTSRK
method







un,j=un+j, j=−1,0, (3.4a)

un,i=
0

∑
j=−1

di,je
−(ci−cj)τκun,j

+τ
i−1

∑
j=−1

ai,je
−(ci−cj)τκ

[
Lun,j+N (un,j)+κun,j

]
, i=1,.. . ,s, (3.4b)

un+1=un,s. (3.4c)
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Assuming that
M(un,j)=(un,j,1)=(u0,1), j=−1,0,.. . ,i−1,

taking the L2 inner product on both sides of (3.4) with 1, and using the equality
(
Lun,j+N (un,j),1

)
=0,

we obtain

(un,i,1)=
0

∑
j=−1

di,je
−(ci−cj)τκ(un,j,1)+τ

i−1

∑
j=−1

ai,je
−(ci−cj)τκ

[(
Lun,j+N (un,j),1

)

︸ ︷︷ ︸

=0

+κ(un,j,1)
]

=e−(1+ci)τκ

[
0

∑
j=−1

di,je
(1+cj)τκ+τκ

i−1

∑
j=−1

ai,je
(1+cj)τκ

]

(u0,1), i≤ s. (3.5)

Note that e(1+ci)τκ in general is not equal to [∑0
j=−1di,je

(1+cj)τκ+τκ∑
i−1
j=−1ai,je

(1+cj)τκ ]

unless τκ=0. Therefore, IFTSRK is not conservative unless the initial mass (u0,1) equals
zero. To overcome this shortcoming, we propose an approximation of e(1+ci)τκ using

ψi(τκ) :=
0

∑
j=−1

di,je
(1+cj)τκ+τκ

i−1

∑
j=−1

ai,je
(1+cj)τκ , i=−1,.. . ,s. (3.6)

Then, stage solutions of (3.4) are given by

un,i=
1

ψi(τκ)

(
0

∑
j=−1

di,je
(1+cj)τκun,j+τ

i−1

∑
j=−1

ai,je
(1+cj)τκ

[
Lun,j+N (un,j)+κun,j

]

)

,

i=1,.. . ,s.

(3.7)

It can be directly derived that the modification (3.7) conserves mass (Principle 1) for the
RSLM formulation.

By substituting stage solutions into κun,j, we obtain

un,i=
0

∑
j=−1

d̂i,j(τκ)un,j+τ
i−1

∑
j=−1

âi,j(τκ)
[
Lun,j+N (un,j)

]
, i=1,.. . ,s, (3.8)

where d̂i,j(τκ) and âi,j(τκ) are recurrently computed by

d̂i,j(τκ)=
1

ψi(τκ)

[

dije
(1+cj)τκ+τκ

i−1

∑
k=−1

ai,ke(1+ck)τκ d̂k,j(τκ)

]

,

i=−1,.. . ,s, j=−1,0,

âi,j(τκ)=
1

ψi(τκ)

[

ai,je
(1+cj)τκ+τκ

i−1

∑
k=1

ai,ke(1+ck)τκ âk,j(τκ)

]

,

i=1,.. . ,s, j=−1,.. . ,i−1.

(3.9)

We denote the formulation (3.8) with new coefficients d̂i,j, âi,j and old abscissas ci as the
first parametric TSRK method (pTSRK1).
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3.2 Second parametric two-step Runge-Kutta method

The exponential term e(1+cj)τκ will be extremely large and may blow up when τκ≫0. To
improve the numerical stability, we propose a new recurrent approximation to conserve
the mass. Denote

φk(z) :=1+z+···+ 1

k!
zk

as the k-th order Taylor polynomial approximation to the exponential function ez. Letting

ψj(τκ) :=φp−1

(
(1+cj)τκ

)
, j=−1,0,

we approximate e(1+ci)τκ recurrently using

ψi(τκ) :=
0

∑
j=−1

di,jψj(τκ)+τκ
i−1

∑
j=−1

ai,jψj(τκ), i=1,.. . ,s. (3.10)

Then, the second improvement of (3.4) is obtained as

un,i=
1

ψi(τκ)

( 0

∑
j=−1

di,jψj(τκ)un,j+τ
i−1

∑
j=−1

ai,jψj(τκ)
[
Lun,j+N (un,j)+κun,j

]
)

(3.11)

=
0

∑
j=−1

d̂i,j(τκ)un,j+τ
i−1

∑
j=−1

âi,j(τκ)
[Lun,j+N (un,j)

]
, i=1,.. . ,s, (3.12)

where

d̂i,j(τκ)=
1

ψi(τκ)

[

dijψj(τκ)+τκ
i−1

∑
k=−1

ai,kψk(τκ)d̂k,j(τκ)

]

,

i=−1,.. . ,s, j=−1,0,

âi,j(τκ)=
1

ψi(τκ)

[

ai,jψj(τκ)+τκ
i−1

∑
k=1

ai,kψk(τκ)âk,j(τκ)

]

,

i=1,.. . ,s, j=−1,.. . ,i−1.

(3.13)

We denote the formulation (3.12) with new coefficients d̂i,j and âi,j given by (3.13) and the
old abscissas ci as pTSRK2.

Remark 3.1. To design conservative approximations for the IFTSRK method (3.4), dif-
ferent decompositions of exponential functions may be used. The decomposition of

e−(ci−cj)τκ into e−(1+ci)τκe(1+cj)τκ has the advantage that we can present the two modifica-
tions in a unified framework. Indeed, for the pTSRK1 method, the modifications using

the decompositions e−(1+ci)τκe(1+cj)τκ and e−ciτκecjτκ are equivalent. However, the de-
composition e−ciτκecjτκ can not be used in the pTSRK2 method. The reason is that, to pre-
serve the maximum principle, we have to make sure that the approximations ψj(τκ), j=
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−1,.. .,s are positive. Noting that the abscissa c−1=−1, when approximating ec−1τκ using
a k-th order Taylor expansion, the positiveness of function ψ−1(τκ) :=φk(c−1τκ) can not

be guaranteed. In practice, for the pTSRK2 method, the approximations to e(1+cj)τκ, j=
−1,0 can be replaced by any k-th order (k ≥ p−1) Taylor expansions; the higher is the
order, the better is the accuracy of the approximations.

3.3 Accuracy of parametric two-step Runge-Kutta schemes

To derive order conditions for modifications (3.7) and (3.11), we define

ĉi=−d̂i,−1+
i−1

∑
j=−1

âi,j, i=−1,.. . ,s,

and present the pTSRK1/2 schemes using a unified Butcher-like tableau

c ĉ D̂ Â

cs ĉs θ̂T b̂T
=

c−1 ĉ−1 1 0 0

c0 ĉ0 0 1 0 0

c1 ĉ1 d̂1,−1 d̂1,0 â1,−1 â1,0 0
...

...
...

...
...

...
. . .

. . .

cs−1 ĉs−1 d̂s−1,−1 d̂s−1,0 âs−1,−1 âs−1,0 âs−1,1 ··· 0

cs ĉs d̂s,−1 d̂s,0 âs,−1 âs,0 âs,1 ··· âs,s−1

. (3.14)

Let ℓ= [1,0]T and denote g(t,u) := Lu+N (u). We apply the Taylor expansions to
obtain

u(tn,i)=u(tn)+
p

∑
k=1

(ciτ)
k

k!

[
∂

∂t
+g

∂

∂u

](k−1)

g|tn ,u(tn)+O(τp+1), i=−1,.. . ,s, (3.15)

g

(

tn,j,
0

∑
l=−1

d̂j,lu(tn,l)+τ
j−1

∑
l=−1

âj,l g
(
tn,l,u(tn,l)

)

)

=
p

∑
k=1

τk−1

(k−1)!

[

cj
∂

∂t
+

[

− d̂j,−1 ĝ
(
tn,−1,u(tn,−1)

)
+

j−1

∑
l=−1

âj,l ĝ
(
tn,l,u(tn,l)

)
]

∂

∂u

](k−1)

g
∣
∣
tn,u(tn)

+O(τp), j=−1,.. . ,s, (3.16)

where ĝ(tn,l,u(tn,l)) denotes the Taylor expansion of g(tn,l ,u(tn,l)) at (tn,un).
Inserting the exact solutions into the numerical scheme (3.8) (or (3.12)) gives

u(tn,i)=
0

∑
j=−1

d̂i,ju(tn,j)+τ
i−1

∑
j=−1

âi,jg

(

tn,j,
0

∑
l=−1

d̂j,lu(tn,l)+τ
j−1

∑
l=−1

âj,l g
(
tn,l,u(tn,l)

)
)

+∆n,i, i=−1,.. . ,s. (3.17)
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Substituting (3.15)-(3.16) into (3.17) gives the defects

∆n,i=
p

∑
k=1

τk




1

k!

(
ck

i − d̂i,−1(−1)k
)
[

∂

∂t
+g

∂

∂u

](k−1)

− 1

(k−1)!

i−1

∑
j=−1

âi,j

[

cj
∂

∂t
+

[

− d̂j,−1 ĝ
(
tn,−1,u(tn,−1)

)

+
j−1

∑
l=−1

âj,l ĝ
(
tn,l,u(tn,l)

)
]

∂

∂u

](k−1)


g|tn ,u(tn)

+O(τp+1), i=−1,.. . ,s.

Then, it can be concluded that the order conditions will contain both ci and ĉi. We define

c̃k
j,m = cm

j ĉk−m
j , c̃k

m =
[
c̃k
−1,m, c̃k

0,m,··· , c̃k
s−1,m

]T
, C̃k

m=diag(c̃k
m), m=0,.. . ,k,

τ̂i,k,m =
1

k!

(
ck

i − d̂i,−1(−1)k
)
− 1

(k−1)!

i−1

∑
j=−1

âi,j c̃
k−1
j,m , m=0,.. . ,k−1,

and denote τ̂k,m = [τ̂−1,k,m,τ̂0,k,m,··· ,τ̂s−1,k,m]
T . By using the parametric Butcher tableau

(3.14), we obtain

τ̂k,m =
1

k!

(
ck−D̂(−ℓ)k

)
− 1

(k−1)!
Âc̃k−1

m ,

τ̂s,k,m=
1

k!

(
1− θ̂T(−ℓ)k

)
− 1

(k−1)!
b̂T c̃k−1

m .

(3.18)

The research of the TSRK [47] shows that the explicit TSRK with non-negative Butcher
coefficients has an eighth-order barrier. Thus, pTSRK1/2 with non-negative Butcher
coefficients can reach, at most, eighth-order. Following [47] and letting z := τκ and
1s =[1,1,··· ,1]T ∈Rs, we present the order conditions for the parametric Butcher tableau
from first- to eighth-order using (3.18), as follows:

Order 1: b̂T1s+1−(1+ θ̂T
ℓ)=O(zp).

Order 2: b̂T c̃m−
1− θ̂Tℓ2

2
=O(zp−1).

Order 3: b̂T c̃2
m−

1+ θ̂Tℓ3

3
=O(zp−2), b̂T

τ̂2,m =O(zp−2).

Order 4: b̂T c̃3
m−

1− θ̂Tℓ4

4
=O(zp−3), b̂T Âτ̂2,m=O(zp−3),

b̂TC̃m1
τ̂2,m2 =O(zp−3), b̂T

τ̂3,m =O(zp−3).

Order 5: b̂T c̃4
m−

1+ θ̂Tℓ5

5
=O(zp−4), b̂T Âτ̂3,m=O(zp−4),
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b̂TC̃m1
τ̂3,m2 =O(zp−4), b̂T

τ̂4,m=O(zp−4),

τ̂2,m =O(z⌈
p−4

2 ⌉).

Order 6: b̂T c̃5
m−

1− θ̂Tℓ6

6
=O(zp−5), b̂T Âτ̂4,m =O(zp−5),

b̂TC̃m1
τ̂4,m2

=O(zp−5), b̂T
τ̂5,m=O(zp−5),

b̂T Â2
τ̂3,m =O(zp−5), b̂T ÂC̃m1

τ̂3,m2 =O(zp−5),

b̂TC̃m1
Âτ̂3,m2 =O(zp−5), b̂TC̃2

m1
τ̂3,m2 =O(zp−5).

Order 7: b̂T c̃6
m−

1+ θ̂Tℓ7

7
=O(zp−6), b̂T Âτ̂5,m =O(zp−6),

b̂TC̃m1
τ̂5,m2 =O(zp−6), b̂T

τ̂6,m=O(zp−6),

b̂T Â2
τ̂4,m =O(zp−6), b̂T ÂC̃m1

τ̂4,m2
=O(zp−6),

b̂TC̃m1
Âτ̂4,m2

=O(zp−6), b̂TC̃2
m1

τ̂4,m2
=O(zp−6),

τ̂3,m =O(z⌈
p−6

2 ⌉).

Order 8: b̂T c̃7
m−

1− θ̂Tℓ8

8
=O(zp−7), b̂T Âτ̂6,m =O(zp−7),

b̂TC̃m1
τ̂6,m2 =O(zp−7), b̂T

τ̂7,m=O(zp−7),

b̂T Â3
τ̂4,m =O(zp−7), b̂T Â2

τ̂5,m=O(zp−7),

b̂T Â2C̃m1
τ̂4,m2

=O(zp−7), b̂T ÂC̃m1
Âτ̂4,m2

=O(zp−7),

b̂T ÂC̃m1
τ̂5,m2 =O(zp−7), b̂T ÂC̃2

m1
τ̂4,m2

=O(zp−7),

b̂TC̃m1
Â2

τ̂4,m2
=O(zp−7), b̂TC̃m1

Âτ̂5,m2 =O(zp−7),

b̂TC̃m1
ÂĈm2 τ̂4,m3

=O(zp−7), b̂TC̃2
m1

Âτ̂4,m2
=O(zp−7),

b̂TC̃2
m1

τ̂5,m2 =O(zp−7), b̂TC̃3
m1

τ̂4,m2
=O(zp−7).

To have p-th order accuracy, the pTSRK method should satisfy all previous order con-
ditions as well as additional conditions for each order. We consider the pTSRK2(2,2)
scheme to illustrate that the proposed modification retains the order of the underlying
TSRK scheme.

The parametric coefficients of pTSRK(2,2) are computed as follows:

ψ−1=1, ψ0=φ1

(
(1+c0)z

)
=1+z,

ψ1=d1,−1ψ−1+d1,0ψ0+z[a1,−1ψ−1+a1,0ψ0]=1+z(1+c1)+z2a1,0,

ψ2=d2,−1ψ−1+d2,0ψ0+z[a2,−1ψ−1+a2,0ψ0+a2,1ψ1]

=1+z(1+c2)+z2
[
a2,0+a2,1(1+c1)

]
+z3a2,1a1,0,

d̂−1,−1=d−1,−1, d̂0,−1=0, d̂1,−1=
1

ψ1
(d1,−1+za1,−1),
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â1,−1=
1

ψ1
a1,−1, â1,0=

1

ψ1
a1,0ψ0,

ĉ1=
1

ψ1

[
a1,−1+a1,0(1+z)−d1,−1−za1,−1

]
=

c1+z(a1,0−a1,−1)

1+z(1+c1)+z2a1,0
,

d̂2,−1=
1

ψ2

[
d2,−1ψ−1+z(a2,−1ψ−1d̂−1,−1+a2,0ψ0d̂0,−1+a2,1ψ1d̂1,−1)

]

=
1

ψ2

[
d2,−1+z(a2,−1+a2,1d1,−1)+z2a2,1a1,−1

]
,

â2,−1=
1

ψ2
[a2,−1ψ−1+za2,1ψ1â1,−1]=

1

ψ2
[a2,−1+za2,1a1,−1],

â2,0=
1

ψ2

[
a2,0ψ0+z(a2,1a1,0ψ0)

]
=

1

ψ2

[
a2,0+z(a2,0+a2,1a1,0)+z2a2,1a1,0

]
,

â2,1=
1

ψ2
[a2,1ψ1]=

1

ψ2

[
a2,1+za2,1(1+c1)+z2a2,1a1,0

]
.

Ketcheson et al. [47] and Isherwood et al. [40] showed that TSRK(2,2) satisfies the order
conditions

c2=bT1s−θT
ℓ=

1

∑
j=−1

a2,j−d2,−1=1,

bTc− c2−θTℓ2

2
=−a2,−1+a2,1c1−

1−d2,−1

2
=0.

Then, the verification of the pTSRK(2,2) scheme is performed as follows:

ĉ2=
1+z

(
a2,1a1,−1+a2,0+a2,1a1,0+a2,1(1+c1)−a2,−1−a2,1d1,−1

)
+z2(2a2,1a1,0−a2,1a1,−1)

1+(1+c2)z+z2
[
a2,0+a2,1(1+c1)

]
+z3a2,1a1,0

=
1+z(1+c2)+z2(2a2,1a1,0−a2,1a1,−1)

1+(1+c2)z+z2
[
a2,0+a2,1(1+c1)

]
+z3a2,1a1,0

=1+O(z2),

b̂T ĉ− 1− d̂2,−1

2
= â2,−1 ĉ−1+ â2,0 ĉ0+ â2,1 ĉ1−

1−(d2,−1+O(z)
)

2
=O(z),

b̂Tc− 1− d̂2,−1

2
= â2,−1c−1+ â2,0c0+ â2,1c1−

1−
(
d2,−1+O(z)

)

2
=O(z).

The order verification processes of other pTSRK1/2 schemes are more complex. By
performing tedious Taylor expansions using the MATLAB code in a public repository
[74], we verified that the pTSRK1/2 schemes with underlying TSRK coefficients pre-
sented in [27, 40] satisfy the order conditions listed above. Then, we have the following
corollary.

Corollary 3.1. Assume u(t,x)∈Cp+1([0,T];C2(Ω̄)) is the exact solution to (2.1), and un+j =
u(tn+j), j=−1,0. Then, the solution un+1 obtained by pTSRK1 (3.8) or pTSRK2 (3.12) with an
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underlying TSRK(s,p) Butcher tableau provided by [40] has a (p+1)-th order truncation error,
i.e.,

u(tn+τ)−un+1=O
(

τp+1
p

∑
k=0

κk

)

=O(τp+1).

Proof. In the above error expansion, we can see that each of the residuals in ∆n,s is mul-
tiplied by the corresponding O(τk) term. Performing a summation gives the overall
truncation error O(τp+1∑

p
k=0κk), which is still O(τp+1).

3.4 Properties of pTSRK schemes

In addition to the conservation of mass for the RSLM formulation, as an improvement
over the traditional IFTSRK method (3.4), we show that the pTSRK1/2 schemes preserve
the fixed points of the system.

Lemma 3.1. The pTSRK1 (3.8) with coefficients d̂i,j, âi,j (3.9), and the pTSRK2 (3.12) with

coefficients d̂i,j, âi,j (3.13), preserve the fixed points of (2.1) in the sense that if there exists a u∗

such that

Lu∗+N (u∗)=0, (3.19)

then the solution of pTSRK1/2 satisfies un+1=u∗, on the condition that un =un−1=u∗.

Proof. Consider the pTSRK1 as an example. We first show that ∑
0
j=−1 d̂i,j=1,i=−1,0,.. . ,s

using mathematical induction.

Note that ∑
0
j=−1 d̂k,j =1, k=−1,0. Assuming that ∑

0
j=−1 d̂k,j =1, k=1,.. . ,i−1, we only

need to prove that ∑
0
j=−1 d̂i,j = 1, i ≤ s. By using definitions of ψi(τκ) and conditions

∑
0
j=−1di,j =1, i=1,.. . ,s, we obtain

0

∑
j=−1

d̂i,j =
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκ+τκ

i−1

∑
k=−1

ai,ke(1+ck)τκ
0

∑
j=−1

d̂k,j

]

=
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκ+τκ

i−1

∑
k=−1

ai,ke(1+ck)τκ

]

=1, i≤ s.

Assuming that un,j=u∗, j=1,.. . ,i−1, we have

un,i=
0

∑
j=−1

d̂i,jun,j+τ
i−1

∑
j=−1

âi,j

(
Lun,j+N (un,j)

)

︸ ︷︷ ︸

=0

=
0

∑
j=−1

d̂i,ju
∗=u∗, i≤ s.

Then we obtain un+1=un,s=u∗. The proof for the pTSRK2 can be carried out similarly.
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3.5 Parametric integrating factor TSRK schemes for stiff systems

The explicit treatment of the stiff terms in pTSRK1/2 schemes leads to severe time-step
restriction. To overcome this shortcoming, we show that under certain requirements of
the TSRK Butcher tableau and the stabilization parameter κ, by treating the nonlinear
term explicitly (Principle 2), the pTSRK1/2 schemes together with an integrating factor
e−tL can preserve the maximum principle for any time-step size (Principle 3).

Assumption 3.1. The underlying TSRK Butcher tableau satisfies the following:

1) non-negative coefficients:

di,j ≥0, i=−1,0,.. . ,s, j=−1,0,

ai,j ≥0, i=−1,0,.. . ,s, j=−1,.. . ,i−1;

2) non-decreasing abscissas: −1= c−1≤ c0≤···≤ cs =1.

By applying the integrating factor method (integrating factor being e−tL) with the un-
derlying pTSRK1/2 schemes to (2.1), we obtain pIFTSRK1 (d̂i,j, âi,j given by (3.9), ψi(τκ)
given by (3.6))

un,i=
0

∑
j=−1

d̂i,je
(ci−cj)τLun,j+τ

i−1

∑
j=−1

âi,je
(ci−cj)τLN (un,j) (3.20)

=
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκe(ci−cj)τLun,j+τ

i−1

∑
j=−1

ai,je
(1+cj)τκe(ci−cj)τLNκ(un,j)

]

, (3.21)

i=1,.. . ,s,

and pIFTSRK2 (d̂i,j, âi,j given by (3.13), ψi(τκ) given by (3.10))

un,i=
1

ψi(τκ)

[
0

∑
j=−1

di,jψj(τκ)e(ci−cj)τLun,j+τ
i−1

∑
j=−1

ai,jψj(τκ)e(ci−cj)τLNκ(un,j)

]

,

i=1,.. . ,s.

(3.22)

Theorem 3.1. Assume κ satisfies condition (2.6) and the underlying TSRK Butcher tableau of
pIFTSRK1/2 satisfies Assumption 3.1. Then, for the system (2.1), if the starting values satisfy
‖uj‖L∞ ≤β, j=0,1, the solutions obtained from pIFTSRK1/2 satisfy ‖un+1‖L∞ ≤β for any τ>0,
n≥1.

Proof. We prove this claim by induction. Consider the equivalent formulation (3.21) of
pIFTSRK1 as an example. Assuming that ‖un,j‖L∞ ≤ β, j=−1,.. .,i−1, we verify that the
maximum principle holds for un,i.
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Using Lemmas 2.1 and 2.4, the conditions in Assumption 3.1, and the definitions of
ψi(τκ), we have

‖un,i‖L∞ ≤ 1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκ‖e(ci−cj)τLun,j‖L∞

+τ
i−1

∑
j=−1

ai,je
(1+cj)τκ‖e(ci−cj)τLNκ(un,j)‖L∞

]

≤ 1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκ+τκ

i−1

∑
j=−1

ai,je
(1+cj)τκ

]

β=β, i≤ s.

Then, we have ‖un+1‖L∞ =‖un,s‖L∞ ≤β.

Finally, we show that pIFTSRK1/2 conserve the mass (Principle 1) of the RSLM for-
mulation under periodic or homogeneous Neumann boundary conditions.

Theorem 3.2. Assume that the underlying TSRK Butcher tableau satisfies Assumption 3.1. If
starting values satisfy M(u1)=M(u0)=M0, then pIFTSRK1/2 conserve the mass of the RSLM
formulation under periodic or homogeneous Neumann boundary conditions.

Proof. We prove this claim by mathematical induction. Assume (un,j,1)= M0, j=−1,.. .,
i−1. By taking the L2 inner product on both sides of (3.20) with 1, and using Lemma 2.2
and the equality

(N (un,j),1
)
=
∫

Ω

[

f (un,j)−
1

|Ω|
∫

Ω
f (un,j)dx

]

dx=0,

we have

(un,i,1)=
0

∑
j=−1

d̂i,j

(
e(ci−cj)τLun,j,1

)
+τ

i−1

∑
j=−1

âi,j

(
e(ci−cj)τLN (un,j),1

)

=
0

∑
j=−1

d̂i,j(un,j,1)+τ
i−1

∑
j=−1

âi,j

(
N (un,j),1

)
=M0, i≤ s.

Then, we have Mn+1=(un,s,1)=M0.

Remark 3.2. The pIFTSRK1/2 can be seen as improvements over the stabilized IFTSRK
method (with integrating factor e−tLκ , denoted as sIFTSRK)

sIFTSRK: un,i=
0

∑
j=−1

di,je
(ci−cj)τLκ un,j+τ

i−1

∑
j=−1

ai,je
(ci−cj)τLκNκ(un,j), i=1,.. . ,s. (3.23)
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Under condition (2.6) and Assumption 3.1, assuming that ‖un,j‖L∞ ≤ β, j =−1,.. . ,i−1,
taking the L∞-norm on both sides of (3.23) and applying Lemma 2.1 yields

‖un,i‖L∞ ≤e−(1+ci)τκ

[
0

∑
j=−1

di,je
(1+cj)τκ+τκ

i−1

∑
j=−1

ai,je
(1+cj)τκ

]

β, i≤ s.

We define the amplification function of the i-th stage of the sIFTSRK (3.23) as

gi(τκ) :=e−(1+ci)τκ

[
0

∑
j=−1

di,je
(1+cj)τκ+τκ

i−1

∑
j=−1

ai,je
(1+cj)τκ

]

, i=1,.. . ,s.

To preserve the maximum principle unconditionally, the inequalities gi(τκ)≤1, i=1,.. . ,s
should hold for any τκ > 0. However, by checking all underlying non-negative TSRK
Butcher tableaux developed by Isherwood et al. [27,40], we find that [74] only the second-
order sIFTSRK(s,2) (s = 2,.. .,10) and the third-order sIFTSRK(2,3) satisfy these require-
ments. In addition, we verify that [74] some amplification functions of sIFTSRK go to
zero as τκ approaches +∞, because of the exponential term e−(1+ci)τκ. As an improve-
ment, it can be seen that the amplification functions of the proposed pIFTSRK1/2 are
equal to 1 from the proof of Theorem 3.1. Therefore, the pIFTSRK1/2 schemes not only
promote the unconditionally MPP schemes to the eighth-order, but also remove the ex-
ponential decay/growth effects of traditional sIFTSRK schemes.

Remark 3.3. In addition to the preservation of the maximum principle using scheme
pIFTSRK1/2, we point out that pTSRK1/2 with a suitable parameter κ also uncondition-
ally preserve general inequality structures, such as the strong stability, positivity, range
boundedness, and contractivity, when the right-hand-side term satisfies a forward Euler
condition, as presented in Appendix A.

Remark 3.4. In the literature, some novel approximations of exponential functions in the
integrating factor framework have been proposed. The approximations of pTSRK1/2
differ from those proposed by Huang et al. [38] and Du et al. [17] in several aspects.
First, the conservative approximations [17] using Shu-Osher coefficients require addi-
tional order conditions on the Shu-Osher Runge-Kutta coefficients, while the pTSRK1
using Butcher coefficients retains the convergence characteristic without imposing other
requirements. Second, in comparison with the approximations using Taylor expansions
[38], the pTSRK2 schemes conserve linear invariants. Third, pTSRK1/2 preserve the in-
equality structures for any time-step size, in contrast to the strategies proposed in [17,38].

3.6 Second-order finite difference spatial discretization

For simplicity, we consider the interval (xL,xR) with periodic boundary conditions. Let
the mesh size h=(xR−xL)/N. Denote the grid points as

Ωh={xj| xj = xL+ jh, j=0,1,.. . ,N−1}.
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Let
VN =

{
v|v=

[
v(x0),··· ,v(xj),··· ,v(xN−1)

]T
, xj ∈Ωh

}
⊂R

N

be the space of grid functions defined on Ωh, equipped with the l2-inner product, and
l∞-norm defined as

〈u,v〉 :=hv
T

u=h
N−1

∑
j=0

ujvj, ‖u‖l∞ =max
i

|ui|, ∀u,v∈VN.

Then, the induced ∞-norm of matrix is given by

‖Au‖∞ = sup
‖u‖l∞=1

‖Au‖l∞ , ∀A∈R
N×N, u∈R

N .

Denote the central finite difference discretization of ∂xx by

D2=
1

h2










−2 1 1
1 −2 1

...
...

...
1 −2 1

1 1 −2










N×N

.

Let L= ǫ2D2 and Lκ = ǫ2D2−κ I, where I ∈RN×N is the identity matrix. The following
lemmas hold.

Lemma 3.2 ([75]). For any κ≥0 and τ>0, it holds that ‖eτLκ‖∞ =e−τκ ≤1.

Lemma 3.3 ([75]). For any κ ≥ 0 and τ > 0, by letting 1 = [1,1,··· ,1]T ∈ RN, it holds that
〈eτLκ

u
n,1〉=e−τκ〈un,1〉,∀κ≥0,τ>0.

By applying pIFTSRK1/2 in the temporal direction and the second-order finite differ-
ence method in the spatial discretization, we obtain pIFTSRK1 (FD)

un,i=
0

∑
j=−1

d̂i,je
(ci−cj)τL

un,j+τ
i−1

∑
j=−1

âi,je
(ci−cj)τLN(un,j)

=
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκe(ci−cj)τL

un,j+τ
i−1

∑
j=−1

ai,je
(1+cj)τκe(ci−cj)τLNκ(un,j)

]

,

i=1,.. . ,s, (3.24)

and pIFTSRK2 (FD)

un,i=
1

ψi(τκ)

[
0

∑
j=−1

di,jψj(τκ)e(ci−cj)τL
un,j+τ

i−1

∑
j=−1

ai,jψj(τκ)e(ci−cj)τLNκ(un,j)

]

,

i=1,.. . ,s.

(3.25)
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Here, N(u) denotes the spatial discretization of the nonlinear term N (u). For the RSLM
formulation, the Lagrange multiplier appearing in the nonlinear term is computed by
λ(t)= 〈 f (u),1〉/|Ω|.

We show that under certain requirements of the TSRK Butcher tableau (3.2) and κ,
pIFTSRK1/2 (FD) preserve the maximum principle and conserve the mass of (2.1) un-
conditionally.

Theorem 3.3. Assume that κ satisfies condition (2.6) and the underlying TSRK Butcher tableau
of pIFTSRK1/2 satisfies Assumption 3.1. Then, if the starting values satisfy ‖u

j‖l∞ ≤β, j=0,1,
the solutions obtained from the pIFTSRK1/2 (FD) (3.24)/ (3.25) always satisfy ‖u

n+1‖l∞ ≤β for
any τ>0.

Proof. Consider the pIFTSRK2 (3.25) as an example. We prove this by mathematical in-
duction. Assuming that ‖un,j‖l∞ ≤ β, j=−1,0,.. . ,i−1, by applying Lemmas 2.4, 3.2, and
the definitions of ψi(τκ), we obtain

‖un,i‖l∞ ≤ 1

ψi(τκ)

[
0

∑
j=−1

di,jψj(τκ)
∥
∥e(ci−cj)τL

un,j

∥
∥

l∞ +τ
i−1

∑
j=−1

ai,jψj(τκ)
∥
∥e(ci−cj)τLNκ(un,j)

∥
∥

l∞

]

≤ 1

ψi(τκ)

[
0

∑
j=−1

di,jψj(τκ)+τκ
i−1

∑
j=−1

ai,jψj(τκ)

]

β=β, i≤ s.

Then, we have ‖u
n+1‖l∞ =‖un,s‖l∞ ≤β.

Theorem 3.4. Assume the underlying TSRK Butcher tableau of pIFTSRK1/2 satisfies Assump-
tion 3.1. Let Mn

h = 〈un,1〉 denote the discrete mass. If the starting values satisfy M1
h =M0

h, then
the pIFTSRK1/2 (FD) (3.24)/ (3.25) conserve the mass of the RSLM formulation (1.2), i.e.,

Mn+1
h =M0

h, ∀τ>0. (3.26)

By using Lemma 3.3, the proof of Theorem 3.4 can be carried out in a similar manner
to that of Theorem 3.2. Therefore, we omit it.

3.7 Fourier pseudo-spectral spatial discretization

For the interval (xL,xR) with periodic boundary conditions, letting N be an even in-
teger denoting the number of subintervals, we consider the interpolation space SN =
span{hj(x), j=0,1,.. . ,N−1}, where hj(x) are trigonometric functions of degree N/2 given
by [25, 59]

hj(x)=
1

N

N/2

∑
l=−N/2

1

cl
eilµ(x−xj)

with cl =1 (|l| 6=N/2), c−N/2= cN/2=2, µ=2π/(xR−xL).
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Defining the interpolation operator IN : C(Ω)→SN,

INu(x)=
N−1

∑
j=0

u(xj)hj(x),

and taking the second-order derivative, we obtain

∂2 INu(xi)

∂x2
=

N−1

∑
j=0

u(xj)h
(2)
j (xi)=

N−1

∑
j=0

(D̄2)i,ju(xj),

where D̄2=[d̄i,j]∈RN×N is the second-order Fourier differentiation matrix determined by

d̄i,j =







1

2
µ2(−1)i+j+1sin−2

(
(j−i)π

N

)

, i 6= j,

−µ2 N2+2

12
, i= j,

for i, j=0,1,.. . ,N−1. (3.27)

Noting that zero is an eigenvalue of D̄2 [64], letting L̄κ=ǫ2D̄2−κ I, we have the following
lemma.

Lemma 3.4. For any κ≥0 and τ>0, it holds that

〈
eτL̄κ

u
n,1
〉
=e−τκ〈un,1〉, ∀κ≥0, τ>0.

Proof. Because 1 = [1,1,··· ,1]T ∈ RN is an eigenvector of ǫ2D̄2−κ I corresponding to the
eigenvalue −κ, the row sum of eτL̄κ can be calculated by

eτL̄κ1=
∞

∑
k=0

τk

k!

(
ǫ2D̄2−κ I

)k
1=

∞

∑
k=0

τk

k!

(
ǫ2D̄2−κ I

)k
1

︸ ︷︷ ︸

=(−κ)k1

=
∞

∑
k=0

(−τκ)k

k!
1=e−τκ1. (3.28)

The symmetry of D̄2 implies that

〈
eτL̄κ

u,v
〉
=
〈
u,eτL̄κ

v

〉
, ∀u,v∈R

N,

and then
〈
eτL̄κ

u
n,1
〉
=
〈
u

n,eτL̄κ1
〉
= 〈un,e−τκ1〉=e−τκ〈un,1〉.

This completes the proof.

Applying pIFTSRK1/2 and the Fourier pseudo-spectral discretization to (2.1) gives

pIFTSRK1/2 (FP): un,i=
0

∑
j=−1

d̂i,je
(ci−cj)τL̄

un,j+τ
i−1

∑
j=−1

âi,je
(ci−cj)τL̄N(un,j),

i=1,.. . ,s.

(3.29)

Similar to Theorem 3.4, we present the mass conservation for the fully discrete system
(3.29) without proof.
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Theorem 3.5. Assume the underlying TSRK Butcher tableau of pIFTSRK1/2 satisfies Assump-
tion 3.1. Let Mn

h = 〈un,1〉 denote the discrete mass. If starting values satisfy M1
h = M0

h, then

the pIFTSRK1/2 (FP) (3.29) conserves the mass of the RSLM formulation (1.2), i.e., Mn+1
h =

M0
h, ∀τ>0.

Different from the second-order finite difference discretization, the matrix D̄2 (3.27)
is not a diagonally dominant matrix. Thus the Fourier pseudo-spectral method does not
inherit the contraction semi-group property of the Laplace operator as in Lemmas 2.2 and
3.2, and it cannot strictly preserve the maximum principle of the continuous equation.
For example, letting (xL,xR)=(0,2), we show the infinity norms of eτL̄ for different values
of τ and N in Fig. 1. Clearly, since D̄2 is an approximation to the Laplace operator, and can
be arbitrarily accurate in space, the values of ‖eτL̄‖∞ are close to but not bounded by one.
Nevertheless, Li [50] proved that the Fourier spectral and pseudo-spectral discretizations
admit effective maximum principles that allow the numerical solution of the AC equation
with the Ginzburg-Landau potential to deviate from the sharp bound by a controllable
discretization error. In the numerical experiments, we will study the performance of
uniformly high-order-accurate schemes by incorporating the pIFTSRK integrators with
the FP discretization. For a strict derivation of the effective maximum principle using FP
discretization, we refer to [50, Theorem 1.6].
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Figure 1: Infinity-norms of eτL̄ for different values of τ and N.

Remark 3.5. One advantage of using the proposed pIFTSRK schemes over the existing
pIFRK schemes developed in [77] is that the pIFTSRK can promote the temporal con-
vergence of unconditionally MPP schemes to the eighth-order, thus greatly reducing
the splitting errors and time delay caused by stabilization techniques [70]. Moreover,
to match the high-order spatial discretization of Fourier spectral Galerkin or collocation
methods for the AC-type equation, it is also meaningful to develop high-order temporal
integrators.
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4 Numerical analysis

4.1 Stability regions

To obtain the stability regions of the proposed schemes, we consider the model equa-
tion [14]

ut=−κu+λu, (4.1)

where κ and λ are scalars. Applying pTSRK1 gives

un,i=
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκun,j+τλ

i−1

∑
j=−1

ai,je
(1+cj)τκun,j

]

, i=1,.. . ,s. (4.2)

Letting

∆i =
0

∑
j=−1

di,je
(1+cj)τκun,j, i=1,.. . ,s,

we reformulate (4.2) in the matrix form

(I−τλĀ)ū= b̄, (4.3)

where

ū=[un,−1,un,0,··· ,un,s]
T ,

[Āi+2,j+2]=

[

ai,j
e(1+cj)τκ

ψi(τκ)

]

∈R
(s+2)×(s+2), i, j=−1,.. . ,s,

b̄=

[

un,−1,un,0,
∆1

ψ1(τκ)
,··· , ∆s

ψs(τκ)

]T

,

and I∈R(s+2)×(s+2).
Because the matrix Ā is strictly lower triangular, we can calculate that

un+1=S(τκ,τλ)[s+2], (4.4)

where

S(τκ,τλ)=
s

∑
k=0

(τλ)k Ākb̄∈R
s+2

and [s+2] denotes the (s+2)-th entry of the vector S(τκ,τλ).
The stability functions S(τκ,τλ) for the classical IFTSRK and pTSRK2 can be obtained

similarly. Letting un=un−1=1 and requiring |S(τκ,τλ)[s+2]|=1, we present boundaries
of the stability regions of some third- to fifth-order IFTSRK and pTSRK1/2 schemes for
κτ=0,1,.. .,5 and λτ∈C in Fig. 2.
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Figure 2: Stability regions of IFTSRK, pTSRK1 and pTSRK2 with underlying TSRK(s, p) Butcher tableau.

From Fig. 2, we clearly see that for each scheme, the stability region monotonically
becomes larger with the increasing κτ. Thus, the boundaries of stability regions obtained
with κτ = 4 and 5 are not displayed in Fig. 2 (a). As a byproduct of eliminating the
exponential effect, the stability regions become smaller for pTSRK1 and pTSRK2 when
κτ> 0. We can also observe that the pTSRK2 schemes have larger stability regions than
the pTSRK1 schemes. Furthermore, the IFTSRK and pTSRK1/2 methods reduce to the
classical TSRK schemes when κτ equals zero.
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4.2 Convergence analysis

Using Theorem 3.1, and the truncation errors of the p-th order pTSRK1/2 schemes, we
derive the following convergence result.

Theorem 4.1. Assume that u(t,x)∈Cp+1([0,T];C2(Ω̄)) is the exact solution to (2.1) and un+1

is computed by the pIFTSRK1/2 scheme. For the underlying Butcher tableau provided in [40]
satisfying Assumption 3.1, if the initial values are smooth and satisfy ‖ui‖L∞ ≤β,i=0,1, then we
have following error estimate for the pIFTSRK1/2 (3.21)/ (3.22) with the p-th order underlying
Butcher tableau as

‖u(tn+1)−un+1‖L∞ ≤elκstn+1 max
j=0,1

‖ej‖L∞+C(elκstn+1−1)τp for tn ≤T,

where ej = u(tj)−uj, the constant C > 0 depends on the Cp+1([0,T];C2(Ω̄)) norm of u, the
Cp[−β,β]-norm of f , and the stage numbers s, κ, l, but it is independent of τ.

Proof. Consider the pIFTSRK1 method as an example. We introduce the reference func-
tions [20] Un,i, −1≤ i≤ s, with Un,j=u(tn+j), j=−1,0, and Un,s=u(tn+1) satisfying

Un,i=
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκe(ci−cj)τLu(tn+j)

+τ
i−1

∑
j=−1

ai,je
(1+cj)τκe(ci−cj)τLNκ(Un,j)

]

, i=1,.. . ,s−1,

Un,s=
1

ψs(τκ)

[
0

∑
j=−1

ds,je
(1+cj)τκe(1−cj)τLu(tn+j)

+τ
s−1

∑
j=−1

as,je
(1+cj)τκe(1−cj)τLNκ(Un,j)

]

+Rn
s .

(4.5)

For an s-stage, p-th order pIFTSRK1 scheme, Corollary 3.1 shows that the truncation error
satisfies

max
0≤n≤⌊T/τ⌋−1

‖Rn
s ‖L∞ ≤Csτ

p+1,

where Cs depends on the Cp+1([0,T];C2(Ω̄))-norm of u, Cp[−β,β]-norm of f , s and κ, but
is independent of τ.

Let
en+j =u(tn+j)−un+j, en,i=Un,i−un,i, −1≤ i≤ s,

then en,j = en+j, j=−1,0 and en,s= en+1. Subtracting (3.21) from (4.5) yields

en,i=
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκe(ci−cj)τLen,j
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+τ
i−1

∑
j=−1

ai,je
(1+cj)τκe(ci−cj)τL(Nκ(Un,j)−Nκ(un,j)

)

]

, i=1,.. . ,s−1,

en,s=
1

ψs(τκ)

[
0

∑
j=−1

ds,je
(1+cj)τκe(1−cj)τLen,j

+τ
s−1

∑
j=−1

as,je
(1+cj)τκe(1−cj)τL(Nκ(Un,j)−Nκ(un,j)

)

]

+Rn
s .

The MPP property guarantees that ‖un,i‖L∞ ≤β and ‖Un,i‖L∞ ≤β,−1≤ i≤ s. Accordingly,
using Lemma 2.4, we obtain

‖Nκ(Un,j)−Nκ(un,j)‖L∞ ≤ lκ‖en,j‖L∞ .

It can be verified that all of the non-negative and non-decreasing SSP TSRK schemes
developed in [40] satisfy

0<
0

∑
j=−1

ai,j ≤1, 0<
e(1+cj)τκ

ψi(τκ)
≤1, i=1,.. . ,s, j=−1,0,.. . ,i−1.

Together with

0

∑
j=−1

di,j =1, ‖e(ci−cj)τLu‖L∞ ≤‖u‖L∞ , ‖e(ci−cj)τLu‖L∞ ≤‖u‖L∞ ,

we derive

‖en,i‖L∞ ≤ 1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκ

∥
∥e(ci−cj)τLen,j

∥
∥

L∞

+τ
i−1

∑
j=−1

ai,je
(1+cj)τκ

∥
∥e(ci−cj)τL(Nκ(Un,j)−Nκ(un,j))

∥
∥

L∞

]

≤ max
j=−1,0

‖en,j‖L∞+lτκ
i−1

∑
j=−1

ai,j‖en,j‖L∞

≤ (1+lτκ) max
j=−1,0

‖en,j‖L∞+lτκ
i−1

∑
j=1

‖en,j‖L∞

≤ (1+lτκ)i max
j=−1,0

‖en,j‖L∞ , i=1,.. . ,s−1,

‖en,s‖L∞ ≤ 1

ψs(τκ)

[
0

∑
j=−1

ds,je
(1+cj)τκ‖e(1−cj)τLen,j‖L∞

+
s−1

∑
j=−1

as,jτe(1+cj)τκ
∥
∥e(1−cj)τL(Nκ(Un,j)−Nκ(un,j)

)∥
∥

L∞

]

+‖Rn
s ‖L∞
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≤ (1+lτκ) max
j=−1,0

‖en,j‖L∞ +lτκ
s−1

∑
j=1

‖en,j‖L∞ +Csτ
p+1

≤ (1+lτκ)s max
j=−1,0

‖en,j‖L∞+Csτ
p+1.

By induction, we obtain

‖en+1‖L∞ ≤ (1+lτκ)sn max
j=−1,0

‖e1+j‖L∞+Csτ
p+1

n−1

∑
i=0

(1+lτκ)si

≤elκsnτ max
j=0,1

‖ej‖L∞ +
Cs

lκs
(elκsnτ−1)τp.

Letting C=Cs/(lκs), we obtain the desired result, since tn+1 > nτ. The convergence of
the pIFTSRK2 can be proven similarly.

5 Numerical experiments

In this section, we present numerical experiments to demonstrate the effectiveness and
inequality-preserving properties of the proposed schemes. All the TSRK Butcher tableaux
used in this work were downloaded from the repository [27]. If not specified, the maxi-
mum bounds for the pSG equation and RSLM formulation were chosen to be β=π and
β=3π/2, respectively. In the simulations, we computed products of the matrix exponen-
tials with vectors via the fast Fourier transform to accelerate the computations [18].

5.1 Convergence tests

Example 5.1. We first tested the stability and accuracy of the proposed integrators on
a stiff nonlinear benchmark system of ordinary differential equations (ODEs) from [72],







ut=
u−cv7

2
√

v
− 1

2
,

vt =u−√
v−cv7

(5.1)

with initial values u0 = 1.0, v0 = 1.0, where c is a parameter that determines the stiffness
of the problem. This system has an exaction solution

u(t)=(6ct+1)−
1
12 , v(t)=(6ct+1)−

1
6 .

For comparison, we considered different stiffness by setting c = 10,100,1000, and
solved this problem to time t=0.1 using the existing ETD2 [18] (Appendix B), pRK2(4,4)
[77] (Appendix B), TSRK(4,5) [40], and the proposed fourth- to eighth-order pTSRK1/2
schemes. The corresponding stabilization parameters for the schemes ETD2, pRK2(4,4),
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Figure 3: Example 5.1. Time accuracy tests of ETD2, pRK2(4,4), TSRK(4,5), pTSRK1/2 for Eq. (5.1) at
t=0.1. Colored dashed curves denote errors obtained using pTSRK2 (some overlap with those of pTSRK1).

and pTSRK1/2, were chosen as κ = c. Numerical errors in the l1-norm are presented in
Fig. 3. When the stiffness of the system was not strong (c= 10), we can observe the ex-
pected convergence orders of the ETD2, pRK2(4,4), TSRK(4,5), and pTSRK1/2 schemes.
Since the pTSRK1/2(4,5) utilized two-step solutions, the numerical errors were signifi-
cantly smaller than those of the ETD2, and the convergence rate was one order higher
than the pRK2(4,4). This demonstrates the advantages of using two-step high-order
methods. Upon increasing c to 1000, the TSRK(4,5) integrator (green square curve) blew
up at large time steps, so the errors were not plotted in Fig. 3 (c). Since ETD2, pRK2(4,4),
and pTSRK1/2 require large stabilization parameters to ensure the stability, the corre-
sponding errors in Figs. 3 (b,c) were higher than those in Fig. 3 (a). Thus, the convergence
orders were reduced at large time steps, which is common phenomenon of stabilization
methods [17, 72].

Example 5.2. We then tested the temporal and spatial convergence of the proposed sche-
mes on the 1D pSG Eq. (1.1) and its RSLM reformulation (1.2) with periodic boundary
conditions and the smooth initial value

u(x,t=0)=0.1sin(2πx)+0.05, x∈ (0,2), t>0. (5.2)

We set ǫ= 0.01 and solved this problem to time T = 4.0. The numerical errors were
computed using

Errorl∞ =‖ū
n−u

n‖l∞ ,

where ū
n is the reference solution computed with a refined step size and u

n is the numer-
ical solution. For the temporal convergence, the grid number was set to be N = 28 and
the reference solution was computed with τ=2−12 using the eighth-order IFTSRK(11, 8)
(FD). The starting values for two-step schemes were found using the fourth-order uncon-
ditionally MPP parametric IFRK scheme proposed in [77] with a refined time-step size.
We set the stabilization parameter κ=1 for both stabilized formulations.
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Figure 4: Example 5.2. Time accuracy tests of IFTSRK (FD) and pIFTSRK1/2 (FD) at T=4. The reference
slopes in (b) and (c) are fixed. The colored dashed curves in (b) and (c) denote the errors obtained using
pIFTSRK2 (FD) (some overlap with those of pIFTSRK1).

The results of the numerical convergence study at T=4 obtained by the IFTSRK (FD)
and the proposed pIFTSRK1/2 (FD) for the pSG equation and RSLM reformulation are
shown in Fig. 4. Each of the third- to eighth-order schemes converged with the expected
order of accuracy when applied to different models. The comparison of the sub-figures
in Fig. 4 shows that the numerical errors of the IFTSRK were smaller than those of the
pIFTSRK1 and pIFTSRK2 because of the splitting errors introduced by the stabilization.
Figs. 4 (b,c) demonstrate that the accuracy of the pIFTSRK2 schemes was very close to that
of the pIFTSRK1. In addition, with the introduction of κ = 1, the introduced numerical
errors clearly demonstrated the necessity of developing high-order-accurate schemes.

Next, we tested the spatial accuracy of the FD and FP for the RSLM formulation by
choosing the moderate pIFTSRK1(4,5) as the temporal integrator, fixing the time step τ=
2−10, and refining the spatial grid from N=26 to N=29 uniformly. The reference solution
was computed with Nre f =212 and τ=2−10. As expected, the second-order convergence
of the finite-difference discretization, and the spectral accuracy of the Fourier pseudo-
spectral discretization were obtained, as shown in Table 1.

Table 1: Spatial accuracy tests of FD and FP discretizations for the RSLM formulation. Underlying temporal
integrator: pIFTSRK1(4,5). Parameters: τ=2−10, κ=1, T=4, Nre f =212.

Scheme N l∞ Error Order Scheme l∞ Error Order

pIFTSRK1 (FD)

26 1.736e-3 -

pIFTSRK1 (FP)

3.409e-5 -

27 4.559e-4 1.929 4.028e-8 9.725

28 1.151e-4 1.986 4.743e-13 16.374

29 2.882e-5 1.997 5.800e-13 -0.290
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5.2 Structure-preserving tests

Example 5.3. We first demonstrate the positivity-preservation (Appendix A) of pTSRK
by considering a benchmark stiff linear system of ODEs [37, 41] with the form

ut=Au=100





−2 1 1
1 −4 1
1 3 −2



u, u
0=





1
9
5



. (5.3)

The exact solution reads

u(t)= c1





5
3
7



+c2e−300t





−1
0
1



+c3e−500t





0
−1

1





with coefficients c1 = 1, c2 = 4, c3 =−6 determined by the initial condition. Since the
coefficient matrix is a so-called Metzler matrix [41], which has only positive off-diagonal
elements, this ensures that the solution components are positive for all times because of
the positive initial values. In addition, the ODE system has a linear invariant M(u)=u

T1.
This problem requires τ ≤ τFE = 1/400 to guarantee the forward Euler condition of

positivity, that is,

∃τFE=
1

400
such that u+τAu≥0, ∀u≥0, ∀τ∈ (0,τFE],

where the inequalities are element-wise. Thus, to guarantee the positivity of the solution,
the circle condition requires κ ≥ 1/τFE = 400. Because the exact solution converges to
the equilibrium state u

∗=[5,3,7]T very rapidly, and the exponential functions in pTSRK1
blow up for κ= 400 and large time steps, we only demonstrate the positivity and linear
invariant conservation of pTSRK2 at times steps larger than τFE.

We set κ = 400 and solved this problem to T = 0.06 and T = 100 with time steps
τ=0.006 and 5.0, respectively. We chose TSRK(4,5) with the SSP coefficient C≈0.8542 [40]
as the underlying scheme. The numerical solutions computed using TSRK(4,5) and
pTSRK2(4,5) are presented in Fig. 5. As τ = 0.006 > CτFE, the solution obtained by
TSRK(4,5) in Fig. 5 (a) was not positivity-preserving. With the introduction of stabi-
lization, pTSRK2(4,5) with τ = 0.006 preserved the positivity and linear inequality, as
shown in Fig. 5 (a), and the solution closely followed the exact solution. After increasing
τ to 5.0, the solution of TSRK(4,5) blew up, and thus, it is not presented. In Fig. 5 (b),
we compare the solution of pTSRK2(4,5) with the exact one. There were no oscillations
in the solution profile, and pTSRK2(4,5) preserved the positivity, fixed point, and linear
invariant M(u).

Example 5.4. To test the properties of proposed schemes on the pSG equations, we con-
sider the 1D initial profile in Example 5.2. Since Fig. 2 and Examples 5.1 and 5.2 demon-
strated that the stability and accuracy of pIFTSRK1 and pIFTSRK2 were very similar,
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(a) Results of Eq.(5.3), τ=0.006
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Figure 5: Example 5.3. Numerical solutions and linear invariants M(u) obtained by different schemes with
τ=0.006 (a) and τ=5.0 (b).

for comparison and simplicity, we solved the pSG equation and RSLM formulation us-
ing some fourth-, fifth- and eighth-order IFTSRK, and pIFTSRK1 schemes with ǫ= 0.01,
N=128, and set the final time T=100.

Test 5.4 using FD. First, we tested the temporal integrators using the FD spatial
discretization. Fig. 6 column (a) presents the results of the pSG equation computed
with underlying TSRK(3,4) scheme. When the time step τ is increased from 0.1 to 2.5,
IFTSRK(3,4) produced oscillations in the solution and energy profiles (first row and
fourth row), and the maximum-principle was violated (second row). By introducing
a stabilization term with κ=1.0, the solution computed with τ=2.5 using the proposed
pIFIFRK1 scheme, was not only accurate but also preserved the maximum principle, and
dissipated the energy. When adopting the fifth-order underlying TSRK(4,5) scheme,
although Fig. 6 column (b) shows that the solution computed using IFTSRK(4,5) with
τ= 4.0 did not violate the maximum principle, the solution profile was no longer accu-
rate (first row), and there were large differences between the energy profiles computed
with τ = 4.0 and 0.1. With the introduction of κ = 1.0, pIFTSRK(4,5) provided a very
accurate solution, and well preserved such structures.

The results of the RSLM formulation computed by the highest eighth-order schemes
are presented in column (c) of Fig. 6. Similar to the fourth-order scheme in column (a),
the solution of IFTSRK with τ=7.0 had oscillations. With suitable approximations of the
exponential functions, the pIFTSRK1 scheme provided an accurate solution, preserved
the maximum principle, conserved mass to machine accuracy, and dissipated the energy.
In addition, there was little difference between the computed solution and the reference
solution obtained.

Test 5.4 using FP. Next, we studied properties of the Fourier pseudo-spectral dis-
cretization using the moderate fifth-order and highest eighth-order pIFTSRK1 integra-
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Figure 6: Test 5.4 (FD). The profiles of u (first row), evolutions of ‖u‖l∞ (second row), absolute mass error

|Mn
h−M0

h| (third row) and energy (fourth row) computed with different combinations of τ and κ using IFTSRK
and pIFTSRK1. The black dashed lines in the first and second rows denote the levels of ±π. Parameters:
ǫ=0.01, N=128.

tors. The largest values of {‖u
n‖l∞}n=0,...,N for the pSG equation computed by schemes

pIFTSRK1(4,5) and pIFTSRK1(11,8) with τ∈[10−2,102] and N=2i,i=5,.. . ,9 are presented
in Fig. 7. Fig. 1 shows that the value of ‖eτL‖∞ was close to 1. It can be observed in Fig. 7
that, although the pIFTSRK1 (FP) integrators violated the maximum principle, they were
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Figure 7: Test 5.4 (FP). Plots of the largest values of {‖u
n‖l∞}n=0,...,N for the pSG equation computed by

pIFTSRK(4,5) (left) and pIFTSRK1(11,8) (right) with different values of τ and N. The black dashed lines
denoting the level π overlap with the blue and brown curves. Parameters: ǫ=0.01, κ=1.0, T=100.
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Figure 8: Test 5.4 (FP). Profiles of u (top left, t = 100), evolution of ‖u‖l∞ (top right), absolute mass error

|Mn
h−M0

h| (bottom left) and energy (bottom right) for the RSLM formulation computed with different τ and

κ using IFTSRK(11,8) and pIFTSRK1(11,8). Parameters: ǫ=0.01, N=128.
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very stable, and the maximum bounds were close to the theoretical bound, especially
when using a large grid number.

We present the results of the RSLM formulation computed by pIFTSRK1(11,8) (FP)
with different values of τ and κ in Fig. 8. This shows that without stabilization, the
IFTSRK with a large τ = 7.0 produced oscillations in the solution and finally violated
the maximum principle and the energy dissipation law. With the introduction of κ=1.0,
the proposed pIFTSRK1 made the solution stable and bounded. There was no difference
in the eye-norm between the solution computed with τ = 7.0, κ = 1.0 and the reference
solution computed using IFTSRK with τ = 0.1. In addition, pIFTSRK1 conserved mass
to machine accuracy and produced a very stable energy profile. Such behavior was very
similar to that of pIFTSRK1 (FD) in Fig. 6 column (c).

Example 5.5. Consider the evolution of a 2D profile given by the three concave squares

u(x,y,t=0)=0.2×
3

∑
i=1

tanh
(
100(0.25−|x−xi |0.8−|y−yi|0.8)

)
+0.3, (x,y)∈ (−0.5,0.5)2,

where (xi,yi)∈{(0,−0.15),(−0.2,0.15),(0.2,0.15)}.
The parameters were chosen as ǫ=0.01, N =1282. We solved the RSLM formulation

using eighth-order schemes and the FD spatial discretization to the final time T = 500.
Fig. 9 presents the initial profile and the zero-level-set snapshots at t = 0,40,80,200,496
computed by IFTSRK and pIFTSRK1. The 3D views of the solutions at t=40 are presented
in Fig. 10, and the evolution of ‖u‖l∞ , the absolute mass error |Mn

h−M0
h|, and the discrete

energy are shown in Fig. 11.
For the IFTSRK scheme, we computed the reference solution using a refined time

step τ=0.1. Fig. 11 shows that the infinity-norm of the computed solution grew rapidly,
but still satisfied the maximum principle. As time progressed, the three squares coa-
lesced, and finally became circular, as shown in Fig. 9. When the time-step size was
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Figure 9: Example 5.5. Zero-level-set snapshots of the solutions of the RSLM computed by IFTSRK(11,8) and

pIFTSRK(11,8) schemes. Parameters: N=1282.
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(a) τ=0.1, IFTSRK(11,8) (b) τ=8.0, IFTSRK(11,8) (c) τ=8.0, κ=1, pIFTSRK1(11,8)

Figure 10: Example 5.5. 3D views of the solutions of the RSLM at t= 40 computed by IFTSRK(11,8) and
pIFTSRK1(11,8).
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Figure 11: Example 5.5. Evolutions of ‖u‖l∞ (a) absolute mass error Mn
n−M0

h (b) and energy Eh (c) of the

RSLM formulation computed by IFTSRK(11,8) and pIFTSRK1(11,8). The black dashed line in (a) denotes the
level of 3π/2.

increased to τ = 8.0, the solution became unstable (Fig. 10 (b)), violated the maximum
principle (Fig. 11 (a)), and the energy was no longer dissipative (Fig. 11 (c)). Again, when
pIFTSRK1(11,8) with τ=8.0,κ=1.0 was applied, the computed solution was much better
than that of the IFTSRK scheme. In Fig. 9, we can see that there are large differences be-
tween the outlines of the zero-level-set snapshots located in dashed rectangles computed
by IFTSRK (τ = 8.0) in Fig. 9 (b) and the references curves in Fig. 9 (a), while the results
obtained by pIFTSRK in Fig. 9 (c) were very close to the reference results. Fig. 10 (c)
also demonstrates the increased accuracy of pIFTSRK when compared with those ob-
tained by IFTSRK. In addition, Fig. 11 (blue curves in all sub-figures) clearly shows that
pIFTSRK1(11,8) well preserved the structures of the RSLM formulation.

The CPU time costs of IFTSRK and pIFTSRK1 are listed in Table 2. Because the
pIFTSRK1 scheme with the stabilization parameter κ=1 allows a much larger time-step
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Table 2: CPU time costs (s) for solving the RSLM formulation by the eighth-order IFTSRK and pIFTSRK1
with different values of τ and κ. Parameters: T=500,N=1282.

Scheme IFTSRK, τ=0.1 IFTSRK, τ=8.0 pIFTSRK, τ=8.0,κ=1.0

CPU time (s) 380.92 5.38 5.29

size, the computational efficiency improved greatly without affecting the accuracy sig-
nificantly.

Example 5.6. In this example, we consider the seven-circle benchmark problem [13,51] to
demonstrate the similarity between the pSG equation and the AC equation (ut = ǫ2∆u+
u−u3) with the Ginzburg-Landau potential. To make the results comparable, we perform
a scaling and translation of the nonlinear potential function of the pSG, that is,

E(u)=
∫

Ω

1

2
ǫ2|∇u|2+ 1

π2

(
1+cos(πu)

)
dx.

Then, the pSG becomes

ut=ǫ2∆u+
1

π
sin(πu). (5.4)

As a result, the maximum bound is replaced by β= 1, which is same as that of the AC
equation. The stabilization parameter κ of Eq. (5.4) remains the same, while the circle
condition (2.2) requires κ≥2.0 for AC equation. The initial condition was chosen as

u(x,y,0)=−1+
u

∑
i=1

f0

(√

(x−xi)2+(y−yi)2−ri

)

,

Ω=(0,2π)2, f0(s)=

{

2e−ǫ2/s2
, if s<0,

0, otherwise.

The centers and radii of the seven circles are given in Table 3.
We chose the parameters ǫ=0.05, N=2562, and solved the pSG (5.4) and AC equations

using pIFTSRK1(11,8) to the final time T = 200 based on FD spatial discretization. The
reference solutions for AC were computed using IFTSRK with τ = 0.1. Since the SSP
coefficient of the underlying TSRK(11,8) is C ≈ 0.2743 [40], we chose a critical time step

Table 3: Centers (xi,yi) and radii (ri) of Example 5.6.

i 1 2 3 4 5 6 7

xi π/2 π/4 π/2 π 3π/2 π 3π/2

yi π/2 3π/4 5π/4 π/4 π/4 π 3π/2

ri π/5 2π/15 2π/15 π/10 π/10 π/4 π/4
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Figure 12: Example 5.6. Evolutions of maximum bounds and energy for AC and pSG.

(a) t=0.0 (b) t=10.5 (c) t=21.0 (d) t=28.0 (e) t=56.0 (f) t=98.0

Figure 13: Example 5.6. Reference solutions of AC by IFTSRK(11,8) (τ = 0.1, top row), large-time-step
solutions of AC by pIFTSRK1(11,8) (τ = 3.5, κ = 2.0, middle row), and large-time-step solutions of pSG by
pIFTSRK1(11,8) (τ=3.5, κ=1.0, bottom row).

τ = 3.5 which was larger than that allowed by IFTSRK(11,8) method. We present the
evolution of the maximum bounds and energy profiles obtained for the AC and pSG in
Fig. 12. When there was no stabilization, as the time step increased from τ = 0.1 to 3.5,
the solution (orange triangle curve) obtained by IFTSRK exceeded the maximum bound



H. Zhang et al. / CSIAM Trans. Appl. Math., 4 (2023), pp. 177-224 215

(β=1.0) of the AC equation, and the energy oscillated. With the introduction of κ=2.0,
pIFTSRK1(11,8) stabilized the simulation, and the obtained energy profile (blue square
curve) closely followed the reference profile (τ = 0.1). When solving the pSG equation,
pIFTSRK1(11,8) with τ = 3.5 and κ = 1.0 preserved the maximum principle and gave
a very similar energy curve as the AC equation.

Fig. 13 shows the reference solutions (IFTSRK(11,8), τ=0.1) of AC, and the large-time-
step solutions (pIFTSRK1(11,8), τ = 3.5) of AC and pSG. The annihilation of the circles
occurred gradually, and the large-time-step solutions computed by pIFTSRK1(11,8) for
AC and pSG were in good agreement with the reference. This demonstrates the striking
similarity between pSG and AC.

Example 5.7. Finally, we considered the 3D RSLM formulation with a uniformly random
distributed phase field as the initial condition

u(x,y,z,t=0)=1.8×rand(x,y,z)−0.9, (x,y,z)∈ (−0.5,0.5)3,

where rand(x,y,z) is normally distributed in [0,1].
We chose N=1283 and ǫ=0.01. The 3D isosurfaces computed by eighth-order tempo-

ral integrators incorporated with the FD spatial discretization at t=0,32,160 and 360 are
presented in Fig. 14. Fig. 15 shows the evolution of ‖u‖l∞ , absolute mass error |Mn

h−M0
h|,

and discrete energy Eh. It can be seen that the solution computed with τ = 8.0 using
IFTSRK(11,8) violated the maximum-principle, and the energy curve oscillated. In con-
trast, the pIFTSRK1(11,8) scheme with τ = 8.0,κ = 1.0 well preserved the maximum-
principle and mass conservation law, and the energy decreased all the time.

(a) t=0 (b) t=32 (c) t=160 (d) t=360

Figure 14: Example 5.7. Isosurface snapshots of solutions at t= 0,32,160,360 computed by pIFTSRK1(11,8).
Parameters: N=1283, τ=8.0, and κ=1.0.

6 Conclusions

In this work, a class of up to eighth-order inequality-preserving two-step integrating fac-
tor Runge-Kutta schemes were designed and analyzed to solve the pSG equation and its
conservative RSLM formulation. We showed that if the underlying TSRK Butcher tableau
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Figure 15: Example 5.7. Evolutions of ‖u‖l∞ (a), absolute mass error |Mn
h −M0

h| (b), and energy Eh (c)

computed by using IFTSRK(11,8) (τ = 8.0) and pIFTSRK(11,8) (τ = 8.0,κ = 1.0). The black dashed line
represents level of 3π/2.

has non-negative coefficients and non-decreasing abscissas, then they can be used to con-
struct unconditionally MPP schemes. Theoretical analysis and numerical experiments
demonstrated that the resulting pIFTSRK1/2 schemes with FD spatial discretization un-
conditionally preserve the maximum principle, and the incorporation with non-MPP FP
discretization effectively improved the spatial accuracy with a negligible effect on the
maximum principle. Moreover, both FD and FP discretizations conserve the mass of the
RSLM formulation within machine accuracy, and numerical results indicated notable im-
provement of the energy stability.

Because of the particularity of the selected problems, the introduced stabilization term
was of the form κ(u−u). Thus, it is meaningful to investigate the p(IF)TSRK1/2 ap-
proaches for the mean curvature problem [12] or the Cahn-Hilliard equation [34] where
a Laplacian-type stabilization κ∆(u−u) is usually introduced to allow large time-step
sizes. Moreover, the parametric schemes could preserve maximum principles of other
problems, for example, the classical AC-type equations with either Ginzburg-Landau or
Flory-Huggins potentials [19]. Appendix A also shows that the proposed schemes can
preserve many other mathematical and physical inequality structures. When consider-
ing hyperbolic conservation law equations [40] or the production-destruction system [5],
it is also worth researching the unconditional preservation of strong stability, positivity,
or boundedness using proposed schemes.

Appendix A. Inequality-preservation of pTSRK1/2

Consider an initial value problem for a system of N≥1 ODEs of type
{

ut= g
(
t,u(t)

)
, ∀t∈ (0,T],

u(0)=u
0,

(A.1)

where u
0∈RN , g:R×RN→RN is a continuous function. We assume that the problem (A.1)

has a unique solution u : [0,T]→RN , and ‖·‖ :RN →R is a convex functional satisfying

‖αu+(1−α)v‖≤α‖u‖+(1−α)‖v‖, ∀α∈ [0,1], u,v∈R
N .
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Let u
1 be the solution at t = τ computed by a proper one-step method. We present

definitions of several inequalities [4, 29, 48] relevant for the numerical stability of time
integrations for (A.1).

Definition A.1 (Strong stability preservation). A two-step method is strong stability preserv-
ing with respect to the functional ‖·‖ if

‖u
n+1‖≤max

{
‖u

n‖,‖u
n−1‖

}
, ∀n>0

under the assumption that

∃τFE>0 such that ‖u+τg(t,u)‖≤‖u‖, ∀0<τ≤τFE, ∀t∈ [0,T]. (A.2)

Definition A.2 (Positivity preservation). A two-step method is positive if, whenever u
j≥0, j=

0,1, it guarantees that u
n+1≥0, ∀n≥1 under the assumption that

∃τFE >0 such that u+τg(t,u)≥0, ∀0<τ≤τFE, ∀t∈ [0,T], ∀u≥0, (A.3)

where the inequalities are element-wise.

Definition A.3 (Range boundedness/Maximum principle preservation). A two-step me-
thod is range bounded in [m,M] if, whenever m≤u

j≤M, j=0,1, it guarantees that m≤u
n+1≤M

under the assumption that

∃τFE>0 such that m≤u+τg(t,u)≤M, ∀0<τ≤τFE, ∀t∈ [0,T], ∀u∈ [m,M], (A.4)

where the inequalities are element-wise. When M=−m := β>0, the assumption (A.4) is equiv-
alent to

∃τFE>0 such that ‖u+τg(t,u)‖l∞ ≤β, ∀0<τ≤τFE, ∀t∈ [0,T], ∀‖u‖l∞ ≤β. (A.5)

Definition A.4 (Contractivity preservation). A two-step method is contractive if

‖u
n+1−v

n+1‖≤max
{
‖u

n−v
n‖,‖u

n−1−v
n−1‖

}

under assumption that ∃τFE>0 such that

‖u−v+τ(g(t,u)−g(t,v))‖≤‖u−v‖, ∀0<τ≤τFE, ∀t∈ [0,T], ∀u,v∈R
N. (A.6)

By introducing κ(u−u) to the system (A.1), we have

ut= g(t,u)+κu−κu. (A.7)

We show that when κ≥1/τFE, pTSRK1/2 unconditionally preserve above properties
when g(t,u) satisfies assumptions (A.2)-(A.6) in Definitions A.1-A.4.
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Theorem A.1. For the system (A.7) with κ≥1/τFE, assume underlying TSRK coefficients satisfy
the first condition in assumption (3.1), and g(t,u) satisfies assumptions (A.2)-(A.6) in Defini-
tions A.1-A.4. Then, solutions computed by pTSRK1/2 preserve properties in Definitions A.1-
A.4 for any τ>0.

Proof. Consider the preservation of contractivity in Definition A.4 using pTSRK1 as an ex-
ample. Applying pTSRK1 to (A.7) with u

n+j and v
n+j, j=−1,0 yields

un,i=
1

ψi(τκ)

(
0

∑
j=−1

di,je
(1+cj)τκ

un,j+τ
i−1

∑
j=−1

ai,je
(1+cj)τκ

[
g(tn,j,un,j)+κun,j

]

)

,

i=1,.. . ,s,

(A.8)

vn,i=
1

ψi(τκ)

(
0

∑
j=−1

di,je
(1+cj)τκ

vn,j+τ
i−1

∑
j=−1

ai,je
(1+cj)τκ

[
g(tn,j,vn,j)+κvn,j

]

)

,

i=1,.. . ,s.

(A.9)

Let κ :=1/τ≥1/τFE, multiplying (A.6) with κ gives the circle condition [48]

‖κ(u−v)+g(t,u)−g(t,v)‖≤κ‖u−v‖, ∀κ≥ 1

τFE
. (A.10)

Subtracting (A.9) from (A.8) gives

un,i−vn,i=
1

ψi(τκ)

(
0

∑
j=−1

di,je
(1+cj)τκ(un,j−vn,j)

+τ
i−1

∑
j=−1

ai,je
(1+cj)τκ

[
g(tn,j,un,j)+κun,j−

(
g(tn,j,vn,j)+κvn,j

)]

)

,

i=1,.. . ,s. (A.11)

Taking ‖·‖ on both sides of (A.11), and applying conditions in assumption (3.1) and the
circle condition (A.10) give

‖un,i−vn,i‖≤
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκ‖un,j−vn,j‖+τκ

i−1

∑
j=−1

ai,je
(1+cj)τκ‖un,j−vn,j‖

]

,

i=1,.. . ,s.

Assuming

‖un,j−vn,j‖≤max
{
‖u

n−v
n‖,‖u

n−1−v
n−1‖

}
, j=1,.. . ,i−1,
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we derive

‖un,i−vn,i‖≤
1

ψi(τκ)

[
0

∑
j=−1

di,je
(1+cj)τκ max

{‖u
n−v

n‖,‖u
n−1−v

n−1‖}

+τκ
i−1

∑
j=−1

ai,je
(1+cj)τκ max

{
‖u

n−v
n‖,‖u

n−1−v
n−1‖

}

]

=max
{‖u

n−v
n‖,‖u

n−1−v
n−1‖}, i≤ s.

By using mathematical induction, we obtain

‖u
n+1−v

n+1‖≤max
{‖u

n−v
n‖,‖u

n−1−v
n−1‖}.

The proofs for preservations of other properties in Definitions A.1-A.3 can be performed
similarly.

Appendix B. Inequality-preserving ETD and parametric

integrating factor Runge-Kutta schemes

Let gκ(t,u)= g(t,u)+κu, the stabilization ETD2 scheme [18] for Eq. (A.1) has the form






un,0=u
n,

un,1= ϕ0(−τκ)un+τϕ1(−τκ)gκ(tn,0,un,0),

un,2= ϕ0(−τκ)un+τ
[
ϕ1(−τκ)−ϕ2(−τκ)

]
gκ(tn,0,un,0)

+τϕ2(−τκ)gκ(tn,1,un,1),

(B.1)

where the functions ϕk(z) are recurrently defined by

ϕk(z)=
ϕk−1(z)−1/(k−1)!

z
, ∀k≥1, with ϕ0(z)=ez.

The second type s-stage, p-th order parametric Runge-Kutta (pRK2) scheme [77] for
Eq. (A.1) has the form

un,i=
1

ψi(τκ)

[

u
n+τ

i−1

∑
j=0

ai,je
cjτκ gκ(tn,j,un,j)

]

, i=1,.. . ,s, (B.2)

where ψi(τκ) are approximations to the exponential functions eciτκ , i=1,.. . ,s given by

ψi(τκ) :=1+τκ
i−1

∑
j=0

ai,je
cjτκ , i=1,.. . ,s.
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The pRK2(4,4) scheme is then constructed using the following Butcher tableau:

... ··· ··· ···
ci ··· ai,j ···
... ··· ··· ···
1 ··· as,j ···

=

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1 1
6

1
3

1
3

1
6

.

Similarly as Theorem A.1, the inequality-preservation of ETD2 and pRK2 can be proven
by assuming κ≥1/τFE, therefore, we omit it.
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