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Abstract. An adapted-bubbles approach which is a modification of the residual-

free bubbles (RFB) method, is proposed for the Helmholtz problem in 2D. A new
two-level finite element method is introduced for the approximations of the bub-

ble functions. Unlike the other equations such as the advection-diffusion equation,

RFB method when applied to the Helmholtz equation, does not depend on another
stabilized method to obtain approximations to the solutions of the sub-problems.

Adapted-bubbles (AB) are obtained by a simple modification of the sub-problems.
This modification increases the accuracy of the numerical solution impressively. We

provide numerical experiments with the AB method up to ch = 5 where c is the

wavenumber and h is the mesh size. Numerical tests show that the AB method is
better by far than higher order methods available in the literature.

AMS subject classifications: 65N30, 65N06

Key words: Helmholtz equation, adapted-bubbles, residual-free bubbles, two-level finite ele-

ment.

1. Introduction

Enriching linear finite element space with residual-free bubble functions is a gen-

eral framework for the discretizations of the partial differential equations such as the

Helmholtz equation [12], advection-diffusion equation [3,14] and Navier-Stokes equa-

tion [20]. These functions strongly satisfy the original differential equations and hence

obtaining the bubble functions is generally as difficult as solving the original problem

such as the advection-diffusion equation [3]. Unlike it was stated in [13], we will show

that this is not the case for the Helmholtz problem. Obtaining the bubble functions on

triangular elements is easier than solving the original problem. The standard Galerkin

finite element method can be used with a coarse mesh to obtain efficient approxima-

tions to the bubble functions.
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The residual-free bubbles method produces the exact solution of linear differential

equations in the one-dimensional case. However, the method in higher-dimensions is

approximate and as we will show for the Helmholtz problem in this article, its contri-

bution to the stabilization of the standard Galerkin method is not well adjusted. We

modify the residual-free bubbles (RFB) method in 2D by multiplying the right-hand

side of the bubble equations with a constant. This operation impressively increases the

accuracy. The new bubbles are no more residual-free and we call them adapted-bubbles

(AB). We provide the optimal values of the constants for the triangular and rectangular

elements separately. We apply a two-level finite element method using the standard

linear Galerkin finite element method to get approximations to the bubble functions.

We provide analysis to show how the AB method mitigates the pollution error. To

this end, we approximate the bubble functions with piece-wise defined linear func-

tions so-called pseudo-bubbles. The analysis give rise to a fourth-order finite differ-

ence scheme with seven-point stencil for the plane waves. It is perfectly applicable on

polygonal and triangular domains. We use this method to do comparison with the AB

method.

Standard discretizations when applied to the Helmholtz problem suffer from the

pollution effect when the wavenumber is large [2]. Moreover standard iterative solvers

are ineffective in obtaining the solutions of the discrete Helmholtz equation [9]. There

is a great effort in literature to overcome these difficulties. Among the discretization

techniques, there are finite difference [10,24], finite element [1,18,27], discontinuous

Galerkin [6, 11], virtual element [21], and boundary element methods [19]. At the

same time, there is a great effort to develop efficient preconditioners, such as multigrid

[4,7,8,15,26] and domain decomposition methods [16,17,25].

The AB method proposed in this article works for very large ch. We provide nu-

merical experiments up to ch = 5 but, in principle, it works for larger ch as long as

the parameters are obtained with the Algorithm 1 proposed in this article. Numerical

results show that the AB method is better by far than higher order methods available in

the literature. It works in the regime (ch > 3.5) where the other methods do not work.

The rest of this paper is organized as follows. We review the RFB method for the

Helmholtz equation in Section 2. We explain how to implement two-level finite element

method in 1D and provide analysis to show the contribution of the bubble functions in

reducing the pollution error in Section 3. Section 4 is devoted to the analysis of the

RFB method in 2D. We propose the AB method for triangular elements in Section 5.

The AB method is considered with rectangular elements in Section 6. We finish with

concluding remarks in Section 7.

2. Residual-free bubbles method (RFB) for the Helmholtz equation

We start with considering the Helmholtz problem in 1D with Dirichlet boundary

conditions on unit interval



28 A. Kaya

{

Lu = −u′′(x)− c2u(x) = f(x), x ∈ I = (0, 1),

u(0) = 0, u(1) = sin(c),
(2.1)

where we assume that the wavenumber c is constant and c2 is not an eigenvalue of

the Dirichlet-Laplacian so that the problem has a unique solution. RFB method can be

summarized as follows. Let us start with recalling abstract variational formulation of

(2.1): Find u ∈ H1(I) such that

a(u, v) = (f, v), u(0) = 0, u(1) = sin(c), ∀v ∈ H1
0 (I),

where

a(u, v) =

∫

I
u′v′dx− c2

∫

I
uv dx,

(f, v) =

∫

I
fv dx.

Define Vh ⊂ H1
0 (I) (can be a complex-valued function space) as a finite-dimensional

space. Let xi, i = 1, . . . , n be the uniformly distributed nodes obtained by the decom-

position of the domain I such that the mesh size h = 1/(n − 1). Then the Galerkin

finite element method reads: Find uh ∈ Vh such that

a(uh, vh) = (f, vh), ∀vh ∈ Vh.
We now decompose the space Vh as Vh = VL

⊕

VB, where VL is the space of continuous

piecewise linear polynomials defined on the nodes xi and VB =
⊕

K BK with BK =
H1

0 (K). From this decomposition, every vh ∈ Vh can be written in the form vh =
vL+ vB, where vL ∈ VL and vB ∈ VB . Bubble component uB of uh satisfies the original

differential equation in an element K strongly, i.e.

LuB = −LuL + f in K, (2.2)

subject to boundary condition

uB = 0 on ∂K. (2.3)

Since the support of the bubble uB is contained within the element K, we can make

a static condensation for the bubble part, getting directly the VL- projection uL of the

solution uh [12]. This can be done as follows. Using Vh = VL
⊕

VB , the finite element

approximation reads: Find uh = uL + uB in Vh such that

a(uL, vL) + a(uB , vL) = (f, vL), ∀vL ∈ VL. (2.4)

3. A two level finite element method

In order to find bubble part uB of the solution, we need to solve (2.2)-(2.3). The

problem defined by Eqs. (2.2)-(2.3) is addressed by solving instead
{

−ϕ′′

i − c2ϕi = c2ψi in K, i = 1, . . . , nen,

ϕi = 0 on ∂K,
(3.1)
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and
{

−ϕ′′

f − c2ϕf = f in K,

ϕf = 0 on ∂K,
(3.2)

where nen = 2 is the number of element nodes, ψi are global basis functions restricted

to element K and ϕi are basis functions. Thus if

uL|K =
∑

i

dKi ψi, (3.3)

then

uB |K =
∑

i

dKi ϕi + ϕf , (3.4)

where dKi are constant coefficients. It is clear that applying the operator L to (3.4), we

recover (2.2)

LuB|K =
∑

i

dKi Lϕi + Lϕf = c2
∑

i

dKi ψi + f = −LuL|K + f.

Substituting (3.3) and (3.4) into (2.4), we get the matrix formulation

∑

K

nen
∑

i

dKi
(

(ψ
′

i, ψ
′

j)− c2(ψi, ψj)− c2(ϕi, ψj)
)

= (f, ψj) (3.5)

at the global level where dKi are the finite element approximations to the solutions at

the nodes.

Numerical solution of the bubble problems (3.1) and (3.2) generally requires using

a nonstandard method such as for the case of the advection-diffusion equation. This

makes the RFB method dependent on another stabilized method when applying it as

a two-level finite element method. In [13], the Galerkin-least-squares method (GLS)

was used to get approximations to the bubble functions in solving the Helmholtz equa-

tion. Although this is true for the advection-diffusion equation, there is no need to

use a nonstandard method to get approximations to the bubble functions when the

Helmholtz problem is under consideration. We explain this fact in 1D. Suppose that

we have a discretization of the domain such that ch = 0.6. Even if we use 3 nodes

on the sub-domain (element), che (he is mesh size on the sub-domain) becomes less

than 0.6. If ch = 3 on the global mesh, then using 11 nodes for the sub-problems makes

che = 0.3. More precisely, it is always true that che < ch.

It is true that GLS computation is known to incur at most marginal increase in

computational cost over the standard Galerkin method. However, GLS for the sub-

problems may lead to misinterpretations related to the bubble functions.

Another way of obtaining the bubble function is to use separation of variables when

rectangular elements are used [12]. However, this gives rise to a series solution of the

bubble function for which it must be truncated. For a good accuracy, 200 terms are

used in [12] which is computationally not so effective. Another drawback is that this

approach is limited to the rectangular elements.
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3.1. Analysis of the pollution effect of the sub-problems

It is always true that che < ch, where he and h are mesh sizes of the sub-problem

and global problem, respectively. This is an indication that the sub-problems are easier

to solve; however, we must analyse the pollution effect for the sub-problems for large

wavenumbers. It is well known that the difficulty in solving the Helmholtz problem

occurs when the exact solution is very oscillatory [2]. In our case, the exact solutions

of the sub-problems are not oscillatory. When ch < π, the exact solutions of the sub-

problems are always in the form of a half wave as the homogenous Dirichlet boundary

condition is applied everywhere on the boundary. When π < ch < 2π, the exact so-

lutions of the sub-problems are always in the form of a single wave. In this regime,

the standard Galerkin method is pollution free for the sub-problems for any wavenum-

ber. Note that, 10-12 nodes (G) per wave is generally chosen by engineers for which

ch ∈ [0.5, 0.65] from the relation G = 2π/(ch) [5].

We use standard Galerkin finite element method with piecewise linear basis func-

tions to approximate the bubble functions. Note that the bubble problems (3.1) and

(3.2) can be solved independently and hence parallel processors can be used to carry

out these computations efficiently. When uniform meshes are used and the right-hand

side function f is constant, construction of the system matrix is as cheap as construction

of the system matrix of the standard Galerkin finite element method.

3.2. Shape of the bubble functions and pseudo-bubbles

We have shown that the RFB method is not dependent on another stabilized method

to get approximations to the bubble functions when a two-level finite element method

is used due to the non-oscillatory behavior of the exact solutions of the sub-problems.

This non-oscillatory behavior of the exact solutions opens a gateway to approximate

these bubble functions with piecewise-defined linear simple functions. These approxi-

mations are called pseudo-bubbles and constructed considering the shape of the bubble

functions. Pseudo-bubbles were applied to the advection-diffusion-reaction equation

in [22,23].

Here, we consider the case ch < π for which the bubble functions are in the form

of a half wave. We present the bubble functions ϕ1,2 in Fig. 1 for c = 60, 300 when

h = 0.01. Efficient yet cheap approximations to these bubble functions with piecewise-

defined linear functions are given in Fig. 2. While on the left in Fig. 2, two pseudo-

bubbles are used, it is possible to approximate ϕ1,2 with a single pseudo-bubble. The

advantage of using a single pseudo-bubble is that the maximum of the pseudo-bubble

occurs in the middle of the element. Applying the minimization technique applied

in [22], one can find the optimal heights and locations of the peaks of the pseudo-

bubbles. When a single pseudo-bubble is used, one can easily calculate integrals in the

finite element formulation. This will be important in modifying the RFB method in 2D.
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Figure 1: Bubble functions for c = 60 (left) and c = 300 (right).

Figure 2: Two different approaches to approximate the bubble functions.

3.3. Analysis of the pseudo-bubbles

In order to see how the residual-free bubbles method overcome the pollution effect,

we first consider linear finite element method for (2.1) when f(x) = 0, u(0) = 0
and u(1) = sin(c). The exact solution is u(x) = sin(cx). We obtain the truncation

error and see how the error deteriorates as c increases for fixed ch which is simply the

pollution effect. To this end, we jump to the finite difference equivalence of the linear

finite element method. Let Uj represents the numerical solution and choose n equally

distributed nodes for which h = 1/(n− 1). Taking the integrals in linear finite element

formulation and scaling by h gives

−Uj+1 − 2Uj + Uj−1

h2
− c2

Uj+1 + 4Uj + Uj−1

6
= 0, j = 2, . . . , n− 2. (3.6)

From the boundary conditions

U1 = 0, Un = sin(c).
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Using the Taylor series expansion, we get the truncation error for (3.6)

τ(x) = −c
2h2

6
u′′ −

(

c2h4

72
+
h2

12

)

u(4) − h4

360
u(6) +O(h6). (3.7)

The pollution effect can not be seen from (3.7). To see it, we substitute the exact

solution u(x) = sin(cx) into (3.7)

τ(x) =
c4h2

6
sin(cx)−

(

c6h4

72
+
c4h2

12

)

sin(cx) +
c6h4

360
sin(cx) +O(c8h6).

Rearranging the above equation gives

τ(x) = sin(cx)

(

c4h2

12
− c6h4

90
+O(c8h6)

)

. (3.8)

When the exact solution is oscillatory, that is, c is large, the term c4h2/12 in (3.8)

becomes large, that is, τ(x) is large, even if ch = constant is small. This is called the

pollution effect.

The simplest way to mitigate this pollution effect is to choose c2h sufficiently small.

However, this requires intractable matrices in higher dimensions. The general idea in

literature is to decrease the effect of the first few terms in (3.8) so that tractable ma-

trix sizes can be obtained. For example, using higher order accurate methods of finite

difference or higher order polynomials finite element may allow to eliminate the first

few terms. If the first term can be eliminated, then the requirement to mitigate the pol-

lution effect reduces to c3/2h being sufficiently small. However, higher order methods

generally use more points and this increases the nonzero entries of the corresponding

matrix.

In order to get a deeper insight of the working principle of the residual-free bubbles

method in mitigating the pollution effect, we consider the pseudo-bubbles in Fig. 2 on

the right. This choice allows us to take the integrals containing the bubble functions,

explicitly.

We can define the pseudo-bubbles b1,2 using the basis functions bT1,2 represented in

Fig. 3 and heights of b1,2, i.e., α1,2. More precisely,

b1,2 = α1,2b
T
1,2, (3.9)

where α1 = α2. Applying the technique proposed in [22] (set ξ = h/2, ǫ = 1, σ = −c2
in [22, Eq. 13]) gives

α1 =
3c2h2

4(12 − c2h2)
. (3.10)

Taking the integrals in (2.4) and making use of (3.9) give the finite difference for-

mula

− Uj+1 − 2Uj + Uj−1

h2
− c2

Uj+1 + 4Uj + Uj−1

6
− α1c

2Uj+1 + 2Uj + Uj−1

4
= 0,

j = 2, . . . , n− 2. (3.11)
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Figure 3: Basis functions employed in the approximation of bubble functions.

Using Taylor expansions of u(x ± h), definition of α1 given in (3.10) and the exact

solution u(x) = sin(cx), we obtain the truncation error

τ(x) = sin(cx)

(

c4h2

12
− c6h4

90
+O(c8h6)

)

+ sin(cx)

(

− 3c4h2

4(12 − c2h2)
+

3c6h4

16(12 − c2h2)
+O(c8h6)

)

.

Rearranging the right-hand side of the above formula we end up with

τ(x) = sin(cx)

(

c4h2
(

1

12
− 3

4(12 − c2h2)

)

+ c6h4
(

− 1

90
+

3

16(12 − c2h2)

)

+O(c8h6)

)

. (3.12)

As h→ 0, τ(x) behaves like

sin(cx)

(

c4h2

48
− 13

2880
c6h4 +O(c8h6)

)

. (3.13)

Comparing (3.8) with (3.13), we see that the coefficients of c4h2 and c6h4 are de-

creased in magnitude. The approximate bubbles shows how the pollution effect is

reduced. It is known that the RFB method for 1D linear equations is exact [13]. This

means that it automatically makes the coefficient of all powers cn+2hn, n = 2, 3, . . . ,
zero. A good approximation to the residual-free bubbles significantly reduce the pol-

lution effect. The RFB method is approximate in 2D. The observations we made here

will be helpful to further increase the accuracy of the method in 2D. We will modify the

sub-problems in 2D and use adapted-bubbles to further increase the accuracy of the

bubble approach.
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3.4. Effect of the interpolation error of the sub-problems

It is shown that solution of the sub-problems can be approximated by standard

linear Galerkin finite element method. However, it is important to see the effect of the

interpolation error that occurs after solving the sub-problems. In 1D, the sub-problems

are exactly solvable. Using the exact solutions, we construct linear interpolations using

Ns nodes on each global mesh and measure the error in infinity norm. In Fig. 4, we

report the error for different values of ch and Ns for varying c for the problem in

(2.1). It is clear that, when ch = 0.6, the interpolation error does not much effect the

global error. However, for larger ch, the global error deteriorates as c increases. This

suggests that, one should increase the number of elements used for the sub-problems

for larger ch to keep the global error under control. However, this requires solving

large linear system of equations in higher dimensions. One of the way to compensate

for the interpolation error is to multiplying the right-hand side of the bubble problems

(3.1) with a constant, say µ. The problem of finding optimal values of µ is explained

in 2D (Section 5) in combination with handling another problem that is specific to 2D.

Figure 4: Effect of the interpolation error of the sub-problems in the global error.

4. The RFB method in 2D

We have shown that the RFB method is able to solve the Helmholtz problem in

1D cheaply and efficiently for very large wavenumbers. As it was stated in [13], RFB

method is not as efficient in 2D as in 1D. To show this fact, we consider the following

problem on an equilateral triangular shaped domain Ω with vertices (0, 0), (0, 1) and

(0.5,
√
3/2):

{

−∆u− c2u = 0 in Ω,

u(x, y) = sin
(

cy sin(θ) + cx cos(θ)
)

on ∂ΩD,
(4.1)

where the exact solution is u(x, y) = sin(cy sin(θ) + cx cos(θ)). We use equilateral

triangular elements with linear basis functions. We solve the following equations on
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element level to get the RFB functions:

{

−∆ϕi − c2ϕi = c2ψi in K, i = 1, . . . , nen,

ϕi = 0 on ∂K,
(4.2)

and
{

−∆ϕf − c2ϕf = f in K,

ϕf = 0 on ∂K,
(4.3)

where nen = 3, ϕi and ψi, (i = 1, 2, 3) are the RFB and the linear basis functions,

respectively. Linear finite element method with a coarse mesh can be used to obtain

efficient approximations to the bubble functions. To do some analyses, we approximate

the RFB functions with piecewise-defined linear functions with the maximum at the

centroid of the element. Let b1,2,3 = α2b
T be the approximation to the bubble functions

where bT is the linear basis bubble function that assumes zero at the vertices of the

element and one at the centroid of the element. Applying the same procedure we

applied in 1D (see [23] for more details), gives

α2
2

∫

K
∇bT∇bTdS − α2

2c
2

∫

K
bT bTdS = α2

∫

K
ψib

TdS, i = 1, 2, 3. (4.4)

Solving the above equation for α2 and calculating the integrals for ψ1 gives

α2 =
2c2h2

3(72 − c2h2)
. (4.5)

Considering 6 adjacent elements as shown in Fig. 5, the RFB method is equivalent to

the following finite difference scheme:

1√
3h2

(

6Ui,j − Ui−1,j − Ui−1,j+1 − Ui+1,j+1 − Ui+1,j − Ui+1,j−1 − Ui−1,j−1

)

− c2

8
√
3

(

6Ui,j + Ui−1,j + Ui−1,j+1 + Ui+1,j+1 + Ui+1,j + Ui+1,j−1 + Ui−1,j−1

)

− α2c
2

6
√
3

(

3Ui,j + Ui−1,j + Ui−1,j+1 + Ui+1,j+1 + Ui+1,j + Ui+1,j−1 + Ui−1,j−1

)

= 0,

i, j = 1, . . . , Nint, (4.6)

where

Ui,j ≈ u(x, y), Ui−1,j ≈ u(x− h, y), Ui−1,j+1 ≈ u

(

x− h

2
, y +

√
3

2
h

)

,

Ui+1,j+1 ≈ u

(

x+
h

2
, y +

√
3

2
h

)

, Ui+1,j ≈ u(x+ h, y),

Ui+1,j−1 ≈ u

(

x+
h

2
, y −

√
3

2
h

)

, Ui−1,j−1 ≈ u

(

x− h

2
, y −

√
3

2
h

)

.
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Figure 5: 7 point stencil.

Note that when α2 = 0, (4.6) is equivalent to the linear finite element method with

equilateral triangular element.

To analyse the RFB method, we substitute the Taylor expansions of the exact solu-

tion at the grid points. The derivation of the truncation error is given in (4.7)-(4.9).

In our analysis, we will examine the coefficients of c4h2 and c6h4 in (4.9), that is, C2

and C1 in (4.10). Fig. 6 shows the graph of C1 and C2 for α2 = 0 (standard Galerkin)

and for α2 in (4.5) (pseudo-RFB). We set θ = π/3 to plot the graph of C2. The slight

decreases in C1 and C2 in magnitude for 0 < ch < 3, explains why the RFB method is

not effective in 2D

τ(x, y) =
1√
3h2

(

6u(x, y) − u(x− h, y)− u

(

x− h

2
, y +

√
3

2
h

)

− u

(

x+
h

2
, y +

√
3

2
h

)

− u(x+ h, y)

− u

(

x+
h

2
, y −

√
3

2
h

)

− u

(

x− h

2
, y −

√
3

2
h

)

)

Figure 6: Comparison of the linear Galerkin method and the pseudo-RFB method for the coefficients C1

(left) and C2 (right) when θ = π/3.
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− c2

8
√
3

(

6u(x, y) + u(x− h, y) + u

(

x− h

2
, y +

√
3

2
h

)

+ u

(

x+
h

2
, y +

√
3

2
h

)

+ u(x+ h, y)

+ u

(

x+
h

2
, y −

√
3

2
h

)

+ u

(

x− h

2
, y −

√
3

2
h

)

)

− c2α2

6
√
3

(

3u(x, y) + u(x− h, y) + u

(

x− h

2
, y +

√
3

2
h

)

+ u

(

x+
h

2
, y +

√
3

2
h

)

+ u(x+ h, y)

+ u

(

x+
h

2
, y −

√
3

2
h

)

+ u

(

x− h

2
, y −

√
3

2
h

)

)

= − 1

80640
√
3

(

189h4u(0,6)(x, y) + 945h4u(2,4)(x, y) + 315h4u(4,2)(x, y)

+ 231h4u(6,0)(x, y) + 7560h2u(0,4)(x, y)

+ 15120h2u(2,2)(x, y) + 7560h2u(4,0)(x, y)

+ 120960u(0,2)(x, y) + 120960u(2,0)(x, y)
)

− c2

645120
√
3

(

h2
(

7560h2u(0,4)(x, y) + 15120h2u(2,2)(x, y)

+ 7560h2u(4,0)(x, y) + 120960u(0,2)(x, y)

+ 120960u(2,0)(x, y)
)

+ 967680u(x, y)
)

− α2c
2

483840
√
3

(

h2
(

7560h2u(0,4)(x, y) + 15120h2u(2,2)(x, y)

+ 7560h2u(4,0)(x, y) + 120960u(0,2)(x, y)

+ 120960u(2,0)(x, y)
)

+ 725760u(x, y)
)

+O(h5). (4.7)

Since

−120960u(0,2)(x, y) + 120960u(2,0)(x, y)

80640
√
3

− 967680u(x, y)

645120
√
3

= 0,

Eq. (4.7) becomes

τ(x, y) = − 1

80640
√
3

(

189h4u(0,6)(x, y) + 945h4u(2,4)(x, y) + 315h4u(4,2)(x, y)

+ 231h4u(6,0)(x, y) + 7560h2u(0,4)(x, y)

+ 15120h2u(2,2)(x, y) + 7560h2u(4,0)(x, y)
)
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− c2h2

645120
√
3

(

7560h2u(0,4)(x, y) + 15120h2u(2,2)(x, y) + 7560h2u(4,0)(x, y)

+ 120960u(0,2)(x, y) + 120960u(2,0)(x, y)
)

− α2c
2

483840
√
3

(

h2
(

7560h2u(0,4)(x, y) + 15120h2u(2,2)(x, y)

+ 7560h2u(4,0)(x, y) + 120960u(0,2)(x, y) + 120960u(2,0)(x, y)
)

+ 725760u(x, y)
)

+O(h5). (4.8)

Substituting the exact solution

u(x, y) = sin
(

c cos(θ)x+ c sin(θ)y
)

(note that more general solutions can be chosen) into (4.8) gives

τ(x, y) = − 1

322560
√
3
c2
(

35c5h5 cos
(

cx cos(θ) + cy sin(θ) + θ
)

+ 21c5h5 cos
(

cx cos(θ) + cy sin(θ) + 3θ
)

+ 7c5h5 cos
(

cx cos(θ) + cy sin(θ) + 5θ
)

+ c5h5 cos
(

cx cos(θ) + cy sin(θ) + 7θ
)

+ 35c5h5 cos
(

− cx cos(θ)− cy sin(θ) + θ
)

+ 21c5h5 cos
(

− cx cos(θ)− cy sin(θ) + 3θ
)

+ 7c5h5 cos
(

− cx cos(θ)− cy sin(θ) + 5θ
)

+ c5h5 cos
(

− cx cos(θ)− cy sin(θ) + 7θ
)

+ 5040α2c
4h4 sin

(

cx cos(θ) + cy sin(θ)
)

+ 2940c4h4 sin
(

cx cos(θ) + cy sin(θ)
)

− 42c4h4 sin
(

cx cos(θ) + cy sin(θ) + 6θ
)

+ 42c4h4 sin
(

− cx cos(θ)− cy sin(θ) + 6θ
)

− 80640α2c
2h2 sin

(

cx cos(θ) + cy sin(θ)
)

− 30240c2h2 sin
(

cx cos(θ) + cy sin(θ)
)

+ 483840α2 sin
(

cx cos(θ) + cy sin(θ)
)

+O(h5)
)

. (4.9)

The last 6 terms in (4.9) can be written in the form

sin
(

cx cos(θ) + cy sin(θ)
)(

c6h4C2 + c4h2C1

)

, (4.10)

where

C1 =
1

322560
√
3

(

30240 − 483840α2

c2h2

)

,

C2 =
1

322560
√
3

(

−2940 +
80640α2

c2
+ 84 cos(6θ)

)

.
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We have shown that the contribution of the RFB method to the stabilization of

the Galerkin method is very poor, because the contribution from the bubble functions

is small at least for ch < 3. The working principle of the RFB method depends on

an automatic adaptation of the bubble functions. When the problematic parameter

of the problem under consideration (the Peclet number for the convection-diffusion

equation, the wavenumber for the Helmholtz problem) gets larger, the contribution

from the bubble functions must be well adjusted. Here, we see that this adaptation

is not well adjusted for the Helmholtz problem. In order to increase the contribution

of the bubble functions (or to decrease the contribution if necessary) further without

spoiling the automatic adaptation of the method, we modify the right-hand side of the

bubble equations in (4.2) by multiplying with a constant, say µ. Then, α2 becomes

α2 =
2µc2h2

3(72 − c2h2)
.

After this modification, the bubble functions are no more residual-free. We call these

modified functions as adapted-bubble functions. We call the piecewise-defined linear

approximations to these adapted-bubble functions as pseudo-adapted bubble functions.

We give two examples here to validate the approach when θ = π/3. Fig. 7 shows

the graph of C1 and C2 when µ = 6.8. It is clear that C1 is decreased in magnitude

substantially. It is almost zero when ch is close to zero. There is not much change in

C2 in magnitude.

For the second example, consider α2 = 0.0625c2h2 which makes C1 zero for all

values of ch. In this case, the finite difference scheme in (4.6) is a fourth-order scheme

Figure 7: Comparison of the linear Galerkin method and the pseudo-adapted bubbles method (µ = 6.8) for
the coefficients C1 (left) and C2 (right) when θ = π/3.

Figure 8: Comparison of the linear Galerkin method and the fourth-order accurate method for the coefficients
C1 (left) and C2 (right) when θ = π/3.
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with seven points for plane waves. Fig. 8 shows the graph of C1 and C2 when α2 =
0.0625c2h2. While C1 is zero for all values of ch, there is only a slight change in C2 in

magnitude. This fourth-order accurate finite difference scheme can be easily applied

in triangular, trapezoidal and polygonal domains. Our main aim in this article is to

propose adapted-bubbles approximated by standard Galerkin method. However, the

above two methods will be used to do some comparison with the AB method.

5. Adapted-bubbles (AB) in 2D with triangular elements

We have shown using the pseudo-bubbles and the truncation error that the RFB

method is not effective in 2D. However, it is possible to increase its accuracy with

a simple modification, that is, multiplying the right-hand side of the bubble problems

with a constant. We proposed two methods using this approach; a pseudo-adapted

bubbles method and a fourth-order accurate finite difference scheme that uses seven

points. However, our main aim is to obtain more accurate solutions by approximating

the adapted-bubble functions with linear finite element method on a coarse mesh.

We use Algorithm 1 to find optimal values of µ. We consider the problem in (4.1)

for which u = sin(cy sin(θ) + cx cos(θ)). Note that optimal values of µ changes with

respect to θ, and are same, for example, for θ = 0, π/3, 2π/3 and for θ = π/6, π/2, 5π/6.

Because of this periodicity in µ, we determine optimal values for θ = 0, π/6 for which

we expect maximum change in µ. We choose a very coarse mesh by choosing h = 1/5
which corresponds to N = 6 nodes on each edges of the triangular domain. This gives

25 equilateral triangular elements and a matrix of size 6 × 6. Each global mesh is

discretized by choosing Ns = 10 nodes on each of the meshes (see Fig. 10). Ns = 10
amounts to 28× 28 matrices on element level. We set the tolerance to etol = 10−11 and

maximum iteration to imax = 200.

We run the Algorithm 1 by choosing two initial guesses for µ, say µ1 and µ5. We

determine optimal values for ch = 0.1, 0.3, 0.5, 0.5 + 0.1l, l = 1, . . . , 45 (ch ∈ [0.1, 5]),

although it is possible to determine for larger values of ch. It is observed that, most

of the time, the algorithm stopped because the iteration reached the imax. Although,

for small values of ch (ch < 2), the error decreased up to 10−8, for large values of ch
(ch > 3), the algorithm stopped when the error is around 10−4.

The optimal values of µ (µvec) and the corresponding ch values (chvec) are given

in vector form in Appendix A. We use Matlab spline function to determine µ when ch
is between any of the two successive values in chvec, i.e., µ = spline(chvec, µvec, ch).
Fig. 9 shows cubic spline interpolation of µ for θ = 0, π/6. It is clear that the difference

is small for ch < 1.5. When ch ≈ 0.6, the optimal value in one direction can be

used in any other direction to get a good approximation. This θ independence is very

important when an unstructured mesh is used and the solution is not a plane wave.

Another observation is that the interpolation curves cut the x-axis which means that

the optimal value of µ is zero at those points. In this case, the AB method is equivalent

to the standard Galerkin method. For certain large values of ch, the standard Galerkin
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Algorithm 1: Algorithm to find optimal values of µ.

Data: θ, h, µ1, µ5 (µ5 > µ1), u, etol, imax, Ns;

Result: µ;

Initialization: µ3 = (µ1 + µ5)/2, µ2 = (µ1 + µ3)/2, µ4 = (µ3 + µ5)/2,

ei = ‖uhµi
− u‖, i = 1, . . . , 5;

itr = 1;

while min(ei) > etol do

if min(ei) = e1 then
hµ = (µ4 − µ1)/4, µ1 = µ1 − 2hµ, µ2 = µ1 + hµ, µ3 = µ1 + 2hµ,

µ4 = µ1 + 3hµ, µ5 = µ1 + 4hµ;

end

if min(ei) = e2 then
hµ = (µ4 − µ1)/4, µ1 = µ1, µ2 = µ1 + hµ, µ3 = µ1 + 2hµ,

µ4 = µ1 + 3hµ, µ5 = µ1 + 4hµ;

end

if min(ei) = e3 then
hµ = (µ4 − µ2)/4, µ3 = µ3, µ2 = µ3 − hµ, µ1 = µ2 − 5/2hµ,

µ4 = µ3 + hµ, µ5 = µ3 + 2/3hµ;

end

if min(ei) = e4 then
hµ = (µ4 − µ1)/4, µ5 = µ5, µ4 = µ5 − hµ, µ3 = µ5 − 2hµ,

µ2 = µ5 − 3hµ, µ1 = µ5 − 4hµ;

end

if min(ei) = e5 then
hµ = (µ4 − µ1)/4, µ5 = µ5 + 2hµ, µ4 = µ5 − hµ, µ3 = µ5 − 2hµ,

µ2 = µ5 − 3hµ, µ1 = µ5 − 4hµ;

end

ei = ‖uhµi
− u‖, i = 1, . . . , 5;

µ = µ3;
itr = itr + 1;

if itr = imax then
break

end

end

method gives accurate solutions. These values of ch depend on θ. For example, the

standard Galerkin method gives a good approximation when ch ≈ 4.7165 for θ = 0.

To show effectiveness of the optimal values of µ, we use the pseudo-adapted bub-

bles. For example, for µ = 5.4 (when ch ≈ 0.6), α2 = 10.8c2h2/(3(72 − c2h2)). Graphs

of the coefficients C1 and C2 are provided in Fig. 11. It is obvious that both C1 and C2

are decreased in magnitude which is a verification that the AB method can mitigate the

pollution effect substantially.
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Figure 9: Cubic spline interpolation of µ when θ =
0, π/6.

Figure 10: The decomposition of a global mesh with
triangular elements when Ns = 10.

Figure 11: Comparison of the linear Galerkin method and the pseudo-adapted bubbles method (µ = 5.4)
for the coefficients C1 (left) and C2 (right) when θ = π/3.

5.1. Numerical experiments

In this section, we provide numerical tests to asses the success of the AB method.

We compare the AB method with the pseudo-adapted bubbles (µ = 6.8) (PAB), RFB,

fourth-order and standard linear finite element methods. We use standard linear finite

element method to approximate the bubble functions for the AB and the RFB methods.

5.1.1. Numerical test 1

We consider the Helmholtz problem in (4.1). Equilateral triangular elements are used

to decompose the domain. We consider cases ch = 0.625, 1, 1.667 when θ = 0 for

increasing wavenumber to compare the methods in mitigating the pollution effect.

Fig. 12 shows the log-log plots of the error in infinity norm for ch = 0.625, ch = 1
and ch = 1.667. It is obvious that the AB method is better by far. The RFB method

has very small contribution in stabilization of the standard Galerkin method. The

PAB method outperforms the fourth-order scheme. Moreover, the pollution error for

the pseudo-bubbles method and the fourth-order scheme is not negligible, particularly

when ch = 1, 1.667. The AB method is pollution error free for c > 40. We observe

pollution error for c < 40 but the error is small enough that the pollution error has

almost no importance.
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For larger values of ch (ch > 2), only the AB method produces accurate results.

That is why we consider only the AB method for ch ≥ 2. Fig. 13 shows errors for the

AB method when ch = 2, 3, 4, 5. Even in extreme cases (ch > 3.5), the AB method

gives accurate results. To the best of author’s knowledge, there exists no method in the

literature that works in this regime in 2D.

We also test the AB method with values of µ obtained by µ = spline(chvec, µvec, ch).
To this end, we set the mesh size to h = 1/40 and report errors for the wavenumbers

c = 5 + 10l, l = 1, . . . , 19 for which ch ∈ [0.375, 4.875]. Fig. 14 shows the error for

θ = 0, π/6. The results show that the values obtained by the cubic spline interpolation

gives accurate results.

5.1.2. Numerical test 2: Robin boundary condition and external source

We test the AB method when Robin boundary condition is imposed on a part of the

boundary of the domain. We consider



















−∆u− c2u = sin(x) in Ω,

u(x, y) = 0.1 on ∂ΩD,
∂u

∂n
= iu on ∂ΩR,

(5.1)

where c = 20, and Ω, ΩD and ΩR are represented in Fig. 15 (left). As a reference

solution, we get a solution using standard Galerkin method on a fine mesh where

40000 uniform triangular elements are used for which ch = 0.1. Fig. 15 (right) shows

the contour plot of the real part of the solution. We show contour plots of the real

part of the solutions obtained by the AB method for ch = 0.5, 1, 2 in Fig. 16. We report

the maximum and minimum values of the approximate solutions. Results show that

the AB method shows the characteristics of the reference solution for all cases. This is

important in application of the multigrid method as a solver.

5.1.3. Numerical test 3: L-shaped domain and a different triangulation

In this test problem, we change the domain and use a different triangulation. We use a

L-shaped domain with the vertices (−1,−1), (−1, 1), (1, 1), (0, 1), (0, 0) and (−1, 0). To

decompose the domain, the following Matlab code is used for which ch ≈ 0.625.























model = createpde(1);

geometryFromEdges(model,@lshapeg);

generateMesh(model,′GeometricOrder′,′ linear′,′Hmax′,

0.625/c,′Hmin′, 0.625/c).

(5.2)

The mesh for the case c = 3.5π can be seen in Fig. 17. We consider the Dirichlet prob-

lem in (4.1) for θ = π/3. Figs. 17 and 18 show the plots of the exact and approximate
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Figure 12: Comparison of the methods when θ = 0 for ch = 0.625 (top left), ch = 1 (top right) and
ch = 1.667 (bottom).

Figure 13: Error for the AB method for varying
wavenumber when ch = 2, 3, 4, 5.

Figure 14: Error for the AB method for θ = 0, π/4
for varying wavenumber and fixed h = 1/40 (ch ∈

[0.375, 4.875]).
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Figure 15: Problem configuration (left) and a reference solution (right) obtained with standard Galerkin
method with 40000 uniform triangular elements for which ch = 0.1.

Figure 16: Contour plots of the approximate solutions obtained by the M-RFB method when c = 20 using
different meshes (ch = 0.5, 1, 2).
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Figure 17: Plots of the exact and approximate solutions obtained by the AB, PAB and RFB methods when
c = 3.5π.

solutions obtained by the AB, PAB and RFB methods for c = 3.5π and c = 16.5π, respec-

tively. We also report the maximum and minimum values of the approximate solutions

on the graphs. Results show that the AB method is better by far especially for larger

wavenumbers. Furthermore, we give the plots of the exact solution and approximate

solution for AB given in Fig. 19 when c = 33.5π. We did not report solutions for the

PAB and RFB methods as their results are no more related to the exact solution. The

results show the effectiveness of the AB method when unstructured mesh is used.

5.1.4. Numerical test 4: A circular complex domain

In this test problem, we consider a complex domain which is obtained by the following

Matlab code:






















model = createpde(1);

geometryFromEdges(model,@scatterg);

generateMesh(model,′GeometricOrder′,′ linear′,′Hmax′,

0.625/c,′Hmin′, 0.625/c).

(5.3)
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Figure 18: Plots of the exact and approximate solutions obtained by the AB, PAB and RFB methods when
c = 16.5π.

Figure 19: Contour plots of the approximate solutions obtained by the AB method and of the exact solutions
on the same mesh when c = 33.5π.
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Figure 20: Plots of the reference solution and approximate solutions obtained by the AB, PAB and RFB
methods when c = 3.5π.

While homogenous Neumann boundary condition is imposed on the outer boundary

of the domain, i.e, ∂u/∂x = 0, Dirichlet boundary condition is imposed on the inner

boundary of the domain for which u(x, y) = 0.1. The right-hand side of the problem is

set to zero. The reference solution is obtained by standard Galerkin method on a fine

mesh for which ch ≈ 0.09. While Fig. 20 shows the plots of the reference solution and

approximate solutions of the AB, PAB and RFB method for c = 3.5π, Fig. 21 shows for

c = 16.5π. We see that the RFB method is worst in any case. Although the AB and PAB

give similar results for smaller wavenumbers, the AB method is better by far than the

PAB for large wavenumbers. This and the previous tests show the success of the AB

method on complex domains with unstructured meshes. We note that, the difference

between the maximum of the reference solution and the maximum of the AB solution

is not so small because a very fine mesh is used for the reference solution.

6. AB method with rectangular elements

Although the AB method is very effective with triangular elements, in some do-

mains, rectangular elements may have some advantages such as in a rectangular re-
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Figure 21: Plots of the reference solution and approximate solutions obtained by the AB, PAB and RFB
methods when c = 16.5π.

gion. For a rectangular element, there are five bubble equations to be solved
{

−∆ϕi − c2ϕi = µc2ψi in K, i = 1, . . . , 4,

ϕi = 0 on ∂K,
(6.1)

and
{

−∆ϕf − c2ϕf = f in K,

ϕf = 0 on ∂K,
(6.2)

where ψi, i = 1, . . . , 4 are the bilinear basis functions of a rectangular element. We

consider the Dirichlet problem in (4.1) on unit square. The optimal values of µ are

same, for example, for θ = 0, π/2, and for π/4, 3π/4. We expect to see the maximum

difference in µ when θ = 0 and θ = π/4. That’s why we report optimal values of µ for

θ = 0, π/4. To this end, we use the Algorithm 1. We set h = 1/5 which corresponds to

25 square elements and a matrix of size 16× 16. We set Ns = 10 which corresponds to

matrices of size 64 × 64 on element level. We set the tolerance to etol = 10−11 and the

maximum iteration to imax = 200.

We run the Algorithm 1 by choosing two initial guesses for µ, say µ1 and µ5. We

determine optimal values for ch = 0.1, 0.3, 0.5, 0.5 + 0.1l, l = 1, . . . , 45 (ch ∈ [0.1, 5]),
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Figure 22: Cubic spline interpolation of µ when θ = 0, π/4.

although it is possible to determine for larger values of ch. Convergence in µ is observed

in Algorithm 1 for all cases.

The optimal values of µ (µvec) and the corresponding ch values (chvec) are given

in vector form in Appendix A. We use Matlab spline function to determine µ when ch
is between any of the two successive values in chvec, i.e., µ = spline(chvec, µvec, ch).
Fig. 22 shows cubic spline interpolation of µ for θ = 0, π/4. It is clear that the differ-

ence is not small even for small values of ch. This shows that rectangular elements

are more sensitive in the change of θ and this makes the method less efficient when

an unstructured mesh is used or the solution is not a plane wave. As observed for the

triangular element, the interpolation curves cut the x-axis which means that the op-

timal value of µ is zero at those points. In this case, the AB method is equivalent to

the standard Galerkin method. For example, for ch = 4.790539642432885, the standard

Galerkin method produces error in infinity norm less than 10−8 when θ = π/4 and

c < 1000.

6.1. Numerical experiment

To see the performance of the AB method with rectangular elements, we consider

the Helmholtz problem in (4.1) on unit square for which the exact solution is

u = sin
(

cy sin(θ) + cx cos(θ)
)

.

We compare the AB method with two higher order methods from the literature. We

consider the sixth-order finite difference schemes HWu proposed in [28] and Hasmpt

proposed in [5]. We note that Hasmpt is designed for small h and the parameters of

HWu are provided up to ch = 2.5. That is why we compare the three methods when

ch ≤ 2.5. Fig. 23 shows the error of the methods in infinity-norm for varying c when
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Figure 23: Comparison of the AB method with HWu and Hasmpt for different values of ch when θ = π/4.

ch = 0.5, 1, 2, 2.5 and θ = π/4. It is obvious that the AB methods is better by far. The

error for the AB method is so small that the pollution effect observed has no importance.

Furthermore we report error for the AB method for ch = 3, 4, 5 in Fig. 24 when

θ = π/4. Results show that, the AB method performs very well in this regime. Finally,

we test the AB method with the values of µ obtained by µ = spline(chvec, µvec, ch).
To this end, we set the mesh size to h = 1/40 and report errors for the wavenumbers

c = 5 + 10l, l = 1, . . . , 19 for which ch ∈ [0.375, 4.875]. Fig. 25 shows the error for

θ = 0, π/4. The results show that the cubic spline interpolation gives accurate values

of µ. The error deteriorates as ch increases which is related to the oscillatory behavior

of µ for large ch. It is possible to decrease the error for large ch by using more points

for the interpolation, that is, by applying the Algorithm 1 for more points.

6.2. Comparison of triangular and rectangular elements

We considered triangular and rectangular elements for the AB method. Both of

them has some advantages and disadvantages. We report our observations as follows:

• Rectangular elements use 9 points per degrees of freedom but triangular elements

use 7 points per degrees of freedom.
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Figure 24: Error for the AB method for ch = 3, 4, 5 when θ = π/4.

Figure 25: Error for the AB method for θ = 0, π/4 for varying wavenumber and fixed h = 1/40 (ch ∈

[0.375, 4.875]).

• While a rectangular element requires solving 5 different bubble equations, a tri-

angular element requires 4. This makes rectangular elements less efficient when

nonuniform mesh is used.

• Square elements allows to get high accuracy but it is very sensitive to change in θ.

• The optimal values of µ does not change much for ch < 1.5 when triangular ele-

ment is used. That is why triangular element is more suitable for the unstructured

mesh and when the solution is not a plane wave.
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7. Conclusion

In this article, we proposed an adapted-bubble (AB) approach for the Helmholtz

equation in 2D. The RFB method requires obtaining the bubble functions which is gen-

erally as difficult as solving the original problem. We showed that this is not the case

for the Helmholtz problem. The standard Galerkin finite element method can be used

to obtain approximations to the bubble functions. In other words, the bubbles method

does not depend on another stabilized method when applied to the Helmholtz problem.

We showed that the contribution of the RFB method in stabilization of the standard

Galerkin method is not well adjusted. We modified the RFB method by multiplying

the right-hand-side of the bubble problems with a constant. We reported the optimal

values of this constant for equilateral triangular elements and square elements. Var-

ious numerical experiments proved the robustness of the AB method in terms of the

parameters provided.

Our observations suggest that triangular element is more suitable for the Helmholtz

problem when the AB method is used. It is possible to get high accuracy with the

square element but it is very sensitive to change in the direction of the plane wave. We

compared the AB method with the successful methods in the literature and observed

that the AB method is better by far. We have provided numerical experiments up to

ch = 5 but it is possible to obtain optimal values of µ for larger values of ch.

Appendix A. Optimal values of µ and the corresponding ch values in
vector form

ch values in vector form

chvec = [0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2,

2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3,

3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4,

4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5].

A.1. Triangular element

Optimal values of µ for θ = 0 in vector form

µvec = [5.327719956636429, 5.345857808366418, 5.382489757058465,

5.407989413148243, 5.438460109353652, 5.474075833312540,

5.515041258856693, 5.561594612479935, 5.614009699855814,

5.672598376894667, 5.737713328671049, 5.809750686848182,

5.889152676913680, 5.976410280722448, 6.072064377792510,
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6.176706837486098, 6.290978290501110, 6.415563473225142,

6.551180696637541, 6.698563047949805, 6.858428554840047,

7.031430430385674, 7.218076259176510, 7.418616213852046,

7.632857896103749, 7.859905000960552, 8.097757478101812,

8.342762891406892, 8.588806053623557, 8.826266692960303,

9.040626218167997, 9.210963539016667, 9.308522944373376,

9.296281709894537, 9.130763798207044, 8.767823524773119,

8.173785970628526, 7.340184319019317, 6.296695488970727,

5.112970113754272, 3.885332948333235, 2.711151351594336,

1.665912898816168, 0.791456837192823, 0.097873480070120,

− 0.426786552882999,−0.806363243821480,−1.068881017195638].

Optimal values of µ for θ = π/6 in vector form

µvec = [5.327500566840172, 5.343139684177004, 5.374658154648253,

5.396433582127344, 5.422252605472676, 5.452159150820080,

5.486181575597186, 5.524375915527344, 5.566683244270854,

5.613116296438420, 5.663668867743165, 5.718083836516598,

5.776230881609081, 5.837764252662964, 5.902346980738457,

5.969015282499461, 6.036898490972817, 6.104559127009047,

6.170519679550665, 6.231534246387810, 6.284398992545903,

6.325117751575419, 6.346443474292755, 6.341353135394456,

6.299870457964019, 6.210797187095579, 6.058884601581376,

5.829295393041615, 5.506995035713146, 5.079595044652093,

4.540263347327709, 3.893709744679224, 3.157825169735588,

2.364593647238507, 1.556573121109977, 0.779709045891650,

0.074739679694176,−0.529429289686959,−1.018631046636217,

− 1.391723047488625,−1.658417819015876,−1.833041429519653,

− 1.932390402728197,−1.971378095936671,−1.965993465721103,

− 1.927450075536035,−1.864745485488590,−1.786318673686765].

A.2. Square element

Optimal values of µ for θ = 0 in vector form

µvec = [2.416319465637207, 2.424534025788307, 2.441243074994782,

2.452954335795948, 2.467026924636252, 2.483582415618747,

2.502765497954248, 2.524745410494384, 2.549717507155262,
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2.577904362618347, 2.609556141820019, 2.644949184912659,

2.684381580352784, 2.728163421712815, 2.776597498147749,

2.829944356950000, 2.888359931381492, 2.951786996740848,

3.019767937660218, 3.091124134766869, 3.163411221162533,

3.232005997160449, 3.288617167039775, 3.318991720657795,

3.299806300662458, 3.195715750195086, 2.960220706649126,

2.548427447285503, 1.949552637320012, 1.226098413064610,

0.511312862685882,−0.061222607278032,−0.430717079229362,

− 0.613803158735936,−0.662595820163956,−0.628986020180263,

− 0.551063317032930,−0.452924949705283,−0.348523051725027,

− 0.24540103113369,−0.147328697469110,−0.055946590397818,

0.028265541656562, 0.105435481182771, 0.175988597167188,

0.240477321280367, 0.299489638392403, 0.353602075764519].

Optimal values of µ for θ = π/4 in vector form

µvec = [1.207990837097168, 1.210443985462189, 1.21551946040581,

1.219085277147315, 1.223379621573460, 1.228445018359571,

1.234332747931739, 1.241103587969155, 1.248829170500540,

1.257593345179885, 1.267493975741763, 1.278644993610043,

1.291178923920961, 1.305249860696495, 1.321037051104940,

1.338749134878162, 1.358629235798435, 1.380960969906300,

1.406075562717160, 1.434360164776444, 1.466267490421888,

1.502326714573428, 1.543155395373466, 1.589471720099695,

1.642105573183308, 1.702005448502853, 1.770235638371444,

1.847953597258644, 1.936349648658530, 2.036518372245463,

2.149210682581971, 2.274386032942629, 2.410448411866114,

2.553027020898201, 2.693212894521038, 2.815423081095785,

2.895743076157467, 2.902747395841447, 2.803614147499320,

2.576555057903004, 2.224515015732089, 1.779434688475981,

1.291013929040052, 0.807195796274921, 0.360445432500303,

− 0.035147079326975,−0.379057482114488,−0.677965467522639].
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