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Abstract. Electron spins in magnetic materials have preferred orientations collec-

tively and generate the macroscopic magnetization. Its dynamics spans over a wide
range of timescales from femtosecond to picosecond, and then to nanosecond. The

Landau-Lifshitz-Gilbert (LLG) equation has been widely used in micromagnetics sim-

ulations over decades. Recent theoretical and experimental advances have shown
that the inertia of magnetization emerges at sub-picosecond timescales and con-

tributes significantly to the ultrafast magnetization dynamics, which cannot be cap-

tured intrinsically by the LLG equation. Therefore, as a generalization, the iner-
tial LLG (iLLG) equation is proposed to model the ultrafast magnetization dynam-

ics. Mathematically, the LLG equation is a nonlinear system of parabolic type with
(possible) degeneracy. However, the iLLG equation is a nonlinear system of mixed

hyperbolic-parabolic type with degeneracy, and exhibits more complicated struc-

tures. It behaves as a hyperbolic system at sub-picosecond timescales, while behaves
as a parabolic system at larger timescales spanning from picosecond to nanosecond.

Such hybrid behaviors impose additional difficulties on designing efficient numeri-

cal methods for the iLLG equation. In this work, we propose a second-order semi-
implicit scheme to solve the iLLG equation. The second-order temporal derivative of

magnetization is approximated by the standard centered difference scheme, and the
first-order temporal derivative is approximated by the midpoint scheme involving

three time steps. The nonlinear terms are treated semi-implicitly using one-sided

interpolation with second-order accuracy. At each time step, the unconditionally
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unique solvability of the unsymmetric linear system is proved with detailed discus-
sions on the condition number. Numerically, the second-order accuracy of the pro-

posed method in both time and space is verified. At sub-picosecond timescales, the

inertial effect of ferromagnetics is observed in micromagnetics simulations, in con-
sistency with the hyperbolic property of the iLLG model; at nanosecond timescales,

the results of the iLLG model are in nice agreements with those of the LLG model,
in consistency with the parabolic feature of the iLLG model.

AMS subject classifications: 35Q99, 65Z05, 65M06

Key words: Inertial Landau-Lifshitz-Gilbert equation, semi-implicit scheme, second-order ac-

curacy, micromagnetics simulations.

1. Introduction

Ferromagnetic materials are widely used for data storage devices due to the real-

ization of fast magnetization dynamics under various external controls [4, 26]. In this

scenario, the dissipative magnetization dynamics is mainly controlled by the magnetic

degrees of freedom at timescales from picosecond (10−12 s) to nanosecond (10−9 s),

which is typically modeled by the conventional Landau-Lifshitz-Gilbert (LLG) equa-

tion [10,15]. However, some recent experiments including the observation of the spin

dynamics at sub-picosecond timescales [2] as well as the realization of the magneti-

zation reversal excited by the spin wave of sub-GHz frequency [11], indicated that

ultrafast magnetic dynamics can be properly described by the LLG equation via adding

an inertial term [3,9,18].

For the LLG equation with an inertial term, denoting τ as the characteristic timescale

of the inertial effect, the magnetization dynamics can be roughly divided into two

regimes: the diffusive regime at the timescale of t ≫ τ , and the hyperbolic regime at

the timescale of t ≈ τ . In the hyperbolic regime, magnetization dynamics exhibits the

inertial feature [17, 20]. From the modeling perspective, ∂tM and M × ∂tM control

the time evolution of magnetization M(x, t) in the LLG equation, and ∂ttM is further

added to account for the inertial effect. This modification leads to the inertial LLG

(iLLG) equation [9, 18]. Mathematically, the LLG equation is a nonlinear system of

equations of parabolic type with (possible) degeneracy. Under the condition t ≈ τ ,

the inertial term dominates and the iLLG equation is more like a nonlinear system of

equations of hyperbolic type. While under the condition t ≫ τ , the inertial term can

be ignored and the iLLG equation is more like a parabolic system. Therefore, a reliable

numerical method for the iLLG equation should capture both the inertial dynamics at

sub-picosecond timescales and the gyroscopic dynamics at nanosecond timescales.

There exist a large number of numerical methods for the LLG equation; see [8,13]

for reviews and references therein. First-order semi-implicit schemes such as the Gauss-

Seidel projection method [16,24] and the semi-implicit backward Euler method [7] are

well established. And recently, a second order semi-implicit projection method with
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backward differentiation formula was proposed with its second-order accuracy strictly

proved [6, 25]. Closely related to the current work, the implicit midpoint scheme

for the conventional LLG equation is available in the literature [1]. Its convergence

and the energy dissipation are proved under the assumption that the nonlinear system

of equations has a unique solution at each time step. However, for larger temporal

stepsizes, the convergence of a nonlinear solver such as Netwon’s method often slows

down. Moreover, multiple solutions may arise in micromagnetics simulations if the ini-

tial guess is chosen arbitrarily [23]. Therefore, we focus on semi-implicit schemes in

the current work.

However, numerical methods specific for the iLLG equation are rarely studied.

In [21], the author provides the tangent plane scheme (TPS) with the first-order accu-

racy and the angular momentum method (AMM) with second-order accuracy. Through

introducing V = ∂tM and W = M × ∂tM, the iLLG equation is rewritten as the first-

order systems. In AMM, M and W are treated as unknown fields to be approximated

and thus the number of unknowns is doubled, and a full set of nonlinear equations

has to be solved at each time step since the implicit midpoint scheme is applied for the

temporal discretization. In our work, we propose a second-order semi-implicit scheme

to solve the iLLG equation. The key idea is to apply the midpoint scheme with three

time steps to approximate the first-order derivative ∂tM, and the centered difference

scheme to approximate the second-order derivative ∂ttM simultaneously, and then to

make nonlinear terms semi-implicit using one-sided interpolation with magnetization

at the previous time steps. We prove that the unsymmetric linear system of equations

is unconditionally uniquely solvable at each time step. Specifically, the unsymmetric

linear systems of equations are solved by the GMRES solver [5].

The rest of the paper is organized as follows. In Section 2, the formulation of the

iLLG equation is introduced. In Section 3, the second-order semi-implicit scheme is

proposed, and the unique solvability of the unsymmetric linear system is proved. In

Section 4, the second-order accuracy in both space and time is checked numerically,

and the dynamics of the iLLG equation is studied at different timescales. Conclusions

are drawn in Section 5.

2. The inertial Landau-Lifshitz-Gilbert equation

The dynamics of magnetization M(x, t) in a ferromagnetic medium is described by

the classical LLG equation [10,15]

∂tM = −γM×
(

Heff − α

γMs
∂tM

)

, (2.1)

where γ is the gyromagnetic ratio, α is the Gilbert damping parameter, and Ms = |M|
the saturation magnetization which is treated as a constant below the Curie tempera-

ture. The effective field Heff = −δF/δM is defined as the variational derivative of the

Landau-Lifshitz (LL) energy F with respect to magnetization M, and the LL energy F
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reads as

F [M] =

∫

Ω

[
A

M2
s

|∇M|2 +Φ

(
M

Ms

)

− µ0He ·M
]

dx+
µ0

2

∫

R3

|∇U |2dx, (2.2)

where µ0 denotes the permeability of vacuum, and Ω is the volume occupied by the

material. On the right-hand side of (2.2),
∫

Ω
(A/M2

s )|∇M|2dx is the exchange energy,
∫

Ω
Φ(M/Ms)dx is the anisotropy energy, −µ0

∫

Ω
He ·Mdx is the Zeeman energy result-

ing from the external magnetic field He, and the last term (µ0/2)
∫

R3 |∇U |2dx is the

dipolar energy from the stray field induced by the magnetization inhomogeneity and

discontinuity. The dipolar energy can be alternatively written as (−µ0/2)
∫

Ω
Hs ·Mdx,

where Hs = −∇U is the stray field and

U =

∫

Ω

∇N(x− y) ·M(y)dy

with the Newtonian potential N(x) = −1/(4π|x|). For simplicity, we assume that the

material is uniaxial, i.e.,

Φ

(
M

Ms

)

=
Ku

(
M2

2 +M2
3

)

M2
s

with Ku the anisotropy constant. Consequently, the total effective field reads as

Heff =
2A

M2
s

∆M− 2Ku

M2
s

(M2e2 +M3e3) + µ0He + µ0Hs, (2.3)

where e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .

Recent advances in experiments revealed the ultrafast inertial dynamics [17,20] at

sub-picosecond timescales that is beyond the scope of the classical LLG equation. To

take account of the inertial effect, the iLLG equation is proposed as [3,9,18]

∂tM = −γM×
(

Heff − α

γMs

(∂tM+ τ∂ttM)
)

, (2.4)

where τ represents the characteristic timescale of the inertial dynamics of magnetiza-

tion. Note that the dynamics of magnetization in ferrimagnets and antiferromagnets

with two sublattices M1 and M2 can be recast to the dynamics of stagger magnetiza-

tion p = (M1 −M2)/(Ms1 +Ms2) and the net magnetization q = M1/Ms1 +M2/Ms2,

and the dynamics of p follows a similar form of the dynamics governed by the iLLG

equation [12,14].

Proposition 2.1. Define the total energy as

J [M] = F [M] +
ατ

2γMs

∫

Ω

|∂tM|2dx.

Then the following energy law holds

dJ [M]

dt
= − α

γMs

∫

Ω

|∂tM|2dx− µ0

∫

Ω

M ·H′
e(t)dx. (2.5)
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For the constant external magnetic field, the following energy dissipation relation holds as

dJ [M]

dt
= − α

γMs

∫

Ω

|∂tM|2dx ≤ 0. (2.6)

Proof. Taking the inner product of Eq. (2.4) and (Heff − (α/γMs)(∂tM + τ∂ttM))
yields ∫

Ω

∂tM ·
(

Heff − α

γMs
(∂tM+ τ∂ttM)

)

dx = 0. (2.7)

Hence,

dJ [M]

dt
=

∫

Ω

{
(
∂tM · (−Heff)− µ0M ·H′

e(t)
)
+

ατ

γMs
∂tM · ∂ttM

}

dx

(2.7)
=

∫

Ω

{

− α

γMs

|∂tM|2 − µ0M ·H′
e(t)

}

dx,

which completes the proof of Eq. (2.5). If H′
e(t) vanishes, the inequality (2.6) can be

obtained directly from (2.5).

Remark 2.1. To make the system well-posed, besides the governing equation (2.4) and

the initial condition M(x, 0) = M0, one more initial condition related to the first-order

temporal derivative ∂tM(x, 0) is needed. The following two different expressions (2.8)

and (2.9) can be the option of the initial condition of ∂tM(x, 0)

∂tM(x, 0) = 0, (2.8)

∂tM(x, 0) = M×H, (2.9)

where H represents a field at t = 0. With the initial condition (2.9), the length of M

can be preserved.

Different behaviors of nutation can be obtained from the different initial conditions

(2.8) or (2.9); see a simple 1D case as below. Although it is feasible to adopt (2.9)

as one of the initial conditions for the iLLG equation, it must be emphasized that the

initial condition (2.8) is used throughout the paper unless otherwise specified, since the

choice of the initial condition (2.9) instead of (2.8) would not impose any challenge

on designing the numerical algorithm for the iLLG equation.

Here we consider the simplest system in which a single magnetization evolves un-

der a uniform effective field. Consequently, the iLLG equation can be reduced to an

ordinary differential equation (ODE)

dtM = −M×
(
Heff − α(dtM+ τdttM)

)
. (2.10)

When two different sets of the initial conditions
{

M(t = 0) = M0,

dtM(t = 0) = 0,
(2.11)
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(a) (b) (c)

Figure 1: Numerical simulations of a single magnetization under a uniform effective field governed by (a)
LLG equation and (b)-(c) iLLG equation. The blue arrows depict the initial magnetization, and the red
lines plot the loci of the magnetization. The characteristic time of the inertial dynamics is τ = 0 in (a) and
τ = 2.0 in (b)-(c). The initial conditions (2.11) are used in (b) and (2.12) in (c). Other parameters used
in the simulations are: the Gilbert damping constant α = 0.2, the effective field Heff = (0, 0, 1)T and the

initial magnetization M0 = (0,−1/
√
2, 1/

√
2)T .

{

M(t = 0) = M0,

dtM(t = 0) = M×H
(2.12)

are applied, different nutation loci are observed by solving the ODE (2.10) numerically,

as shown in Fig. 1. The time-marching scheme provided in this paper is employed

for the temporal discretization of the ODE, and the midpoint scheme [1] is employed

for the temporal discretization of the second initial condition in (2.12). In numerical

simulations, τ = 0 and τ = 2.0 correspond to the magnetization dynamics governed

by the LLG equation and the iLLG equation, respectively. Other settings are: α = 0.2,

Heff = (0, 0, 1)T and M0 = (0,−1/
√
2, 1/

√
2)T .

For simplification, we rewrite the iLLG equation (2.4) in a dimensionless form by

defining Heff = µ0Msh, He = Mshe, Hs = Mshs, and M = Msm. After the spatial

rescaling x → Lx (still use x after rescaling) with L being the diameter of Ω, the

dimensionless form of the LL energy functional is

F̃ [m] =
1

2

∫

Ω′

[

ǫ|∇m|2 + q
(
m2

2 +m2
3

)
− 2he ·m− 2hs ·m

]

dx, (2.13)

where

ǫ =
2A

µ0M2
sL

2
, q =

2Ku

µ0M2
s

, F̃ [m] =
F [M]

µ0M2
s

.

Meanwhile, after the temporal rescaling t → t(Msµ0γ)
−1 (still use t after rescaling),

the dimensionless form of (2.4) reads as

∂tm = −m× h+ αm× (∂tm+ η∂ttm) (2.14)

with

h = ǫ∆m− q(m2e2 +m3e3) + he + hs. (2.15)

The dimensionless parameter η = τ/(µ0γMs)
−1, represents the ratio between the char-

acteristic timescale of the inertial dynamics and that of the gyroscopic magnetization
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dynamics. For (2.14), homogeneous Neumann boundary condition is used as

∂m

∂ν

∣
∣
∣
∂Ω

= 0, (2.16)

where ν represents the outward unit normal vector along boundary surface ∂Ω.

3. A second-order semi-implicit finite difference scheme

Denote

f(mn) = −q
(
mn

2e2 +mn
3e3
)
+ hn

e + hn
s . (3.1)

For (2.14)-(2.16), we employ a midpoint scheme with three time steps

mn+1 −mn−1

2∆t

= −mn+1 +mn−1

2
×
(

ǫ∆h
mn+1 +mn−1

2
+ f

(
mn+1 +mn−1

2

))

+ α
mn+1 +mn−1

2
×
(
mn+1 −mn−1

2∆t
+ η

mn+1 − 2mn +mn−1

∆t2

)

, (3.2)

where ∆h represents the standard second-order centered difference stencil. For a 3D

Cartesian mesh with indices j = 0, 1, . . . , nx, nx + 1, k = 0, 1, . . . , ny, ny + 1 and l =
0, 1, . . . , nz, nz + 1, the second-order centered difference for ∆hmj,k,l reads

∆hmj,k,l =
mj+1,k,l − 2mj,k,l +mj−1,k,l

∆x2

+
mj,k+1,l − 2mj,k,l +mj,k−1,l

∆y2

+
mj,k,l+1 − 2mj,k,l +mj,k,l−1

∆z2
, (3.3)

where

mj,k,l = m

((

j − 1

2

)

∆x,

(

k − 1

2

)

∆y,

(

l − 1

2

)

∆z

)

.

For the Neumann boundary condition (2.16), a second-order approximation yields

m0,k,l = m1,k,l, mnx,k,l = mnx+1,k,l, k = 1, . . . , ny, l = 1, . . . , nz,

mj,0,l = mj,1,l, mj,ny,l = mj,ny+1,l, j = 1, . . . , nx, l = 1, . . . , nz,

mj,k,0 = mj,k,1, mj,k,nz
= mj,k,nz+1, j = 1, . . . , nx, k = 1, . . . , ny.

In the above proposal, (3.2) is an implicit scheme with the truncation error O(h2 +
∆t2) with ∆x = ∆y = ∆z = h, and hence a nonlinear system of equations has to be

solved at each time step. In addition, for micromagnetics simulations, the evaluation
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of the stray field hn+1
s is also computationally expensive. To overcome these issues, we

propose the following second-order semi-implicit scheme:







m̃n+1 −mn−1

2∆t

= −mn ×
(

ǫ∆h

(
m̃n+1 +mn−1

2

)

+ f(mn)

)

+αmn ×
(
m̃n+1 −mn−1

2∆t
+ η

m̃n+1 − 2mn +mn−1

∆t2

)

, (3.4a)

mn+1 =
1

|m̃n+1|m̃
n+1. (3.4b)

By rewriting (3.4), at each time step, only a linear system of equations with the unsym-

metric structure needs to be solved
(

I + ǫ∆tmn ×∆h − α

(

1 +
2η

∆t

)

mn×
)

m̃n+1

= mn−1 − ǫ∆tmn ×∆hm
n−1 − α

(

1− 2η

∆t

)

mn ×mn−1

− 2∆tmn × f(mn). (3.5)

Consequently, to update mn+1, only hn
s at the previous step is needed.

Following [25], we establish the unique solvability of the proposed scheme (3.4) as

follows. First, the unique solvability of (3.5) is given by the following proposition.

Proposition 3.1. Denote

S = ǫ∆t∆h − α

(

1 +
2η

∆t

)

I,

I the identity operator, and A = mn× (rewritten in a matrix form) an antisymmetric

matrix. Given mn−1 and mn, then det (I +AS) 6= 0, i.e., (3.5) admits a unique solution

for any positive h and ∆t.

Proof. Since ∆h is a symmetric positive definite matrix, there exists a nonsingular

matrix C such that ∆h = CTC. For the coefficient matrix I +AS in (3.5), we have

det (I +AS) = det
(
I +ACTC

)
= det

(
I + CACT

)
.

The matrix A is antisymmetric, so is CACT . The eigenvalues of CACT are either 0 or

pure imaginary. Hence det (I +AS) 6= 0, which is independent of h and ∆t.

Second, in (3.4), a projection step is applied after solving (3.5). The following

proposition guarantees that the denominator is always nonzero.
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Proposition 3.2. If m0 ·m1 6= 0 in the pointwise sense, then |m̃n| 6= 0 at any step n.

Proof. Multiplying both sides of Eq. (3.4a) by mn produces

m̃n+1 ·mn = mn ·mn−1.

When n = 1, we have m̃2 ·m1 = m1 ·m0 6= 0, which implies |m̃2| 6= 0. When n = 2,

we have m̃3 ·m2 = m2 ·m1 = 1
|m̃2|

m1 ·m0 6= 0, which implies |m̃3| 6= 0. Repeating this

process completes the proof.

Numerically, the initial condition (2.8) or (2.9) is discretized firstly. (2.8) leads to

m0 = m1, i.e., m0 · m1 = 1. For (2.9), we use the mid-point scheme and also have

m0 ·m1 6= 0.

Remark 3.1. After time rescaling t → (1 + α2)t, (2.14) is equivalent to the LL form

∂tm = −m× (h− η̃∂ttm)− αm×
(
m× (h− η̃∂ttm)

)
, (3.6)

where η̃ = αη/((1 + α2)2). The corresponding second-order semi-implicit scheme

reads as






m̃n+1 −mn−1

2∆t

= −mn ×
(

ǫ∆h

(
m̃n+1 +mn−1

2

)

− η̃
m̃n+1 − 2mn +mn−1

∆t2
+ f(mn)

)

−αmn ×
(

mn ×
(

ǫ∆h

(
m̃n+1 +mn−1

2

)

−η̃
m̃n+1 − 2mn +mn−1

∆t2
+ f(mn)

))

,

mn+1 =
1

|m̃n+1|m̃
n+1.

(3.7)

Next, we discuss how to solve the linear systems of equations in (3.5). Due to the

unsymmetric structure, the GMRES solver is employed. The convergence of GMRES

depends on the condition number of the linear system [22]. In the following, we

provide a heuristic demonstration about how the condition number depends on the

damping parameter α and the characteristic timescale of the inertial effect τ .

For simplicity, consider mn = e1 = (1, 0, 0)T . In 1D, for the homogeneous Neumann

boundary condition, the eigenvalues of ∆x are

− 4

∆x2
sin2

(
jπ∆x

2

)

, j = 1, . . . , nx,

and the eigenvalues of S are

λj = −4ǫ∆t

∆x2
sin2

(
jπ∆x

2

)

− α

(

1 +
2η

∆t

)

,
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respectively. Therefore, the 3nx eigenvalues of the antisymmetric matrix

e1 × S =





0 0 0
0 0 −S
0 S 0





are

0, · · · , 0
︸ ︷︷ ︸

nx

,±λ1i, · · · ,±λnx
i

︸ ︷︷ ︸

nx

.

Consequently, the eigenvalues of (I + ǫ∆tmn ×∆x − α(1 + 2η/∆t)mn×) are

1, · · · , 1
︸ ︷︷ ︸

nx

, 1± λ1i, · · · , 1± λnx
i.

The condition number of (I + ǫ∆tmn ×∆x − α(1 + 2η/∆t)mn×) is

κ =

√
√
√
√1 +

(

4ǫ∆t

∆x2
+ α

(

1 +
2η

∆t

))2

. (3.8)

Similarly, for a three dimensional cuboid domain and the same Neumann boundary

condition, the eigenvalues of ∆h are

λjkl = − 4

∆x2
sin2

(
jπ∆x

2

)

− 4

∆y2
sin2

(
kπ∆y

2

)

− 4

∆z2
sin2

(
lπ∆z

2

)

,

and the condition number of (I + ǫ∆tmn ×∆h − α(1 + 2η/∆t)mn×) is

κ =

√
√
√
√1 +

[

4ǫ∆t

(
1

∆x2
+

1

∆y2
+

1

∆z2

)

+ α

(

1 +
2η

∆t

)]2

. (3.9)

Fixing the space meshsizes and the time stepsize, the relation κ2 ∼ αη2 apparently

holds for both (3.8) and (3.9). In our 3D micromagnetics simulations, material param-

eters can be found in Section 4.2. The number of iterations in GMRES is recorded for

different combinations of α and τ in Table 1. It can be seen that for smaller α and τ ,

a smaller number of iterations is needed in GMRES.

Table 1: Number of iterations for GMRES at a single time step for different combinations of damping
parameter α and inertial parameter τ . A ferromagnet of 200 nm× 100 nm× 5 nm is discretized into cells
of 4 nm× 4 nm× 5 nm. The crucial settings include: the initial magnetization m

0 = e1, the time stepsize
∆t = 0.1 ps, and the stopping tolerance tol = 1.0× 10−11.

Damping

Number of iterations Inertial τ = 1.0× 10−13 s
(η ≈ 1.77× 10−2)

τ = 1.0× 10−11 s
(η ≈ 1.77)

α = 0.1 9 9

α = 0.01 7 11

α = 0.001 6 9
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4. Numerical results

In the numerical experiments, we first verify the second-order accuracy spatially

and temporally for both 1D and 3D cases. For comparison, the full iLLG equation is

simplified to

∂tm = −m×∆m+ αm× (∂tm+ η∂ttm) + g, (4.1)

where g is the source term which can be generated by an exact solution me. In other

words, when m is set as a given form me, the source term g will be generated corre-

spondingly. The L∞ error ‖me − mh‖∞ is recorded with me and mh being the exact

and the numerical solutions, respectively.

4.1. Accuracy check

Consider the exact solution of Eq. (4.1) in 1D case given as

me =
(
cos(x̄) sin(t2), sin(x̄) sin(t2), cos(t2)

)T

with x̄ = x2(1− x)2. The accompanying source term is

g = ∂tme +me × ∂xxme − αme × (∂tme + η∂ttme).

As shown in Table 2, the second-order accuracy is obtained in both time and space.

Table 2: The L∞ errors for different space meshsizes and time stepsizes in 1D. The space meshsize
used in temporal accuracy check is ∆x = 1.e-03, and the time stepsize used in spatial accuracy check
is ∆t = 2.5e-04. The spatial points are nx = 1/∆x, and the temporal steps are nt = T/∆t.

η = 0, T = 0.05

α = 0.0
η = 0.0

Space
nx 80 160 320 640 Order

error 1.75e-08 4.50e-09 1.12e-09 2.61e-10 2.02

Time
nt 80 160 320 640 Order

error 1.79e-08 4.37e-09 1.01e-09 2.37e-10 2.08

α = 0.01
η = 0.0

Space
nx 80 160 320 640 Order

error 1.75e-08 4.49e-09 1.12e-09 2.61e-10 2.02

Time
nt 80 160 320 640 Order

error 1.78e-08 4.35e-09 1.01e-09 2.35e-10 2.08

η 6= 0, T = 0.5

α = 0.01
η = 100.0

Space
nx 80 160 320 640 Order

error 1.60e-06 3.98e-07 9.69e-08 2.19e-08 2.06

Time
nt 80 160 320 640 Order

error 2.45e-06 6.06e-07 1.45e-07 3.19e-08 2.09

α = 0.01
η = 1000.0

Space
nx 80 160 320 640 Order

error 7.41e-07 1.99e-07 5.09e-08 1.21e-08 1.98

Time
nt 80 160 320 640 Order

error 9.99e-07 2.48e-07 6.16e-08 1.53e-08 2.01
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Figure 2: The log-log plots of the L∞ error in terms of (a) time stepsize ∆t for temporal accuracy check
and (b) space meshsize h for spatial accuracy check in 3D. The second-order accuracy is obtained in both
time and space.

Next, we consider the exact solution in 3D case

me =
(
cos(x̄ȳz̄) sin(t2), sin(x̄ȳz̄) sin(t2), cos(t2)

)T

with ȳ = y2(1 − y)2 and z̄ = z2(1 − z)2. The corresponding source term is g =
∂tme + me × ∆me − αme × (∂tme + η∂ttme). To check the temporal accuracy, the

magnetic element Ω = [0, 1]3 is discretized uniformly with 10 mesh grids along each

direction and the terminal time is T = 0.5. To check the spatial accuracy, Ω = [0, 1]3

is discretized uniformly with 8, 10, 12, 14 grid points along each direction, respectively,

and the terminal time is T = 0.02 with the time stepsize ∆t = 1.0e-04. The damping

parameter α and the inertial parameter η are 0.01 and 1000, respectively. Fig. 2 plots

the L∞ error in terms of both the time stepsize and the space gridsize in 3D. The

second-order accuracy is also obtained in both time and space.

4.2. Micromagnetics simulations

In this part, the ultrafast magnetization dynamics by using the full iLLG equation

is studied numerically to investigate the inertial effect of ferromagnets. In the simu-

lations, the magnetization is initialized with m1 = m0 = e1 and thus ∂tm
0 = 0 is

automatically satisfied. This setup is physically reasonable for ferromagnetic materi-

als in equilibrium with no external field applied. To highlight the role of the inertial

term, we at first neglect the stray field since the contribution of the stray field usually

dominates the LL energy in micromagnetics simulations. Then the stray field will be

involved in the subsequent simulations to study the magnetization dynamics under an

external magnetic field with GHz frequency.

In the first test, parameters of the ferromagnetic sample are: the total volume is

200 nm× 100 nm× 5 nm with the meshsize 4 nm× 4 nm× 5 nm, the damping constant

α = 0.02, the saturation magnetization Ms = 8.0 × 105 A/m, the exchange coupling
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Figure 3: Evolution of the spatially averaged magnetization under a magnetic field pulse. The solid and
dotted lines plot the averaged magnetizations of LLG and iLLG equations, respectively. A magnetic field
pulse is applied along the e2 direction during 0 ∼ 2 ps to initiate the magnetization dynamics. The basic
material parameters are: the characteristic inertial time τ = 1.0× 10−10 s, the damping constant α = 0.02
and the time stepsize ∆t = 10 fs.

constant A = 1.3 × 10−11 J/m, and the uniaxial anisotropy Ku = 5.0 × 102 J/m3

[20]. The dimensionless parameters are estimated as ǫ ∼ O(10−4), q ∼ O(10−3), and

η ∼ O(10−1) when τ = 1.0 × 10−12 s. It somehow explains that η is set to be 1000
when ǫ = 1 in Section 4.1. A magnetic pulse He = MsF (t)e2 is applied along the e2
direction with F (t) = 0.01 sin(2πft)χ0≤t≤2.0×10−12 and f = 500 GHz [21]. In Fig. 3,

the components of the spatially averaged magnetization as functions of time are shown

with the characteristic time τ = 1.0 × 10−10 s, the total simulation time T = 100 ps,
and the time stepsize ∆t = 10 fs. From Fig. 3, remarkable different numerical results

produced by the two governing equations can be observed. For the iLLG equation where

the inertial term is present, oscillations of magnetization along the e2 and e3 directions

can be observed much easier, which is the typical feature of the inertial dynamics. Fig. 4

shows the LL energies (without the dipolar energy term) as functions of time for the

LLG equation and the iLLG equation when a magnetic field pulse is applied. It can be

seen that the magnetization dynamics governed by the iLLG equation exhibits more

significant response to the applied magnetic field pulse, which reveals that the inertial

dynamics arises at sub-picosecond and picosecond timescales.

Although the inertial effect has been observed on the spatially averaged magnetiza-

tion, it is of no significant effect on the LL energy in the absence of the dipolar energy.

It means that the stable states of the system remain unchanged after the relaxation of

inertial effect ends. In this sense, when the stray field is turned on, it is reasonable to

infer that the equilibrium states generated by the iLLG equation are the same as those

generated by the LLG equation. This inference is demonstrated in Fig. 5. Here the fer-

romagnet is of the size 2 µm×1 µm×0.02 µm with the meshsize 20 nm×20 nm×20 nm,

τ = 1.0 × 10−10 s, and T = 2 ns with ∆t = 10 fs. The basic material parameters can be

found in the Standard Problem #1 [19].
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Figure 4: Evolution of the LL energy under a magnetic field pulse. The stray field is turned off, and the
initial magnetic profile is the homogeneous magnetization along e1. Inset: profile of the magnetic field
pulse, which takes a sine form during 0 ∼ 2 ps. The basic material parameters are the same as those used
in Fig. 3.

Furthermore, following the study of hysteresis loops (see the standard specification

stated in [19]), we simulate the magnetization dynamics using the iLLG equation with

two sets of damping parameters and inertial parameters; see Fig. 6. For comparison,

we list the coercive fields and remanent magnetizations for NIST (mo96a) and our

simulations. We change the applied field by 0.5 mT each time from −50 mT to 50 mT,

and then from 50 mT to −50 mT again. If the applied magnetic field is changed, a new

steady state is considered to be reached when the relative change in the total energy is

less than 1.0× 10−7.

(a) Flower state (b) C state

(c) Diamond state (d) S state

Figure 5: Local stable states produced by the iLLG equation. For convenience of comparison with results
obtained by the LLG equations (e.g., see [23, Fig. 2]), the ferromagnet is of the size 2 µm×1 µm×0.02 µm
with the following material parameters: the exchange coupling constant A = 1.3×10−11 J/m, the saturation

magnetization Ms = 8.0× 105 A/m, the anisotropy Ku = 5.0× 102 J/m3, the damping constant α = 0.1,
and the characteristic inertial time τ = 1.0× 10−10 s. The arrow represents the in-plane magnetization and
the background color encodes the angle between the in-plane magnetization and the x-axis.
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The main results of NIST (mo96a) and our simulations are:

• LLG equation (mo96a): coercive field x-loop/y-loop: 2.5/4.9 mT; remanent mag-

netization (mx,my,mz): x-loop: (0.15, 0.87, 0.00), y-loop: (-0.15, 0.87, 0.00).

• iLLG equation (α = 0.1, τ = 1.0 × 10−12 s and ∆t = 1 ps): coercive field x-

loop/y-loop: 2.3/5.3 mT; remanent magnetization (mx,my,mz): x-loop: (0.20,

0.87, 0.11e-04), y-loop: (-0.15, 0.88, 0.14e-04).

• iLLG equation (α = 0.02, τ = 1.0 × 10−13 s and ∆t = 0.1 ps): coercive field x-

loop/y-loop: 2.3/6.3 mT; remanent magnetization (mx,my,mz): x-loop: (0.20,

0.87, 0.25e-03), y-loop: (-0.14, 0.88, 0.86e-05).

The maximum deviations of coercive fields and components of the remanent magne-

tizations are 1.4 mT and 0.05, respectively. Qualitative agreements in terms of both

coercive fields and remanent magnetizations confirm the consistency of the LLG and

iLLG equations in long-term simulations.

In the previous simulations, we use the meshsize 20 nm×20 nm×20 nm. Therefore

there is only one grid point in the z direction of the magnetic film. For real 3D simula-

tions, we consider a finer meshsize 20 nm× 20 nm × 5 nm, and hence there are 4 grid

points in the z direction of the film. In absence of the applied magnetic field, the mag-

netization in the magnetic film is again relaxed to the stable flower state in Fig. 5(a),

with the evolution of the LL energy F [M] and the total energy J [M] plotted in Fig. 7,

and the relaxation dynamics shown in Fig. 5(a). The parameters used in simulations

are: the damping constant α = 0.02, the characteristic inertial time τ = 1.0 × 10−11 s,
the total simulation time T = 2 ns, and the time stepsize ∆t = 10 fs. Due to the simul-

taneous contributions of the stray field and the inertial term, the performance of the LL

energy and the total energy are distinct from that in Fig. 4. Specifically, the LL energy

and the total energy generated by the iLLG equation decay over a long period of time,

but with oscillations at sub-picosecond timescales.

Remark 4.1. When the stray field is turned on, the homogeneous profile m0 = e1 is

no longer an equilibrium state of a ferromagnetic sample. Therefore, the inertial effect

is activated at the timescale of sub-picosecond when the system relaxes toward the

equilibrium. Furthermore, a nonlinear response to the stray field arises due to highly

nonlocal features of both the inertial effect and the stray field. The non-monotonic

decrease of both the LL energy and the total energy Fig. 7 results from the nonlinearity.

It will be shown later in Fig. 12 that the behaviours of the LL energy are remarkably

different when the inertial effect is activated by the applied pulses. In comparison with

Fig. 4, these results reveal that the oscillation of the LL energy is mainly determined by

the response to the dipolar energy when the inertia is activated.

As demonstrated above, the inertial dynamics governed by the iLLG equation can

be activated by a high-frequency magnetic pulse. To establish a quantitative connection

between the inertial dynamics and material parameters, only one material parameter
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(a) LLG equation: mo96a [19]
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(b) iLLG equation: α = 0.1, τ = 1.0× 10−12 s, ∆t = 1 ps
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(c) iLLG equation: α = 0.02, τ = 1.0× 10−13 s, ∆t = 0.1 ps

Figure 6: Hysteresis loops of magnetization simulated by (a) the LLG equation (mo96a) in the standard
reference [19], (b) the iLLG equation with the damping parameter α = 0.1 and the inertial parameter
τ = 1.0 × 10−12 s, and (c) the iLLG equation with α = 0.02 and τ = 1.0 × 10−13 s. The green/blue/red
lines plot the components of magnetization my, mx (down) and mx (up), respectively. In the left (right)
column, an external magnetic field is applied parallel to the 2 µm (1 µm) axis with canting of +1◦,
respectively.
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Figure 7: Evolution of the LL energy and the total energy in the relaxation process from a uniform initial
state m

0 = e1 to the flower state in Fig. 5(a). The ferromagnet of the size 2 µm × 1 µm × 0.02 µm is
discretized to cells with a meshsize 20 nm × 20 nm × 5 nm. The material parameters are: the damping
constant α = 0.02, the characteristic inertial time τ = 1.0 × 10−11s, the total time T = 2ns, and the time
stepsize ∆t = 10fs.

is changed at a time in the simulations, while all other parameters are fixed unless

otherwise stated. The magnetic pulses are applied to the material with the initialization

of magnetization m0 = e1, so that it relaxes to the equilibrium flower state in Fig. 5(a)

under the effects of both the stray field and the inertial term simultaneously.

• The frequency of the magnetic pulse is applied as: f = 200 GHz, 500 GHz, and

1000 GHz, respectively. Time evolution of the spatially averaged magnetization

and the total energy for the iLLG equation in response to the magnetic pulses are

plotted in Fig. 9. We can observe the inertial dynamics of the magnetization and
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Figure 8: Evolution of the magnetization profile in the relaxation process from a uniform initial statem0 = e1

to the flower state in Fig. 5(a). The arrow represents the in-plane magnetization and the background color
encodes the angle between the in-plane magnetization and the x-axis.
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Figure 9: Responses of (a) the averaged magnetization (b) LL energy to magnetic field pulses of different
frequencies. The dotdashed/solid/dashed lines are for magnetic field pulses with frequencies of 200 GHz,
500 GHz and 1000 GHz, respectively. In the simulation, the damping parameter is α = 0.02, and the inertial
parameter is τ = 1.0 × 10−12s.

the oscillation of the LL energy as well. Unlike Figs. 4 and 7, results in Fig. 9

show the existence of the inertial dynamics even in the presence of the stray

field. However, as the frequency of the magnetic pulse increases, the inertial

dynamics gradually becomes invisible. Meanwhile, it should be mentioned that

the LL energy F [M] shows small oscillations in an independent frequency with

respect to the applied magnetic field pulse.

• The characteristic inertial time τ is fixed to be 1.0 × 10−10 s, and the damping

constant varies: α = 0.005, 0.02, 0.1. In the presence of a 500 GHz magnetic pulse

over 0 ∼ 2 ps, we plot the averaged magnetization as a function of time for the

iLLG equation in Fig. 10. As shown in Fig. 10, the smaller the damping parameter

is, the more oscillatory the inertial dynamics is.

• The damping parameter α is fixed to be 0.02, and the characteristic inertial time

is changed: τ = 1.0 × 10−9 s, 1.0 × 10−10 s, 1.0 × 10−11 s. In Fig. 11, we plot the

averaged magnetization in terms of time for the iLLG equation under a 500 GHz
magnetic pulse when ∆t = 10 fs. It is found that more significant oscillation

arises for a smaller characteristic inertial time τ .
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Figure 10: Responses of the averaged magnetization to a 500 GHz magnetic field pulse. The dashed/
dotted/solid lines are for damping parameters α = 0.1, 0.02 and 0.005, respectively.

0 10 20 30 40 50 60 70 80 90 100

<
m

x>

11
τ=1.0X10-9s

τ=1.0X10-10s

τ=1.0X10-11s

time (ps)
0 10 20 30 40 50 60 70 80 90 100

<
m

z>

×10-3

-1

0

1

0 10 20 30 40 50 60 70 80 90 100

<
m

y>

×10-3

-2

0

2

Figure 11: Responses of the averaged magnetization to a 500 GHz magnetic field pulse. The dashed/
dotted/solid lines are for characteristic inertial times τ = 1.0 × 10−9 s, 1.0 × 10−10 s and 1.0 × 10−11 s,
respectively.

Remark 4.2. From the mathematical expression of the iLLG equation, it can be inferred

that the inertial effect depends on both the damping parameter and the inertial param-

eter, which have been investigated experimentally in [17, 20]. Meanwhile, the inertial

effect can be observed in simulations when τ lies in the range of sub-picosecond and

picosecond (10−13 s ∼ 10−10 s), in consistency with physical experiments. Further-

more, it seems that the damping parameter determines the frequency of the oscillation

in magnetization at sub-picosecond timescales.

Finally, we consider an initial magnetic profile where the stray field is fully relaxed.

Such an equilibrium state is obtained from the homogeneous state m0 = e1 for a relax-

ation time of T = 2 ns with following parameters: the damping constant α = 0.1, the

characteristic inertial time τ = 1.0 × 10−12 s, and the time stepsize ∆t = 1 ps. Based

on this fully relaxed magnetic profile, a magnetic field pulse of 500 GHz is then applied

with modified parameters: α = 0.005, τ = 5.0 × 10−11 s, and ∆t = 0.1 ps. In Fig. 12,

the oscillating magnetization with a frequency around 620 GHz is clearly observable,

which lasts until 250 ps.
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Figure 12: Responses of (a) the spatially averaged magnetization and (b) LL energy to a 500 GHz magnetic
pulse field. The initial state of the simulation is the stable flower state in Fig. 5(a), prepared by relaxing the
uniform magnetization state m

0 = e1.

5. Conclusion

In this work, we propose a second-order semi-implicit scheme for the inertial Lan-

dau-Lifshitz-Gilbert equation, to study the ultrafast inertial dynamics of ferromagnetic

materials at sub-picosecond timescales. The unique solvability of the proposed method

is theoretically proved, and the dependence of the number of iterations in GMRES

for solving the unsymmetric linear system of equations on the damping/inertial pa-

rameters is explored and further verified by numerical tests. Micromagnetics simu-

lations show that the inertial Landau-Lifshitz-Gilbert equation hosts inertial effects at

sub-picosecond timescales, but gives rises to basically the same magnetic dynamics as

the Landau-Lifshitz-Gilbert equation for larger timescales. Moreover, the dependence

of the inertial dynamics on the frequency of the applied field, the damping parame-

ter, and the inertial parameter are systematically investigated. These studies shall be

helpful in designing magnetic devices with ultrafast magnetization dynamics of non-

negligible inertial behavior.
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