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A PARALLEL JACOBI-TYPE LATTICE BASIS REDUCTION

ALGORITHM

FILIP JEREMIC AND SANZHENG QIAO

Abstract. This paper describes a parallel Jacobi method for lattice basis reduction and a GPU
implementation using CUDA. Our experiments have shown that the parallel implementation is
more than fifty times as fast as the serial counterpart, which is twice as fast as the well-known
LLL lattice reduction algorithm.
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1. Introduction

Lattice basis reduction has been successfully used for many problems in integer
programming, cryptography, number theory, and information theory [1]. In this
paper we discuss a parallel version of the lattice basis reduction algorithm called the
Jacobi method. The Jacobi method is very attractive as it is inherently parallel. We
take advantage of this by utilizing the graphics processing unit (GPU) to capitalize
on the algorithm’s parallel nature. After introducing notations in Section 2, we
will first describe a serial version of the Jacobi method for lattice reduction in
Section 3, and later explore its parallel nature in Section 4. Moreover, in Section 5
we will discuss the tools and tricks used in our GPU implementation to achieve high
runtime performance. Finally, in Section 6 we will present experimental results of
our parallel implementation of the Jacobi method.

2. Preliminaries

In this section we cover some basic notations which we will use throughout the
paper. Given a subspace W of Rn and a basis B = {b1, b2, . . . , bm} of n-dimensional
vectors which span W , we define a lattice L of W generated by the basis B as the
set of vectors:

L(B) =

{

m
∑

i=1

aibi

∣

∣

∣

∣

∣

ai ∈ Z

}

Typically, we view a lattice basis B in matrix form, where the vectors in the basis
form the columns of the matrix. In this context we say that the respective matrix
B is a generator of the lattice L. The value m in the above definition of a lattice
is called the lattice dimension, or rank. A given lattice basis may generate proper
subspace of the space it resides in. In such a case the generator matrix is rectangular
with m < n. If on the other hand m = n, we say that the lattice is of full rank,
and consequently the generator matrix will be an invertible square matrix.
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When the lattice dimension m ≥ 2, the lattice can have infinitely many distinct
basis matrices. This is not surprising as the underlying vector space can also have
infinitely many bases. For example,

B =

[

2.0 2.7
0 0.7

]

and B′ =

[

−0.7 1.3
−0.7 −0.7

]

form two bases for the same lattice. The question arises as to how can we transform
one basis matrix into another, and more importantly what makes one basis “better”
than another? To answer the former question we introduce the notion of a lattice
determinant, which is defined as the square root of the determinant of BTB, where
B is the respective generator matrix, that is,

det(L(B)) =
√

det(BTB).

The lattice determinant is an important numerical invariant as it is independent of
the chosen lattice basis. Therefore, two generator matrices B and B′ generate the
same lattice L if and only if B′ = BZ, where Z, called a unimodular matrix, is an
integer matrix with |detZ| = 1. Because the determinant of a unimodular matrix
is of unit length, the inverse of a unimodular matrix is also an integer matrix. In
the above example, the two generator matrices B and B′ are related by

B′ =

[

−0.7 1.3
−0.7 −0.7

]

=

[

2.0 2.7
0 0.7

] [

1 2
−1 −1

]

= BZ

The answer to the latter question we posed is relative to the application problem
at hand, however for many such problems a desirable property of a lattice basis is
that it consists of relatively short and more orthogonal vectors. In this context, we
say that such a basis is reduced. Thus given a lattice basis matrix B, a lattice basis
reduction algorithm produces a unimodular matrix Z, such that the basis BZ is
reduced. In the above example, B′ is reduced from B. It consists of shorter and
more orthogonal basis vectors than those of B.

There are various notions of a reduced basis. In 1850, Hermite introduced the
first notion of reduction for lattices of arbitrary dimensions, proposed an algorith-
m for computing such reduced bases, and proved its termination [2]. Hermite’s
algorithm is of theoretical significance, but its complexity is still unknown. Schnor-
r and Euchner [3] reconsidered this problem and developed a practical algorithm
for constructing the Hermite reduced basis. In 1873, Korkine and Zolotareff [4]
strengthened the definition of Hermite reduced basis. Their proposed notion of re-
duction is usually called the HKZ reduced basis [5], named after Hermite, Korkine
and Zolotareff. In 1983, using induction, Kannan [6] presented the first algorithm
for constructing the HKZ reduced bases. Helfrich [7], Kannan [8], and Banihashemi
and Khandani [9] further refined Kannan’s algorithm and improved the complexity
analysis. Note that the methods based on Kannan’s strategy are intended as theo-
retical tools, and the related papers usually focus on asymptotic complexity. Agrell
et. al. [10] presented a practical algorithm and used it as a preprocessor for the
integer least squares problems. In 1891, Minkowski [11] defined a new notion of re-
duction, which is stronger than the HKZ reduction. This definition is now known as
the Minkowski reduced basis. Lenstra, Lenstra, and Lovász [12] developed the first
polynomial-time lattice reduction algorithm, known as the LLL algorithm, named
after the three authors. Their notion of reduced basis is actually a relaxation of the
Hermite reduced basis [2]. The LLL algorithm has become the most important tool
in public-key cryptanalysis [13] and integer least squares problems [10, 14]. Further
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improvements of the LLL algorithm have been developed. While some [15, 16, 17]
improve the quality of the output of the LLL algorithm, others [18, 19] improve the
efficiency of the algorithm.

In 1846, Jacobi presented an eigenvalue decomposition algorithm [20]. Its workhorse
is the computation of the eigenvalue decomposition of a two-by-two matrix [24].
By using the Lagrange’s algorithm for two dimensional lattice reduction [21] as the
workhorse, Qiao proposed a Jacobi method for lattice basis reduction [1], to be
described in the following section.

3. Jacobi Method

In this section, we present the serial version of a Jacobi method for lattice basis
reduction, but before doing so we describe the Lagrange’s algorithm for computing
reduced bases for lattices of dimension two [21, 22]. A lattice L(B) generated by
the matrix B =

[

b1 b2
]

is said to be Lagrange-reduced if

(1) ‖b1‖2 ≤ ‖b2‖2 and
∣

∣bT1 b2
∣

∣ ≤
‖b1‖

2
2

2

Intuitively, if θ denotes the angle between the two basis vectors b1 and b2, then
condition (1) implies that π/2 ≤ θ ≤ 2π/3 since

|cos θ| =

∣

∣bT1 b2
∣

∣

‖b1‖2 ‖b2‖2
≤

∣

∣bT1 b2
∣

∣

‖b1‖
2

2

≤
1

2

The existence of a Lagrange-reduced basis for any two-dimensional lattice is guar-
anteed and is optimal in the sense that it consists of the shortest possible basis
vectors [23]. The algorithm itself can be viewed as a generalization of the Euclid’s
algorithm for computing the greatest common divisor of a pair of integers.

Algorithm 1 (Lagrange): Given G = BTB, where B is a lattice generator matrix,
this algorithm computes a 2 × 2 unimodular matrix Z such that the generator
matrix BZ is Lagrange-reduced and G is updated accordingly.

1 Z = I2
2

3 i f G(1, 1) < G(2, 2)

4 swap G(:, 1) and G(:, 2)

5 swap G(1, :) and G(2, :)

6 swap Z(:, 1) and Z(:, 2)

7 end

8

9 whi le G(1, 1) > G(2, 2)

10 q = ⌊G(1, 2)/G(2, 2)⌉

11 G(:, 2) = G(:, 2)− q ×G(:, 1)

12 G(2, :) = G(2, :)− q ×G(1, :)

13 Z(:, 2) = Z(:, 2)− q × Z(:, 1)

14 end

15

16 re tu rn Z

.
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Analogous to the Euclid’s algorithm the computed matrix Z can be viewed as the
product of a permutation and a Gauss transformation [24]:

[

0 1
1 −q

]

=

[

0 1
1 0

] [

1 −q
0 1

]

Furthermore, the Gram matrix G = [gij ] is a symmetric matrix which is taken
as input to Algorithm 1 carries noteworthy information. Namely that the diagonal

elements gii = ‖bi‖
2
2 and the off-diagonal elements gij = bTi bj , both of which appear

in condition (1).

For an n-dimensional lattice generated by a matrix B we can apply Algorithm
1 to every two-dimensional sublattice. The resulting algorithm, called the Jacobi
method, Lagrange-reduces all possible pairs of columns of B in a row-by-row fashion.
We present a serial cyclic-by-row version of the Jacobi method for lattice basis
reduction.

Algorithm 2 (Jacobi): Given an n-dimensional lattice generator matrix B, this
algorithm computes a unimodular matrix Z such that the columns of the generator
matrix BZ form a reduced basis.

1 G = BTB

2 Z = In
3

4 whi le not a l l p a i r s (bi, bj) s a t i s f y (1)

5 f o r i = 1 to n− 1

6 f o r j = i+ 1 to n

7 q = G(i, j)/G(j, j)

8 i f |q| > 1/2

9 G(:, j) = G(:, j)− ⌊q⌉ ×G(:, i)

10 G(j, :) = G(j, :)− ⌊q⌉ ×G(i, :)

11 Z(:, j) = Z(:, j)− ⌊q⌉ × Z(:, i)

12 end

13 i f G(i, i) > G(j, j)

14 swap G(:, i) and G(:, j)

15 swap G(i, :) and G(j, :)

16 swap Z(:, i) and Z(:, j)

17 end

18 end

19 end

20 end

21

22 re tu rn Z

.
Algorithm 2 implicitly applies Lagrange’s algorithm to every two-dimensional sub-
lattice. Lines 7 to 17 carry out the reduction operations presented in Algorithm 1.
Some optimizations have also been made. For example, the while loop in Lagrange’s
algorithm was removed and replaced by the while loop on line 4 of Algorithm 2.

4. A Parallel Algorithm

A closer inspection of the Jacobi method presented in Algorithm 2 reveals further
optimizations. Most notably that the algorithm can be parallelized by carrying out
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Lagrange’s algorithm on two-dimensional sublattices simultaneously. However, as
with most parallel algorithms, we must be careful to avoid data hazards.

The two for loops on lines 5 and 6 generate all column pair combinations (i, j) up to
ordering, which makes sense as reducing columns i and j is equivalent to reducing
columns j and i. The parallel version of Algorithm 2 must emulate such an ordering
to ensure condition (1) is met by all column pairs of the input lattice generator
matrix. Evidently, we must figure out the maximum number of parallel reductions
we can carry out. Clearly we cannot reduce all column pairs simultaneously. To see
why, consider two threads simultaneously reducing columns pairs (i, j) and (j, k)
with i < j < k. On line 9 of the algorithm, the first thread reduces column j by an
integer multiple of column i. Similarly, the second thread reduces column k by an
integer multiple of column j. This poses a data hazard as there is a race condition
on the value of G(i, j) since the thread reducing (i, j) could update G(i, j) before
the thread reducing (j, k) uses it to update G(j, k).

Alternatively we can follow the ordering presented in Algorithm 2 and reduce col-
umn pairs (i, i + 1), (i, i + 2), . . . , (i, n) in parallel, followed by the reduction of
column pairs (i + 1, i+ 2), (i+ 1, i+ 3), . . . , (i + 1, n), and so forth. However, this
ordering also presents data hazards from the swaps on lines 14-16. Even if we can
ensure that the swaps never happen (i.e. the if statement on line 13 is never true),
this ordering is suboptimal n the sense that at each iteration we decrease the num-
ber of threads which are performing reductions. The extreme here is that on the
last iteration only one thread is performing a reduction, namely on the column pair
(n− 1, n) while other threads are idle.

The solution is to use an ordering which maximizes concurrency while avoiding
data hazards and race conditions. One such ordering is called the chess tourna-
ment ordering and is described in [25]. For a given n-dimensional input generator
matrix, the chess tournament ordering is a mechanism of generating all n(n− 1)/2
combinations of column pairs over n− 1 iterations generating n/2 distinct column
pairs.

Chess tournament ordering is best described through an example. Without loss of
generality we assume that n, the number of columns of he input generator matrix,
is even. For the sake of example we further assume that n = 8. The mechanism
is implemented by two arrays of size n/2 = 4 in our case. Figure 1 depicts the
initialization as well as one permutation of the chess tournament ordering, where the
dashed arrows represent the transition between the two states. The column pairs are
selected based on array indices which are labeled above each box. In our example,
after initialization the mechanism generates column pairs (1, 5), (2, 6), (3, 7) and
(4, 8). Clearly, it takes n − 1 = 7 permutations to generate all column pairs. This
ordering mechanism is employed in the following parallel version of Algorithm 2:

Algorithm 3 (Parallel Jacobi): Given an n-dimensional lattice generator matrix
B, this algorithm computes a unimodular matrix Z such that the columns of the
generator matrix BZ form a reduced basis.

Main Thread:

1 G = BTB

2 Z = In
3

4 f o r i = 1 to n/2
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1 2 3 4

5 6 7 8

1 2 3 4

Array 1:

Array 2:

1 5 2 3

6 7 8 4

1 2 3 4

After initialization After one permutation

Figure 1. Chess tournament ordering with n = 8

5 arr1 (i) = i

6 arr2 (i) = i+ n/2

7 end

8

9 launch n/2 ch i l d threads

10

11 re tu rn Z

.

Child Thread:

1 whi le not a l l p a i r s (bi, bj) s a t i s f y (1)

2 i = arr1 (tid)

3 j = arr2 (tid)

4

5 i f i > j

6 swap i and j

7 end

8

9 q = G(i, j)/G(j, j)

10

11 i f |q| > 1/2

12 G(:, j) = G(:, j) − ⌊q⌉ ×G(:, i)

13 Z(:, j) = Z(:, j) − ⌊q⌉ × Z(:, i)

14 end

15

16 thread b a r r i e r

17

18 i f |q| > 1/2

19 G(j, :) = G(j, :)− ⌊q⌉ ×G(i, :)

20 end

21

22 thread b a r r i e r

23

24 i f G(i, i) > G(j, j)

25 swap G(:, i) and G(:, j)

26 swap Z(:, i) and Z(:, j)
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27 end

28

29 thread b a r r i e r

30

31 i f G(i, i) > G(j, j)

32 swap G(i, :) and G(j, :)

33 end

34

35 permute arr1 and arr2

36

37 thread b a r r i e r

38 end

.
Algorithm 3 consists of two parts; the main thread which initializes the data and
the child threads which carry out the reduction using the said data. The first
thing to notice about the child threads is the use of the special keyword tid which
stands for the thread identification number. We assume that the our environment
generates a unique incremental tid (starting at 1) for every child thread. The tid
is used to extract column pair that a specific thread will reduce.

The next thing to note is the use of thread barriers. A thread barrier (or thread
fence) forces the current thread to wait until all other threads have also reached
the barrier. It is a synchronization technique used to avoid race conditions. As an
example, the thread barrier on line 16 is used to avoid the race condition between
the row and column updates of the matrix G. The assignments on lines 12 and 19
interfere with each other as they both overwrite the value of G(j, j). The thread
barrier must be placed outside of the branching if statement to avoid the case in
which one thread branches away while another does not. In this case the former
thread will encounter a thread barrier, but the latter thread will never reach the
barrier as it branched away, hence the program enters a deadlock.

5. GPU Implementation

To achieve high performance, Algorithm 3 requires that many threads are reducing
a given basis simultaneously. The current models of multi-core CPU’s do not offer
such functionality as they are typically limited to 4 or 8 threads running concur-
rently. This is why for our experiments we chose to implement Algorithm 3 on the
GPU, specifically using the CUDA parallel computing platform [26].

Unlike the CPU (referred to as the host), the GPU (referred to as the device) is
not optimized to achieve performance through fast serial program execution, but
rather the GPU exhibits high performance through massive parallelization. There-
fore, only problems which are parallel in nature and can be recursively decomposed
into similar subproblems will benefit from the massive parallelization offered by the
GPU. The maximum number of parallel threads executing on a device support-
ing the CUDA parallel computing platform exclusively depends on the underlying
architecture’s computing capability [26].

The host and device must work in unison to coordinate a task to perform. This
relationship starts out by transferring data from the system memory (RAM) to
the device memory. The host then invokes kernels, which are programs executing
on the device in parallel, on the device to compute on the said data. The host
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then transfers the memory back from the device and continues execution. CUDA
programs are heterogeneous in the sense that both the host and the device can
be executing programs at the same time, however synchronization between host
programs and kernels is often desired and is provided by the CUDA framework.

There are many different types of memory on the device both implemented in
hardware and as abstractions. The two most important ones are global memory
(analogous to RAM) and shared memory (analogous to L1 cache). Global memory
is automatically cached and persists throughout the execution of a kernel and is
useful for transferring memory from the host to the device and vice versa. Memory
coalescing [27] is one way of obtaining optimal memory bandwidth from global
memory. Memory coalescing occurs when consecutive threads access consecutive
memory locations. Memory coalescing was used in our implementation whenever
appropriate.

In comparison to shared memory, which is a fast user managed memory space local
to a block of threads, global memory is quite slow. A common way of increasing
performance is to transfer chunks of data from global memory to shared memory
in a coalesced manner. This technique was used to reduce the memory access
time of accessing array indices in the two permutation arrays on lines 2 and 3. In
theory, we could obtain maximum memory bandwidth by transferring all data from
global memory to shared memory and then performing the computations. However,
shared memory is limited (48 KB in our case) hence this is not feasible.

Another optimization technique employed in our implementation was to eliminate
the swaps on lines 25, 26 and 32 by using a permutation array. Meaning that
instead of swapping entire rows and columns (very memory intensive) we swap row
and column indices in an array and reference this array whenever accessing data
from the matrices. Because we only need a one dimensional array, we can store it
in shared memory for optimal performance.

Unfortunately, the reductions performed on lines 12, 13 and 19 cannot take advan-
tage of memory coalescing because of our column pair ordering we cannot ensure
that consecutive threads are accessing consecutive memory locations. However loop
unrolling was found to be effective at speeding up the reduction of the rows and
columns.

6. Experiments

In this section we present benchmarks of our implementation by comparing the per-
formance of our GPU implementation with a serial CPU version. All experiments
were performed on an Intel Core i5-2500K and an NVIDIA GTX 660 with CUDA
5.0. This GPU has 960 CUDA cores operating at 980 MHz and 2.0 GB global
memory operating at 6008 MHz frequency. Both the CPU and GPU implementa-
tions use single precision floating-point arithmetic. The results of the reductions of
the CPU and GPU implementations are verified term by term. The effectiveness
of the Jacobi method is measured by the Hadamard ratio δ(B), also known as the
orthogonality defect or linear independence number [1] and is defined as:

δn(B) =

∏n

i=1 ‖bi‖2
√

det(BTB)
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From the Hadamard’s inequality, δ(B) ≥ 1, and the equality holds if and only if
the vectors are pairwise orthogonal. This numerical metric describes the relative
deviation from a fully orthogonalized basis and can be used to rank different bases
of a lattice based on the pairwise orthogonality of the vectors in the basis.

Table 1. GPU vs. CPU benchmark statistics

Matrix Size GPU (ms) CPU (ms) δ Original δ Reduced
10 0.234 1.927 1.200
20 0.374 1.797 1.674
30 0.479 1.664 1.641
40 0.624 1.682 1.677
50 0.882 40
100 2.481 147
200 7.733 432
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Figure 2. GPU benchmark of Jacobi method.

Table 1 gives benchmark statistics on the GPU implementation of the Jacobi
method against the CPU implementation. The timing measurement excludes copy-
ing the data to and from the device. Normally distributed dense random matrices
were generated and 100 samples for each matrix size are averaged to produce the
given statistics.

Figures 2 and 3 depict the results presented in Table 1 with a number of omitted
data points. From Figure 3 we can see that the execution time of the GPU imple-
mentation is nearly linear in comparison to the CPU. The GPU implementation
achieves a speedup factor of roughly 58 times on average which is quite impres-
sive. Figure 4 depicts the effectiveness of the reduction method according to the
Hadamard ratio. The Hadamard ratio of the reduced basis is always smaller, al-
though for matrices of size greater than 30 the Hadamard ratio of the original basis
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is not much higher than that of the reduced basis due to the nth root in the defi-
nition of the ratio δ(B). Further speedups are expected on the newest generation
of GPUs.
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Figure 3. GPU and CPU benchmark of Jacobi method.
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Figure 4. Hadamard ratio of original vs. reduced bases.
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