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Abstract. We investigate the sedimentation dynamics of a binary mixture, the species
of which differ by their Stokes coefficients but are identical otherwise. We analyze
the sedimentation dynamics and the morphology of the final deposits using Brownian
dynamics simulations for mixtures with a range of sedimentation velocities of both
species. In addition, we use the lattice Boltzmann method to study hydrodynamic
effects. We found a threshold in the difference of the sedimentation velocities above
which the species in the final deposit are segregated. The degree of segregation in-
creases with the difference in the Stokes coefficients or the sedimentation velocities
above the threshold. We propose a simple analytical model that captures the main
features of the simulated deposits.
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1 Introduction

The process of sedimentation, where particles in suspension settle in the presence of a
gravitational field, is ubiquitous over a wide range of length scales [1–5]. For exam-
ple, sedimentation plays a relevant role in natural water transport, affecting the chemical
composition of the seabed [6] and the water quality in reservoirs [7, 8]. At the other end
of the scale, sedimentation by ultracentrifugation is used as an analytical tool in medical,
biological and pharmaceutical applications, where the constituents of a suspension are
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separated by molecular weight [9, 10]. At the fundamental level, sedimentation exper-
iments were developed and used extensively in statistical physics and colloidal science
to evaluate the equation of state of hard spheres [11] and to study the phase diagram of
colloidal particles [12].

Studies of the sedimentation of mixtures of particles that differ in their buoyant mass
revealed a rich phase stacking diagram under thermodynamic equilibrium conditions
[13, 14]. The structure of the final deposit depends not only on the difference in buoyant
masses but also on the particle-particle interactions [15–19]. The roughness of the particle
surface is known to affect the hydrodynamics of the surrounding fluid, e.g., alters the
lubrication film thickness [20, 21]. These conditions could be realized in an experiment
with particles composed by a rigid core covered by an elastic surface layer, which would
affect the hydrodynamics while the pairwise interactions remain dominated by the rigid
cores. In order to shed light on the role of the hydrodynamic radius on the sedimentation
dynamics, we consider a binary mixture of particles that differ only through their Stokes
coefficient when using molecular dynamics. Following a method developed previously
[22], we consider that the particles differ by their Stokes coefficients only, and are identical
otherwise. Thus, the thermodynamic phase is perfectly mixed and demixing, if it occurs,
is dynamically driven. Hydrodynamic interactions are know to be relevant in different
limits, triggering, for example, a number of different instabilities [23, 24]. To account for
hydrodynamic effects, we consider a complementary set of simulations by modelling the
fluid-particle interaction with the lattice Boltzmann method (LBM).

When thermal fluctuations are negligible, colloidal particles in solution are expected
to sediment with a sedimentation velocity that depends only on the strength of the grav-
itational field and their Stokes coefficient. Thus, distinct Stokes coefficients imply differ-
ent sedimentation velocities. In what follows, we show that the morphology of the final
deposit depends crucially on the ratio of the sedimentation velocities. Above a certain
threshold, which will be quantified below, the particles are segregated in the final de-
posit, as they arrive at the substrate at different rates and do not have time to relax to the
thermodynamic equilibrium mixed state. We investigate this segregation and discuss its
dependence on the model parameters.

The paper is organized in the following way. In Section 2, we describe the model
and the details of the simulations. Results from the particle-based simulations (Brownian
dynamics), LBM and an analytical model are discussed in Section 3. Finally, we draw
some conclusions in Section 4.

2 Model and simulations

2.1 Molecular dynamics

We consider a binary mixture of identical spherical particles where the two species are
characterized by distinct Stokes coefficients. The particles are in a uniform gravitational
field along the vertical direction (y-direction) and inside a rectangular two-dimensional
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box of width Lx and height Ly. The boundary conditions are periodic in the x-direction
and are rigid walls in the y-direction. The trajectory of each particle i is obtained by
solving the Langevin equation, in the overdamped regime,

γi
d~ri

dt
=−∇i

[

Nt

∑
j

Vij(r)

]

+m~g+~ξi, j 6= i, (2.1)

where~ri is the position of particle i, Vij is the pairwise potential, Nt the total number of
particles, m is a parameter that takes into account the effects of mass and buoyancy of

the particles, ~g =−g~ey the gravitational field, ~ξi a stochastic force, and γi is the Stokes
coefficient. The two species differ through the values of γi: γ f for fast particles and γs

for slow ones, such that γ f <γs. The diffusion coefficient of each species is also different,
as given by the Stokes-Einstein relation Di = kBT/γi. As a result, the two species have
different sedimentation velocities, ~vi =

m
γi
~g since the particles have the same mass. The

fluid is in thermodynamic equilibrium at a thermostat temperature T and hydrodynamic
effects are neglected. Thus the time series of the stochastic force is drawn from a Gaussian
distribution with zero mean and uncorrelated second moments in time and space, given

by
〈

ξk
i (t)ξ

l
i(t

′)
〉

=2kBTγiδklδ(t−t′), where k and l refer to the coordinates of the vector ~ξi.
In order to focus on purely dynamical effects, we consider that the particle-particle

interactions are identical for all the particles. We describe this interaction through a (re-

pulsive) Lennard-Jones potential, truncated at a cut-off distance rcut=2
1
6 σ,

Vij(r)=ǫ

[

(σ

r

)12
−
(σ

r

)6
]

, (2.2)

where ǫ sets the energy scale and σ the size of the particles. Thus, the potential depends
only on the distance r= |~ri−~rj| between the particles i and j.

Hereafter, σ sets the unit of length. The energy is expressed in units of kBT, time is de-
fined in units of the Brownian time τ=σ2γ(kBT)−1 and the strength of the external field,
g, is given in units of kBT/(mσ). Eq. (2.1) is integrated using a second-order stochastic
Runge-Kutta numerical scheme, proposed by Brańka and Heyes [25], with a time-step of
∆t=10−4τ. Initially, the particles are distributed uniformly at random (without overlap-
ping) in the simulation box. Unless stated otherwise, we set ǫ=1 and g=12. The box size
is Ly=200 and Lx =37.5 and the binary mixture consists of N=3000 particles, with N/2
particles of each species. The initial number density is ρ0 =0.4.

2.2 Lattice Boltzmann method

To account for hydrodynamic effects, we employ a Lattice Boltzmann method [26, 27] to
describe the motion of the suspended medium and couple it to a discrete element simu-
lation of the particles. For the fluid, the position ~x is discretized on a regular lattice with
lattice spacing ∆x and the velocity of the particles in the suspending fluid is discretized
according to the D3Q19 lattice (with 19 vectors in three dimensions): the weights for the
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different velocity vectors are wα=1/3 for |c|2 =0, wα=1/18 for |c|2 =1∆x and wα=1/36
|c|2 =2∆x, where α=1,··· ,19 labels the velocity vector. The speed of sound in this lattice
is cs =1/

√
3. The LBM is based on solving the dynamics of the distribution function fα,

which is governed by the Boltzmann equation. Its discretized version with the single
relaxation time collision operator is:

fα(~x+~cα,t+∆t)− fα(~x,t)=− fα− f
eq
α

τf
∆t, (2.3)

where ∆t is the time step and τf is the relaxation time which sets the kinematic viscosity

of the fluid ν= c2
s (τf −1/2). The equilibrium distribution function is given by:

f
eq
α =ρwα

[

1+
~cα ·~u

c2
s

− u2

2c2
s

+
(~cα ·~u)2

2c4
s

]

, (2.4)

where ρ is the density and ~u is the macroscopic velocity of the fluid, calculated as follows:

ρ=∑
α

fα, ~u=
1

ρ ∑
α

~cα fα. (2.5)

The simulation results using LBM are expressed in lattice units, in which ρ=1, ∆t=1 and
∆x=1.

At the solid surfaces moving with velocity ~us, the no-slip condition is applied though
the bounce-back boundary condition:

fᾱ(~xs,t+∆t)= fα
∗(~xs,t)−2wαρs

~cα ·~us

c2
s

, (2.6)

where ᾱ=−α represents the opposite velocity vector, fα
∗ is the distribution propagated

towards the solid surface and ρs is the average density of the fluid node neighbors. The
drag force on the solid is calculated using the momentum exchange method [28, 29]:

~Fd=
∆x3

∆t ∑
~xs,α

[

2 fα
∗(~xs,t)−2wαρs

~cα ·~us

c2
s

]

~cα, (2.7)

which uses the reflected distributions in the bounce-back f ∗α . When two particles ap-
proach each other and there are few or no fluid nodes between their surfaces, Eq. (2.7)
becomes inaccurate since the space between the particles is interpreted as vacuum. To
correct for this, we consider a hydrodynamic lubrication force, which is repulsive and
points in the direction connecting the center of the particles of strength [30]:

Fl =
3πρνR2vr

2h
, (2.8)

where vr is the relative velocity between the particles, h is the minimum distance between
their surfaces and R is the radius of the particles. This force diverges as h→ 0; thus we
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introduce a cutoff at h = 0.01R. All the forces acting on the particles are combined to
describe its trajectory using the Verlet method. As the particle moves in the fluid, liquid
nodes are destroyed and created. For the destroyed fluid nodes, the fluid information
is erased and the fluid momentum is transferred to the solid. For the new fluid nodes
as in Ref. [31], the density is set to the average density of the neighbouring fluid nodes
in the first belt ρ̄ (considering all nodes reached by the lattice vectors of D3Q19) and the
velocity field to the solid velocity ~us. The distribution function of these new nodes is the
corresponding equilibrium distribution, fα = f

eq
α (ρ̄,~us).

The collisions between particles i and j are mediated by an elastic force [32]:

~Fel
ij =















0, εij =0,

klεij,
dεij

dt ≥0,

kuεij,
dεij

dt <0,

(2.9)

where εij is the overlapping vector, defined as:

εij=

{

0, if 2R−|~rij |≤0,

2R−|~rij|, otherwise.
(2.10)

Here,~rij is the vector connecting the centers of the two particles from j to i and kl and ku

are the elastic coefficients when the colliding particles are approaching or moving away
from each other, respectively. The interaction with the walls also follows Eq. (2.9), but
considering the distance of the particle to the wall.

In the LBM simulations, we use the following parameters, all in lattice units. The
dimensions of the simulation box are Lx×Ly=113×413 and the relaxation time is τf =0.7.
We simulate 100 circular particles with radius R=5, the same density as the fluid, ku=0.1
and ks = 0.2, up to t = 4×106, which is sufficient for all the particles to sediment and
stop moving. In order to consider particles with different terminal velocities, we apply
different external forces to each species (fast and slow). To the slow particles we apply
an acceleration (or force density) as=3×10−6 and, to the fast ones, a f =as/β, where β≤1
is the ratio of the forces. As will be discussed in Section 3.3 we find that β corresponds
to the ratio between the velocities of the slow vs and fast particles v f for single particles:
β=vs/v f . The particles of each species are chosen uniformly at random and we consider
10 samples for each value of β. The different terminal velocities could also be imposed
with slip boundary conditions as in Ref. [33].

3 Results

In the overdamped regime and neglecting thermal fluctuations, one expects that single
particles move with a constant sedimentation velocity given by vi=

mg
γi

. The rate of parti-
cle accumulation at the bottom depends on the flux density of each species at the growing
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Figure 1: Density profiles as function of the height in the final deposit for fast (red lines) and slow (blue lines)

particles averaged over 102 samples for (a) v= vs
v f
=1, (b) v=0.5 and (c) v=0.1, and g=12.

front of the deposit, Ji = ρivi, where ρi is the particle number density of species i. Dif-
ferences in the flux density of each species result in demixing along the vertical direction
as particles accumulate at different rates on the bottom and thermal fluctuations are not
strong enough to promote mixing. In what follows, we set the particle densities to be
the same (equimolar mixture) and vary their velocities only. The demixing that occurs
during sedimentation is, therefore, purely dynamical in nature. The relevant control pa-

rameter is the ratio between the sedimentation velocities of the two species, v= vs
v f
=

γ f

γs
.

In order to investigate the dependence on this parameter, in the results that follow, we
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fix γ f and vary v by changing γs, i.e., by changing vs, with v f constant. The degree of
demixing depends on v as seen from the final deposit density profiles ρ f (y) and ρs(y) in
Fig. 1. When v=1 the density profiles are identical as the particles are indistinguishable.
When v 6=1, the final deposit can be divided into two regions: one, at the bottom, where
the density of the fast particles is higher than the density of the slow ones and another,
at the top of the deposit, composed essentially by slow particles. The difference in the
particle densities in the first region and the thickness of the second region increase as v
decreases (see Fig. 1(b,c)).

In order to characterize the segregation along the vertical direction, we define a pa-
rameter

Φ=
1

L′
y

L′
y

∫

0

|ρ f −ρs|
ρ f +ρs

dy, (3.1)

where L′
y corresponds to the height at which the last moving (slow) particle is located,

given by L′
y= Ly−vst.

3.1 Numerical results

To evaluate numerically the integral in Eq. (3.1), we divided the simulation domain into
horizontal slices of height ∆y= 1.5 and width Lx. The integral is then converted into a
sum,

Φn(t)=
1

Nb

Nb

∑
i

|N f −Ns|
N f +Ns

, (3.2)

where Nb is the number of slices and, N f and Ns are the number of fast and slow particles
in each slice, respectively. This parameter is one if the species are completely segregated
and zero if they are perfectly mixed.

The time evolution of Φn is shown in Fig. 2 (bottom plot). Initially, Φn grows until it
reaches a maximum, Φmax, at a time defined as t∗. For t>t∗, this parameter decreases until
it saturates asymptotically. Note that Φn is not zero at t=0. Since the particles are initially
distributed uniformly at random, the average absolute difference |N f −Ns| for a given
slice can be estimated from a binomial distribution. This difference follows a half-normal

distribution with mean µ=
√

2Nt
π , where Nt = N f +Ns is the total number of particles in

the slice. Therefore, the value of Φn at the starting configuration is Φn(0)=Φ0=
√

2
ρ0Lx∆yπ ,

where ρ0 is the initial total density of particles and it vanishes only in the thermodynamic
limit. The initial increase in Φn corresponds to the dynamical demixing regime where
there is a rapid accumulation of the fast particles in the deposit with a fraction of the
slow particles dragged along while the remaining slow particles lag behind. The peak is
reached when all the fast particles deposit at t= t∗ (see Fig. 2(c)). For t> t∗, Φn decreases
until the remaining slow particles deposit, on a top layer consisting (almost) exclusively
of slow particles, if the difference in the velocities is sufficiently large (see Fig. 2(d)). We
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Figure 2: Time evolution of the parameter Φn averaged over 102 samples for v= vs
v f
=0.5, g=12 and ρ0 =0.4.

The snapshots are for four different values of t, namely, (a) 0,(b) 70,(c) 150, (d) 275.

define this instant as the saturation time, t f inal . Note that, the level of segregation of the
particles remains almost the same from t∗ to t f inal , as seen from the snapshots (c) and
(d). This parameter depends on the level of segregation and on L′

y(t) that decreases with
time. The region where only slow particles are present occupies a larger area at t∗ than at
t f inal and the same number of particles contribute to the integral.

To characterize the structure of the deposit we measured the six-fold bond order pa-
rameter, 〈φ6〉, defined as

〈φ6〉=
1

N

N

∑
l

1

6

∣

∣

∣

∣

∣

Nb

∑
j

ei6θl j

∣

∣

∣

∣

∣

, (3.3)

where N is the total number of particles, Nb is the number of neighbors (within a cutoff
of 2.5) and θlj is the angle between the line that connects the particles j and l with the
x-axis. This is a continuous order parameter that is one when the particles are arranged
in a perfect hexagonal structure and it decreases when the order decreases. At the low
temperatures considered, the particles in the deposit form a nearly perfect hexagonal
structure with 〈φ6〉= 0.9 and the level of segregation remains the same until the end of
the simulation (Φn is constant). This does not correspond to the configuration expected at
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Figure 3: Time dependence of Φn(t) on the ratio of the particle velocities, v. The solid lines with open symbols
are the results of BD simulations and the dashed lines are obtained from the analytical model (Eq. (3.15)).

thermodynamic equilibrium where the particles form a completely mixed phase, as they
are indistinguishable [22]. Obviously, the deposits observed at the end of the simulations
are transient but their relaxation towards equilibrium occurs on much longer timescales
than the observation time.

The solid lines with open symbols in Fig. 3 show the time dependence of Φ obtained
numerically for different values of the velocity ratio v. As expected, Φmax increases as the
ratio v decreases from one, revealing that, as the difference of the sedimentation velocities
increases, higher levels of segregation are attained in the deposit.

Reducing v, decreases the sedimentation velocity of the slow particles (keeping the
velocity of the fast particles constant). However, the effective velocity of the fast particles
also decreases due to the interactions with the slow ones (which act as obstacles) and, as
a consequence, the time when the peak in Φ is reached, t∗, also increases. The saturation
time, t f inal , is also affected by v since the difference between t∗ and t f inal is the time taken
by the remaining slow particles to deposit and this depends only on their sedimentation
velocity. It is also observed that the analytical model underestimates the time t∗ at which
the maximum of the order parameter occurs, when compared to the simulation results.
This feature is a natural consequence of neglecting the particle-particle collisions which
will tend to decrease the effective velocity of the fast particles in the numerical simula-
tions.

The parameter Φn measures the segregation in the entire system but we can also mea-
sure the segregation in the deposit using the following definition [34]

Φd=
1

Nd

Nd

∑
i

(

N f −Ns

)2

(

N f +Ns

)2
, (3.4)

where Nd is the total number of particles with φ6 > 0.9. N f and Ns are the number of
fast and slow particles within the cutoff distance 2.5 of particle i. The segregation in
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Figure 4: Time evolution of the segregation in the deposit.

the deposit increases monotonically with time (see Fig. 4). At t∗, the slope of the curve
changes signalling the phase where only slow particles arrive.

3.2 Analytical model

We consider now a simple analytical model. We assume that the particles move with a
constant sedimentation velocity vi=

mg
γi

that depends only on the particle species, and we
neglect particle-particle interactions and thermal fluctuations. We define the thickness of
the packed deposit as l∗(t). The number of particles of a species in the region y< l∗(t)
at a given time is the number of particles initially at y< l∗(t) plus those of that species
that entered into that region. The latter can be estimated considering that the fraction of
particles of species i that entered into the region is vi

v f +vs
. Despite the fact that particle

interactions are soft, we assume an upper bound for the density, given by the packing

fraction of disks with diameter σ=1, i.e., ρmax=
2
√

3
3 . We can then estimate the density of

particles by

ρi(y< l∗,t)=
ρ0

2
+(ρmax−ρ0)

vi

v f +vs
, (3.5)

where (ρmax−ρ0) is an estimate of the increase in the local density.

The integral in Eq. (3.1) for t < t∗ can be replaced by the sum of three terms, cor-
responding to the contribution of three different regions, as shown in Fig. 5. Region I
corresponds to the deposit, where the density of each species is given by Eq. (3.5). We
also account for the non-zero segregation factor, Φ0, which arises from the initial uniform
distribution of the particles and the discrete nature of the numerical integration. Region
II, where the two types of particles are perfectly mixed, is delimited by the surface of the
deposit, y≈ l∗(t) and y≈Ly−v f t, the height of the last fast particle. Here, we assume that
the number of particles of either species that leave region II is approximately the same as
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Figure 5: To evaluate the integral in Eq. (3.1) the space is divided into three regions: region I in the interval
[0,l∗(t)], region II in [l∗,Ly−v f t] and III in [Ly−v f t,Ly−vst]. In region I the integrand is given by Eq. (3.5),
in region II the integrand is Φ0 and we consider that the number of fast and slow particles entering this region
is approximately the same as the number of particles leaving the region, and in region III the integrand is one,
as there are only slow particles.

the number that enters it and, therefore, the integrand is the constant Φ0. Region III con-
tains particles of only one type and is delimited by y≈Ly−vst≡L′

y, the position of the last
slow particle. In this region, the integrand is one as only slow particles are present. The
number of fast, N f , and slow particles, Ns, in regions I and II can then be regarded as the
number of successes and failures in a binomial distribution of Nt trials. The probability
that a particle in each of these regions is a fast particle is

p f ,α=

ρ0

2 +(ρα−ρ0)
1

1+v

ρα
, (3.6)

and the probability that it is a slow particle is

ps,α=

ρ0

2 +(ρα−ρ0)
v

1+v

ρα
, (3.7)

where ρα is the total density of each region (ρmax in region I and ρ0 in region II). The
term |N f −Ns| corresponds to the absolute difference between successes and failures of
Nt trials that follow a folded normal distribution whose expected value is given by:

µ′
α=σα

√

2

π
exp

(−µ2
α

2σ2
α

)

+µα erf

(

µα√
2σα

)

. (3.8)

Here, µα =Nt(p f ,α−ps,α) and σ2
α =4Nt p f ,α ps,α+µα correspond to the expected value and

to the variance of the Gaussian distribution (not “folded”) of the difference between suc-
cesses and failures for the probabilities p f ,α and ps,α. The integral for t≤t∗ is then approx-
imated by

Φ(t≤ t∗)=
1

L′
y







l∗(t)
∫

0

µ′
I

ρmax∆yLx
dy+

Ly−v f t
∫

l∗

µ′
I I

ρ0∆yLx
dy+

L′
y

∫

Ly−v f t

dy






. (3.9)
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For t∗< t< t f inal the thickness of region II is zero and then

Φ(t> t∗)=
1

L′
y







L∗
∫

0

µ′
I

ρmax∆yLx
dy+

L′
y

∫

L∗

dy






, (3.10)

where L∗= l∗(t∗) is the length of the structure at t= t∗.
We estimate l∗(t) in the following way. The number of deposited particles is given by

the flux of particles through the line defined by y= l∗(t) plus the number of particles that
is initially present in the region below this height. We consider that particles travel with
constant velocity, vi, for y> l∗(t) and that the flux through that line for each species can
be written as ji(t)=

ρ0

2 viLxt. The number of particles in the deposit, Ns, is

Ns =ρmaxLxl∗(t)= Lxl∗(t)ρ0+
(ρ0

2
v f +

ρ0

2
vs

)

tLx. (3.11)

We can now rearrange the terms and the expression for l∗ is

l∗(t)=
ρ0

2 (1+v)

ρmax−ρ0
v f t. (3.12)

For t> t∗, all the fast particles are deposited and

L∗=
ρ0Ly(1+v)

2
(

ρmax−ρ0+
ρ0

2 (1+v)
) . (3.13)

Since L∗= l∗(t∗),

t∗=
(ρmax−ρ0)Ly

v f

[

1
2 ρ0(1+v)+(ρmax−ρ0)

] . (3.14)

The height of the final deposit is l∗(t f inal)=
N

ρmaxLx
, where t f inal is the time when the last

slow particle deposits, which is estimated as t f inal = (Ly− N
ρmax Lx

)/vs. At later times the

parameter Φ remains constant as no more particles are added to the deposit.
Thus, the parameter Φ is

Φ(t)=



































1
Ly−vst

[

ρ0(1+v)
2(ρmax−ρ0)

(

µ′
I ρ0−µ′

I Iρmax

ρmaxρ0∆yLx

− µ′
I I)

ρ0∆yLx
+1−v

)

v f t+
Lyµ′

I I
ρ0∆tLx

]

, t≤ t∗,

1+ L∗
Ly−vst

[

µ′
I

ρmax∆yLx
−1

]

, t∗≤ t≤ t f inal ,

1+ L∗
Ly−vst f inal

[

µ′
I

ρmax∆yLx
−1

]

, t≥ t f inal .

(3.15)

The dashed lines in Fig. 3 show the time dependence of Φ obtained from Eq. (3.15) for
different values of the ratio v. The comparison with the numerical results reveals that the
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analytical calculation reproduces the main features of the simulations. The highest levels
of segregation are achieved for the lowest v, when the difference between the velocities is
largest. In this limit, the slow particles travel much slower than the fast ones and are, on
average, the last to deposit forming a thick layer on top of the first deposit consisting of
slow particles only. For v=1, the particles are indistinguishable and the maximum value
of Φ is the (finite-size) initial value.

So far, we discussed segregation along the y-direction. However, the snapshot in
Fig. 2(d) suggests that at the bottom of the deposit there are linear-like clusters along the
y-direction, which may promote segregation along the x-direction. To further investi-
gate this question, we identified all the clusters of particles in the final deposit below the
top layer of slow particles and calculated their inertia tensor. We defined the parameter
rI =

1
Nc

∑rc, where rc is the ratio of the smallest and largest (non-zero) eigenvalues of the
inertia tensor of cluster c and the sum is over all clusters of the same species with Nc the
number of such clusters. This parameter is one when all the clusters are symmetric and
falls below one as the clusters become asymmetric. We measure rI for clusters larger than
two particles excluding the largest cluster, where finite size effects may be significant. A
deposit with randomly distributed particles is obtained for v= 1, when the particle are
indistinguishable. In this limit, rI is low, which suggests the prevalence of symmetric
clusters. In the limit of low v, the number of fast particles is much larger than the number
of slow ones in the region under consideration and they form a single large cluster. Ac-
cordingly, as shown in Fig. 6 (top panel), rI increases for fast particles as v decreases. The
opposite occurs for the slow particles where rI decreases, showing that, as the ratio of ve-
locities decreases, the clusters of slow particles become asymmetric. In the bottom panel
of Fig. 6, we plot the average angle, 〈θ〉, with the y-direction of the eigenvector corre-
sponding to the largest eigenvalue of the inertia tensor for each cluster of slow particles.
As v decreases, 〈θ〉 also decreases revealing that the clusters in the deposit tend to extend
along the y-direction as the difference of the particles velocities increases. Accordingly,
the distribution of the angles of the clusters with the y-direction (inset of Fig. 6) the num-
ber of clusters with small angles increases for low v. This is likely a consequence of the
laning phenomenon observed in binary mixtures of species moving at different velocities
in region II [34].

Although we have neglected the effect of particle-particle collisions during sedimen-
tation in the analytical model, the simulation and analytic results are in good agreement
for intermediate and low densities. In the limit of high densities, however, the simulation
and analytic results disagree, as particle-particle interactions becomes relevant. In Fig. 7
we plot the time-dependence of the order parameter for v=0.5 for the system depicted in
Fig. 3 (in blue) with density ρ0 =0.4 and for a system with a density 60% higher, for two
system sizes (red and green). In spite of the fact that at higher densities the time depen-
dence of the order parameter obtained from Eq. (3.15) is not in quantitative agreement
with the numerical simulations, the maximum of the order parameter and its final value
are similar.
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Figure 6: Top panel: ratio between the lowest and highest (non-zero) eigenvalues of the inertia tensor of the
clusters of particles in the final deposit. Bottom panel: average angle between the principal eigenvector of the
slow cluster with the y-direction. In the inset we show the cluster angle distribution for different velocity ratios.
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Figure 7: Order parameter from the simulations (solid line) and the analytical model (dashed line). The blue
lines correspond to v=0.5 shown in Fig. 3. The red and green lines illustrate the evolution of system with 60%
higher density, with volume fraction 2.094, while the blue curve corresponds to a volume fraction of 1.257. The
red and blue lines are for systems with the same size while the green lines are for a system twice as large.
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3.3 Hydrodynamic effects

We consider now the role of hydrodynamics in the sedimentation of particles with differ-
ent velocities. As described in Section 2.2, we simulate the fluid flow and fluid-particle
interaction using the LBM and the particle sedimentation is driven by an external force
~a, with different values for the two species (fast and slow).

Fig. 8 shows the initial configuration of one of the samples and its final state for three
different force ratios β= as

a f
. From visual inspection, we notice that for β=0.1, where the

fast particles have the highest velocity, particles in the final deposit are more segregated
than for the other two values of β. This behaviour is in line with what we found with-
out hydrodynamics. When the time evolution of the particles is analyzed, as shown in
Fig. 9, some major differences are revealed, which result from hydrodynamic effects. For
example, we observed Rayleigh-Taylor instabilities [35–37] as shown in Fig. 9. Initially,
in order for the particles to go down, the fluid below them has to go up generating up-
currents. Despite the sedimentation force acting on the particles, these upcurrents can
move the particles up, by contrast to the results of the MD simulations and the analytical
model. Thus, quantitative differences due to hydrodynamics are to be expected. As the
results from MD and the analytical model are qualitatively similar, we will compare the
LBM results only with those from the analytical model.

In Fig. 10, we show the profile of the volume fraction of particles as a function of the
height for fast and slow particles for different values of β. This corresponds to the final

(a)

(b)

(c)

(d)

Figure 8: Results from the LBM. (a) Initial configuration for one of the samples. Final configuration for (b)
β=1, (c) β=0.5 and (d) β=0.1. The fast particles are red and the slow ones blue.
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(a)

(b)

(c)

(d)

(e)

Figure 9: Velocity field (using the LBM) for the sample shown in Fig. 8(a) with β=0.1 at different times: (a)
t= 10000, (b) t= 40000, (c) t= 70000, (d) t= 120000 and (e) t= 160000. The fast particles are red and the
slow ones blue. The background in grayscale represents the magnitude of the fluid velocity, with light gray
corresponding to u=0 and black to u=0.0048. The arrows indicate the direction of the velocity vector.

states, shown in Fig. 8, but now averaged over 10 independent samples. The behaviour
of the profiles is qualitatively the same as those shown in Fig. 1. Segregation is observed
for the system with β = 0.1, and no segregation occurs for β = 1 (equal sedimentation
velocities for both species). In Fig. 11, we compare the time evolution of the order pa-
rameter Φ (Eq. (3.15)) from the LBM simulations with the analytical model. To obtain
the sedimentation velocity using the analytical model, we simulated the sedimentation
of a single particle for different forces and measured the terminal velocity. In this case,
the velocity increases linearly with the applied force, as expected for the values of the
Reynolds numbers considered. Thus, the ratio of the forces is equal to the ratio of the ve-
locities: β=v. The analytical curves using this velocity are represented by the solid lines
in Fig. 11. We find that the sedimentation process for this velocity is much faster with-
out hydrodynamics. This difference is due the upwards fluid displacement when the
particles are sedimenting, which reduces their velocity (and even inverts the direction of
motion). Thus, the average velocity of all particles is much lower due to the retarding
effects of hydrodynamics. Numerically, we observe that the average velocity of particles
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Figure 10: Volume fraction of particles in a given bin as function of the height in the final deposit for fast (red
squares) and slow (blue circles) particles averaged over 10 samples for (a) β= as

a f
=1, (b) β=0.5 and (c) β=0.1.

Results from the LBM.

of one specie (fast or slow) is nearly one fifth the velocity of a single particle of the same
specie sedimenting in the fluid.

We also show in Fig. 11 the analytical results using this average velocity (dashed
lines). Changing the velocity changes the time scale of the sedimentation, which becomes
closer to the time scale of the LBM simulations. The final value of the order parameter



18 A. S. Nunes et al. / Commun. Comput. Phys., 33 (2023), pp. 1-21

Figure 11: Time dependence of the parameter Φn(t) for two values of the ratio of the particle forces β= as
a f
.

The open symbols are results of the LBM and the lines are from the analytical model (Eq. (3.15)). The solid
lines use the sedimentation velocity of a single particle while the dashed line uses this velocity divided by five,
which is approximately the average velocity of all particles in the sedimentation simulation with 100 particles.

is different from that predicted analytically as the velocity is highly non-uniform, which
is not considered in the analytical model. However, the existence of a maximum of the
order parameter is captured by the analytical model.

4 Conclusions

We investigated the dynamics of sedimentation of a simple binary mixture, and observed
purely dynamical demixing.

We started by considering that the two species differ in their Stokes coefficients only,
i.e., they have different sedimentation velocities. Since the species travel at different ve-
locities, they demix dynamically as they move towards the bottom of the container in a
gravitational field. We measured the degree of demixing without hydrodynamics using
Brownian dynamics simulations for different ratios of the velocities and proposed a sim-
ple analytical description in the low density limit. We found that the analytical model
captures the dynamics and the degree of segregation in the system even though particle-
particle interactions are not taken into account. We also considered the sedimenting of
particles in a hydrodynamic setting using the lattice Boltzmann method and found simi-
lar qualitative behavior, in particular, the existence of purely dynamical demixing. Quan-
titative differences, however, were observed resulting from the currents set up during the
sedimentation which strongly affect the particles velocities, making them non-uniform.
The differences between two and three dimensions were not explored in this work, which
will be addressed in future research. As demonstrated for droplets in a channel [38], the
fluid passes through the space between them in 3D while it does not do so in 2D when the
droplets are densely packed. This effect will probably affect the results for sedimenting
particles with hydrodynamic interactions.
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We focused on equimolar binary mixtures but the same demixing mechanism will
occur for mixtures with any other composition. In fact, the composition of the deposit is
determined by the ratio of the fluxes of sedimenting of the two species and, as a result,
the initial composition of the mixture will affect the composition of the final deposit.
The mechanism described here could also be used to obtain fully mixed deposits, since
by tuning v an equimolar deposit may be formed from mixtures poor in one of the two
components.

As a final note, we focused on colloidal suspensions but our conclusions can be ex-
tended to systems with larger particles, as we considered the limit of high Péclet number,
where the dominant mechanism of mass transport is advection and thermal fluctuations
are negligible. Finally, since in this limit the relevant mechanisms depend only on the ra-
tio of sedimentation velocities, we expect the same behavior for particles with the same
shape but different buoyant masses.
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