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Abstract. Mandelic acid is an enantiomer of interest in many areas, in particular for
the pharmaceutical industry. One of the approaches to produce enantiopure mandelic
acid is through crystallization from an aqueous solution. We propose in this study
a numerical tool based on lattice Boltzmann simulations to model crystallization dy-
namics of (S)-mandelic acid. The solver is first validated against experimental data. It
is then used to perform parametric studies concerning the effects of important param-
eters such as supersaturation and seed size on the growth rate. It is finally extended to
investigate the impact of forced convection on the crystal habits. Based on there para-
metric studies, a modification of the reactor geometry is proposed that should reduce
the observed deviations from symmetrical growth with a five-fold habit.

AMS subject classifications: 76T20
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1 Introduction

Mandelic acid is an aromatic alpha-hydroxy acid, with formula C8H8O3. It is a white
crystalline powder that is soluble in water and most common organic solvents. It has
a density of 1.3 g/cm3 and molecular weight of 152.5 g/mol. It is particularly important
in the pharmaceutical industry for the organic synthesis of pharmaceutical components.
For instance an ester of mandelic acid is essential to produce homatropine, used in eye
drops as both a cycloplegic and mydriatic substance. In addition, it is also popular in the
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Figure 1: Molecular structure of mandelic acid enantiomers.

production of face peeling components [49], urinary tract infection treatments [5], and
for oral antibiotics [44]. In toxicological studies, the concentration of styrene or styrene
oxide is quantified by converting it into mandelic acid.

Mandelic acid exists in two enantiomeric forms as shown in Fig. 1, (S)- and (R)- man-
delic acid. Most practical applications require the enantiopure form [5]. Amongst the
different approaches to separate enantiomers, crystallization process such as classical
resolution and preferential crystallization approaches are frequently used [30]. In such
separation processes, the properties of the crystalline products such as crystal size and
shape are largely determined by the growth process, which in turn depends on the crys-
tallization conditions. In the pharmaceutical industry, the resulting crystal morphology
is often of great importance, since it influences the rate of dissolution and the absorption
of drugs. Compressibility, hardness, and flow properties of the drug are also strongly
dependent on the crystal form [16]. Accurate investigations regarding crystal growth are
difficult because the growth process varies greatly even under similar conditions: crystal
growth dispersion is the term used to describe the fact that crystals, although initially of
same shape and size, can rapidly grow differently even under the same growth condi-
tions [31, 45]. The main reason for these growth differences is probably related to minute
tensions and deformations, leading in turn to minimal structural differences [17]. Other
reasons are accidental deposits, or deposits of foreign bodies on the growing crystals’
surface, which lead to incorporation into the crystal and ultimately different growth.
A proper understanding of growth conditions and their effect on the final product is
therefore essential to design and scale-up production units for enantiopure substances.

A lot of experimental studies have been conducted concerning crystallization-based
enantioseparation process including growth kinetics of mandelic acid, e.g. [1, 10–13, 30,
36, 45]. However, numerical studies regarding crystal habit and size of enantiopure S-
mandelic acid remain scarce. The phase-field method has been shown in general to be
a powerful tool for modeling structural evolution of materials and crystals. It is now
widely used for modeling solidification [4,35] and grain growth [8,26,47,50]. The phase-
field approach has also been used in the context of the lattice Boltzmann method, now
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widely recognized as an efficient alternative to classical tools, to simulate solidification
processes [29, 39, 42, 51, 53, 54, 56]. This approach can reproduce numerically the solid-
liquid interface interactions and the hydrodynamic effects affecting the habits of growing
crystals [7, 15, 32, 33, 40, 48].

In this contribution, we study the growth of a single (S)-mandelic acid crystal under
different conditions (supersaturation, initial crystal size, flow rate) with a previously de-
veloped and validated lattice Boltzmann-based numerical model [48]. All simulations
presented in this article are carried out using the in-house solver ALBORZ [18]. The
obtained results are validated and compared with experimental data. After validating
the numerical procedure in a standalone manner via a self-convergence test, it is used to
model the growth of a single (S)-mandelic acid rhombic seed at temperature and super-
saturation corresponding to experimental settings; this provides a further, independent
validation of the numerical model. The solver is then used to investigate the effect of
different parameters such as supersaturation and initial seed size on crystal growth. Fi-
nally, a detailed study of the interaction between forced convection and crystal growth
is presented. Analyzing the results, a simple solution is proposed to improve symmet-
rical growth under natural convection in the single-crystal cell used for all experimental
investigations.

2 Numerical method

2.1 Diffuse-interface formulation: governing equations

In the phase-field method solid growth dynamics are expressed via a non-dimensional
order parameter, φ, going from (+1) in the solid to (-1) in the pure liquid phase. The
space/time evolution equations are written as [2, 24]
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Here τ = τ0a2
s (n). The coefficient λ describes the strength of the coupling between the

phase-field and the supersaturation field, U. The parameter τ0 denotes the characteristic
time and W0 the characteristic width of the diffuse interfaces. In Eq. (2.1), the latent heat
of melting is written as L. The specific heat capacity cp is assumed to be the same in

the two phases (symmetric model). The quantity n =− ∇φ
|∇φ|

is the unit vector normal

to the crystal interface – pointing from solid to fluid, while as(n) is the surface tension



80 Q. Tan et al. / Commun. Comput. Phys., 33 (2023), pp. 77-100

anisotropy function. In the context of the hexagonal mandelic acid crystal growth, this
quantity is defined as

as(n)=1+ǫxy cos(6θ), (2.3)

where θ=arctan(
ny

nx
). The numerical parameter ǫxy characterizes the anisotropy strength,

and is set in the present study to ǫxy = 0.05 [25]. The term (φ−φ3) is the derivative
of the double-well potential. The last term in Eq. (2.1) is a source term accounting for
the coupling between supersaturation U and order parameter φ. There, (1−φ2)2 is an
interpolation function minimizing the bulk potential at φ=±1.

In Eq. (2.2), u denotes the local fluid velocity while q(φ)=(1−φ) is a function cancel-
ing out diffusion within the solid. As a consequence, solute transport is assumed to take
place only within the fluid phase (one-sided model). The parameter D is the diffusion
coefficient of S-mandelic acid in water.

2.2 Lattice Boltzmann formulation

Flow field solver. The flow field behavior, described by the incompressible Navier-
Stokes (NS) and continuity equations, is modeled using the classical isothermal lattice
Boltzmann (LB) formulation consisting of the now-famous stream-collide operators

fα (r+cαδt,t+δt)− fα(r,t)=δtΩα(r,t)+δtFα, (2.4)

where fα and cα are the discrete populations and corresponding particle velocity vectors,
r and t are the position in physical space and time, δt is the time-step size. Fα represents
contributions from external body forces defined as [14]
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Here F is the external body force vector, u is the local fluid velocity vector, I is the unit
rank-two tensor, cs is the so-called lattice sound speed, wα are weights associated to each
discrete velocity and τf is the relaxation time. Here, the external body force also includes
interaction with the solid phase as [2]

F=−
hτf (1+φ)2(1−φ)u

4W2
0

, (2.6)

where φ is the phase indicator detailed in the next paragraphs, W0 is the interface thick-
ness tied to the phase-field solver and h is a dimensionless constant, chosen as h=2.757
following [2]. Due to the absence of fluid velocity within the solid crystal, the fluid ve-
locity u is updated as

u
∗=

(1−φ)

2
u, (2.7)
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where the re-defined fluid velocity u
∗ is used in the equilibrium distribution function [2].

The collision operator Ωα follows the linear Bhatnagar-Gross-Krook approximation

Ωα=
1

τf

[

f
(eq)
α − fα

]

, (2.8)

where f
(eq)
α is the discrete isothermal equilibrium distribution function (EDF) defined as
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where a
(eq)
i and Hi(cα) are the corresponding multivariate Hermite coefficients and poly-

nomials of order i [22]. Further information on the expansion along with detailed expres-
sions of the EDF can be found in [18, 20, 43]. In the present work, an extended range of
stability is obtained by using a central Hermite multiple relaxation time implementation;
corresponding details can be found in [19]. The relaxation time τf is tied to the fluid
kinematic viscosity, ν, as

τf =
ν

c2
s

+
δt

2
. (2.10)

It must be noted that conserved variables, i.e., density and momentum are defined as
moments of the discrete distribution function

ρ=∑
α

fα, (2.11)

ρu=∑
α

cα fα. (2.12)

Advection-diffusion-reaction solver for supersaturation field. The space/time evolu-
tion equation of the supersaturation field U is modeled using an advection-diffusion-
reaction LB-based discrete kinetic equation. It is defined as [21, 23, 37]

gα (r+cαδt,t+δt)−gα (r,t)=δtΩα(r,t)+δtω̇α, (2.13)

where gα are the corresponding discrete populations and ω̇α is the source term
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∂t
. (2.14)

The collision operator Ωα for the supersaturation field is
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The supersaturation is the zeroth-order moment of gα

U=∑
α

gα, (2.17)

and the relaxation coefficient is tied to the diffusion coefficient of mandelic acid in the
aqueous solution, D, as

τU =
Dq(φ)

c2
s

+
δt

2
. (2.18)

Solver for phase-field equation. The phase-field equation is modeled using a modified
LB scheme defined as [6, 52]
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where the scalar function Qφ is the source term of the phase-field defined as
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where δr is the grid-size. The local value of the order parameter φ is computed as

φ=∑
α

hα, (2.22)

while the relaxation is set to

τφ=
1
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2
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3 Experimental setup

Experimental data for the growth rates have been obtained in the single-crystal growth
cell [3, 13] illustrated in Fig. 2. The supersaturated aqueous solution of mandelic acid is
pumped into a constant-temperature cylindrical crystallization cell, with solution tem-
peratures varying between 20 and 30 ◦C. The temperature within the cell is maintained
constant via a water-based cooling/heating system connected to a Pt-100 sensor monitor-
ing the temperature inside the cell. Vessel 2, denoted V2 in Fig. 2 (b) contains a saturated
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Figure 2: Single-crystal growth cell used for all experiments: (a) photograph; (b) schematic diagram of experi-
mental arrangement for the measurement of growth rate of a single crystal [3, 13].

solution at temperature T2 while vessel 1 (V1) was set to a lower temperature T1, corre-
sponding to the temperature of the cell. To create the supersaturated solution, the initially
saturated solution in V2 is pumped into V1 and cooled down to T1 before entering the
growth cell. This effectively allows to control the supersaturation level of the incoming
solution by choosing temperature T1. In the present case, the supersaturation is defined
as [34]

U=
Csat,2−Csat,1

Csat,1
. (3.1)

To start the experiment, the supersaturated solution is continuously pumped from
vessel 1 to the growth cell, in which a single (S)-mandelic crystal is glued on the pin head
of a crystal holder. Then, the solution is recycled to vessel 2 and the concentration of the
solution is compensated. In that way, a stable degree of supersaturation is guaranteed
during the whole process. A microscope with camera (Stemi2000C, company Carl Zeiss)
is used to take pictures of the single crystal at every one hour. The images are afterwards
post-processed by applying Carl Zeiss’ Axio Vision software [13]. A picture of the single-
crystal cell is shown in Fig. 2.

4 Simulations and analysis of the results

4.1 Validation

4.1.1 Self-convergence of the numerical solver

Based on the experiments, the evolution of mandelic acid without enantiomers follows
habits with hexagonal symmetry. First, before going into further validation steps against
experimental results, we look into the convergence behavior of the numerical scheme. To
that end growth simulations are conducted using the hexagonal anisotropy function that
will be used for the remainder of this work, starting with a rhombic initial seed. The seed
is placed at the center of a fully periodic rectangular domain, with a length of 31 and
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Figure 3: Left: φ = 0 iso-contour, showing the boundary of the solid crystal (only the central part of the
numerical domain is shown) after 16 hours. Right: Evolution of function φ in space along the line joining
the center of the domain at (0,0) and point (4 mm,0) for U=0.06 at increasing spatial resolution (grids with
775×650, 1240×1040, 1550×1300, and 2480×2080 points, respectively).

a width of 26 mm. The perimeter of the initial rhombic crystal is 6.9 mm and the initial
supersaturation is set to U = 0.06. Simulations are conducted using four different spa-
tial resolutions, δr ∈{0.04,0.025,0.02,0.0125} mm. Since the overall size of the numerical
domain is kept fixed, an improved spatial resolution automatically comes with a larger
number of grid points.

The highest resolution simulation with 2480 × 2080 points is used as reference to
compute relative errors at the three lower spatial resolutions. The l2 relative error norm is
calculated based on the φ-profiles plotted along the x-direction on the centerline starting
from the center of the domain (0,0) in positive x-direction until point (4 mm,0). The
corresponding profiles along with the crystal shape obtained after 16 hours are shown
in Fig. 3.

The l2 norm is defined as

El2 =

√

√

√

√

∑i

(

φi−φre f ,i

)2

∑i φ
2
re f ,i

, (4.1)

where φ represents a lower resolution and φre f denotes the highest resolution (used as
reference). The errors obtained from the different simulations are illustrated in Fig. 4. As
observed from this plot, the numerical scheme is convergent as the error decreases with
resolution. Furthermore, as expected from theoretical analyses, a second-order conver-
gence is obtained in space.

4.1.2 Validation against experimental data

Next, to showcase the ability of the model to correctly reproduce the behavior of the real
system, 2-D simulations are considered using the real reactor geometry. The simplifica-
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Figure 4: Scaling of the l2 norm of errors as obtained from the self-convergence study. Black markers represent
error data from the simulations while the black dashed line shows the theoretical −2 slope.

Figure 5: Reactor geometry employed for all simulations.

tion to two-dimensional simulations is justified by the fact that, in all conditions consid-
ered here, the crystal follows a platelet growth mode indicating clear separation of scales
between growth in the axial and planar directions, in connection to a symmetry of the
flow field [15]. The geometry used for the simulations is shown in Fig. 5. First, configura-
tions are considered where forced convection is negligible. For all experiments presented
in this section the initial seed is a rhombic crystal. Two different initial supersaturations
are considered, namely U = 0.06 and U = 0.11 for the same temperature, T = 20◦C. The
diffusion coefficient of mandelic acid in the aqueous solution under the conditions con-
sidered here is D=4.273×10−4mm2/s [9] and the other physical parameters are listed in
Table 1. Based on the excellent agreement observed in the previous section, all simula-
tions are conducted with a spatial resolution of δr =0.025 mm. The interface thickness is
set to W0=0.05 mm, the relaxation time to τ0=11 s, and the coupling coefficient λ=3 was
treated as a numerical parameter, consistently with the standard phase-field method for
dendrite growth [38]. At the walls of the reactor, zero-flux boundary conditions are ap-
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Table 1: Physical parameters for a single S-ma crystal growth [41,46,55].

Surface energy Melting temperature Vometric heat capacity Latent heat Capillary length

[Jm−2] [K] [J/m3K] [J/m3] [m]

0.05 392 1.7 ×106 6.6 ×107 7.65 ×10−9

Figure 6: Method used to number the crystal sides and the associated normal directions [3].

plied to both the species and phase fields via the anti-bounce-back scheme. At the inlet a
constant supersaturation is imposed. Details on the implementation can be found in [28].

Simulation results are compared to experiments and validated both qualitatively us-
ing the crystal shape, and quantitatively by comparing the growth rate.

To measure the crystal growth rate in both experiments and numerical calculations,
the average length quantifying the crystal size is introduced following [3] as illustrated
in Fig. 6.

• Connect opposite sides via their centers.

• Identify the crystal center as the intersection between those lines.

• Number the different sides as shown in Fig. 6.

• Compute the lengths of the corresponding normal distance from the center identi-
fied in the previous step (L1, L2, L3, L4, L5 and L6).

• The average normal length is simply defined as Lavg=(L1+L2+L3+L4+L5+L6)/6.

The experiments are systematically conducted over a period of 12 hours. The average
length is computed every hour and subsequently fitted with a linear function to extract

an average growth rate Gth =
Lavg

t , where t is the corresponding growth time during the
crystallization process. The evolution of the crystal shape in both experiments and simu-
lations are illustrated in Figs. 7 and 8.

A visual comparison regarding crystal shape and size over time for U = 0.06 points
to a good agreement between experiments and simulations. For U=0.11 only numerical
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Figure 7: Contours of an (S)-mandelic acid crystal vs time as obtained from (a) experiments [3] and (b)
simulations. The supersaturation is U=0.06 in both cases. The spatial scale is the same in all images, enabling
a direct comparison.

Figure 8: Contours of the (S)-mandelic acid crystal vs time as obtained from simulations for U=0.11.

Table 2: Comparisons between experiments and simulations for supersaturation U=0.06 and U=0.11 [3].

Cases Experiments Simulations

Number I II I II

Supersaturation(%) 0.06 0.11 0.06 0.11

Seed perimeter (mm) 6.9 9.5 6.9 9.5

Parameter Slope R2 Slope R2 Slope Slope

Normal 1 0.07 0.99 0.14 0.98 0.08 0.14

Normal 2 0.09 0.97 0.14 0.94 0.08 0.14

Normal 3 0.00 0.10 0.00 0.50 0.01 0.02

Normal 4 0.06 0.94 0.06 0.78 0.08 0.14

Normal 5 0.03 0.92 0.08 0.86 0.08 0.14

Normal 6 0.00 0.20 0.09 0.93 0.01 0.02

Average growth rate

Gth (mm/h) 0.06 0.1 0.057 0.10

results are shown since experimental snapshots are not available. To validate the results
in a quantitative manner, the growth rates corresponding to the six different sides of
the crystal for both supersaturations as obtained from experiments and simulations are
compared in Table 2.
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R2 is the coefficient of determination shown here to characterize the reliability of the
linear regression used to extract growth rates. Representing the length of side i measured
at time t in experiments as Li(t) and the value of the linear function as L′

i(t) the coefficient
is computed as

R2=1−
Ares

Atot
, (4.2)

where the residual sum of squares is

Ares=∑
t

(

Li(t)−L′
i(t)

)2
, (4.3)

and the total sum of squares is

Atot=∑
t

(

Li(t)−Li

)2
, (4.4)

where Li represents the average over all data points.

A direct comparison of the growth rates for both values of U confirms the very good
agreement between experimental observations and numerical simulations. For U=0.06,
the growth rate is numerically underpredicted by less than 6%. At U = 0.11, the rela-
tive difference is even reduced to 2%. This proves the ability of the numerical model to
capture the growth of (S)-mandelic acid in a pure aqueous environment. At higher su-
persaturation, U=0.11, the crystal experiences as expected a faster growth as compared
to the lower supersaturation case, U=0.06. It is interesting to take now a closer look into
the effects of supersaturation on growth rate.

4.1.3 Impact of supersaturation on growth rate

In order to have a better understanding of the effect of supersaturation on crystal growth
dynamics we keep a configuration similar to the previous one, but considering many
more supersaturation values, U∈{0.06,0.085,0.11,0.15,0.2}. In all simulations presented
in this section, the initial seed size and geometry follow that of configuration I in the
previous section, see Table 2. The evolution of the crystal shape over time as obtained
from these simulations are shown in Fig. 9. In Fig. 9, the facets of the crystal start deviat-
ing from a straight line resulting from the onset of primary branching instabilities. This
usually occurs when the initial value of supersaturation is sufficiently large.

Furthermore, the data representing average growth rate are listed in Table 3. As ex-
pected, higher supersaturations lead to faster crystal growth. It is worth to note that the
average growth rate of the crystal can be very well approximated in the considered range
as a linear function of supersaturation with slope one. Another parameter that has been
observed experimentally to affect growth dynamics, especially during the early phase, is
the initial seed size, better quantified via its perimeter. We will look into that effect in the
next section.
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U= 0.085 U= 0.11

U= 0.15 U= 0.2

Figure 9: Boundaries of the single crystal of (S)-mandelic acid (iso-contours of φ= 0) at time t=0 (blue), 4
(red), 8 (black), 12 hours (purple) as a function of supersaturation: (top-left) U=0.085, (top-right) U=0.11,
(bottom-left) U=0.15, and (bottom-right) U=0.2.

Table 3: Numerically observed averaged crystal growth rate as function of supersaturation between U = 0.06
and 0.2.

Supersaturation(%) 0.06 0.085 0.11 0.15 0.2

Seed perimeter (mm) 6.9 6.9 6.9 6.9 6.9

Average growth rate

Gth (mm/h) 0.057 0.0871 0.1136 0.1553 0.2093

4.1.4 Impact of initial size on growth rate

To quantify the effects of initial seed size, which is known to be sometimes important [45],
a configuration with supersaturation U=0.06 at crystallization temperature T=20◦C has
been retained. Seeds with the same initial rhombic shape but different sizes have been
simulated; the initial seed perimeters are P ∈ {6.9,6.96,8.4,8.8} mm, corresponding to
available experimental data. The resulting growth rate data and parameters extracted
from the experiments are listed in Table 4. Simulations with exactly the same config-
urations have been conducted. The corresponding results are listed in Table 5. Both
experiments and simulations, while in fair agreement with each other, point to the fact
that the average growth rate is only slightly affected by the initial seed size. The effect
appears to be somewhat stronger for a larger initial seed. The growth behavior over time
is illustrated in Fig. 10. The results for initial perimeters 6.9 and 6.96 mm cannot be dif-
ferentiated visually. For a larger initial seed, the differences between 8.4 and 8.8 mm can
be recognized, but only a minute increase in average growth rate can be recognized. It
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Table 4: Impact of initial seed size in experiments with supersaturation U=0.06 [3].

Experiment Number I(1) I(2) I(3) I(4)

Perimeter (mm) 6.9 6.96 8.4 8.8

Parameter Slope R2 Slope R2 Slope R2 Slope R2

Normal 1 0.07 0.99 0.09 0.99 0.09 0.99 0.10 0.98

Normal 2 0.09 0.97 0.09 0.99 0.12 0.98 0.10 0.97

Normal 3 0.00 0.10 0.01 0.24 0.01 0.67 0.02 0.82

Normal 4 0.06 0.94 0.03 0.92 0.07 0.94 0.07 0.85

Normal 5 0.03 0.92 0.03 0.89 0.06 0.94 0.05 0.98

Normal 6 0.00 0.20 0.01 0.45 0.03 0.85 0.00 0.10

Average growth rate

Gth (mm/h) 0.06 0.06 0.06 0.07

Table 5: Impact of initial seed size in simulations with supersaturation U=0.06.

Simulation Number I(1) I(2) I(3) I(4)

Perimeter (mm) 6.9 6.96 8.4 8.8

Parameter Slope Slope Slope Slope

Normal 1 0.08 0.08 0.082 0.082

Normal 2 0.08 0.08 0.082 0.082

Normal 3 0.01 0.01 0.012 0.016

Normal 4 0.08 0.08 0.082 0.082

Normal 5 0.08 0.085 0.085 0.082

Normal 6 0.01 0.01 0.012 0.015

Average growth rate

Gth (mm/h) 0.0567 0.0575 0.0592 0.0598

can be concluded that, compared to supersaturation, the influence of initial seed size is
minor. Still, a larger initial seed corresponds to a slightly increased growth rate.

All the previous results have been obtained while neglecting any convection effect
around the crystal. However, it is known that forced convection might lead to asymmet-
ric crystal growth. This will be explored next.

4.2 Ventilation effects

In the real single-crystal reactor the incoming flow of (S)-mandelic acid in water might
have a large impact on crystal growth rate and shape development. The aim of the
present section is to check and quantify this point.
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Figure 10: Numerical results concerning the effect of initial seed perimeter on the growth rate.

Figure 11: Morphologies of (S)-mandelic acid crystal captured by (a) camera during the experiments [27]; (b)
simulations.

Validation in presence of convection. First, we validate the numerical model against
available experimental data taking into account the real inflow conditions used in the
reactor cell. For this purpose, and following the experimental settings [27], a hexagonal
seed of perimeter P=3.7 mm is used. The initial supersaturation is U=0.045, the Reynold
number Re = 17.2. Here, we keep the same Reynold number as the experiment [27]. The
results, represented by the crystal shape, are compared over time via snapshots taken
every two hours over an overall growth period of 16 hours, as shown in Fig. 11.

It is observed that the evolution of the crystal shape over time as obtained from both
experiment and simulation are in good agreement with each other; they both point to
a non-symmetrical growth. The constant inflow of a solution with a higher concentration
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Figure 12: Non-symmetric growth of a (S)-mandelic acid crystal taking into account convection as obtained
from the simulation for U=0.045 after 16 hours. Flow is from left to right in the reactor.

hitting the inlet-facing sides of the crystal subjects them to noticeably larger gradients
at the interface, as compared to the other, leeward sides; this induces lower adsorption
rates at the latter. As a result the (S)-mandelic crystal grows faster on the sides facing
the inflow, leading to a steady increase of the aspect ratio, defined as the ratio of the
horizontal size of the crystal to its vertical size. This is clearly visible in Fig. 12 where
both the velocity and supersaturation fields at t=16 hours are shown.

To further illustrate the effects of hydrodynamics on the crystal habit, the effect of the
Reynolds number and of the initial orientation of the seed are considered numerically.

Effect of Reynolds number. For this purpose, the supersaturation is kept constant at
U = 0.045. The Reynolds number is the most important non-dimensional parameter of
fluid dynamics, comparing quantitatively convective effects to dissipation by viscosity.
It is defined as

Re=
uinP

ν f
, (4.5)

where P is the initial seed perimeter. Two different Reynolds numbers, i.e. Re= 8.6 and
17.2, are considered. The obtained crystal shape and velocity fields are shown in Fig. 13.
As expected, higher inlet velocities hitting the inflow-facing sides of the crystal result in
a faster growth in that direction; the resulting asymmetry becomes more marked, leading
to elongated crystals in the horizontal direction for the present setup. This is particularly
clear looking at Fig. 14. After 10 hours, the aspect ratio for Re=17.2 is already more than
twice as large than for Re=8.6.

Effect of the initial orientation of the seed. To show the effect of seed orientation, four
simulations have been carried out with the same Reynolds number, Re= 17.2, but with
different initial orientations, namely θ ∈ {0, π

12 , π
6 , π

4 }. This choice of tilt is motivated by
the six-fold symmetry of the crystal natural habit, so that only the 0- π

3 range is relevant.
The obtained crystal habits after 10 hours along with the corresponding velocity fields
are illustrated in Fig. 15.
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Figure 13: Convection effects on (S)-mandelic acid crystal growth after 10 hours for U=0.045 and two different
Reynolds numbers. Left side: Re =17.2; Right side: Re =8.6. The white line represents the crystal boundary
taking into account the flow (ventilation effect), while the grey line shows the same results in the absence of
any inflow.
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Figure 14: Evolution of the aspect ratio vs time for Reynolds numbers Re=8.6 and 17.2.

It is seen that the initial orientation not only affects the symmetry of the crystal, but
also its average growth rate. Taking into account convective effects and initial seed orien-
tation, the crystal habits become highly asymmetrical. It is also observed that a slight ini-
tial rotation in clockwise direction can result in a final habit showing preferential counter-
clockwise orientation, due to a strong interaction with the convective flow field.

Improving symmetrical growth in presence of convection using a baffle. As seen from
the previous simulations, the overall shape of the crystal varies considerably as function
of the Reynolds number. It was mentioned earlier that the regularity of the crystal shape
is a property of high interest regarding the final products performance. Therefore, it is de-
sirable to find a simple geometrical modification to the single-crystal growth cell leading
to isotropic growth rates and a desired final aspect ratio. For this purpose, a simple flat
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Figure 15: Effect of initial seed orientation on (S)-mandelic acid crystal growth after 10 hours for U = 0.045.
Top left: without rotation; Top right: initial rotation of π

12 (clockwise rotation); Bottom left; initial rotation of
π
6 ; Bottom right: initial rotation of π

4 . The white line represents the crystal boundary taking into account the
flow, while the green line shows the same results in the absence of any inflow.

Figure 16: Proposed modifications of the geometry of the single-crystal growth cell reactor including a baffle
(three different possible configurations).

baffle has been placed in the simulation directly in front of the inlet in order to prevent
a direct impact of the incoming flow onto the growing seed. Three different configura-
tions (different position, different size) of the baffles have been compared. The resulting
configurations are illustrated in Fig. 16; configuration 1 is the original case, without any
baffle.
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Figure 17: Numerical prediction for the growth on (S)-mandelic acid crystal after 10 hours for U= 0.045 and
Re= 17.2. First column: original configuration, without baffle; second column: baffle configuration 2; third
column: baffle configuration 3; fourth column: baffle configuration 4. Top line (a): without any rotation of the
initial seed; Bottom line (b): with initial rotation of the seed by π/6.

Figure 18: Numerical prediction for the growth on (S)-mandelic acid crystal after 10 hours for U= 0.045 and
Re= 8.6. First column: original configuration, without baffle; second column: baffle configuration 2; third
column: baffle configuration 3; fourth column: baffle configuration 4. Top line (a): without any rotation of the
initial seed; Bottom line (b): with initial rotation of the seed by π/6.

To check the robustness of the proposed modification with the three different baffles
(plus the original case), two different Reynolds numbers (Re= 8.6 or 17.2), and two dif-
ferent initial seed orientations (θ=0 or π

6 ) have been considered, making up for a total of
(4×2×2=) 16 different cases. All numerical results after 10 hours of growth are shown
in Figs. 17 (for Re=17.2) and 18 (for Re=8.6).

To quantify the effects of the baffles on the quality of the crystal, a quality parameter
is defined as Q=max(Li)/min(Li) where index i∈{0,.. . ,5} covers the length of all sides
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Table 6: Impact of the baffles for U=0.06 for two different Reynolds numbers and seed orientations in Fig. 16.

Q Re=8.6; tilt=0 Re=8.6; tilt=π/6 Re=17.2; tilt=0 Re=17.2; tilt=π/6

No Baffle 1.28 1.23 1.625 1.59

Baffle 1 1.22 1.21 1.41 1.39

Baffle 2 1.13 1.16 1.24 1.21

Baffle 3 1.05 1.07 1.14 1.12

of the resulting crystal. Parameter Q quantifies non-isotropic growth, with Q = 1 (the
minimum value) corresponding to a perfectly isotropic growth, while an increasing value
of Q corresponds to growing non-isotropy. The values of crystal quality as obtained from
all simulations after 10 hours of growth are listed in Table 6. From Table 6 it is clearly
observed that, while all baffles contribute to reducing asymmetrical growth, the larger
one, i.e. baffle 3, leads to the best crystal quality in terms of symmetry for all considered
conditions. It successfully reduces deviations from perfect symmetry by about 20% for
Re=8.6 and 30% for Re=17.2. Since the complexity of the experimental setup would not
be significantly increased by adding a baffle, such a modification is recommended for
further studies.

5 Conclusions and perspectives

In this work, a numerical model based on lattice Boltzmann has been developed and val-
idated to describe crystal growth. It has been shown to correctly capture the dynamics
of (S)-mandelic acid crystal growth. The numerical simulations were compared to exper-
imental data from a single-crystal growth reactor and are in very good agreement. The
model was then used to investigate the effects of important parameters such as supersat-
uration and initial seed size on growth dynamics. It was depicted that higher supersatu-
ration levels lead to much faster growth rates; the impact of a larger initial seed crystal is
by far not as strong, but increases slightly the growth rate as well.

It was also demonstrated that hydrodynamics can have pronounced effects on both
average growth rate and habit, and may lead to a clear rupture of symmetry. The evo-
lution of the crystal habit was shown to change significantly with the Reynolds num-
ber, but also with the initial orientation of the seed with respect to the incoming flow.
Finally, a simple modification of the reactor geometry was proposed to minimize non-
symmetrical growth. This will be tested in later experiments.

While the model was successfully applied in the present study to pure (S)-mandelic
acid crystal growth under isothermal conditions, in the future, these simulations will be
extended to more complex situations involving a mixture of both (S)- and (R)-mandelic
acid and taking into account temperature changes.
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