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Abstract. In this work we provide analytic and numerical solutions for the Bjorken
flow, a standard benchmark in relativistic hydrodynamics providing a simple model
for the bulk evolution of matter created in collisions between heavy nuclei.

We consider relativistic gases of both massive and massless particles, working in
a (2+1) and (3+1) Minkowski space-time coordinate system. The numerical results
from a recently developed lattice kinetic scheme show excellent agreement with the
analytic solutions.
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1 Introduction

In recent years, experimental data from the Relativistic Heavy-Ion Collider (RHIC) and
the Large Hadron Collider (LHC) [1–5] has provided the first clear observation of the
Quark-Gluon Plasma (QGP), a deconfined phase of matter where quarks and gluons are
effectively free beyond the nucleonic volume [6–8].
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Remarkably, the earliest stages following the heavy-ion collisions present collective
behaviors that can be described by the laws of fluid dynamics [9], and indeed these re-
sults have significantly boosted the interest in the study of viscous relativistic fluid dy-
namics [10], both at the level of theoretical formulations as well as in the development of
reliable numerical simulation methods.

Most of the numerical methods are based on Israel-Stewart theory [11] or more re-
cent second-order causal formalism [12], with a few example represented by MUSIC [13],
vSHASTA [14], ECHO-QGP [15], and several more (see e.g. [16,17] and citations therein).
Besides, mesoscopic approaches are often employed in order to study relativistic hydro-
dynamic systems, including lattice kinetic schemes [18], as well as Monte Carlo based
methods [19, 20].

The development of new numerical tools for the study of relativistic fluids is an active
field of research. However evaluating and comparing the accuracy, stability and perfor-
mance of the available solvers represent a challenging task, due to the fact that numerical
benchmarks with an analytic solution are rare and available only in very idealized situa-
tions.

Two of the most commonly used benchmarks are the Riemann problem [21, 22], for
which an analytic solution is available only in the inviscid limit (see [23–27] for numerical
results in the viscous regime), and the Bjorken flow [28] (as well as its generalization
given by the Gubser flow [29]).

The Bjorken flow represents the simplest numerical setup in the QGP context. Under
the assumption that all particles get their velocity at the initial collision, the Bjorken flow
describes the boost-invariant longitudinal (i.e. along the heavy-ion beams) expansion
of the QGP. Because of its formulation, this flow is naturally described recurring to the
Milne coordinate system, where the macroscopic velocity results at rest. The formulation
of the flow in a static Minkowski space-time is on one hand more complex, but potentially
useful in the validation of codes working in Cartesian laboratory frame coordinates.

In this work, we present the analytic solution for the Bjorken flow, considering a in-
viscid fluid consisting of both massive and massless particles, working in a (2+1) and
(3+1) Minkowski space-time coordinate system.

We provide details for the implementation of the benchmark using the Relativistic
Lattice Boltzmann Method (RLBM) [18], a class of numerical models providing a compu-
tational efficient approach for the solution of the relativistic Boltzmann equation in the
relaxation time approximation. Since lattice kinetic models rely on a mesoscopic descrip-
tion of the dynamics viscous effects are naturally included, with relativistic invariance
and causality preserved by construction (this at variance with respect to aforementioned
hydrodynamic models).

Numerical results are shown to be in excellent agreement with the analytic solutions.

This paper is organized as follows: in Section 2 we provide a brief introduction on the
notation and the relevant equations for the kinetic description of a relativistic fluid. In
Section 3 we provide analytic solutions for the Bjorken flow in a Minkowski space-time
for fluids of both massive and massless particles. In Section 4 we report the implementa-
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Figure 1: Schematic description of the phase transitions occurring in QGP in a z-t plane. At a time t0∼1 fm/c
after the collision and at values of temperature above the Hagedorn temperature, quarks become deconfined
and free to roam in a so called gas of colored charges that interact with each other through the strong force.
The resulting QGP fireball expands and cools down until hadronization becomes possible again (th ∼ 5 fm/c),
and the QGP quickly turns into a gas of hadrons that undergoes further transformations as neutrons and protons
aggregate into nuclei (chemical freeze-out) and later on nuclei and electrons aggregate into atoms (thermal
freeze out, occurring at time t= t f ). This point corresponds in the history of the Universe to the surface of last
scattering, when Cosmic Microwave Background was formed.

tion of the benchmark with RLBM, and compare the numerical results with the analytic
solutions for a few selected cases.

Finally, conclusions are summarized in Section 5.

2 Ideal relativistic hydrodynamics

In this section we consider a gas of particles with rest mass m in a (d+1)-dimensional
Minkowski space-time. The metric tensor is given by ηαβ=diag(1,−1), with 1=(1,··· ,1)∈
N

d.

Einstein’s summation convention is in place, with Greek indexes running from 0 to d,
and Latin indexes running from 1 to d (spatial d-dimensional vectors are represented in
bold).

The starting point in the development of a relativistic kinetic theory is the single-
particle distribution function f (xα,pα), where xα=(ct,x) are space-time coordinates, and
pα=(p0,p) is relativistic momentum, that accounts for the number of particles contained
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at time t in the 2d-dimensional phase space of infinitesimal volume dxdp.
An evolution equation for f (xα,pα) can be worked out considering the usual hypoth-

esis of kinetic theory and the language of special relativity:

pα ∂ f

∂xα
=− pαUα

c2τ

(

f − f eq
)

, (2.1)

the so called Relativistic Boltzmann Equation, here written in the Anderson-Witting approx-
imation [30]. τ is a typical relaxation time, i.e. the typical time needed by f to approach
its equilibrium value f eq, the Maxwell-Jüttner [31] distribution

f eq =

(

c

kBT

)d n

2
d+1

2 π
d−1

2 ζ
d+1

2 K d+1
2
(ζ)

exp

(

− pαUα

kBT

)

, (2.2)

where Ki(ζ) is the modified Bessel function of the second kind of index i, T(x,t) the
temperature, n(x,t) the particle number density, Uα(x,t) the macroscopic fluid velocity.

The parameter ζ = mc2

kBT , named Relativistic Coldness, is the ratio between the rest en-

ergy of a particle mc2 and the thermal energy of the gas kBT. This is the parameter that
quantifies the level of ’relativity’ of the gas:

ζ≪1 ⇒ ultra-relativistic regime (massless particles),

ζ∼1 ⇒ mildly-relativistic regime,

ζ≫1 ⇒ classical (non-relativistic) regime.

The first and second order moments of the distribution function f (xα,pα) are the quanti-
ties of interest in relativistic hydrodynamics, the Particle Flow Nα and the Energy-Momentum
Tensor Tαβ:

Nα = c
∫

pα f
dp

p0
, (2.3)

Tαβ = c
∫

pα pβ f
dp

p0
. (2.4)

These quantities are conserved under collisions,

∂α Nα =0, ∂αTαβ =0, (2.5)

and when the fluid is ideal they can be decomposed in the following way:

Nα =nUα , (2.6)

Tαβ=(ǫ−P)
UαUβ

c2
+Pηαβ , (2.7)

where P(x,t) is the hydrostatic pressure and ǫ(x,t) the energy density.
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Lastly the following ideal Equation of State (EOS) is considered:

ǫ=P

(

ζ
K d+3

2
(ζ)

K d+1
2
(ζ)

−1

)

,

P=nkBT.

(2.8)

3 Bjorken flow

At sufficiently high energies (kBT∼1 GeV - 1 TeV), quarks and gluons become asymptot-
ically free from the strong interaction which binds them into hadrons, and form a plasma
of Partons which can be thought of as an extremely dense and hot gas of relativistic par-
ticles.

The gas expands and cools down, until the hadronization temperature (kBT ∼ 170
MeV, also called Hagedorn temperature [32]) is reached. Matter re-hadronizes into baryons
and mesons. As the temperature further decreases, the gas goes through two additional
phase transitions: at kBT ∼ 100 KeV protons and neutrons bind together to form atomic
nuclei (Chemical Freeze-Out), and at kBT∼1/4 eV (Thermal Freeze-Out) complete atoms are
formed.

The process here described, and sketched in Fig. 1, is expected to provide a descrip-
tion of the first moments after the big bang [33].

The Bjorken flow, also called the mono-dimensional boost invariant expansion model
[28], represents the simplest setup for modeling the longitudinal expansion of the dy-
namics observed in heavy ion collisions in particle accelerators.

It takes into consideration an inviscid fluid which is expanding along the direction of
propagation of the two beams (the z-axis cf. Fig. 1), with fluid velocity

β=
Uz

U0
=

z

ct
. (3.1)

In the next section, we detail the governing equations of the flow, and provide details
on the analytical solutions. For simplicity, in what follow we make use of natural units:
c= kB =1.

3.1 Analytic Solution for an ideal fluid

We use a flat space-time, with coordinates (t,z), where only the spatial coordinate z is
considered since it is assumed that no transverse dynamic develops.

As previously mentioned, the most natural coordinate system for describing a Bjorken
flow is given by Milne coordinates, since in this metric the flow describes a static fluid in
a longitudinally expanding space-time. Milne coordinates (τ,w) are defined as

{

τ=
√

t2−z2 ,

w=arctanh
(

z
t

)

.
(3.2)
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In what follows, we denote with a tilde superscript quantities expressed in the Milne
metric.

We define the following transformation matrix between the two reference frames:

Λ
µ

ν=
∂x̃µ

∂xν
; (3.3)

the above provides an expression for the metric in the new basis:

η̃αβ =Λα
µ Λ

β
ν ηµν=diag

(

+1,− 1

τ
2

)

, (3.4)

η̃αβ =diag
(

+1,−τ
2
)

. (3.5)

Moreover, the curvilinear coordinates define Christoffel symbols Γα
βγ, and the usual deriva-

tive has to be replaced with the covariant derivative. For a generic tensor field Aα one
has:

Aα
;β=∂β Aα+Γα

βγAγ. (3.6)

Milne’s Christoffel symbols are defined by

Γ̃0
dd=τ, Γ̃d

0d=
1

τ

, Γ̃d
d0=

1

τ

, (3.7)

with all the other symbols being zero.
From the condition in Eq. (3.1), we define the macroscopic velocity Uα:

Uα=
1√

t2−z2
(t,z) . (3.8)

By applying the transformation matrix Λ
µ

ν we obtain the corresponding Milne macro-
scopic velocity Ũα:

Ũµ=Λ
µ

νUν=(1,0). (3.9)

The particle-flow (Eq. (2.3)) and the energy-momentum tensor (Eq. (2.4)) in Milne coor-
dinates write as

Ñα =nŨα , (3.10)

T̃αβ=(ǫ+P)ŨαŨβ−Pη̃αβ . (3.11)

Moreover, the balance equations (Eq. (2.5)) in Milne coordinates take the form

0= Ñα
;α=∂αÑα+Γ̃

β
βαÑα , (3.12)

0= T̃
αβ

;α=∂αT̃αβ+Γ̃
β
µαT̃µα+Γ̃α

µαT̃µβ . (3.13)
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By imposing such conservation equations, in combination with Eq. (3.9) and Eq. (3.10),
one gets:

0=∂τ(nτ),

0=∂τ(ǫ)+
P+ǫ

τ

, (3.14)

0=∂w(P).

Combining the above with the EOS it is possible to derive analytic expressions for the
particle number density n, the energy density ǫ, and the temperature T.

Considering a ultra-relativistic gas, with ideal EOS

P=nT,

ǫ=dP, (3.15)

the solution for the scalar fields n,ǫ,P,T can be obtained in the local Minkowski metric
with a simple coordinate substitution, leading to:

n(τ)=n0
τ0

τ

=n0

(

t2
0−z2

0

t2−z2

)1/2

,

ǫ(τ)=ǫ0

(

τ0

τ

)
d+1

d
=ǫ0

(

t2
0−z2

0

t2−z2

)

d+1
2d

, (3.16)

P(τ)=P0

(

τ0

τ

)
d+1

d
=P0

(

t2
0−z2

0

t2−z2

)

d+1
2d

,

T(τ)=T0

(

τ0

τ

)
1
d
= t0

(

t2
0−z2

0

t2−z2

)

1
2d

.

In the above, the values (n0,ǫ0,P0,T0) are prescribed at τ=τ0(t0,z0).
We remark that for the more general EOS in Eq. (2.8), suitable for a fluid consisting of

massive particles (ζ 6= 0), it is necessary to perform numerical integrations of the equa-
tions in Eq. (3.14). Specifically, one takes the second of Eq. (3.14) and expresses it using
the EOS Eq. (2.8):

∂τ

[

nT

(

ζ(T)
K d+3

2
(ζ(T))

K d+1
2
(ζ(T))

−1

)]

+
nT

τ

(

ζ(T)
K d+3

2
(ζ(T))

K d+1
2
(ζ(T))

)

=0. (3.17)

Combining the above with the equation for the density (Eq. (3.14)) delivers

− nT

τ

(

ζ(T)
K d+3

2
(ζ(T))

K d+1
2
(ζ(T))

−1

)

+n∂τ

[

T

(

ζ(T)
K d+3

2
(ζ(T))

K d+1
2
(ζ(T))

−1

)]

+
nT

τ

(

ζ(T)
K d+3

2
(ζ(T))

K d+1
2
(ζ(T))

)

=0,
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from which it directly follows,

∂τ

[

T

(

ζ(T)
K d+3

2
(ζ(T))

K d+1
2
(ζ(T))

−1

)]

+
T

τ

=0, (3.18)

which can be numerically solved for the temperature T.

4 Numerical results

In this section we report numerical results for the Bjorken flow simulated in a (2+1) and
(3+1) Minkowski coordinate system, using the Relativistic Lattice Boltzmann Method
(RLBM). We first give a short overview of the numerical method, followed by a compari-
son of the numerical results with the analytic solutions presented in the previous section.

4.1 Relativistic lattice Boltzmann method

RLBM is a computationally efficient approach to dissipative relativistic hydrodynamics.
The derivation of the method and its algorithm (see [18] for full details), closely follow its
non-relativistic counterpart [34,35]: RLBM solves a minimal version of Eq. (2.1), in which
the discretization of the microscopic momentum vector on a Cartesian grid is coupled
with a Gauss-type quadrature which ensures the preservation of the lower (hydrody-
namics) moments of the particle distribution:

fi(x+vi∆t,t+∆t)= fi(x,t)−∆t
p

µ
i Uµ

cp0
i τ

(

fi(x,t)− f
eq
i (x,t)

)

, i=1,2,···M, (4.1)

where vi = pi/p0
i are the (discrete) microscopic velocities, and f eq

i is the discrete equilib-
rium distribution obtained from a polynomial expansion of Eq. (2.2):

f
eq
i (x,t)=wi

N

∑
k=1

a(k)(U
µ(x,t),T(x,t))J(k)(p

µ
i ); (4.2)

refer to Appendix F and G in [18] for the definition of the polynomials and the projection
coefficients used in the expansion.

Eq. (4.1) can be evolved in time following the collide-streaming paradigm typical of
classic Lattice Boltzmann schemes. Moreover, at each time step, and for each grid cell,
we can compute the macroscopic fields from the moments of the discrete particle distri-
bution. Indeed, the quadrature rule allows the computation of integrals in Eq. (2.3) and
Eq. (2.4) in an exact form [18, 36] via discrete summation:

Nα(x,t)=∑
i

pα
i fi(x,t), Tαβ(x,t)=∑

i

pα
i p

β
i fi(x,t). (4.3)
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Finally, all the macroscopic fields can be determined combining the above with the eigen-
value problem

TαβUβ=ǫUα, (4.4)

which allows calculating the density n via

n=
1

c2
NαUα, (4.5)

and finally the temperature T from the EOS in Eq. (2.8).

4.2 Simulation details and results

We consider a domain of length L = 1 fm along the z dimension, with z ∈ [− L
2 , L

2 ], dis-
cretized using 2000 grid points, and with one single grid point used to represent the
other (periodic) dimensions.

We follow the dynamics from an initial time value of t0 = 1 fm/c, up to th = 5 fm/c,
which approximately represents a time in the QGP dynamics when a departure from a
hydrodynamic regime occurs [37].

Initial prescriptions for the temperature and the density are given at time t0 at the
value z0= L/2≤ t0, which in turn defines

τ0=
√

t2
0−z2

0 . (4.6)

We take as initial value for the temperature T(t0,z0)=T0=300 MeV, that is approximately
the value given by both theoretical [28] and lattice QCD [38] calculations, and is well
above the Hagedorn temperature [32]. Following [39], we set the particle number density

to n(t0,z0)=n0=1.5 fm−d.
We select the following values for the relativistic coldness ζ=mc2/kBT0: ζ=(0,1,2,3,4),

that with the value chosen for T0 roughly translate to rest masses that fall within the quark
mass range [40].

The macroscopic fields n(t0,z), T(t0,z) are initialized from Eq. (3.16) (or by numeri-
cally solving Eq. (3.18) in the case ζ 6= 0), while the macroscopic velocity Uα(t0,z) is set
according to Eq. (3.8).

The discrete particle distribution functions fi are initialized at equilibrium

fi(t0,z)= f
eq

i (n(t0,z),T(t0,z),Uα(t0,z)) . (4.7)

We implement boundary conditions along the z axis using the following expression:

fi

(

t,z=±
(

L

2
+dz

))

= f eq

i (n∗(t,z),T∗(t,z),U
α
∗(t,z))+φi , (4.8)

where quantities denoted with the subscript “*” are calculated from Eq. (3.16) and Eq. (3.8),
and with φi a zero-th order extrapolation of the non-equilibrium part of the distribution
calculated from the inner grid points.
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Figure 2: Comparison of numerical results for the Bjorken flow of an ideal gas of particles with different values
of the relativistic coldness ζ, computed with respect to the reference temperature kBT0=300 MeV. Represented
in the figure are the Pressure and Temperature profiles in the z spatial domain, taken at time t=2 fm/c, both
considering a d= 2 (left column) and d= 3 (right column) ideal Equation of State. The numerical results are
confronted with the analytic (ζ=0) and semi-analytic (ζ 6=0) results, and a perfect match is obtained.

In Fig. 2 and Fig. 3 we compare numerical results from RLBM simulations against the
analytic solutions presented in Section 3.

In Fig. 2 we show the profiles for temperature and pressure as a function of the spatial
coordinate z. The snapshots are taken at t = 2 fm/c. The macroscopic profiles are in
excellent agreement with the analytic solution.

In the panels on the left hand side we report results in (2+1) dimensions, while on the
right we show the results in (3+1) dimensions. Although the flow is mono-dimensional,
the number of spatial dimensions enters the definition of the EOS (2.8). We observe that
the evolution of the QGP phase is accelerated in the (2+1)-dimensional case, with the
gas cooling down at a quicker rate with respect to the (3+1) counterpart.

Moreover, from Fig. 2 it is possible to appreciate that the evolution of fluids consisting
of heavier particles leads to lower temperature values and therefore to a quicker cooling
of the QGP. This suggests that such cases would lead to phase transitions at an earlier
time, in complete consistence with theoretical calculations and experimental observations
[41] and providing a basis for more complex coalescence models [42].
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Figure 3: Comparison of numerical results for the Bjorken flow of an ideal gas of particles with different values
of the relativistic coldness ζ, computed with respect to the reference temperature kBT0=300 MeV. Represented
in the figure are the Pressure and Temperature profiles in the τ time domain, both considering a d= 2 (left
column) and d= 3 (right column) ideal Equation of State. The initial value for τ0 is computed according to
(4.6), where L = 1 fm and t0 = 1 fm/c. The numerical results are confronted with the analytic (ζ = 0) and
semi-analytic (ζ 6=0) results, and a perfect match is obtained.

Finally, in Fig. 3 we give a different representation of Fig. 2, with the macroscopic
profiles presented as function of the Milne coordinate τ. We once again stress that the
RLBM used in this work operates in Minkowski coordinates; the results in Fig. 3 have
been translated into the Milne spacetime via a simple coordinate transformation thanks
to the fact that all the thermodynamic fields are Lorentz scalars.

5 Conclusions

In this work, we have presented analytic and numerical solutions describing a Bjorken
flow in a flat space-time coordinate system. This type of benchmark provides a simplified
description of the longitudinal expansion of the QGP, mimicking the dynamics observed
in relativistic heavy ion collisions taking place in particle colliders such as RHIC and
LHC.
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We have considered the dynamics of a relativistic fluid for several kinematic param-
eters, in particular varying the rest mass of the particles, as well as the equation of state.
The numerical results show excellent agreement with the analytic solutions.

This work may provide a useful reference for evaluating the accuracy of numerical
solvers for relativistic hydrodynamics working in a Minkowski flat space-time. Further-
more, the proposed solver might be useful for further simulations of QGP, that go beyond
the longitudinal description and investigate the transversal motion as well. As an exam-
ple, study of elliptic flows [43] and characterizations of Bjorken attractors [44, 45] might
be natural next steps of investigation.
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[31] F. Jüttner, Das Maxwellsche Gesetz der Geschwindigkeitsverteilung
in der Relativtheorie, Annalen der Physik 339 (5) (1911) 856–882.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19113390503,
doi:10.1002/andp.19113390503.

[32] J. Rafelski (Ed.), Melting Hadrons, Boiling Quarks – From Hagedorn Temperature to
Ultra-Relativistic Heavy-Ion Collisions at CERN, Springer International Publishing, 2016.
doi:10.1007/978-3-319-17545-4.

[33] U. W. Heinz, Concepts of heavy-ion physics (2004). arXiv:hep-ph/0407360,
doi:10.5170/CERN-2006-001.
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