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Abstract. In this paper, we aim to establish a strong averaging principle for
stochastic tidal dynamics equations. The averaging principle is an effective
method for studying the qualitative analysis of nonlinear dynamical systems.
Under suitable assumptions, utilizing Khasminkii’s time discretization ap-
proach, we derive a strong averaging principle showing that the solution of
stochastic tidal dynamics equations can be approximated by solutions of the
system of averaged stochastic equations in the sense of convergence in mean
square.
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1 Introduction

For hundreds of years, ocean tides have been a source of interest for many physi-
cists and mathematicians. Historically, Newton first gave a mathematical ex-
planation of ocean tides and Laplace established the hydrodynamic equations
for ocean tides, we refer the readers to the literature [12] for a complete his-
tory and theoretical description of tides. Over the last few decades, this field
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has developed further with the help of computer and satellite technology and is
used in a wide and diverse range of fields such as geophysics, atmospheric sci-
ence and communications, just to mention a few. In this paper, we will consider
the tidal dynamics model proposed by Marchuk and Kagan [15]. In the mono-
graph [15], Marchuk and Kagan constructed the tidal dynamics model from the
three-dimensional Navier-Stokes equations by integrating along the z-axis (the
vertical direction) and then by considering the model on a rotating sphere, which
is a generalisation of the Laplace model.

Due to modelling complexity, it is intrinsically difficult and challenge to study
the tidal dynamics equations which are highly nonlinear partial differential equa-
tions of parabolic-hyperbolic type. Let us give a brief review of results in the lit-
erature. In Manna et al. [14], the authors obtained the existence and uniqueness
of weak solutions of the deterministic tide dynamics equations and the existence
and uniqueness of strong solutions of the stochastic tide dynamics equations with
additive Gaussian white noise. The existence, uniqueness, large deviation prin-
ciple and moderate deviation principle for stochastic tidal dynamics equations
driven by multiplying Gaussian noise have been studied in [9,19]. The authors
in [1] established the existence of optimal controls for stochastic tidal dynamics
equations driven by Lévy noise. For further studies regarding stochastic tidal
dynamics equations, interested readers are referred to [16,17,23] and references
therein.

On the other hand, averaging principle is an effective approach for studying
dynamical systems involving highly oscillating components. Under certain as-
sumptions, the highly oscillating components can be averaged out to generate
an averaged dynamical system, which is comparably easier for analysis which
governs the evolution of the original system over long time scales. The aver-
aging principle for deterministic dynamics initially established by Krylov and
Bogolyubov indeed provides a powerful and efficient tool for investigating the
properties of highly complex and nonlinear dynamical systems. Averaging prin-
ciple for stochastic differential equations was first derived by Khasminskii in [11].
The fundamental idea of the stochastic averaging principle is to derive averaged
stochastic differential equations and establish approximation of the averaging so-
lutions to the solutions of the original equations, so that the original complex
stochastic differential equations could be analysed via the corresponding easier
averaged equations. To date, there are extensive literatures concerning stochastic
averaging principle for finitely dimensional and infinitely dimensional stochastic
systems, see, e.g., [2—4,7,8,10,18,20-22] and the references therein. Motivated by
all the above mentioned works, in this paper, we want to establish a strong av-
eraging principle for the stochastic tidal dynamics equations in which we derive
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averaging stochastic tidal dynamical equations as easier modelling equations for
tidal dynamical equations.

Let us first describe the model we are concerned with in this paper. Let O
be a bounded domain in R? with smooth boundary. We are concerned with the
following stochastic tidal dynamics equation:

dus (£) + (Au (£)+B(uf (£))+ V£ (t)) dt
=f (é,ue(t)) dt+o (é,uf(t)) dw(t), (tx)e[0,T]xO, (1.1a)

dz®(#)+div (h(x)u®(t))dt=0, (t,x)€1[0,T]x O, (1.1b)
ut(t,x)=0, x€00, (1.1¢)
| u(0,x)=up(x), z°(0,x)=z5(x), xeO (1.1d)

for e>0, where W is a Q-Wiener process. The operators A and B are defined by

(7 )
B(u):=/u+w”| (u+),

where a and the Coriolis parameter B are positive constants and w’(t,x) is
a known deterministic function on the boundary, which is extended to the whole
domain as a smooth function. The function /(x) is defined to be the depth of the
sea at x in the region O and we assume that it is a continuously differentiable
function nowhere becoming zero, so that

k:=minh(x), wp:=maxh(x), M:=max|Vh(x)|
xeO xcO xcO

are positive constants. Then (x):=r/h(x),r >0, is a strictly positive smooth
function. Our aim of the present paper is to establish an averaging principle for
the stochastic tidal dynamics equation (1.1).

The remainder of the paper is organised as follows. Section 2 presents some
preliminaries for our later use. Section 3 is devoted to formulating and proving
the strong averaging principle.

2 Preliminaries

For simplicity, throughout this paper, C denotes a positive constant whose value
may change from line to line. We will also write the dependence of a constant on



4 X.Yin, G. Shen and J.-L. Wu / Commun. Math. Anal. Appl., 2 (2023), pp. 1-20

parameters explicitly if it is essential. Let LP =LF(O)=L? (O;IR?), p>1, be the
vector valued L? space equipped with the norm ||-||z». The inner product and the
norm in L?(0O) are denote by (-,-) and || - ||, respectively. Let

H'=HY(0)=H"(O;R?)
denotes the Sobolev space with the norm
3 = lul|®+][Vul?, uweH".

We also let H} = H}(O;R?) be the closure of C°(0) in H'(O) norm. According
to Poincaré inequality, for any u € H}

el g = [ Vel =[] -

We denote the dual of H}(O) by H1(O). Then, we have the following continu-
ous and dense embedding:

Hy(0)CL*(O)CH 1 (0).

The induced duality between the spaces H}(O) and H~1(0O) is denoted by (-,-).
For any u € L2 and v € H}, it follows that (u,0) = (u,0).

Let (Q),.#,.%;,P) be a stochastic basis with a complete, right-continuous filtra-
tion. Let Q be a positive, symmetric, trace class operator on L? and e, k€N, be
the complete orthonormal basis of L? such that Qey = ey, k €IN. We assume that
W(-) is an L?-valued Q-Wiener process. The process W(-) can be expressed as

W(r) = ilmmx)ﬁk(t),

k=

where (B, k€IN) is a sequence of independent, one-dimensional Brownian mo-
tions. We denote the collection of Hilbert-Schmidt operators from H to L? by
L7(Ho;L?), where Hg = Q/?L2. Defining the norm on the space £,(Ho;L?) by
||CI>||2£Q =Tr(Q®Q*). For any L,(Ho;L?) valued predictable process ®(t),0<t<T

satisfying
T
E / Tr(®QD*)dt < +o0,
0
one can then define the stochastic integral fOTCID(t)dW(t). For more details, we

refer the reader, e.g., to [5,6,13].
Now we introduce the following conditions which will be used in the sequel.
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Assumption (H1). There exist positive constants L¢, K¢ >0 such that
If () —fEo <Lyllu—ol, FEO)I<K;, uoel?

Assumption (H2). There exist positive constants L,,Ky, >0 such that

o) = (0)]l cq <Lolu—oll, 1lo(,0)|co <Ko, u0eL2

Under the above assumptions, we can state the existence and uniqueness of
solutions to (1.1).

Theorem 2.1 ([19]). Let wcL4([0,T] ;H& ), ug €r?, z§ €L2. Then there existsa pathwise
unique, strong solution (u®(-),z°(+)) to Egs. (1.1) and the solution satisfies the following:

(uf,z°) € C([0,T;L*)NL*([0,T];Hy) x C([0,T|;L?), P—a.s.

3 Main result

In this section, we shall derive the averaging principle for Egs. (1.1). Specifically,
we want to show that if € — 0, then the original equations (1.1) converge to the
following averaged equations:

(

dir(t)+ (Aa(t)+B(i(t))+Vz(t))dt

= f(ua(t))dt+o(a(t))dW(t), (t,x)€[0,T] x O,
dz(t )+d1v( (x)u(t))dt=0, (t,x)€[0,T]x O, (3.1)
i(t,x)= x€00,

| #(0,x )_ (x)eL2, z(0,x)=2%o(x)€L?, x€O,

i}

where the coefficients f:L? — L? and ¢ : L? — L5(H;L?) satisfy the following
averaging conditions:

Assumption (H3). For any T>0, x € 12,

2| [ ren = s,

where «1: Ry — R is a bounded function with limy_, %1 (T) =0.

Assumption (H4). For any T>0,x€L?,

1 [ lotx) -2 @)l de<m(m) (14 1),

where x; : IR+ — R is a bounded function with lim7_, % (T) =0.
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Before providing the main result of the paper, we need to show the following
lemmas. For convenience, for a given process ¢, we define ¢ such that ¢(c) =
¢(s+kd) for any o € [ké,(k+1)d), k> 0. For simplicity, we set

fg(t,X):=f<£,x>, ag(t,x):=0<£,x>, V>0, xel?

Lemma 3.1. For any ¢ >0. Let (u®(t),z5(t)) be the solution of (1.1), then for any p>1,
we have

T 4
ut(s)||? Z¢(s)||? « ut(1)||?
E( sup (Iae(o)P 12617 ) ) + 20 [ 19w o))
<C(1+upl + 12517 ). (3.2)
Proof. Using It6 formula, we have
dHu;(t)H2+2(a||vm||2+<B(u8(t)),u€(t)>+<vZ€ (t)>)
=2(fe(1),u€ (1))t + [0 (b (1)) 1%, dE+2( 0 (b, u (DAW (1), u (1))

Then according to [19, Eq. (2.15)], one gets
I ()]+20 [V (5) s
<l L [ (el )7 s
[ (P51 ) s
+/0 (2L}+2L3,+1)||u€(s)||2+2(1<}+1<%,))ds

12 /O ' (0u(5, 1 (5)AW(s), 1 (5) ). (3.3)
Moreover, taking inner product of (1.1b) with z¢, we get
d||z¢(1)||2+2(div(hut(t)),z5(t)) dt =0.
Then, it follows from [9, Lemma 2.1 (iii)] that

€ &€ lx t &€ t i
125 (1) |2 < |lz5 ]2+ 2 / Ve (s)|2ds + M /O | (s)|2ds
4
+( i +M)/ |22 (s) | 2ds. (3.4)
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Adding (3.3) and (3.4), we find that there exists two constants C;,C, >0 such that
2 2 f 2
[ ()17 +[]z°(2) | +0¢/0 [Vu(s)[|"ds
t
<[P+ 2512+ Cat+Ca [ (1 (5) 2+ 1124(5)]12) s
t
+2/ (oe(s,u’(s)dW(s),u(s)).
0
It follows that for any p >1,
2 2 ! 25\
-+ [ 1+ [ 19560 s
t p
<Gy (Il + 12512 +1 [ (I (0) 12+ () ) s ) )
t p
/ (0e(5, 1 (5)dW (5), 15 (5) )
0
t
<Cor (117 +z51P7+1+ [ (@I + 26) ) s

/0 (a5, ()W (s), 1 (5)) ’

+CP1T

+CP1T

Taking supremum on [0, T] and expectation, it holds that

E(sup (ol 2017 ) )+ ([ 9us) Pas )

0<t<T

T
<Cpyr (15 27+ 112512 +1) + CprE [ (Il () |2+ %)) s

+Cp,rE sup
0<t<T

/Ot<(fg(s,u€(s)dW(s),u€(s)> 'P. (3.5)

According to Burkholder-Davis-Gundy inequality and Young’s inequality, we ob-
tain

p
E sup
0<t<T

<. ( /OT||u€<s>u2uas<s,u€<s>>||%st)%

/Ot<(7£(s,1/t€(s)dW(s),u8 (s))
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14
2

<CE( sup [us(r)] / loe(s,15(5)) 3, ds
0<t<T

1 2
S sup )17 ) + o [ () [,

I\.)

0<t<T
1 T
§§E< sup 1 (O] ) 4G+ G [ Iu@Ids. G6)
0<t<T 0

Combing with (3.5) and (3.6), we obtain

i (sup (IO + 1z 1) ) +2 ([ 1oucts)Pas)

0<t<T
€12 €12 r € 2 € 2
< Cr (1 P+ 1251) + o [ (I (5) PP+ 2(5) 27 ) s
An application of Gronwall’s inequality yields that
€ 2 € 2 g € 2 g
E( sup (I + =617 ) +2 ([ 19 Par)
0<t<T 0
<C(1+ 2P +11z512°)-
The proof is complete. O

Remark 3.1. It can be easily verified that f and 7 satisfy the assumptions (H1)
and (H2). Moreover, the solution to Eq. (3.1) also satisfies Lemma 3.1.

Lemma 3.2. Under the assumptions (H1)-(H4), let (uf,z°) and (ii,Z) be, respectively,
the solution of Eqgs. (1.1) and (3.1). Then for any T >0, we have

1
B [ () () < (T, 2 ) o, (37)

B [ () - i \|2dt<c(Tuuou2 Iz5]12) 8% (9)

Proof. Since the proofs of (3.7) and (3.8) are similar, we only prove that (3.7) holds.
Let T(6)=[T/J], where [x] is the integer part of x. Then

]E/ e (F) — a2 (1) | 2dt

T(6)-1

) (k+1)s )
=]E/0 Ju (t) —ug||*dt+E ) /1«5 | uf(t) —u®(ko)||~dt

k=1
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T
]E/ E() —ut(T(6)0)|*dt
S B CEUOL]

T(@)=1 .(k+1)s
<c(TluplP)o+2E Yo [ () - u(e-0)
=1 ko

T(6)-1 .(k+1)s
+2E ) / 4 (£—8) — u (ko) ||2dt
=1 ko
T(6)-1 T(6)-1

- C(T,||ug||2,||z5\|2)5+2 Y L+2 Y T (3.9)
k=1 k=1
Given 1<k<T(6)—1and ko <t < (k+1)J, by using It6 formula, we have
14 () — (£ — 5||2_—2/ (Auf(t (t—4))dt

—2/ B(u “(t—0))d
(B ))dz

—2/ (Vz5,uf (1) —uf(t—6))dt
t—5
!

—|—2/ (fe(t,uf(T)),u (1) —u(t—6))dt

+/ ||loe(T,uf(T ||£ dt

+2/ (uf(t 8),0¢(T,uf (7)) dW (7))
=:J1(t) +]a(t )+]3( )+]4( )+15(t) +J6(t).

We estimate the above terms separately. For the term J; (¢), we have
:—2/t (au(r) >dr+2/ (A (1), (t—6))dr
:—Zoc/t_(sHu (7|2 1dT+2/t_5<Au€(r),u€(t—5)>dr
<Ca [ 1) e (1= 8) e

t t
ga/t (5Hu8(r)\|§{1dr+c,x/t e (t=0)|Fud.

For the term J,, using the property of the operator B(-) (cf. [19, Lemma 2.2]) and
the Ladyzhenskaya’s inequality, we have
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B <2 [ B ) (1) - (6-5) e
gc/t_(s(||u€(T)||L4+1)2Hu8(T)—us(t—5)||d’[
<[ (@B drec [ (@R lae—o)F)dr

Similarly, we have
2/ (z°(7),div(u® (1) —u®(t—9)))dt
t—o
SC/ 12 (D) [l div (" () —u(t=4)) | dT
t—o

t t
<c [ JEElle@lmdrec [ 1@l E-o)ndr

For the terms J,(t) and J5(t), it follows from assumptions (H1) and (H2) that
J4(f)+15(f)§2/t | fe(T,uf (D)) ||l (7) —u* (¢ =) [dT
+zc/ Lol (7)|2+K2 ) dt
<2/ (Ll (T) |14+ Ky) luf(T) —uf (¢ =0)||dT
+2c/ Lol (7)|2+K2 ) dt

<c [ (e @P+use-8)P+1)de

Combing with all the above estimates, we find

L=E / ||u )—uf (=) |2

=CE /H e (D)2 + 1 () |2 [ () P+ [ () P
+ [ ()| [l2° () [+ Hus(t—5)“%ﬂ +||uf(—0)|)?
+{[uf (t=0) || g l|z° () +1)drdt
k-+1 t
228 [ [ (@) - -8 ()W ()t

=T+
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For the term I,l(, we have

1 (k1) rt € 2 € 2 € 2
e [ [ (@I sup eI 1@l

0<t<T

+||u€<r>||2+( sup ||z€<t)||2)||u€<r>||§1)drdt
0<t<T

(k+1)8 pt . 5 . 9
+CE [ [ (=) B+ (e =0))

0<t<T

—I—( sup ||z€(t)||2) ||u€(t—5)||%{1+1> drdt

<o [ () B+ sup (024 sup 20012 ) (o)
- (k1) H P P H

0<t<T 0<t<T

+||us(t)||2> di

COE (e (1) ()2 P ) [l (B)]|%, +1 | dt
T (k—1)8 [ () I5p + [ (O7+ | sup [[Z°(E)1° ) [[uf ()5 +

0<t<T

(k+1)0 € 2 € 2 € 2 € 2
<ok [ (IOl + 1) 2 (sup 012 ) (o)
(k=1)6 0<t<T

+( sup ||z£(t)||2) ||u€(t)\|§{1>dt. (3.10)

0<t<T

For the term 17, using Burkholder-Davis-Gundy inequality, we get

(k+1)6 ot
I2=2F g / 5 (u(t) —ut(t—9),0¢ (T, u’(7))dW(T))dt
—
(k+1)0 3

<c B[ om0 -t e-o) ) a

ké

IN

e[ ([ @) oo )

0

(7 [ (0l + =0y +1) e )

IN

Co
5 t—5
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1
(k+1)6 2
<cst <]E/(k 5 (5||u€(r)||4dr+52>
~1)

(k+1)0 A
gca(m/(k ol )H4dr) +C83. (3.11)

Consequently, combing with (3.10) and (3.11), we obtain

T(5)—1 T(5)—1 T(5)-1
2 Y L=2Y L+2 Y} I
k=1 k=1

k=1

T
<coE | (uu%t)nzl+||u€<t>||2+1+( sup a¢(0) |2 ) I (013
0 0<t<T

+( sup ||z€<t>u2)\|u8<t>||-”;p>dt
0<t<T

(k+1)5 3 ,
+Cs Z ( / 5lut(t )||4d’r) +Crot

< CE / uu€<t>uindt+cw(m sup [u(0)+1)
0

0<t<T

+co((E sup () ( ([ o 1dt)>
*Cé(Eoi‘:ET”Z i) ( (f 1o 1dt)>

(k+1) X
+CH(T(5)) IE/ |uf(7) |2, dr opst

scT(1+||u0u2+uzo|| )ot. (3.12)

—_

Similarly, we can prove that

T(5)-1
2 ¥ I <Cr (1+\|u5||2+\|zg\|2)5%. (3.13)

k=1
Combining with (3.9), (3.12) and (3.13), we know (3.7) holds. The proof is com-
plete. O
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Now we are in the position to prove the following main result of the current
paper.

Theorem 3.1. Let (uf,z%) and (i1,Z) be, respectively, the solution of Egs. (1.1) and (3.1).
If we assume that

lim (g g2+ |25 — 20l ) =0
and assumptions (H1)-(H4) hold. Then for any T >0 and p > 1, we have

iy (1 sup (1)~ () [+ sup () ~z(0)* ) =o.

=0\ o<t<T 0<t<T

Proof. Observe that

d(u ()~ (1)) = (A( <> <t>> (B(u%t))—B(a(t)) )dt

+(Ue(f ue(t)) <'7(ﬂ( ))) ( )

Using It formula, we obtain

[t (£) =2 (1)]|* = ||u8—ﬂo||2—2/0t<A(u€(ff)—ﬁ(U)),uE(U)—ﬁ(U»dU

t

|
N
P
o]
Ny
™M
2
|
o]
<
2
=
™M
2
|
<
)
~—
(oW
Q

11
=t Juf— i[>+ }_J;(t)
i=6

Observe that
Jo(6)+17(1) < ~2a [V (u(0) - (o) Pt
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and
f =—2/t<v 2(0) —2(0))uf (0) —1(cr) Ydo
_2/ (z5(0) —2(0), div (uf (0) — 1()) Ydo
<zf/ |2#(0) ~2(@) 11V (1" (0) ~(0))[|dor
<2 [I0) -2 ||Zolo—+2 [ IV ) ~ate) Pde
Thus,

t
e (8) —a(f) ||2—|—2oc/ 1V (4 (o) — 1(0)) | 2dor

< 5ol +5 [ () ~2(0) Pdo+5 [V (o) -]
+Jo(t)+J10(t) +J11 (¢ )- (3.14)

Moreover, we also have
(1) -2 < 12— 20+ [ 19( t||v u*(0) (o)) 2o
( +M)/ 125(0) — 2(0) |2der
—I—M/ |1 (o) — () | 2do. (3.15)
Adding (3.15) to (3.14) yields
E(t —i—oc/tHV W (o) — (o)) 2de

< s ol/*+ 25~ 20]*+C [ Z(0)do+Jo(6) +o(6) +1na (1),

where
B(t)=||u* (£) —a(t) 2 +12°(t) —2(1)I|*.
Applying Gronwall’s inequality, we obtain
sup E(t)gCT(HuB—L‘tOHZ—l—HzS—ZOHZ—l— sup Jo(t)+ sup Jio(t)+ sup ]11(t)>.

0<t<T 0<t<T 0<t<T 0<t<T
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It follows from Burkholder-Davis-Gundy inequality that

E sup (1) <Cr (5~ molP+ 25~ ) + B sup (o)

0<t<T 0<t<T
T
+CrE /O loe(t,uf (0)) =7 ((0)) | 7, do (3.16)

Now, we estimate the term [Esup,;.rJo(f). The method is very similar to [4], for
the convenience of the reader, we give the proof here. Observe that

B sup Jo(1)) <2 [ [felsar(5)— ols,m(s)) 1 5) () s

0<t<T

+2E sup / (fe(s,u(s))—f(u(s)),u(s)—i(s))ds

0<t<T0

T
§2Lf]E/ e (s) —a(s) || 2ds
0

2 sup [ {fls,1(s))~ F(0(5)) 6 (5) ~ () s

0<t<T0

V2 sup [ (uls,1(5))—F(a(s)), 7 (5)— (5)) s

0<t<T0

28 sup [ (fls,(5)) ~ F(r(s)),7(s)— (s)) ds

0<t<T/0
T
=:2Lf]E/O [uf (s) — () | 2ds T3+ 2+ T3 (3.17)

For the term J3, by Lemmas 3.1, 3.2 and assumption (H1),

B=2E sup_[[(f(s,m(s)) — F(a(s))(5)—(5)) s

0§;§T 0 _
gzlE/O (Ife(sa()I+ I f(@s)I) [l (s) —(s) || ds
<4E /OT(Lf||a<s>u+Kf)uu%s)—ﬁs(s)uds

<4(B [ @ ln+k)’a ) (B 1 - Pas)

<C(TIlupl? l125112) 5. (3.18)
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Similarly, for J3, we can get

B<C(T usl? 1z5]17) 8% (3.19)
For the term J3, we have

B<2E [ £ (61(0) £ (6 2(0) 18 (1) 1)t
+2E sup / (fe(s,71(5)) — F(1(s)), 8 (5) — i(s) ) ds

0<t<T
28 [ () ()] 2(5) - 6) s
<ak/E [ a(e) ~ ()] | (1)~ (o) o

+2F sup / (fuls,iE()) — F(iF(s)), 1 (s) — i(s) dis.

0<t<T

By Lemma 3.2, we can see

B [ a(e) - (o) () - 20)

< (e[ a7 |df)</|| ~i(o)ar)

<c (Tl Izl ) o*

1

Let t(5):=[t/6]6, we have

lEsup/ (fels,8(s)) — F(ii(s)), % (s) — di(s) )dis

0<t<T
[£/0]=1 (k+1)5 _
éIEsup{ 3 /M (Felsm088)) — (03) ) (k5) (ko) s
0<t<T k=0

+ [ Gl ~F ()))us(t(5))—ﬁ(t(5))>ds}

BRI/ (k1) _
<E sup { ) < / - Jfg(s,a(ké))— f(a(ka))ds,us(ka)—a(k5)>
0<t<T { k=0
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[t/6]—-1
<E sup Z
0<t<T | k=0

+C(Tllao l120]1%) &

(k+1)8 _
[, flsnke) ~F(a(ko)as

0

[ (k) = (k5)\|}

1
2
) +C (T, ol 120l

Cr (k+1)s )
< sup (E| [ fils k)~ Fla(ks))ds
0<k<T(5)—1 ko
C ) 3
gTT sup 0K <—)< 1+||M (ko) || )2 T||”0||H1)
0<k<T(5)—1 €
)
< N - ).
<c (Tl J2l?) (54 (£) )
Consequently,
1 )
Bec(Thnlf ) (8 (£) ). (3:20)
Combing with (3.10)-(3.20), then using Gronwall’s inequality, we find that
E( sup Jo(t)) <CE / Juf(s) —a(s)|%ds
0<t<T

0
+c(T,||ao||2,||ZO||2) <5i+xl ()) (3.21)
Similarly, we can obtain
T € 2
E [ llos(t (@) ~o(a(0) [},do
T - 2 =12 (1112 1 4
<CE [ |lu*(s)=a(s) Pas+C (T ol 120 ]2) (61 +r2 (2] ). (322
Combining with (3.16), (3.21) and (3.22), we get

T
E sup E(t) <Cr (]EHuf,—ao||2+]E||zf,—ZOH2>+C E sup E(s)dt
0<t<T 0<s<t

+C(T ol J20l?) (815 (§) +2 ().
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With the help of Gronwall’s inequality, we have

E sup () <C (T, m|%|120])

0<t<T
€ - 112 € = 112 1 0 Y
X |\ ||\ug—1io||“+|1z5 —Zo||“ + 64 +x1 . 4% . (3.23)

€
Taking 6 = /¢ and letting ¢ — 0 in (3.23), we obtain

imE sup ([[u(£) = (8) |2+ 125(8) —2(1)]*) =o.

Finally, for any p > 1, we have

lim (]E sup ||[uf(t)—a(t)||*’ +E sup ||zg(t)—2(t)||2p)

=0\ o<i<T 0<t<T

4p—2 % 2 %
<lim|( E|( sup [|u®(t)—da(t)||*’~ ) (]E sup ||uf(t)—i(t )
HO( (up ) —a@#72) ) (E( sup () —a(0)|F)

e (]E( < ||Z€(t>_z(t)||4p_2>)%(15( sup ||z€(t)—z(t)||z))%

0<t<T 0<t<T

1
2
< (1 gl 2Pt (B sup (o) - n(0)1?)
e—0 0<t<T

1
2

e112p—1 el12p—1\1; e\ _ 5 2 —
+C (1 g2+ 1125 )g(m(sup EXOREO] )) 0.

0<t<T

The proof is complete. O
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