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1 Introduction

Active hydrodynamics refer to dynamical systems that are continuously driven
out of equilibrium state by injected energy effects on small scales and exhibit
collective phenomenon on a large scale, for example, bacterial colonies, motor
proteins, and living cells [2,24,25]. Active systems have natural analogies with
nematic liquid crystals because the particles exhibit a orientational ordering at
a high concentration due to the collective motion. In comparison with the passive
nematic liquid crystals, the system of active hydrodynamics is usually unstable
and has novel characteristics such as low Reynolds numbers and very different
spatial and temporal patterns [15,34]. We refer the readers to [5,15,18,25,29,33,34]
and their references for the physical background, applications and modeling of
active hydrodynamics. Theoretical studies on active liquid crystals are relatively
new and have attracted a lot of attention in recent years. For example, the evolu-
tionary incompressible flows of active liquid crystals were studied in [6,19] and
the evolutionary compressible flows were investigated in [7,32]. In this paper
we are concerned with the stationary compressible flows of active liquid crystals,
described by the following equations in a bounded domain O CR3:

(div(pu) =0, (1.1a)
u-Ve—Ac=gi, (1.1b)
div(pu®@u)+ V7’ —div(S,s(Vu)+51(Q) +52(c,Q)) =pg2, (1.1¢)

u-VQ-I—QQ—QQ-I—C*Qtr(QZ)—F@Q

b (Qz—gtr@z)n) ~AQ=gs, (1.1d)

\

where p, c,u denote the total density, the concentration of active particles, and the
velocity field, respectively; the nematic tensor order parameter Q is a traceless
and symmetric 3 x 3 matrix, p” is the pressure with adiabatic exponent y >1, and
the functions g;,i =1,2,3 are given external force terms. We denote the Navier-
Stokes stress tensor by

Sus(Vu)=p(Vu+(Vu) ") +Adivul, (1.2)

where (Vu) " denotes the transpose of Vu, I is the identity matrix, and the con-
stants y, A are viscous coefficients satisfying the following physical requirement:

u>0, p+31>0. (1.3)
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In (1.1), Q= (Vu—(Vu) ") /2, and the additional stress tensors are

$1(Q)= —VQ@VQ+%|VQ|ZH+% (1—!-%*tr(Q2)> tr(Q%)I, (1.4)
S2(c,Q)=QAQ—AQQ+0.c*Q, (1.5)

where ¢, >0 and o, € R are given constants. The corresponding evolutionary
equations of compressible active liquid crystal flows can be found in [7]. The
Egs. (1.1) can be regarded as the stationary version of the evolutionary equations
in [7] through the time-discretization and play an important role in the long-time
behavior of active hydrodynamics. However, the mathematical analysis of the
stationary Egs. (1.1) remains open. The aim of this paper is to construct the weak
solutions to the stationary equations (1.1) subject to the following structural con-

ditions: 3 30
c
u—O, $—0, %—0 on a(’), (16)
and
/Op(x)dx:ml >0, /Oc(x)dx:m2>0, (1.7)

where 1 denotes the outward unit normal vector of the boundary 00, m; and m»
are given constants. We remark that the two conditions on the total mass and the
total active particles in (1.7) guarantee that the density function p and the particle
concentration ¢ are uniquely determined. For the modeling and analysis of the Q-
tensor systems of nematic liquid crystals we refer the readers to [3,4,9,16,22,36]
and references therein.

We now introduce some notation that will be frequently used throughout this
article. For given symmetric matrices A = (a;;)3x3 and B = (b;;)3x3, denote

3
tr(AB) =A:B= Z a,-jbi]-, tr(Az) = |A|2,
ij=1
and
S3.= {AI (Ell']‘)3><3: aij=4aji, tr(A) 20}.
For two vectors a,b €R3, denote a-b = 213:101'51‘ and a®@b = (a;b;)3x3. Denote the
Sobolev spaces (cf. [1]) by
WEP =WkP(©), LPF=W, HF=W*2 pe[l,e0], keN,.

Additionally, we use WP (O,IR®) and WP (0, S3) for the Sobolev spaces valued
in R? and S}, respectively. We denote by |O| the measure of the domain O, and
write [, f(x)dx as [ f for simplicity of notation.
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We shall establish the existence of weak solutions to the problem (1.1)-(1.7)
defined as follows.

Definition 1.1. The function (p,c,u,Q) is called a weak solution to the boundary-value
problem (1.1)-(1.7) if there is some exponent p >3 /2 such that

>0, ¢>0 ae. in O,
pELF(0), ceH*(0), ueH}(OR?, QeH?*(O,S}),
satisfying the following properties:

(i) The Egs. (1.1) are satisfied in the sense of distributions, (1.6) holds true in the trace
sense, (1.7) holds true for given my >0 and my > 0.

(ii) The Eq. (1.1a) is satisfied in the sense of renormalized solutions, i.e., if (p,u) is
extended by zero outside O, then

div(b(p)u)+ (b'(p)o—b(p))divu=0, D'(R’),
where b€ C1(]0,00)) with V' (z) =0 if z is large.
(iii) The Egs. (1.1b) and (1.1d) are satisfied almost everywhere in O.
We are ready to state our main result.

Theorem 1.1. Let O C R® be a bounded domain with smooth boundary. Assume that
the adiabatic exponent «y > 1, the constants my >0 and my >0, and the functions

g1€L®(0), $€L®(O,R%), ¢<cL®(0,S3) (1.8)

are given. Then there exists a small constant my that depends on my, c«, 0%, U, A, 7,
1g1llL, |82/, (|83l and [O|, such that if

my € (0,my], (1.9)
the problem (1.1)-(1.7) admits a solution (p,c,u,Q) in the sense of Definition 1.1.

Remark 1.1. The smallness assumption (1.9) is a technical condition that is mainly
used to overcome the strong nonlinearity caused by the concentration c of active
particles.

Remark 1.2. In fact, Theorem 1.1 still holds true in the case when c is any positive
constant (hence mp =c|O)|).
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We shall prove Theorem 1.1 by constructing approximate solutions and a two-
level limiting procedure. The approximate solutions are constructed in light of
time-discretization technique from the evolutionary equations in [7,30], and the
limits are based on standard compactness theories developed in [7, 11, 23, 28].
However, new difficulties arise due to the lower regularity of stationary solutions,
strong nonlinearity and complex coupling of active particles and fluids. In order
to make our ideas clear we comment on our approach and novelty below.

We begin in Section 2 with suitable linear equations to construct the approx-
imations of system (1.1). For a given function v in the set {v € WY*(O,R3),v=
0 on 00}, we impose the transport equation (1.1a) with the extra diffusion €>/\p
and obtain p=p|v,€e] in Lemma 2.1. With the force term g1 given in (1.1b) we can
solve c=c[v,€e]. Having p=p[v,€] and c=c[v,€] in hand, for a given v and a given
function Q in the set { Qe W?>*(0,IR%),0Q/9n=0 on 9O} we are able to construct
the solution to a linear system of Q in terms of v and Q. In the same manner, we
consider the approximate momentum equations (2.8) and solve u=u[v,Q,€]. We
should point out that the appearance of highest derivative of Q due to (1.5) re-
quires W37 regularity for Q. Moreover, since Vo and g3 are only in L, we adopt
the ideas in [8] and use a global mollification technique such that the above ap-
proximation is smooth.

The approximate equations (3.1) come from the linear equations in Section 2
and will be solved using the Schaefer Fixed Point Theorem (cf. [10]). The approx-
imate solutions are constructed by a two-level approximation scheme involving
the artificial viscosity and artificial pressure. However, the strong nonlinearity in
the quantities

/CZQZVU and /cu-Vc

causes new difficulties in closing the basic a priori estimates. To this end, we
explore a Moser-type iteration such that ||c||z~ can be bounded by ||c||;1 = my,
and hence we are able to control the above mentioned nonlinear terms provided
that some small assumption on m; is made. In this connection, we are allowed to
close the energy estimates to obtain the existence of approximate solutions, and
turther improve the regularity of the solutions by a bootstrap argument.

Next we shall take the limit in the approximate solutions as first e —0 and then
6 — 0 through the weak convergence arguments. We remark that the nonlinear
coupling of ¢ and Q in the momentum equation makes the limiting process much
more subtle. For example, for the integral quantity

[ (Q¥aQf - aQkal) oo ee),
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the e-limit is not obvious because both AQY and 9;A~1 (pe) are only weakly con-
vergent. Fortunately, we can overcome the difficulty using the integration by
parts as well as the symmetry of Q; see (4.36) for a detailed explanation.

One disadvantage for the stationary problem is that it has no useful informa-
tion on the density other than ||p||; 1, which is very different from the evolutionary
equations for which the higher regularity ||p|/.» with > 1 is available. As a con-
sequence we have extra difficulties in taking J-limit procedure (especially if v >1
is close to 1). Taking account of the ideas in [13,17,20, 21], we use the refined
weighted estimates on both pressure and kinetic energy functions. However, the
involvement of ¢ and Q makes the proof much more complex and delicate. We
utilize different weighted functions in dealing with the boundary case and inte-
rior case, and finally succeed in obtaining the uniform estimates for all adiabatic
exponent 7y >1 under the smallness assumption (1.9). This is different from our
previous papers [20, 21] for Cahn-Hilliard /Navier-Stokes equations where the
restriction oy >4/3 seems to be critical because the pressure depends both on the
density and the concentration. Once the Proposition 5.1 is obtained, we are able
to use the standard compactness theories in [11,23] to take J-limit and complete
the proof of Theorem 1.1.

The rest of paper is organized as follows. In Section 2, we introduce some
linear equations and their preliminary existence results that will be used in the
construction of approximate solutions. In Section 3, we construct the approximate
solutions by a two-level approximation scheme involving the artificial viscosity
coefficient € >0 and the parameter § >0 in the artificial pressure, and prove the
existence using the fixed point argument. In Section 4, we take the limit as € =0
of the approximate solutions for any fixed ¢ >0, and finally in Section 5 we take
the limit as 6 — 0 for the vanishing of the artificial pressure and conclude the
existence of weak solutions.

2 Preliminary results on linear equations

In this section we present some linear equations, in preparation for constructing
the approximate solutions to the problem (1.1)-(1.7) in (3.1) next section.
Define the following function spaces:

W (0,R?):= {v e W (O,R%),v=0on ao},

0Q

W2(0,52) = {Qe W2=(0,53), 22 =

OonE)O},

Wi=W, = (0,R?) x W™ (0,S3).
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Now let e € (0,1) and p € (1,00) be fixed. Recall m; and m; defined in (1.7). The
tirst lemma is for the solvability of a relaxed transport equation with dissipation
from [28].

Lemma 2.1 ([28, Proposition 4.29]). For any given v € Wy™(O,R3), there exists
a unique solution p=p[v] € W>F (O) to the following problem:

ep+d1v(pv)—€2Ap+€|O| 3—2:0 on 00, (2.1)

such that
ez/W-W—/pv-Vn+€/(p—po)f7=0, n€C(0). (22)

Moreover,

p>0 ae in O, |plpn=m, |pllwr<C(ep,m,O,|v]yie). (2.3)

Lemma 2.2. For any given g € L*(0O) and v€ Wy™(O,R%), the following problem:

v-Ve=Ac+g1, /c:mz, g—;:O on 00 (2.4)

has a unique nonnegative solution c =c[v] € W*? (O).

Proof. Consider the approximate equation

xc+v-Ve= Ac—|—g1+lx|m62|,

Following the proof of [28, Proposition 4.29], we see that (2.5) has a solution ¢, =
ca(v) EW?P(0),1< p < oo, satisfying

€(0,1). (2.5)

=0 ae O, |callp=ma |lcallwar <C(pm2,0,[0]wis)-
Then, taking the limit « — 0", we complete the proof. O
The following two lemmas can be obtained from the elliptic theory (see [14]).
Lemma 2.3. For any given (v,Q) €W, the following problem:
(AQ-eQ=F!(1,Q):=0-VQ+5Q
. Qur(Q?) —b (- L@ )
+Q(Q) — ()Q—(g3),
9Q

\ %zo on 00

(2.6)
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has a unique solution Q = Q[v, Q] satisfying
1Qllwsr <CIIF [yrp <oo, 27)

where ¢ = c[v] is solved in Lemma 2.2, and (Q)) = (Vo) — (Vo))" with (f) being
a smooth approximation of function f globally in O.

Remark 2.1. We use the smooth approximations (Q2) and (g3) to guarantee that
F! belongs to WP, Such approximations can be obtained through the global
mollification (f) =#¢*f with 7. the Friedrichs mollifier (see e.g., [10]). Due to
the Neumann boundary condition, we impose €Q to guarantee that the values of
function Q is uniquely determined.

Lemma 2.4. For any given (v,Q) € W, the following problem:
divS,s(Vu)=F?(v,Q)
:=epv+div(pv®v)+V (5p*+p7) +€2Vp- Vo
—div <—VQ®VQ+%|VQ]2]I+%tr(Q2)II+%*(tr(Qz))zll) (2.8)

—div(QAQ—~AQQ+0:c*Q) —pg2,
(u=0 on 00

has a unique solution u=u[v, Q] satisfying
lull 2y <CIIE?[[Lr <oo, (29)

where both € € (0,1) and 5 € (0,1) are fixed constants; p=p[v], c=c[v] and Q= Ql[v,Q]
are determined in Lemmas 2.1-2.3.

Remark 2.2. The artificial pressure 5p* is used to improve the integrability of
density, which will be used in subsequent analysis.

3 Approximate solutions

In this section we construct the approximate solutions to the problem (1.1)-(1.7).
Have the existence results for the linearized problems in Lemmas 2.1-2.4, we con-
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sider the following nonlinear approximate system:

(€0 +div(peue) =€>Ape+e€py, (3.1a)
ue-Vee=Ace+81, (3.1b)
divS,s(Vue) = F (ue, Qe ), (3.1¢)
AQe=€Qec+F (ue,Qe), (3.1d)
%:0, u.=0, %:0, aaQne:o on 90, (3.1e)

| [pe=m, [cc=m, (3.1

where pg=m1/|O|, the functions F! and F? are taken from (2.6) and (2.8) respec-
tively.
The theorem below states the existence of solutions to problem (3.1).

Theorem 3.1. Assume that (1.8) holds true and e is sufficiently small. Then there is
a small constant my depending on my, cx, u, A, v, €, 5, |O|, [|g1]|r=, |g2|lL=, g3 L
such that if my <wmy, the problem (3.1) admits a solution (pe,ce,ue,Qe) satisfying, for
any p € (1,00),

0<pe eW>(0), el 10y =11, (3.2)
0<cc e W?P(0),  |cellpiioy=ma2, (3.3)
uc eW(O,R%), QeeW*(0,S3). (3.4)

Proof. The proof is based on the Schaefer Fixed Point Theorem (see, e.g., [10,
Chapter 9, Theorem 4]). OJ

Thanks to Lemmas 2.1-2.4, for any given (v,Q) € W, we have

(ue,Qc)=A[v,Q]:= (u[v,Q],Q[v,Q]). (3.5)

By (2.7) and (2.9), it is clear that the operator A: W — W is compact. A straight-
forward computation shows that A is continuous; see, e.g., [7]. In order to apply
the Schaefer Fixed Point Theorem, we need to prove the following proposition:

Proposition 3.1. Assume that (ue,Qe) is a solution to the Eqs. (2.6) and (2.8). Then
the set

{ (ue/ Qe) eWw (3.6)

(ue/Qe) :tA[ue/Qe] }

for somet € [0,1],and pe =p[ue], ce = c[ug]

is bounded.
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From Proposition 3.1, we may use the Schaefer Fixed Point Theorem to con-
clude that (ue,Qc) = Afue, Qe] with pe =p[ue| and ce = c[ue]. This together with
Lemmas 2.1 and 2.2 guarantee the existence of the solution (pe,ce,ue, Qc) to the
problem (3.1) for any fixed € > 0. Consequently, the estimates (3.2)-(3.3) follow
directly from (2.3) and Lemma 2.2.

We now prove Proposition 3.1 as well as (3.4), leading to the complete proof
of Theorem 3.1. We will drop the subscript € and use (p,c,u,Q) to denote
(pe,Ce,ue,Qe) for the sake of simplicity. Observe that (p,c,u,Q) solves

(ep+div(pu) =€’ Ap+epy, (3.7a)
u-Ve=Ac+g, (3.7b)
AQ=eQ+tF(u,Q), (3.7¢)
divS,s(Vu) =tF?(u,Q), (3.7d)
g—fl=0, u=0, 3—220, aa—fzo on 00, (3.7e)
\/p:ml, /c:mz. (3.71)

To prove Proposition 3.1, it suffices to show that there is a constant M < co inde-
pendent of ¢ such that

1(w, Q)flw < M. (3.8)

3.1 Basic inequalities

Multiplying (3.7a) by t|u|?/2 and (3.7d) by u, we get
[ etpolul+t [w-v (@t +p7) 4t [ IVult+ (ot o) [ Idival?
:t/P82~u—t/AQ:(u-V)QJr%divutr(Qz) (1+%*tr(Q2)>
+t/div(QAQ—AQQ)u—ta*/czQ:Vu, (3.9)
where we have used (1.4) and the following computation:
/div (—VQ@VQ-!—%WQF) u
:—/ai(3ileankl)uj+%/uiaﬂai@z:—/AQi(U'V)Q-



80 Z. Liang et al. / Commun. Math. Anal. Appl., 2 (2023), pp. 70-114

By (3.7a), one deduces

/u V (6p*+p7) /pu V( 0+ 71,07_1)
_ =0 =1\ (,_ 203, T y-1).
€/<3p +,Y_1P )(p po)+e /V< PP ) Vo
> P L ) 4, L / 212, % 2)
_€/<3P b ) 6/( Pot2 1Po)+€ <5!VP | +7!V92! )
Then substituting the above estimate into (3.9) gives
et 2 04, 1 4 2/ 2, 4o 10
3 [ ereolul e [ (Got+- Lo )+ [ (964190
1[I0+ (Ap) [ Idival?
o 1
§et/ (gp%—i—ﬁpg)—i—t/pgz-u—t/AQ:(u-V)Q
+1divutr(Q2) (1+ C—*tr (@) —l—t/div(QAQ—AQQ)u—tcf*/CZQ:Vu
:et/( p0+—p0)+21 (3.10)

Next, following [7] we multiply (3.7c) by —AQ+Q+c.Qtr(Q?) to obtain

J18QP+(1+e) [IVQP+e [ (1QP+e Q) +te. [ (IQf+e.1QF)
_2tc*/AQ Qtr( Q2)+t/(c ZC*)Q (AQ—Q—c.Qtr(Q?))
w1 o m@z)) (~2Q+Q+e.Qr(QY)
_|_t/(Q< ):AQ— /  (Q+c.Qtr(QY)
+t [uve: (AQ Q- C*Qtr(Qz))Jrf/( >( AQ+Q+c.Qr(Q%)

=) J;. (3.11)
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3.2 Uniform in € and f estimates

Now we estimate the terms on the right-hand side in (3.10) and (3.11). In this
subsection, the generic constant C may rely on A, i, my, 6, v, |O|, cx, 0%, ||g1]| L,
llg2ll e, ||g3||z, but not on t and €.

Direct calculations show

I, = —2tc, / VO 2tr(Q?) — te. / Vir(Q?)2 <0, (3.12)
Jo=t [ 4:VQ: (AQ-Q~c.Qtr(Q?)
:t/u~VQ:AQ—t ( (trQZ) ((t Q%) ) =—1Ip, (3.13)

and by the fact that Q is symmetric and () is skew-symmetric, one has

Js=t [(Q-0Q): (Q+¢.Qir(Q%) =0. (3.14)

Moreover, we have the following computation:

L+Ja=t [ div(QAQ-AQQu+t [ (QI)~(0)Q):4Q
:t/div(QAQ—AQQ)qut/(QQ—QQ):AQ
“tf [(Q<0>—<0>Q)—(Q<0>—<0>Q)] :AQ

—t [ [(Q)-(@)Q) - () - (2)Q)|:2Q
<ic| Vu> VuannQannAQan
<tC|[(Va) = Vullpz (| QIR+[14Q1% ), (3.15)

where the last equality is from [6, Lemma A1], and the last inequality is from the
interpolation inequality.
As a result of (3.12)-(3.15), inequalities (3.10) and (3.11) provide us

4
> / 0+po) |u|2+et/ <3p +— p”) +€ t/ <5|Vp2|2+§|Vp3|2)
+pt/|Vu[2+/|AQ|2+/|VQ]2+tC*/(!Q!4+C*IQ!6)
§Ct+Ct\|<vu>—vu||Lz(IIQHi4+||AQ\|iz)+11+14+Iz+13+]7. (3.16)
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By (1.8), we have
]+ ]3]+ 171
<Ctllg2li=llpll gllullo+Co(1+lgall2) (I1AQN2+ QI +1)
<crecilplPg+ S [1QP+ [1vup+l [1807 (3.17)
s 4 4 4
| L4|+]2]
<Ctlele QN2 Vull 2 +Cr+flelli) (1 QU2 I AQN 2+ 11 QllEs +1)
§Ct—|—CtHc||goo+%/!Q!6+%/|Vulz+i/|AQ|2. (3.18)
Substituting (3.17) and (3.18) into (3.16) leads to

) 1 4 7
2 0 4 vy 2 22, Fio 12
 [torpuiupre [ (3004 1y )+ [ (aIVeps 2 (0t
+ [IvuP+ [18QP+ [1VQP+ [ (10 +1Ql)
<CClplP y +Clelgn +Cl Ve - Vul: (IQI+HIAQIE) . (19

Observe that the constant C in (3.19) is independent of €, then we may choose
€ sufficiently small and use the standard properties of mollification such that
Cl[{Vu)—Vul||;2<1/2 to obtain

0 1 4 7
e [(o+ u2+e/(}-4+———-7)+e{/<5x722+—-v 72)
/kp po)|ul 30 T f [Vp?| 7! P

+ [IVuP+ [120P+ [IVQP+ [ (10 +IQl)
<C+Cliol*s +Cllellz~ (3.20)

3.3 e-dependent regularity

Thanks to ||p||;1=m1 and the interpolation inequalities, it follows from (3.20) that
) 1 4 7
2 0 4 y 2 22, F1o,i2
 [torpniupre [ (3004 1y07 )+ [ (aVeps 2 (vt )
+ [Ival+ [1aQP+ [IVQP+ [ (101 +1Ql)
<C(1+[ellg), (3.21)
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where and in the rest of this subsection, the constant C may rely on €.
In order to bound |[c||;~ in (3.21), we need the following lemma.

Lemma 3.1. There exist constants C and Cy depending only on |O| such that

lellze <CA+[ulle) T (1+]|g1 ) m2. (3.22)

We will continue the proof of Theorem 3.1 and postpone the proof of Lem-
ma 3.1 to the end of this section. With the help of (3.22) and (1.8), we estimate
(3.21) as

) 1 4 7
e [(o+ u2+e/(—4+—7)+e2/<5v“+—v72)
/(p po)lul 30 T3 Vor [P+ 1Voz|

+ [IvuP+ [18QP+ [1VQP+ [ (10 +1Ql)

<C(1+]cl§) <c (14+mg|vulis) <2C, (3.23)
where the last inequality is valid if
C
my < (2C)" 7. (3.24)

We remark that by (3.24), the choice of m; depends only on my, ¢, 0%, 4,A, 7, €, 6,

01, llg1llz, lIg2llz=, g3l
Having (3.23) obtained, we multiply (3.7b) by ¢ and utilize (1.8) to deduce

J19eP< [1gicl+ [ fu-Velle

< el (181l + Vel 2l Vull2)
1
g§||vC||§2+c. (3.25)

If we multiply (3.7b) by —/\c, we obtain
/|Ac|2§/|g1Ac|+|u-VcAc|
<CllAcl 2 (14 Vel [ Vull2)
1 1
<Cl[Acllr2 <1+||VC||fz||AC||fz||Vu||L2)

< || Acl|F2+C|| Vel 2. (3.26)

N =
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The last two estimates (3.25) and (3.26) guarantee that, for small m,,
IVe||Z2 4] Acl7. < C. (3.27)

We next consider the Neumann boundary problem
. : dp
Ap=divb with 3 ’ao =0. (3.28)

Lemma 3.2 ([28, Lemma 4.27]). Let p € (1,00) and b€ LP(O,R®). Then the problem
(3.28) admits a solution p € WYP(O), satisfying

/Vp-V¢=/b-Vq>, Vg eC®(0),
and the estimates
IVollr <C(p,[O]) [1b]lLr,
IVellwir <C(p,O1) (1Dl r + | divb]|r )

Lemma 3.3 ([28, Lemma 3.17]). There is a linear operator B= (B',18%,8%) which sat-
isfies:

(i) Let LP:={f € LP| [ f=0} with pe (1,00). Then,
B T 1p 3 . . i _
(f):LF (Wo ), divB(f)=f ae in O, VfeLPl.

(ii) Forany g€ LP(O,R3) with g-n|y0 =0,

IVB(f)lle <Cliflle,  I1B(divg)|[rr <Clg]lLr,
where the constant C depends only on p and |O)|.
Proof. Rewrite (3.7a) as
e*Ap=div(pu+eB(p—po)). (3.29)
Applying Lemma 3.2 to (3.29), and using (3.23) and Lemma 3.3, we find

[Volls <Cllou+B(p—po)ll+
<Cllou|| s +C|[VB(p—po)ll 2

1
<Cllullsllo®[IF6+Cllo—poll s <C,
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then using L? estimate on (3.29) yields

loll 2 < C||div(pu+eB(p—po)) || -
<C|lu-Vp+pdivul|;2+C||divB(p—po)|/;2 <C. (3.30)

By virtue of (3.23) and (3.27), one has

[u-VQ+tF'(w,Q)|| ,3<C,

3
wha

and hence
QI 53 <C (3.31)

from (3.7¢c). By (3.30) and (3.31), we deduce ||tF?(u,Q)]|;3/2 < C, which together
with LP regularity and (3.7d) imply

lall, -3 <C. (3.32)

Finally, using (3.27), (3.31), (3.32), and L? regularity, we obtain from (3.7b) that
lellw2s <C, p<6. (3.33)

As a result of (3.30)-(3.33), using bootstrap procedure generates, for p € (1,00),

[(we)lwzr <C, [|Qllwsr <C.

We have completed the proof of Proposition 3.1 and (3.4), except that we still need
to prove Lemma 3.1. OJ

The last part of this section devoted to the proof of Lemma 3.1.

Proof of Lemma 3.1. The proof of Lemma 3.1 is based on a Moser-type iteration
technique. Fix xg € O. Let Bg = Br(xp) C O be a ball centered in xy with radius
R <1, and let n7(x) be a smooth cut-off such that, for all R/2<r<#' <R,

=1 if B
(L | P
n(x)=0 if x¢B,, (r'—r)

In the sequel, we assume |[|g1||r~ <1/2. Otherwise, we will multiply (3.7b) by
(2||g1]|=) ! and consider ¢/ (2||g1]|L=)-
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A simple computation shows

—/nchAc: ipl /172}ch§1 2+i/;7cp§1V17ch§1dx
N L [
P

/nchu-Vc:m/n u-chTcT

1 1
;’2+E/”z|u|ch+1'

With the above two inequalities, and the fact that p?||g; ||z$1 is uniformly boun-
ded for any p > 1, we multiply (3.7a) by 17%¢c?, p>1 to obtain

/WZ\VCPTH\ZdXSC/(IVW|2+172|u|2)cp“+Cp2/1720”g1

3(p+1) +1
<Clulf ([ ) +C [ 1P+ o2l g 12

r

3(p+1) 5
<clulf( [, ") e f1mnpertac, (334)

r

where the constant C may rely on R and |O| but not on p.
Owing to the Sobolev embeddings (cf. [1]), for f € H}(Bg) one has | f]|;6 <

C||Vf|| ;2. Thus,
(herr) < (fmt) <o)
(/WZWCT\ +/C”“|V17!2),

which together with (3.34) give us the following estimate:

1 2
3 5
</ c3(p+1)) gCHuH%é </ C3<P2+1>) +C/|V17!20p+1+c
B, B,

r

2
1 3(p+1) \ 3
SC(HHH%ﬁm) (/B c 2 ) +C. (3.35)

| /\
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Choosing

R 1
—p =—(1 k=1,2,...,
r=rk-1, Tk 2( +2k)

we obtain from (3.35) that

1
2
</ C3(P+1)) <C (1+ HuHié) 93(k+1) </ C3(pz+1)) +C. (3.36)
Brk B,

k-1

If [ 3(P+1)/2 is bounded uniformly in p, then (3.22) follows directly by taking
p — o0, subject to a subsequence. Otherwise, [ 3(P+1)/2 5 00 as p goes to infinity.
Hence, without loss of generality we may assume that [ APHD/2>Cforall p>1
and rewrite (3.36) as

1
2
(/ C3(P+1)) §C<1_|_||u||i6>23(k+1)</ 0—3(’3“)), (3.37)
B Bre_4

Selecting 3(p+1)/2=2%"1in (3.37), one has

1
2k 3 ) H3(k+1) 1/ ok-1
(/Brkc ) <C(1+[ul )2 (R3 c )

which yields by the deduction argument

1
ok ) 2 3 \? b/ 2 3 ”/ 2
< < .
(/Brkc ) _C(1+||u\|L6> 2 BRC _C(1+Hu||L6> BRC, (3.38)

o 1 o
a_22k ;

Sending k — oo in (3.38) yields

1
2k a
sup c?= lim / c2k <C(1+|ul? / 2. 3.39
retty ’H°°< B ) <c(t+luli) Br 439
2

Then (3.22) follows from (3.39) together with the fact c>0 and ||c||;1 =m>

We remark that for the case of boundary points, we can apply local flattening
technique since the domain has smooth boundary 0O; while in the case when xp&
O is near the boundary, we follow similarly the ideas in [20, Section 4]. Therefore,
we complete the proof of Proposition 3.1 as well as (3.4) and hence the proof of
Theorem 3.1. O

"k

where

S|
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4 e-limit for the approximate solutions

In this section, we shall take the e-limit of the approximate solutions obtained in
Theorem 3.1 as e —0 for fixed 6 € (0,1), and prove the existence of solutions to the
following problem.

Theorem 4.1. Under the assumptions of Theorem 3.1, the system

(div(pu) =0, (4.1a)
u-Ve—Ac=gi, (4.1b)
div(pu®u)+V(5p* +p7) ~div(Sps+81(Q) +52(c,Q)) =pg2,  (4.1¢)

u-VQ+QQ—QQ+c*Qtr(QZ)+(C_—ZC*)Q
—b (QZ— %tr(QZ)I[) —AQ=gs, (4.1d)

., odc - 0Q
\u-O, %—O, %—O on 00 (416)
admits a solution (p,c,u,Q) in the sense of distributions for any 6 € (0,1), satisfying

/pzml, ngELS(O), /c:mz, OSCGHZ((’)), 4.2)
ueHy(O,R%), QeH?*(0,S). (4.3)

In particular, (4.1b) and (4.1d) are satisfied almost everywhere in O, and (4.1a) holds in
the sense of renormalized solutions, namely,

div (b(p)u) + (V' (p)p—b(p))divu=0 in D'(R%),
where b(z) =z, or be C'([0,00)) with b'(z) =0 for large z.

Proof. We shall establish the uniform in € estimates on the solutions (pe,ce, ue, Qe )
obtained in Theorem 3.1 and then take the limit as € — 0. We remark that the
idea of the proof is in the spirit of the arguments for the steady Navier-Stokes
equations (see, e.g., [20,27,28]). In this section, the constants C and C; are generic
and independent of €.

Firstly, it follows directly from (3.20) that if 1 <y <2, then

1Qella+1IVue 72+ 1V Qellf2 + | AQe| 72 +€% |V pelI72
b
<[1Qell s+ I Vuel|Z2 + [ VQell T+ | AQe 172 +€ (IIVPe2 I7.+ IIVPE;H%z)
§C+C||Pe||ig+cllce||?w, (4.4)
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while in the case of 7y >2, we replace the artificial pressure dp% in (3.1) by dp2+3p2,
and repeat the deduction of (3.20) to conclude that
1QelIzs + I Vuell T2+ 11V Qellf2+ 1 AQe 172
N
+e(1IVo2|2+ Vol 2+ Vel 32
< C+Cllpel?g +Cllcef- (4.5)
From (4.4) and (4.5) we conclude that, for all y>1,
1Qell 7+ Vuell 7o+ 11V Qellf2+ 1 AQe I 72 +€2( Ve l72
<C(1+lloell? g+l )- (4.6)
It follows from (1.8), (4.6), and (3.22) that
C
leellze < C(1+[lullzs) ™ (14181 ]l L) m2
G
<C(1+lpell g +lleel3<) " m
< C+Cm2||p€\|(;g +Crmp|ce [P
§2C+Cm2||pe\|flg, 4.7)

where the last inequality is valid as long as m; is sufficiently small.

Lemma 4.1. Let (p¢,ce,ue,Qe) be a solution in Theorem 3.1. Then
lp2+pd | <C (4.8)

provided that my is sufficiently small.

Proof. Let B be the Bogovskii operator (see Lemma 3.3). Multiply (3.1c) by B(pe—
o) to obtain

/(5P§+p3)pe=/(5P‘é+p3)po—/pegz-8(pe—po)+e/peue-3(pe—po)
+<—:2/Vpe-VueB(pe—po)—/peue®ue:VB(pe—po)
+/y(Vu€+(Vue)T) :VB(pe —po) +AdivuedivB(pe —po)

+f G!VQAZ]I—VQe@VQe) :VB(pe —po)
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1 Cx .
—i—i/tr(Qg) <1+Etr(Qg))de(p€—po)
+/(QGAQG_AQGQG):VB(PG_PO)‘i‘/U*CeZ:Qe3VB(P6_PO)
10
=) K. (4.9)
i=1
Using ||p||;1 =mj and interpolation, one has
1
Ki+Ka < Co [ (303+p2"") +Cloe] g IVB(pe—po)l 12
1
<Cit 3¢ [ (G2+6T™) +Cloel glloe—poll;»
1
<Cig [ (6p2+01").
Thanks to (4.6) and (4.7),
K5:—/p€ue®u€:VB(pe—p0)
<lleell, 1z lluelZ6 1 VBlpe —po) 4
<Clloell, 12 (1+1lpel ) IV Boe —p0) s

)
<2 llpellzs+C.

In a similar way, one deduces

9
Ko +Ka+ YK < (elloel 2+ Vipells ) el s 1B(oe —po) 1~
i=6

+C(IIVuell 2+ 1V Qells ) 1V B(pe—p0)l 2

+C (14 1Qelits + 1 AQel 21 Qell 6 ) IV Bloe—po) 1
< Clloell? 5 1B(pe —p0) s

)
<slpellfs+c.

Finally, using (4.6) and (4.7), one deduces

Kio= [ 0.c2Qc: VB —po) < llcellf~ |Qel s |V Bloe —po)l ¢
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<Cma(1+lpell ) <C+Cmaoe .

Substituting the last three inequalities into (4.9) and taking m, small, we get
[ (@2t <CCmllpelG <ac, (4.10)
The proof of Lemma 4.1 is complete. O

With (4.8) obtained, we deduce from (4.6) and (4.7) that
leelle+11Qella+ I VuelZ2+ IV Qell T+ | AQe I fa+€% [ Vpel o <C. - (4.11)
Then multiply (3.7b) firstly by c. and then by —Ac, to deduce

IVeell 2+ Acell 2 < C. (4.12)

As a result of (4.8), (4.11), and (4.12) we can take e-limit of (pe,ce,ue,Qe) subject
to some subsequence so that, as € =0,

pe—p in L°NLTH, (4.13)
(Vue, V2Qe,Vee) — (Vu,V2Q,Ve) in L2, (4.14)
u—u, (Qece) — (Q0) in WP, 1<p<é, (4.15)
(Vue) — Vu, (g3) — €3 in L2, (4.16)

€oe — 0, epeue — 0, €VpVue — 0, €Vpe—0 in L,  (417)
and moreover, it follows from (4.13) and (4.15) that

o — ot in Li,
N 1
0l — o7 in L5 (4.18)

Pele — pu in LZ,

where and hereafter the weak limit of a function f is denoted by f. Therefore,
with (4.13)-(4.18) in hand, we are able to pass the limit as € — 0 and obtain the
following equations in the weak sense:

(div(pu)=0, (4.19a)
u-Ve—Ac=gi, (4.19b)
div(pu®u)+V (504 +07) —div(Sps+S1+52) =pg2, (4.19¢)
u-VQ—I—QQ—QQ%—C*Qtr(QZ)—F@Q
—b <Q2— %tr(QZ)I[) ~AQ=g3. (4.194)
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In addition, (4.2) and (4.3) follow from (3.2), (3.3), (4.15), and (4.29) below. The
next lemma shows that (p,u) is a renormalized solution to (4.19a).

Lemma 4.2. Assume that (p,u) is a weak solution to (4.1a), p € L*(0) and u €
H}(O,R3). If we extend (p,u) by zero outside O, we have

div(b(p)u) + (b'(0)p—b(p))divu=0 in D'(R?), (4.20)
where b(z) =z, or b€ C1([0,00)) with b’ (z) =0 for large z.
Proof. The detailed proof is available in [27, Lemma 2.1]. O

In order to complete the proof of Theorem 4.1, we need to verify

p4 :p4, E:p"/, (4.21)

To this end, let us define

pln(p+1/n), p<mn,

C'([0,00)) > bu(p) = { (n+1)In(n+1+1/n), p>n+1.

We see that b, (p) — plnp a.e. because of the fact pe L!. Select b, in (4.20) and send
n— oo to obtain
div(uplnp)+pdivu=0 in D'(R?).

This implies
/ pdivu =0. (4.22)
On the other hand, multiplying (3.1a) by b/,(p¢) gives
/ (b, (0e)pe —bn(pe ) ) divue
/Pob Pe) — /peb’ 0c) — /b” 06)|Vpe|2

§€/P0bn Pe _e/Pe n(0e)- (4.23)
Recalling (4.8) and the definition of b,;, one deduces that
. / /
lim / poby (pe) = lim ( /{pegn}PObn(Pe)"i‘ {p€>n}pobn(pe))

. Pe
<
<% tpe<ny”® <1n(pe+1/n)+pe+1/n)

—i—CnlgIgomeas}{x;pe >n}|
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. . P0Pe
< .
_nlgrc}o {1/2§p6§n}'001n(p€+1/n)+nh—r>rc}o pe+1/n—
Similarly,
Tlli_{rc}o/peb;z (pe) <C.

Therefore, taking sequentially 7 — co and € — 0 in (4.23), using (4.22),

/pdivu = lim/pedivu€ <0= /pdivu. (4.24)
€—0
Now define the following effective viscous fluxes:

Fe =00t +pd — (2u+A)divue,

_e et (4.25)
F=6p*+p7—(2u+A)divu.

Lemma 4.3. Under the assumptions in Theorem 4.1, the following property holds:

lim [ gpcFe= [ 9oF, VpeCr(O). (4.26)

Let us continue to prove (4.21) with the aid of (4.26). The proof of Lemma 4.3
is postponed to the end of this section.
Sending ¢ — 1 in (4.26), using (4.24) and (4.25), we get

m [ (op2+00") < [ plop™+7). @27)

li
e—0
According to (4.27), we have
[ o) =lim [ (602 +61") < [ (00",
which implies

[o(or*=p%) = [ (71 —pp7) 20, (428)

where the last inequality is due to the convexity. Next, for given constant >0
and n€C*(0),

Og/(p‘é—(p%n)“)(Pe—(P+ﬁ’7))
= [ (02 =pip—piBn—(p+P)*pet(p+p1)°).
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By (4.28), sending € — 0 yields

OS/(F—pE—EBUHMﬁW)‘*ﬁH) S/(—E+(p+ﬁn)4)ﬁn.

Replacing —p by B in the argument above, and then sending f — 0, we get

which implies p* = p*, and thus p. — p a.e. in O due to the arbitrariness of 7, and
hence for all s € [1,5), from (4.13),

pPe—p in L°. (4.29)

As a result of (4.29) and (4.13), we obtain (4.21) and thus complete the proof of
Theorem 4.1. O

It remains to prove Lemma 4.3.

Proof of Lemma 4.3. Let /A~1(h)=Kxh be the convolution of 1 with the fundamen-
tal solution K of Laplacian in R®. For convenience, we write (3.1c) equivalently as

€pcul +0; (peu]éui) 40, F.+€*Vp.-Vu.
. . 1
:p€g§+yAug—aj(an€aiQ€)+§ai|VQ€|2
1 c,
+59, (tr(Qg) (1—I—Etr(Qg)>>
+0;(QEAQY - AQEkQY +a.2Ql), i=123, (430)

where the Einstein summation is used on k,j, and [, is taken from (4.25).
Making zero extension of p. to the whole space R3, multiplying (4.30) by
$9; A"t (pe) with ¢ € CF(O), we deduce

/ ppelFe=— / A (pe)9igp (Spi+pd — (u+A)divue) — / e80! (pe)
1 [ (3ul0is (pe)0y9—uidj0, 8 (pe)0j+ peve- V)
- / peululd;9d;: A (pe) — / peulul§d;0;: A7 (pe)

+f (% / vae!2+%tr(Q§)(1+C2—*tr(Q§))) (0u99:7 (pe) +9pe)
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~ [0,0:0,Qc (3,90:2 (pe) +920,57 (o)
+ [ (QFaQl -2QkQY +o.c2QY ) (343,07 (pe) 9,25 (o))
te / Pt pd; A (pe) + €2 / Voo Vuigd; A (pe), (431)
where the second line on the right-hand side is due to
[t (3,27 (pe)ap+00:0 7 (pe)9)
- / (uidi s (pe)ap— iR (pe)djp+ peue V) + / oedivucd.
Making use of
€(0e —p0) +div(peue) =€2div(1pVpe) in R3,
we write the third line on the right-hand side of (4.31) as
- / peululdpd;: A~ (pe) — / peululpd;d: A (pe)
=~ [ peululagai " (pe)+ [ ulg 00,357 (peul) —peuldi s pe)]
—/Peué¢ai3jﬂ_1(9e“£)
— / peululd pai A (oe) + / ulg [pcdid; A" (peul) —peuld ;7 (oc) |
—ez/peuécpaiﬁ_l (div(1oVpe)) +€/p€u2cpaiA_1(pe—p0). (4.32)

Substituting (4.32) into (4.31) gives

/ PppelFe=— / 0iA ™ (pe)0igp (Ope+pd — (p+A)divue) - / P29 N (pe)
1 [ (0ulais ey —uidj, 7 ()i -+ peve V)
—/p€u£u28j¢aiﬂ_l(pe)

+ [ uip [pedid s (peul) —peuldsoi s (o)

+/(%/|VQ€|2+%tr(Qg) (1+Cz—*tr(Q§))) (9ip9; A (pe) +pe)
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~ [0,0:0,0c (3,902 (pe) +92,0: (o)

+ [ (QEaQl -2QkQY) (9498 (o) +9a2i 7 pe))
+/0*C§Qi:j (ajébaiﬁ_l(Pe)+4’ajaiﬁ_1(Pe)>

_e? / peulpd; A1 (div(10Vpe)) — Ve Vulgd; A (o)

+e/p€u€4>a A" 20e—p0) = Z (4.33)

where T}, denotes the n-th integral on the right hand side of (4.33).
On the other hand, if we multiply (4.19b) by ¢9;A~1(p), we obtain

/(])p]F— /aA 0)ip (3p%+p7 — (j+A)divu) /pgchaA (0)
—I—y/ 9’20 (0)2jp—wid i (0)j+ pu- V)
~ [puwiaga. 2 (p)+ [ u'p [020; (o)) —puidj0, 7 (p)]
3/ |VQ!2+§tr(Q2) (1+5u(Q) ) @i o)-+4p)
— 2,000 (95997 () +932:5 7))
+/(QikAQk7—AQikaj) (aj¢3iﬁ_1(())+<P3j3iﬁ_1(f)))
—I—/a*czQif (aj¢a,-A—1(p)+¢aja,-A—1(p)) =:ni1irn. (4.34)

In terms of (4.33) and (4.34), to prove (4.26) it suffices to check

hmTe T,, n=12,.,9, 1mT;=0, n=10,11.

e—0 €—0

In fact, by the Mikhlin multiplier theory (cf. [35]), and the Rellich-Kondrachov
compactness theorem (cf. [10]), one has

90, A" (he) — 9;0,A(h) in L7,

4.35
;A Yhe) — ;A7 (W) in L1, (£.35)
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where g< (1/p—1/3)71 if p<3 and g <o if p>3. By (4.35), as well as (4.13) and
(4.15), we have

Tge:/(QikAng—AQik ?) (ajﬁbaiA_l(Pe)+4’ajaiA_1(P€)>
= [ (vQivQl-vQEval) (agan (o) +920:57 (pe) )
+ [ (Q¥vQl-vQEQl) v (aipa,87 (e + 40,25 (o))
— [ (VQEvQl-vQEval) (a:gais (o) +9pc)
= [ (VQ*VQI-VQ v QH) (345 (0)+9p)
= [ (QAQ-2QQ) (3:99:57 () +9p) =T, (4.36)

where the third equality is valid after summing up 7,j=1,2,3, due to the fact that
the matrix Q is symmetric and the following computation:

Next, utilizing (4.8), (4.13)-(4.18), and (4.35) again, we deduce that
imT;,=T, for n=1,2,3,4,6,7,9,

e—0

and
imT; =T, for n=10,11.

e—0
In order to justify
limTs =Ts, (4.37)

e—0
we present the following lemma (cf. [12]).
Lemma 4.4 (div-curl). Let 1/r1+1/ro=1/rand 1 <r,r1,ry < co. Suppose that
ve — v in LN,

we — w in L.
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Then,
0e0;0; A" (we) —wed;0; A (ve) —
vaiajﬂ_l(w)—waiajﬂ_l(v) in L', i,j=1,2,3.

Taking v = peué and w, = pe, we obtain (4.37) by Lemma 4.4. The proof of
Lemma 4.3 is thus complete. O

5 Vanishing artificial pressure

In this section, we will complete the proof of Theorem 1.1 by taking the limit as
0 — 0 in the solutions (ps,cs,u5,Q;) obtained in Theorem 4.1.

5.1 Refined estimates on energy function

We first derive the refined estimates on (ps,cs5,u5,Q;) uniform in 6, which helps
us relax the restriction on 7.

Proposition 5.1. Let (pg,cs5,u5,Q5) be the solution obtained in Theorem 4.1. Then,
under the assumptions in Theorem 1.1, the following inequality holds for all s € (1,3/2):

1605+0]

1= Qs s +lwsl g + 1V Qs +llesll e < C, (5.1)

where, and in what follows, the constant C is independent of 6.

The proof of Proposition 5.1 borrows some ideas developed in [13, 20,26, 31].
We present the details below through several lemmas.

Lemma 5.1. Let (ps,c5,us,Qs) be the solution obtained in Theorem 4.1. Then there are
constants C and Cy independent of & such that,

lellge+ [ (1Tl AQs+/TQs+1Qs )
<C(1+ losusll s +mallosus] ) (52)

provided that my is sufficiently small.

Proof. Using the same computation as that in (3.12)-(3.15), we multiply (4.1c) by
us and (4.1d) by —AQs+ Qs+, Qstr(Q3) to deduce
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V/|Vu5|2+(/\+ﬂ)/|diV115|2+/|AQ5|Z+/|VQ5|Z+C*/(|Q5|4+C*|Q5|6)
S/Pfsgzﬂlﬁ-/b(Q(Zs—%tf(Q?s)]Q (= AQs+Qs+c:Qstr (Q3))
+/g31 (—AQ5+Q5+C*Q5tr(Q§))—a*/c§Q5:Vu5

+/ (C(g;C*)Q(S: (AQJ_Q(S_C*QJU(QE))'

From (1.8) it follows that

‘/b <Q§_%tr(Q§)][) : (—AQ5+Q5+C*Q5’[T(Q§))‘
o[ [ (a0 0 re0u(ed)
<C(1+1QsIe+ lgalliz) (18Qs i +1Qs s +1)
§C+%/!Q5|6+i/|AQ6V2'
Cx)

'—U*/C(%Q(;Zvu(s—i-/(c%Qé:(AQ(S_Q(S_C*Qétr(Q%))‘

<Cllesl711Qsll 2l Vusl| 2 +C (14 lles | es) (11 Qsll 2| AQs | 2+ 1| Qs 1 7o +1)

c2 1
<crClieslfo+ S 106l +E 1905+ (1605,

The last three inequalities provide us

[1vusP+ [16052+ [19Qs2+ [1Qal* < C+Cllcsllfe+ losusllr 53)
With the aid of (5.3) and (3.22), we choose m; sufficiently small such that
lesllzee < C(L+[lusll o) (L[l ga )2
3 1\
<C(1+lleslFtlpsusllz, )~ mz
51
<2C+Cmal|psus[ 3

which together with (5.3) lead to the desired estimate (5.2). O



100 Z. Liang et al. / Commun. Math. Anal. Appl., 2 (2023), pp. 70-114

Lemma 5.2. Let (ps,c5,us,Qs) be the solution obtained in Theorem 4.1. Then, for any
s€(1,3/2), the following inequality holds true:

1605 +0) | s < C<1+ 05| us]?|| s +m2\|P(su(s||i(fl>, (5.4)

provided that my is sufficiently small.

Proof. Asin Lemma 3.3, we introduce the Bogovskii operator
B:i=B(h—(h)o) with (h)o= |0|—1/h.

Then, for any i € L/~ with s € (1,3/2), Lemma 3.3 implies

1Bl + VBl 2+ | VB | < <Cllh]|

s—1 —

(5.5)

LeT
Multiplying (4.1c) by B gives
| (Gok+e2)n
=(Wo [ (3ei+p])~ [pg2B(i—(Wo)+ [$15: V5
—/p5u5®u:VB+/51:VB—I—/SZ:VB
<ClIll, = [1605+05 || 1 +ClIBlIe +Cl Vug]| 2| VBl 2

+C([loslusP+cQs+1Qs P+ 1Qsl* +1V Qs+ Qs AQs | ) IV B s, )

<Cll, 2y (1+[160%+03 [+ leslusl [ o+ Vsl 2
+CIRl| = (HCZQ5+!Q5!2+!Q5!4+|VQ5!2+Q5AQ5

) (5.6)

where, for the last inequalities, we used (1.4), (1.5), (1.8), (5.5) and ||ps||;1 =m.
Due to the arbitrariness of h € L3/ 1) it yields from (5.6) that

603 +02 |- <C (1+ 308+ 07 | . +[loslusl .+ Vusll )
+C||c*Qs+1Qs|*+ Qs |* + 1V Qs*+ Qs 2AQs

< ollopt 420+ (1+ loslus Pl + 19l
+C)| Qs+ Qs P+ 1Qsl + IV Qs P+ QsAQs | 1o (B7)

LS
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Since s €(1,3/2), one has
165Qs+1Qs P +1Qs|*+ |V Qs + Qs AQs |
<C(1+ lesll+1Qsllfs + IV Qs 1241120512 )
<C(1+ leslle+ 1QslSs + IV Qs 2 +11 20512 )

Therefore, substituting it into (5.7) and utilizing (5.2) we obtain (5.4). O

Next, we shall deduce a weighted estimate on both the pressure and kinetic
energy.

Lemma 5.3. Let (pg,cs5,u5,Qs) be the solution obtained in Theorem 4.1. Then, for any
w€(0,1) and s € (1,3/2), the following inequality holds true:

Sup/ (6p5+0) +pslus]?) (x)

e dx < C (14 |os]us

c
Ls+m2||p(5u(5||ill> (5.8)
x*eO

provided that my is sufficiently small.
Proof. We adopt some ideas in [13,20,26], and divide the process into two cases.

Case 1. The boundary point case x* €90.

As in [37, Exercise 1.15] we introduce a function ¢(x) € C2(O) that behaviors
like the distance when x € O is near the boundary and is extended smoothly to
the whole domain and moreover,

$(x)>0 in O and ¢(x)=0 on 90,
|p(x)| > Ky if x€eO and dist(x,00)>ks, (5.9)
X—X x—X
Vp=——= — if xeO and dist(x,00)=|x—%|<ky,
P90 Tx IO =ik

where the positive constants k; and k; are given. Following [13], we define

)= PEVEE) g e (5.10)
(p(x)+]x—7]27%)

It follows from (5.9) that for all points x satisfying dist(x,00) <k,

4)<4)+|x—x*|% <Clx—x*|, (5.11)
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owing to 2/(2—a) > 1. By (5.10), a careful computation gives
$9;0i¢p 9jP9i¢
2 x + 2 o
(p+lx—arl2®e)" (g+lr—x2)
2
$9ipoj¢p $9;poj|x — x|

- PRV S W=1230 (612)
(e )™ forieri)

Thus, |V¢E| € L7 for all g€ [2,3/«). In view of (5.10)-(5.12), one has

9,8 =

_ 2
Ct Cw_divgz cqp =) V¢ -
|x —x*| . (¢+|x—x*|ﬁ>
C
> —C-I—m. (5.13)
In addition, by (5.9),
0;(x—%)  09;90;¢
0:0;p = — T (5.14)
Ty Ty
Hence, if we multiply (4.1c) by ¢, we find
[ Coiel)dive+ [psussous: Ve
Z/(Sns(Vu(s)+51(Q5)+Sz(65,Q5)) ivé—/Pfsgz'C- (5.15)

Making use of (1.2), (1.4), (1.5), (1.8), (5.13), and the fact ¢ € W22, one deduces

’/(SHS(vu5)+81(Q5)+S2(C(51Q(5)) 1V§—/P(sg2'§’

< C@) (1405l 2+ |1V Qs +]Qsl*+1Qs 11 5Qs ] +c30s] 5
<C@) (14 Vusll2 + 1 AQs 12+ IV Qs 2+ Qs llds + esllE ), (516)

and

(Op5+p4)
ONBy, (x) [x—x*[*

[ Gpiel)dive =—C [ (spi+p7)+C (5.17)
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By (5.14),

/ PPsus B U0j0ip polusl® / polus-Vol?
2 \* 2 \* 2\
(otlr—x172)" T (ptle—ri7a)" T (ptr—ae|)

which along with (5.9), (5.11), (5.14) and the Schwarz inequality imply

/p5u5®u(5:v€
:/ P(s|11<5|22 - Pps(us-Vep)?
(p+le—x2)" 7 (g fr—xr|2)
_“/¢95(U5'V|x—x*|22“>(UJ'VG”)
(¢-+lx—xe|77)
ugl? pps (s V]x—x*[=7 ) (u;- V)
>(1“)/(¢+ij_;h>““/ | )

on

S (1-a) pslusl® o [ PPpsluslPlx—x"]

- 2 * 2\ & 2 a+2
(¢+Ix—x17) (¢+|x—x*|2—w)

a+1

P(5|u5’
>c/ g 5.18

Therefore, the inequalities (5.15)-(5.18) yield that for some C independent of x*,

/ (805 +p5 +polwsl?) () |
ONBy, (x*)

x—xfe
<C(llap+p3l 1 +llosTs 1)
+C (I Vugll iz H1AQs IR+ Qs+ Qs s+ s 3

SC(1+HP&!U(SFHLs+m2||95u5||i(fl>, (5.19)

where the last inequality follows from (5.4) and (5.2).
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Case 2. The interior point case x* € O.

We set dist(x*,00) =3r > 0. Define the smooth cut-off function

x(x)=1, if xeB,(x"),
x(x)=0, if x¢&By(x"), (5.20)
[Vx(x)| <2

Multiplying (4.1c) by (x—x*)/|x—x*|*x? yields

3 *
/(5P§+Pg)| ’,XX +/Pfsu(s®u5 V(ilx ;*|"‘ 2)
:/(SHS(VH(;)—FSl(Q(s)+82(C5,Q5))IV(|;_;*|(XX2)
Vx-(x—x*)

| —x*|#

x—x
/pagz r= ’“x 2/ (604 +p7)x (5.21)

A simple calculation shows

(B ) A 0 N

|x_x*|1x |x_x*|1x |x_x>c<|1x+2 X

ﬁai)ﬁ (5.22)
thus, for some constant C independent of x* and r,

/P5u5®u5 V(ﬁxz)
S (1-a /st| ug|? +2/ms us- V) (u- (x—x%))

x—xe? | x— x*!”‘

Sl-a oslus|® 2—C/ ps|us|?
BZr( )\B

-2 | — o |® o) [x— x|’
where we have used
|VX||X_X*|§4/ vxeBZr(X*)\Br(X*)' (5.23)

Observe from (5.20) and (5.22) that V((x—x*)/|x—x*|*x?) € L7 for all g€[1,3/a).



Z. Liang et al. / Commun. Math. Anal. Appl., 2 (2023), pp. 70-114 105

By the similar argument to (5.16), one has, for some constant C independent of r,

)/ Sns(Vu(s)+81(Q5)+82(C5IQ5)):v< X —x* )(2))

o —x* |«
‘/.Ofsgz |x—x*]* x*|“

<C (14 Vg2 + 1 AQs 1B+ IV Qs + 11 Qellfs + lesllE=).

Vx-(x—x%) (5P4+P”)
_ 47 < 5P
IR e ET A =

due to (5.23). Therefore, taking the above inequalities into accounts, utilizing
(5.2), we deduce from (5.21) that

and

/ (605+0] +pslus|?) (x)d
(x*) *

o —x* |«
<C (141 Vgl 2+ 12 Qs 22+ 1V Qsl12+ Qe + sl

+C/ (6p3+p) +pslus|?) (x)
By (x*)\By(x*) |2 —x* |«

C
< C(1+llpslus Pl +mallosus 35"

+C/ (6p5+0) +pslus|?) (x)
By (x*)\By(x*) |2 —x* |«

dx

dx. (5.24)

It remains to estimate the last term appeared in (5.24). To this end, we adopt the
ideas in [20] and discuss two cases: x* is far away from the boundary and x* is
close to the boundary.

(1) Assume dist(x*,00)=23r>ky/2 with k, given in (5.9). Then

(605+p] +pslus|?) (x)
Boy (x*)\By (x*) |2x—x* |«

<ky* Sot4+p7 2
- BZr(x*)\Br(x*)( 0505 +ps|us| )

<C(1+ [Joslus P o+ mallosusl I35, (5.25)

dx

where the last inequality follows from (5.4).
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(2) Assume that x* € O is close to the boundary. By (5.9), we have
, k . -
|x* — % | =dist(x",00) =3r< 52 with ¥ €00,

and hence,
4lx—x*|>|x—%%|, Vx¢B,(x"). (5.26)

Making use of (5.26) and (5.19), we get
C/ (905 +p; +pslusl?) (x)
Bay (x*)\Br(x°) | ox — x|
4., 7 2
SC/ (0p5+ps +fi§’u5’ )(x)dx
ONBy, () [ — x|

§C<1+HP5|115|2 Ls+m2||P5u5||i(fl>- (5.27)

dx

In summary, substituting (5.25) and (5.27) back into (5.24) yields

/ (605 +0] +ps|us)?) (x>dx
By (x*)

[ —x%®

SC(1+HP&!U(SFHLs+m2||95u5\|3£?1>, (5.28)

where the constant C is independent of x*. The combination of (5.19) with (5.28)
yields the desired estimate (5.8). 0

Lemma 5.4. Assume that u€ H (O, R3) and f(x)>0a.e. in O. Then there is a constant
C depending only on |O| such that

2 2 f(x)
/O|u| fdx§C||Vu||H3(O)/O PRl (5.29)

as long as the right-hand side quantity is finite.

Proof. The proof is based on the Green representation and integration by parts;
see, e.g., [31, Lemma 4]. O

Lemma 5.5. Let 0= (y—1)/(2v)€(0,1/2). Then,

[pslusle0 <c. (5.30)
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Proof. Denote by
AZ/P&!UMZ(Z_G)-
Noting ||ps|| ;1 =m1, we have

3-260
||P(5u5\|L1§HP5|115!2(2_9)HL Mlps HLf 0 < AT,

HPé’“(SFHL% <||sus*>~° HngHP [ = <CAT>

Thanks to (5.31), it follows from (5.2) that

st [ (1902 4+1AQs+7 Qs+ Q5%

3C
§C<1+A22 0) +m2A2219)

A direct calculation shows

0
_ 1-0 G
pslus 10 _ ( pslus|? ) s\’ 1 !
| —x*| | — x|« |x — x*|® I x*|zx+ sy

Noting that 6= (y—1)/(27), we have

1- 291
ar Y08 o3y i ocE( T ,1),
v y

/ 1 dx<C
7(1-g) -
x— x|l

thus

Therefore, by (5.8), (5.31), (5.32), we integrate (5.34) to obtain

2(1
/P(s|u5! i dx<C+/p‘5|u‘5’ : +/
x— x! | x—

§C+C/ 605 +07 +psus|? )( )dx

| —x* |«

3Cq
§C<1+A2 0) +m2A22 9)

107

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
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From the definition of A, (5.33) and Lemma 5.4, we obtain
2(1—
u X
A<||Vu||L2 sup 0o/t ( )dx

2(1
Sup/P(s!uﬂ ) X,

x*€O |x x*|

3C
§C<1+A22 0) +m2A2219)

which together with (5.35) implies

3C;

A<14+CATED 4y AT

Since 6 (0,1/2), we choose m, <1 sufficiently small to conclude (5.30). The proof
of Lemma 5.7 is complete. O

Finally, Proposition 5.1 is a direct consequence of Lemmas 5.1-5.5.

5.2 Vanishing artificial pressure

Now we take the limit as 6 — 0 in the spirit of [7,27,28]. Thanks to (5.1), the
following estimate follows similarly to (3.27):

IVesllpa+ 1 Aesll2 <C. (5.36)

With (5.1) and (5.36) in hand, we are allowed to take the following limits as § —0,
subject to a subsequence,

(Vug, V3e5,V2Q;5) — (Vu, V3, V2Q) in L? (5.37)
us — u in L7, (c;,Q5) — (c,Q) in WY, 1<p;<6, (5.38)
o3 — 0 in D', ps — p in L7 forall s€(1,3/2). (5.39)

As > 1, we can choose s € (1,3/2) such that ys >3/2. Then, from (5.38)-(5.39)
one has
psus — pu in LP?2 forsome py>6/5, (5.40)

and from (5.38)-(5.40), for some p3>1,

p(gugu(s — pu'w,

QkAQY — QFAQH, (5.41)
Q¥ (Bpu—0juk) — QO (Bpu/ —0u)
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in LP3. Using (5.37)-(5.41), we take J-limit in (4.1) and obtain the equations in the
sense of distributions

(div(pu)=0, (5.42a)
u-Ve—Ac=g1, (5.42b)
div(pu®u)+ V7 —div(Sus(Vu) +51(Q) +52(c,Q)) =pg2, (5.42¢)
u~VQ+QQ—QQ+C*Qtr(Q2)+@Q

—b (Qz—%tr(Qz)H) ~AQ=g3, (5.42d)

\uzO, 3—220, %—820 on 00. (5.42e)

Additionally, (1.7) follows from (3.2)-(3.3), (5.38), (5.39) and (5.50) below.
Next, we define an increasing and concave function Ty (z) € C}([0,00)), satisfy-

ing
T = if <k
k(z)=z, if z<k (5.43)
Te(z)=k+1, if z>k+1.

Clearly, for any 1 <p <oo,
Ti(ps) — Tk(p) in LF. (5.44)

Lemma 5.6. Let (ps,us,c5,Q5) be the solution obtained in Theorem 4.1. Then,
(151H(1)/Tk ps) (0) — (2u+A)divuy) /Tk (07— (2u+A)divu), (5.45)
_)

where Ty, is defined in (5.43).

Proof. With the help of (5.37)-(5.41), we may slightly modify the argument of
Lemma 4.3 to complete the proof of Lemma 5.6. The details are omitted here. [

Since T} is concave, one has

(01 —0") (Ti(ps) — T(p)) = (Ti(ps) — Tu(0)) .

Then, from (5.45), (5.39), p7 > p?, and T (p) < Ty (p), we obtain

(2u-+A) lim / (Ti(ps)divu, — Ti(p)divu)
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0f =) (Te(ps) —Ti(p)) +/(p_”—P”)(Tk(p)—Tk(p>)

(5.46)

Noticing that divu, € L? is bounded uniformly in &, and

tim [ (Te(p)) = [ (Tel)),
one has
2C1im | Tips) — Ti(p) 2

> Clim (1 Te(ps) — Te(o) 2+ 11 Telo) o) .2)

> 2u+M)lim [ (Tios) ~ Tilp) + Te(p) ~Tilp) ) divu

= @u+M)lim [ (Ti(ps) ~ Tide) ) divu

— (2u+A)lim / (Ti (05 )divu — T (p)divu). (5.47)
In terms of (5.46) and (5.47), it holds that

lim [Ty (ps) = Ti(p)l| o1 <C, (5.48)
—0

where the constant C is independent of k and 6.
We remark that (5.48) measures oscillation of the density, which helps us
prove that (5.42a) holds in the sense of renormalized solutions as in [28].

Lemma 5.7 ([28]). For the solution (p,u),
div(b(o)u) + (V' (0)p—b(p))divu=0 in D'(R%), (5.49)
where b(z) =z, or b€ C'([0,00)) with b’ (z) =0 for large z.

Proof. Thanks to Lemma 4.2, we see that (ps,us) is a renormalized solution. If we
multiply the Eq. (4.20) satisfied by (ps,us) by Tx(ps), and use (5.43), (5.37)-(5.41),
(5.48), we conclude (5.49) by taking 6 —0 and then k—> co. The detailed proof may
be found in [28]. ]
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In order to complete the proof of Theorem 1.1 we only need to verify
p7=p7. (5.50)

To this end, it suffices to prove the strong convergence of ps in L! by (5.39). The
idea is to compare the limit of the renormalized solution (ps,us) with (p,u). In
more detail, we introduce

zlnz, z <k,
L = zZ
k zlnk+z/ Tk(zs)ds, z>k.
kK S

A direct computation shows that

Ti(s)
2

C([O,oo))ﬂCl((Ozoo)) Sbe(z)=Li(2)— <lnk+/kk+1 S

)

and moreover, b’ (z)=0if z>k+1 and b} (z)z— by (z) =T (z). In view of Lemmas 4.2
and 5.7, one has

0=div (b(p)u) + Ty (p)divu
=div(L(p)u) + Tx(p)divu in D(R®),
0=div(Li(ps)us) + Tx(ps)divas in D(R?).
Integration of the difference of above two equations leads to

/ (T (p)divu— Ty (ps)divus) =0,

which along with (5.46) and the fact divu € L? implies

ClITi(e) = Tip) 12> @u+2) [ (Te(p)~T(p)) livu
:(Zy—l—)\)/(Tk(p(g)divu(g—mdivu)
2/(Tk(P(S)_Tk(P))7+1- (5.51)

Recalling Proposition 5.1, we have ||ps||1» < C. Thus, the limit

lim | Ti(ps) = poll. = I Tilos) =5 1o,
<2lim [|os| L ((o,24))

: 1—7 v —
< Clim ksl g1y =0 (5:52)
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is uniform in . In a similar way,
lim || T (p) —pl|p1 =0. (5.53)
k—o0

Making use of (5.54)-(5.53), and

T (o) — Tic(ps) || 1 S C| Tk (0) — 0 +p5— Ti(0) [ 1
<C(ITe(p) = pllp +1lim [ T(ps) —ps ), (5:54)

we conclude
lim o5 —pl| 1 < lim lim (|05 — T (0s) |1 + | Tk (05) — T (o) | .2 + | T (0) —pl[ 1) =0.
—0 k—006—0

The proof of Theorem 1.1 is complete. O
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