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Abstract. The global solution to the Cauchy problem of the compressible Na-
vier-Stokes equations with hyperbolic heat conduction in dimension three is
constructed when the initial data in H® norm is small. By using several elab-
orate energy functionals together with the interpolation trick, we simultane-
ously obtain the optimal L?-decay estimate of the solution and its derivatives
when the initial data is bounded in negative Sobolev (Besov) space or L!(R3).
Specially speaking, the fluid density, the fluid velocity and the fluid tempera-
ture in L2-norm have the same decay rate as the Navier-Stokes-Fourier equa-
tions, while the flux g has faster L?-decay rate as (1+t) 2. Our proof is based
on a family of scaled energy estimates with minimum derivative counts and
interpolations among them without linear decay analysis for a 8 x 8 Green ma-
trix of the system. To the best of our knowledge, it is the first result on the large
time behavior of this system.
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1 Introduction

The compressible Navier-Stokes equations with hyperbolic heat conduction [13]
takes the following form:

dip~+div(pu) =0, (1.1a)
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9t (pu)+div(pu®@u)+VP=divs, (1.1b)
ot (p (e—i—%uz)) +div (pu (e—i—%uz) —|—uP) +divg=div(uS), (1.1c)
01 +q9+xV0=0, (1.1d)

where the unknown functions p,u = (u1,uy,---,u,),P,S,e,q represent fluid density,
velocity, pressure, stress tensor, specific internal energy per unit mass and flux,
respectively. The Eq. (1.1d) represents Cattaneo law (Maxwell law, etc.), and 7>0
is the constant relaxation time and x > 0 is the constant heat conductivity. Here
we assume the fluid to be a Newtonian fluid, thatis, S=u(Vu+(Vu)T)+p/divul,
where pt and ' are the coefficient of viscosity and the second coefficient of vis-
cosity, respectively, satisfying u >0, u'+2u/n>0.

In this paper, we will study the global existence and large time behavior of the
smooth solutions for the system (1.1) with the following initial data:

p(x,0)=po(x) >0, u(x,0)=uo(x), 6(x,0)=0h(x)>0, qx,0)=qo(x). (12)

Here we consider the general equations of state and assume that the pressure
P(p,0) and e=e(p,0) are smooth function of (p,0) satisfying

p%eo(0,0)=P(p,0) — 0Py (p,0), (1.3)

where 6 is the absolute temperature. Obviously, our assumption includes the case
of a polytropic gas P=Rp8, e =c,0.

When 7 =0, the system (1.1) is the classical full compressible Navier-Stokes
equations, in which the relation between the heat flux and the temperature rep-
resents Fourier law, g=—xV 6. Due to its importance for both physical and math-
ematical applications, the well-posed theory has been widely studied for the sys-
tem combined with Fourier law, or the isentropic case, see [1,7,8,10,14-18] and
references therein.

In the following, we mainly review some results on the decay rate of the
closely related models. A lot of works have been done on the existence, stabil-
ity and LP-decay rates with p > 2 for either isentropic or non-isentropic (heat-
conductive) cases, cf. [5,6,21-23] in various settings by using (weighted) energy
method together with spectrum analysis. Recently, Danchin and Xu [2] devel-
oped optimal decay rate in general critical spaces and any dimension n > 2 un-
der a mild additional decay assumption that is satisfied if the low frequencies
of the initial data. On the other hand, Liu and Zeng [20] first studied the point-
wise estimates of solution to general hyperbolic-parabolic systems in dimension
one by using the method of Green function. Hoff and Zumbrun [11] investi-
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gated the LP (R") (p>1) estimates for the linearized isentropic Navier-Stokes sys-
tem in multi-dimensions. Liu and Wang [19] gave many delicate nonlinear esti-
mates between different waves to deduce the pointwise estimates. Later on, there
are a series of works on other fluid models, include the Navier-Stokes equation
for non-isentropic case in [3], unipolar and bipolar Euler equation with damp-
ing in [31], unipolar and bipolar Navier-Stokes-Poisson equation in [30, 33, 35],
Navier-Stokes-Maxwell equation in [4]. However, for the system (1.1), its 8 x8
Green matrix is not easy to be derived. This is also an interesting problem and
will be considered in a forthcoming paper.

When 7 > 0 in the system (1.1), it represents Cattaneo law, which was one
of the physical laws describing the finite speed of heat conduction. It has been
widely used in thermoelasticity which results in the second sound phenomenon,
see [12,24-26] and the references therein. Recently, for the Cauchy problem of
the system (1.1), Hu and Racke [13] used Kawashima condition to deduce the
global existence of the solution in H3-norm when the initial perturbation is suffi-
ciently small. In the present paper, we further study the decay rate without the
linear decay analysis by using the method established in Guo and Wang [9] for
the estimates in the negative Sobolev space. The proof in [9] is based on a family
of energy estimates with minimum derivative counts and interpolations among
them without linear decay analysis. By using this method of energy estimates,
Wang [32] considered the Navier-Stokes-Poisson equations, Tan and Wang [29]
discussed the Euler equations with damping in R%, where they also gave the
estimates in the negative Besov space, and Wu and Wang [34] considered the cor-
responding bipolar case. The method mainly relies on the following two kinds of
estimates: 1) closing the energy estimates at each /-th level (referring to the order
of the spatial derivatives of the solution); 2) deriving a novel negative Sobolev
estimates (or negative Besov estimates) for nonlinear equations which requires
0<5<3/2(or0<s<3/2).

The main difficulty here is to derive the energy estimates at each /-th level and
construct several suitable energy functionals, especially for the new variable g.
For example, when we treat the term D¥(pdivg) D*6, to close the energy estimates
at each k-th level, we find the relation between V6 and g, 4 in the Eq. (1.1d) to
reduce the power of the derivatives of the solution on the variable x. Besides, to
close the energy estimates at each k-th level, we should make suitable combina-
tions of the energy estimates of k-th and (k+1)-th level. To this end, sometimes
we need to provide the different estimates with different power of the derivative
of the solution for some nonlinear terms. Then, we have for 0 <k <2 that

d
= (1 (D¥p, D", D40, D%9) 3,
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+C (D oI+ D a2 + [ D024+ D g 3 ) <0, (14)
which together with the inequality

1
I+

_ 1
IDS 1l 2 > CIf IS ID fIl T,

k=0,1,2, s>0, (1.5)

and the convexity of the function f(t) = t'*1/(k+5) and the smallness of the solu-
tion yields another differential equation for k=0,1,2 that

d _ 1
at (HDk(p,u,e,q) Hi,l) +C(I1(0,1,0,9) || s ) " F

1
1+k_+s

2
x (HDk(p,u,G,q)HHl) <0. (1.6)
From this differential equation and the boundedness of ||(p,1,6,9)|| ;s obtained
when the initial data are bounded in H~* space, we find that

kts
2

|| (D*p,D*u,D*0,D%q) (-, )| ,(n S(A+8) "2, k=0,1,2, (1.7)

Finally, to improve the decay rate of the flux g, we will use the Eq. (1.1d) to derive
that

d
T%||Dk0ﬂ|iz+||Dquiz§||DkV9||7iz, k=0,1. (1.8)

Integrating (1.8) with respect to the time t over [0,t|, and using the decay rate
of | V8|2 in (1.7), we have ||q||;2 < (14-t)~*k+s+1)/2_ Then in virtue of Hardy-
Littlewood-Sobolev theorem, we obtain the L —1.2 decay rates of the solution
and its derivatives.

The following two assumptions are given in [13], which are essential to de-
duce the local existence and global existence by using the Kawashima condition.

Assumption 1.1. The initial data satisfy
{ (po,10,80,90) (x),x ER" } C [p1,0%] X [~ C1,C1] % [6:,67] x [~ C1,C1]":= o,
where C; >0, 0<p, <1< p* <coand 0 <0, <1< 6" <oo are constants.
Assumption 1.2. For each given G; satisfying
GoCC G CCRy xR"xRy xR", V(p,u,6,q9)€Gy,

the pressure P and the internal energy e satisfy P(p,0),Py(p,0),e4(p,0)>C(G1)>0,
where C(Gy) is a positive constants depending on Gj.
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Our global existence results including the temporal decay estimates are stated
in the following theorem.

Theorem 1.1. Under the Assumptions 1.1 and 1.2, and assume that
(po—1,u0,60—1,90) € H*(R?) and o= (po—1,140,60—1,90) | g3 w2

small. Then there exists a unique, global, classical solution (p—1,u,0—1,q) in H>(R3).
If further

1(e0—1,10,00—1,90) (-, 1) |l -+ < Co, s€[0,3/2), (1.9)
or
100 —1,10,60=1,q0) (- £) 5,5 <Co, 5€(0,3/2], (1.10)
then
1(p—1,u,6—1,9)(-,t)|| g-s <Co, s€[0,3/2), (1.11)
or
||(p—1,u,9—1,q)(-,t)||B£§o <Cp, s€(0,3/2], (1.12)
and
Hka 1,1,0-1,9) (1) || oy <Co(14+6) "%, k=0,1,2, 13)
|D¥q(., <C0(1+t) 43 k=0,1. '

Note that Lemma A.3 (the Hardy-Littlewood-Sobolev theorem) implies that
for pe (1,2],LP C H™* with s=3(1/p—1/2) and Lemma A.5 implies that for p
[1,2), LPCB, 5, with s=3(1/p—1/2). Then Theorem 1.1 yields the following decay

results of LP — L2 type.

Corollary 1.1. Under the assumptions of Theorem 1.1 except that we replace the H™° or
B 5, assumption by that (pg—1,u0,60—1,90) € LV (IR3) for some p € [1,2], then

"e:b—‘
,_.

ID*(0—1,u,0—1)(8)|| o SCo(148H) 27072 for k=012, (114)
ID5q(5)]| 2 <Co(14+4) 2D~ for k=0,1. (1.15)

Remark 1.1. We need not the initial data is small in L'(R3). In fact, the fluid
density, the fluid velocity and the fluid temperature in L>-norm have the same
decay rate as the classical Navier-Stokes equations, while the flux g has faster
L%-decay rate as (1+t) 2 due to the damping term in the Eq. (1.1d).
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Remark 1.2. Our results include the case T =0 (g = —«V#), that is, the nonisen-
tropic Navier-Stokes equations. The isentropic case has been investigated in [9].
Besides, the method in this paper can be also applied to the damped Euler equa-
tions with hyperbolic heat conduction.

Remark 1.3. It is also interesting to derive the LP-decay rate of the solutions
with 1 < p <2 by using some linear decay analysis on the Green’s function of
the Cauchy problem (1.1)-(1.2), which will be studied in future.

Notations. In this paper, D¥ with an integer k>0 stands for the usual any spatial
derivatives of order k. For 1 <p <co and an integer m >0, we use L” and W""?
to denote the usual Lebesgue space L?(IR") and Sobolev spaces W™ (R") with
norms ||-||p» and || - ||y, respectively, and set H™ =W™?2 with norm || - || y» when
p=2. In addition, for s €R, we define a pseudo-differential operator A°® by

Ng(x)= [ [eFg(@)e™ g,

where ¢ denotes the Fourier transform of g. We define the homogeneous Sobolev
space H°® of all g for which ||g]| s is finite, where ||g]| gs := || Ag || 2= ||E|° ¢ ]| 12
Let n€Cg (]Rg) be such that () =1 when || <1 and #(¢) =0 when ¢ >2. We

define the homogeneous Besov spaces Bz_, ° (R3) with norm || -|| By defined by

1
flsyzi= ( S218if1 )

jez

where A;f:=F~(¢;)f, (§) =7(§) —1(28) and ¢;(§) = (27/¢).

Throughout this paper, we will use a non-positive index s. For convenience,
we will change the index to “—s” with s > 0. C and C; denote positive generic
(generally large) constants that may vary at different places. For simplicity, we
write [ f:= [gsfdx and ||f||;2:= | f||. Moreover, we use (-,-) to denote the inner
product in L?(R?).

The rest of the paper is arranged as follows. In Section 2, we give energy es-
timates in H> norm and some estimates in H™* and B, 3. The proof of global
existence and temporal decay results of the solutions will be derived in Section 3.
Finally, some useful Sobolev inequality and Besov inequality are stated in Ap-
pendix A.
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2 Nonlinear energy estimates

2.1 Energy functionals in each k-level in H3>-norm

First, by using (1.1a) and (1.3), we can reformulate the nonlinear system (1.1) for
(p,u,0,q) around the equilibrium state (1,0,1,0) as

oip+divu=—div(pu),
0+ po(1,1)Vo+pg(1,1)VO—puAu— (u+p')Vdivu

1
=—u-Vu———(po(1,1)pV0+p,(1,1)oVp—ppAu— (pu+pu")pVdivu),

1+p
pe(1,1) 1
0:0+ divu+ ———<div
eo(1,1) eo(1,1)
(1+6)p 1+p,1+9) po(1, ) )
((H—p 1+p,1+9 e (1,1 divu (2.1)

d
<(1+p)69(1+p,1+9 eg(1 )Wq
! 2 .2
+<1+p>ee<1+p,1+e>( Vit (V) |divu )
dig+q+Ve=0,
(p,u,8,9)(x,0) = (po,u0,00,90) (x).

Hereinafter, for brevity we still denote the new variables as (p,u,6,9) without
confusion.

Without loss of generality, in the following, we mainly consider the case of
a polytropic gas P = Rp0, e =c,0. In fact, the unique difference from the general
case above is that there exists an additional nonlinear term as (1/(1+p))0divg
in the third equation below, and this term can be similarly estimated as the term
(1/(14p))pdivg. In addition, since the specific values of all the positive parame-
ters in (2.1), P;(1,1) and Py(1,1) are not essential when deducing the energy esti-
mates, we set all of these be 1 for the convenience of narration. Then the Cauchy
problem for the new variables (p,u,6,q) is given by

dip+divu=—div(pu), (2.2a)
o1+ Vp+Vo—Au—Vdiv

= —u-Vu—ﬁ(pV@—l—pr—pAu—deivu), (2.2b)

0:0+divu+-divg
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=—u-Vo— ﬁ (pdivu+9divu+pdivq— % IVu+(Vu)T|>— |divu|2) , (2.2¢)
dtq+q+VOo=0, (2.2d)
(0,1,8,q) (x,0) = (p0,140,00,q0) (x)- (2.2¢)

In this subsection, we intend to derive three energy functionals, which will be
used to deduce the decay rate in Section 3. First, for the equivalent system (2.1)
(or the system (2.2)), when (po,u0,00,90) € H*(R?) < €y < 1, Hu and Racke [13]
gave the following estimate for some constant C > 0:

oG [+l (o) [+ 16 C, ) [ 5 +-[lq (- ) | s < Ceo, (2.3)

where they used the Kawashima condition to prove global existence theorem.
Here our energy estimates together with the local existence given in [13] can also
derive the same global existence.

Basing on the estimate (2.3), we can obtain the following energy estimates in
their own level, which will be used to derive three essential energy functionals.

Lemma 2.1. If (2.3) holds, then we have

1d :
S (eIl + 1012+ llg]12) + (V] 2+ i divial 2+ g1
Seo(IIDp|2+1IDul?+1D6P +1Dg|?), 24
1d
2dt
Seo(IIDp|2+1|Dul[>+(|D%ul*+ | D8+ || Dg| ). 25)

(IDoI2+lIDul+ | D8]+ | Dg|[2) + (| DVul|?+ | Detiva|*+ | Dy

Proof. For 0<k<2, applying DF to (2.2) and then multiplying the resulting equa-
tions by ka,Dku,DkG,Dkq respectively, summing up and integrating over R3,
one has
1d
24t
=— <Dk(—pdivu—u-Vp),ka>

(
(

D (p,14,0,9)|*+ (I D*Vul P+ || D¥divu|2+ | D g2 2.6)

_|_

Ky p P R __P k
D( uVu+1+pAu+1+de1vu 1+pV€ 1+pr),D u>

pdivu 9divu+pdivq |Vu+(Vu)T|? |divu|2) Dk6>
I+4p  14p 14p 14+p 1+p )’ '

+ Dk(—u-ve—
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When k =0, by using the Holder inequality, the Sobolev inequality || f||;6 <
|Dfl|;2 when f € H!(R?®) and the Cauchy inequality, we have the following esti-
mates for the above each term:

|[((—pdivi—u-Vp),p)|
SlipllsIDullzllpla+ lll s Voll 2 ol
Seo (IDplP+ [ Dul?),

[{u- V)| S lfull o | Due] [l 5 S eoll D%,

(55500 )| = (357w ymen)

_ <1ipww v pquu>‘§eo(||Dp||2+||Du||2),

< £ deu) >’ (IDpl?+Dul?),

(5t

(12 v0)| e (ID0IP+ D),
(15 vpa)|seo(1DpI2+ IDuI?),
<

( V99>| Seol DO,
[ o .. [
' 1+pd1vu,9>'+‘<1+pdwu,9>‘—|—‘<1+pd1vq,6>'

Seo (ID6)2+1Dul?+ [ Dg|l?),

1
‘<—1+p (|Vu+(Vu)T|2+|divu|2)9> ‘ §eo||Du||2.

Inserting these estimates into (2.6) with k=0, we obtain the estimate (2.4).
When k=1 in (2.6), we estimate each terms as

[(D(—pdivu—u-Vp),Dp)|
< |(DpDu, Dp)|+|{pD?u,Dp)| +|(uD?p,Dp)|
S|1Du | Dpl*+llp]l = | D% [|Dp | + 1] s | D301l | D
Seo (IDpl2+ D22+ [ Dull?),
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KD (u-Vu),Du)|| Seo | D?ul?,

(i) o)ty o
<D< deu) Du>'§eo||D2u||2,
(D(,76) Du) | sea 1001+ [D%02),
|(D(u-V8),D)| = '(Du Vo,Ve) ——<d1vu
(D(,90) D) | Seo (IDpIP-+ 107,

<D(1ppd1vu) D9>‘+‘<D(%divu),DOH§eo<||D9||2+||D2u||2),
o) ) o) ()

<|{pD?,D)|+ | Dp||~|| Dqll[| D6]|
Sllells Dl 51| D6l + | Dpl| | Dal | DO

Seo(IDO2+1Dpl1?),

2)| Seo (IID6JI2+ D),

1
<1+p(Vu+(Vu) ) +|divu|2,D9>‘§eo||Du||2.

Inserting these estimates into (2.6) with k=1, we obtain the estimate (2.5). O

Lemma 2.2. If (2.3) holds, then we have

2 : 2 2
S I 0,0)]12+ (ID(Va dive) -+ [ Dg )

Seo (ID%0IP+ D22+ 1D+ (1 D%1?), 2.7)
1d .
3t (100 P+ [ 1+p)ID%2) + (ID2(Tu v 2+ )
<eo (ID%l*+ [ DPul*+ [ D8] + D)) 28)

Proof. When k=1 in (2.6), we estimate each term as

[(D(—pdivu—u-Vp),Dp)|=|((—pdivii—u-Vp),D?p)|
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Sllollslldivull | D]l +[[ull 5 Voll s | D]l
Seo (ID%I+|D%]1?),
(D (u-Vu),Du)| Seol D?ul?,
<D< P Au) Du> + <D<chhvu),pu>
1+p I+p

P 2, 2112

< <1i9w> >'_'<1iPWD2>

P 2,01 < 20112 2,112
25| v sen (026 p2u?),

< <1+p )D“>'—’<1iPVPID2 >'§€o(HDZPHZHIDZuHZ),

(D (u-V0),D0)|=|(u-V6,D*0)| Seo|| D2,

< < d1vu) D9>’+’<D<lipdivu>,D9>'§eo(\|D29H2+||D2u||2>,
<D( d1vq) >H< P divq,D26>)<eo<||D26||2+HD2qH2),
1+p ~

<( Vit (Vi) |2+]d1vu|2) >‘

— 2 : 2 2 < 2,112 20112
<—1+p]Vu+(Vu) 2.4 |dival?, D 9>‘N60(||D ulP+D%)).

A

Inserting these estimates into (2.6) with k=1, we obtain the estimate (2.7).

When k=2 in (2.6), the most difficult term is (D?(p/(1+p)divg),D?8). Since
we want to finally derive the energy functionals in each level of the derivatives
of the solution, we have to control this term without using the third derivatives
of the solution. It will be estimated by using integral by parts and the Eq. (2.2d):
V0= —q;—q. In fact, we have

<D2 (ﬁdivq) ,D29>

= (D?pdivq,D*0) +(DpDdivq,D?*@) + {pD*divq, D?0), (2.9)
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and the first two terms can be estimated as
|(D?pdivg, D)+ (DpDdivq, D?)| Seo (IID%2+|ID?0]+ | D%q[2) . (210)
The last term in (2.9) can be rewritten as
(pD*divg,D?*0) = (div(pD?q),D*0) — (VpD?q,D*9)
=—(pD?q,D*V6)—(VpD?q,D*0)
= (pD%q,(D%q:+D%q)) — (VpD?q, D)
= <p,% (qu)2> + <91D2q% (qu)> —(VpD?,D%)
= 4 (0,(D%)?) (o1, (D)?) ~ (VoD% D)
= %<p,(D2q)2> +{(divu+pdivu+Vp-u),(D*q)*)—(VpD?*q,D*0),  (2.11)
and the last two terms can be bounded as
|((divi+pdivu+Vo-u),(D?q)?) — (VpD?q,D?6)| < <||D2q\|2+ ||D29||2) . (2.12)
The other terms in (2.6) with k=2 can be estimated as follows:

[(D*(—pdivu—u-Vp),D?p)|
=|(D?pdivu,D*p) 4 (DpDdivu, D?p) + (oD?divu, D?p)|
Seo (ID%)2+(D%]),
|(D?(u-Vu),D?u)|
SIDuD?ul ¢ [[D?u]l s+ ||ull s || D?ul 6| Du|
S IDul[ s | D*ul[ | Dul|+ [|u]| | D3ue| |

3 2 1 1 2
S|ID3u||3(|D3ul|3 [|ul|3 | D3u|| 3| D3u|| + [ul| 1 | D*ul|* Seo|| D3ul|?,
<D2(—p Au),D2u>‘+‘<D2(—p Vdivu),D2u>

1+p 1+p
<D(LAu),D3u>’,<veOHD3uH2,

1+p

2P 2.\ | _ P 3, \| < 2012 3,012
<D (1+pV9),D u>‘—‘<D<1+pV9),D u>‘Neo<||D 0]12+ || Du|| )

N
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(0 (55ve) 22 [= (o (35,70 ) o)
oGenen)e (o)

< 3 < 2 112 3
<o (35| iveheireise (10 +10u),

|(D?(u-V0),D%0)| = |(D?*u-V8,D?6) + (Du-DV6,D?0) + (u-V(D?§),(D?9))|

— |(D?u-V8,D%0) + (Du-DV,0D0) —%(divu,(Dze))z < e D26)2,

2f P 2 2o 0 . 2
<D (1 pdlvu) D 9>’+’<D <1+pdlvu),D 9>’

Seo(ID%]2+(D%l?),

’<D2 (%(|Vu+(Vu)T|2+|divu|2)) ,D29> ’ Se€o (||D3”||2+||D29||2>'

Inserting these estimates and (2.9)-(2.12) into (2.6) with k=2, we can immediately
obtain (2.8). O
Next, we want to estimate the dissipative term of Vp,DVp from the Eq. (2.2b).

Lemma 2.3. If (2.3) holds, we have for k=0,1 that
d 1
Dk, D)+ DRV |2 [ Dl P+ | DFF2u 2 D02 (2.13)

Proof. First, applying D* on the first three equations in (2.2b), and then multi-
plying the resulting equation by D¥Vp respectively, summing up and integrating
over R3, then we have

(ut, Vo) + [ Vol |?
= —< <V9+Au-|—Vdivu—u-Vu—L(Vp—l—Au-l-Vdivu)) ,Vp>

1+p
1
SIIDOJ*+3[1Dpl* +[1D%u]?, (2.14)
d d .
(ut, Vo) = = {1,V 0) = (u, Vipr) = (1, Vo) +(divis, pr)

:%W,Vw—i—(divu (—divu—pdivu—u-Vp)) < d <u Vp>+||Du||2 (2.15)
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Inserting (2.15) into (2.14), we get the estimate (2.13) when k=0.
When k=1, we also have

(Dut,DVp>+HDVpH2:—/(DV@DVp+DAuDVp+DVdiquVp
1Y
—D(u-Vu)DVp—D | —Vp | DV
(u-Vu)DVp <1+p p) p
+D (LAu) DVp+D (chﬁvu) DVp
1+p 1+p
1
5||D29||2+§HDZP||2+||D3u||2+€o\|D2u||2f (2.16)
and

(Du;,DVp) = d(Du DVp)—(Du,DVp;)

;t (Du,DVp)~+(divDu,Dpy)

;t<Du DVp)+ ((—divDu,divDu) — (Dp,divDu) — (Du-V Dp)

d£<Du DVp)+||D?ul%. (2.17)
Inserting (2.17) into (2.16), we also get the estimate (2.13). O

The following lemma is to derive the dissipation of V8 and DV by using the
Eq. (2.2d).

Lemma 2.4. If (2.3) holds, we have

1d .
225 (IoIP+ 2+ 1617 + (0, 78)) + [ a2+ v+ V6]

< 11Dgl 45 |1Dul*+ o ([ Dpl>+ ]| Dul+ | D]12), 218
1d

> (1Dl + 1wl + D6+ (Dg, DV))

+ ||DVu|P+ || Ddivu 2+ || DV

1
S,\|D2q||2+§||D2u||2+eo(||DPH2+||Du||2+||D2u\|2+HD9H2+||D29||2)- (2.19)
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Proof. First, apply D¥ on the Egs. (2.2a)-(2.2c), multiply the resulting equations by
D¥p, D*u, D*6 respectively and sum up, then integrate over R3. A similar process
as in the estimates (2.4) and (2.5), one has

1d ‘ ‘
2 (1.0 1P+ 6, diva) ) + | a2+ v

Seo(IDp 1 +1Dul +1D6P), 220
1d

S (||D(p,u,9)\|2+<D9Ddivq>) +||DVu|*+ | Ddivul>
<eo ([IDpIP -+ | Dul*+ ]| D%ul P+ DO 2.21)
The above underlined terms can be canceled by using the following two esti-

mates. In fact, applying D on the Eq. (2.2d), and multiplying the resulting equa-
tion by D¥V6, one has

0=(D"(q:+q+V0),V0)
=||D*V0|*+(9;D*q,DV6) +(D*q,D"V8)
=||D*V8||*+0:(D*q,D*V8) — (D*q,D*V 6, )+ (D"q,D*V8)
= || D*V 0| +0:(D*q,D*V8) +(D*divq, D*6;) + (D*q, D"V ). (2.22)

The third term above can be estimated by using the Eq. (2.2c) as

|(divg,0)| = | <divq, (—divu—divq—u-V@— ﬁ
X (pdivu—l—@divu-l—pdivq— %|Vu+ (Vu)T|2— |divu|2) ) > ’

<|Dg|*+ || Dul?, (2.23)

|(Ddivg, D6;)| = ‘ <Ddivq, [—Ddivu—Ddivq—D(u-ve) -D (ﬁdm)

+D(6divu)+D <pdivq—%|Vu—|—(Vu)T|2) —D(Idivulz)] >

SIID*q|*+1|Dull* +eol| D6], (2.24)

where we have used the estimate (2.3), the Holder inequality and the Cauchy
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inequality. Summing up (2.23) and (2.24) into (2.22), we have

IV011+8¢(q,V0) +(q,V6) S Dql|* + [ Dul?, (2.25)
IDVO]%+08:(Dq,DV6) +(Dq,DV6) <||D*q||*+[|D?ul|* + ol D*6]%.  (2.26)

Then summing up (2.25) and (2.20), and summing up (2.26) and (2.21), we have

1d .

551 | (1pP+1ul+10P+q6) + [ Vul>+ | divae 2+ | Vo)

<11 DglP+ | Dul2+eo (1 Dpl P+ | D2+ (| D8I, (2.27)
1d
2dt

<1212+ D2ulP+eo (1| Dpl*+ | Dul*+[| D2l P+ || Do+ [ D%6]2).  (2.28)

/(]Dp!er]Du|2+|D9]2+DqDV9>+ [||DW\|2+||Ddivu\|2+||Dve\|2}

This completes the proof of this lemma. O

Next, in the same way as in Lemma 2.2-Lemma 2.4, one can easily deduce the
following energy estimate for the second-order and the third-order of derivatives
of the solution.

Lemma 2.5. If (2.3) holds, then we have

S (1D2(00,0) 2) + D (V. divie )

Seo (ID*(o,u,0)|P+D%]2), (2.29)
3t (100w P+ [ (+0) D ) + [10° (T v o+ [ D
Seo (ID%pIP+IID*ul2+ D%+ D%]1?), (2.30)
& (D%, D2Vp) + 5 [D*Vp|P < | D%ul + [ Dul >+ | D0 P, (231)
;;t (||D2(p,u )|+ (D%, D2V6) ) + | |DX(Vu,diva) [+ D2V6|?]  (232)

S HD3L7||2+§ ID%u]|?+eq (||DZPH2+ ID?u[?+]| D3|+ || D%6)* + HD39H2) :

From these delicate energy estimates, we can obtain the following energy
functionals.
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Proposition 2.1. If (2.3) holds, we have for some constant C >0 that

2 (I 0.0)12)

+C (|| Do+ [ Dull3 + 1101+ gl ) <O, (2.33)
d 2
= (1| (Dp,Du,D6,Dg) |7,
+C([ID%l2+|1D?ull2; +1ID?]12+ [ Dgl%, ) <0, (2:34)

d
= (1(D%,D%u,0%,D%)|13,)
+C(IID% P+ D2ul3 + | D262+ D3 ) <o. (2.35)

Proof. Summing up (2.4), (2.5), (1/2)x(2.13) and (1/2)x(2.18), we can immedi-
ately get

d
2 (I8l -+, V) +(g,V0) )
+C (|IDpl2+1|Dull2; + 1181+ 1glf3: ) <O, (2.36)

which is equivalent to (2.33), since
1
|(Du,DVp)+(Dg,DV6)| < 5 (|| Dul®+[ D]+ | Dg*+ [ D%]2).
In the same way, summing up (2.7), (2.8), (1/2)x(2.13) and (1/2) x(2.19), we can

obtain (2.34). At last, (2.35) can be deduced by using Lemma 2.5. O

2.2 Estimates in H*(IR?)

The following lemma plays a key role in the proof of Theorem 1.1. It shows
an energy estimate of the solutions in the negative Sobolev space H*(RR%). Na-
mely, we have

Lemma 2.6. If (2.3) holds, for s € (0,1/2], we have

d, . . _ . _
1A (0w 0[P+ VA" ul*+ [ divA~*ul|* +[|Aq]*

S (1Dl +IDul + DI+ [IDgl2) A (o,m,6,9)]] (2:37)
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and for s € (1/2,3/2), we have
d, _ _ . _
g A *(0,u,0,q) 1>+ | VA5 ul >+ || divA = u|*+ | A~5q]|?
1 5_ 5 _
Seu0)|° 2(||D(p,9,q)||2 S+ D?ul|? S)HA “(o,u,0,9)]. (2.38)

Proof. Applying A™° to the Eq. (2.2), and multiplying the resulting identity by
A5p,A"u, A=50 and A~%q, respectively, and integrating over R> by parts, we
get
d,  _ _ - -
1A (0w 0,)|*+ [ VAT ul*+ || divA~u|* +[|A™q||*
= (A (—pdivi—u-Vp),A"p)

+<A—S<—u-vu+ P Au+—Lvdivu—FL-vo- P vp),A—Su>

1+p 1+p 1+p 1+p
LA _u've_pdivu_edivu_pdivq_i_]Vu+(Vu)T|2
I+p 1+4p 1+p 1+p
)
+|divi‘;| ),A‘59>. (2.39)

If s € (0,1/2], then by Lemmas A.1,A.3 and Young's inequality, the first term in
the right-hand side of (2.37) can be estimated as follows:

(AT (pdivu), A™p) |
SlA™ (pdiva)[[[(pdiva)pll Sllodivull 1 17|

1/2+4s/3

— 1_ 1 —
Sllell, 3 1DulllA=pll S [Dpl|2~*(|D?pl|2**|| Dul[[|A=p]|

S (1Dl +1Dull?) |Apll, (2.40)
where we used the facts 1/2+s/3 <1 and 3/s> 6. Similarly, it holds that
(A= (u-Vp), A0} S (IIDull2; +IDpl2) Al (241a)
A (LA AU Y AT P Tdivu LA u
1+p I+p
SIDullFp A ul, (2.41b)

_s{ P s .
<A (—HPV@)//\ u>‘§(||Dpllﬂl+||D9||2)||A ul, (2.41c)
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‘<A_S(1ipvP) >‘5(||DP|Ié1+|IDp||2)||A—Su||, (241d)
(A= (- V0),A=0)| S (IIDul2s+ 1 DOI ) | A=0], 410
<A_S (—ﬁpdm) fA‘59> \ S (IDplBs+IDulP) A0l (2410
0
<A_S <1ipdiv’7) 'A_59> ‘ S (||DPH?{1+ ||Dq\|2) IA~50]], (2.41h)
<A—s(|Vu+(VM)T|2+|divuI|2) A—59>‘
1+p 1+p )’
S (Il 127 1) any

Combining (2.39)-(2.41), we can immediately obtain (2.37).

Now if s€ (1/2,3/2), then1/2+s/3<1 and 2<3/s < 6. We shall estimate the
right-hand side of (2.39) in a different way. Using the Sobolev inequality and the
Cauchy inequality, we have

(A7 (edivu), A™p) |
SIAT (pdiva) [[| A0l S lodive|

L1/2+ /3||A PH
_ _1 3_ _
Sliell, 3 1DullIA0 ] S llol* 2 [ Dpll 3| Du|A=*p
_1 5_ 5_ _
Slell==2 (Dol ==+l Dull =) [|a=%pll, (242)

where we have used the facts 1/2+s/3 <1 and 3/s > 6. Similarly, it holds for
s€(1/2,3/2) that

-5 —S s—1 5_g —s
(A7 (Vo) A= p) | S [l Dl [ A%, (2430)
(a7 (o) a- u>’,s||u||s-%||Du||3-5||A—Su||, (243)

(a7 (15, veive).a-ou)

_1 —
<ol z(nDpuz HIDul ) A5l (2:430)

s—3% 3-s 2 —s
(a(1f,ve) u>\§||p||  (IDpl3 =+ DO ) [ A~*ull, (243d)
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(8 ( 1,90 ) oamu) S 1ol Hipl 5, 2430
(A= (u-90),A=0)| S [[ull*=2 (IIDOJ1 =+ | Du| =) || A=), (2.439
= (g S < s—3 3—s 2—s —s
(A (s diva) o 9>\N||p|| * (IDpI3=+[DullF) A~ 0]|, (243g)
6 1 5 5
=s i =S < 5—3 5—s 3—s —s
(a7 (igetivu ) ams0) |04 (1DplF -5 Dl 6], 2431
(a7 (15 aivq) a0 ) [ ol (1Dl +1Dgl ) a0, @430
T2 : 2
<A_S<|Vu+(Vu) | Jr|<:11vul| ),A‘56>)
1+p 1+p
< | Dull* 2 (D2uf 35+ | Dul3) A0 (2.43)
Combining (2.39), (2.42) and (2.43), we can immediately obtain (2.38). O

2.3 Estimates in B; J, (IR®)

In this subsection, we will derive the evolution of the negative Besov norms of
the solutions.

Lemma 2.7. If (2.3) holds, for s € (0,1/2], we have
LA (0,1,0,0) |2+ (117 A a2+ || div ]2+ | A g ]2
21118(0,1,0,) 12+ (117 Au]2-+ | divaul 2+ Aq]|?)
< (IDpl3 s +11Dul 22+ D62+ [1Dal?) |14, w b0,  (244)
and for s € (1/2,3/2], we have
D145(0,1,0,9) 2+ (17 A jul P+ || divi ]2+ | Asq 12
S 185(0,,6,0) 12+ (119 A0+ | divAsul P+ || Ayq]

s—1 5—s >—s A
Slow®) =2 (ID(0,0,)]137+ D372 140, m,6,9)] (2.45)

Proof. Apply A]- to the Eq. (2.2), and multiply the resulting identity by Ajp, Aju,
Ajf and Ajq, respectively, and integrate over R3 by parts. Then, as the proof of
Lemma 2.6, applying Lemma A.5 instead to estimate the B, ;, norm, we complete
the proof of Lemma 2.7. O
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3 Proof of Theorem 1.1

The global existence of the solution to the Cauchy problem (1.1)-(1.2) with small
initial data in H>-norm can be deduced from the local existence in [13] and our
energy estimates in Section 2. Since Hu and Racke [13] have obtained the global
existence by using Kawashima condition, we omit the proof here. We mainly
prove the optimal time decay rates of the unique global solution to the Cauchy
problem (1.1)-(1.2) in Theorem 1.1 in this section.

First, from Lemma 2.6, we need to distinct the arguments by the value of s.
For s €[0,1/2], integrating (2.37) in time, and by using the energy functionals in
Proposition 2.1, we have

t
1(o,14,0,) |17 < ||(po,uo,90,qo)||§q_s+C/0 1D (0,14,6,) 13 11 (0,14,0,q) || -+dT

<Go(1+ sup (o)l ). 61
0<t<t
which yields

1(p,11,6,9)|| g-s <Cop for se[0,1/2]. (3.2)

Using Lemma 2.7, we similarly have

||(p,u,9,q)||B£;§C0 for se€(0,1/2]. (3.3)

If 0<I<2, we may use Lemma A.2 to have

- 1+
ID™ A fll 2> ClL AN D fIl s (34)

Recall the first energy functional in Proposition 2.1,

d
= (I0,,6,) 13 ) +C (IIDpIP+ I Dulifs + |1 D6|>+llglF ) <0, (35)

We want to use (3.4) and (3.5) to deduce the decay rate when s € [0,1/2]. In fact,
from the convexity of the function g(a) = a'*1/(+5) with a > 0, we have the fact

that
1

a4 p s > 2 (g b) s, 23>0, b>0. (3.6)

N +—

Then we can claim that

1

T4+
(IDpI2+11Dul2, + D02+ llgl3: ) = (lewblZs) . (37)
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In fact, from (3.4) and (3.6) and the smallness of the solution in H?(IR?), we have

1+1 1+1 . .
1Du)2, = ()5, 1Dgl% = Clgl1%) ™+, since lqll is small, (3.8

1 1 1 1 141
1o =2 1Dpl2+ 21002 = LiDol2+ 22 (0l
2 2 2 2
. 141
mm{l,C%} {HDPHZ‘F(HP“Z) ﬂ}
1 1
min{1,C2} [(nnpnz)”s +(||p||2)”s}

1+
min{1,C3} ([loll* +1|Dpl?)

Vv Vv

vV
R~ NP N

1+1
= min{1,c}} (ll)%,) (3.9)

In the same way, we have

1 1+1
| DI = Zmin {1,C}} (||9\|§11) . (3.10)

Then using the fact (3.6) again, and from (3.8)-(3.10), we can get (3.7). Insert-
ing (3.7) into (3.5), and using (3.2) and (3.3), we have a differential inequality on

1(o,1,0,0) 1131,

d 1+1
= (106,13 ) +C (I Goub)E: ) <0, (3.11)
which implies for s €[0,1/2] that
1 o,1,8,0) |3 < C(148) " (3.12)

Similarly, from the energy functionals (2.34)-(2.35) for the first order and the
second-order of derivatives of the solution, we also have

ID(0,u,6,9) |21 <C(1+)~F) for s€[0,1/2],

3.13
ID?(p,1,6,9) |11 <C(1+£)~2) for s€[0,1/2]. (3.13)

For s € (1/2,3/2), notice that the arguments for the case s € [0,1/2] can not
be applied to this case (see Lemma 2.6). We will use (3.12)-(3.13) with s=1/2 to
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derive the decay rate for s€(1/2,3/2). Integrating (2.38) for s€(1/2,3/2) in time,
we have

1A= (0,1,6,9) I < A= (po,t0,60,40)
' s—1 5 s >_s —s
+ [ 1em® 1=t (1D G0, |+ ID%ull ) A7 (o,1,0,0) 1 dx

t
SCot sup {||A_S(Pfu/9/q)\|}/0 (1+7) 362D (141) G 9)dr
0<t<t

t S
<Co+ sup {|IA (0} [ (147G

0<t<t

SCo+Cr sup {[|A(p,u,0,9)||}, (3.14)

0<t<t

which implies that
1(0,1,0,0)|| ;- <CCo, s€10,3/2). (3.15)

On the other hand, by using Lemmas A.4-A.7, a similar argument as leading
to the estimate (3.15) for the negative Sobolev space can immediately yields that
in the negative Besov space

1(o,4,6,9) 15,5 <CCo, s€(0,3/2]. (3.16)

Then from (3.15)-(3.16), we may repeat the arguments leading to (3.12)-(3.13) for
s €1[0,1/2] to prove that it also holds for s € (1/2,3/2) when the initial data is in
negative Sobolev space, and for s € (1/2,3/2] when the initial data is in negative
Besov space, that is,

kts
2

1D (0,8, S(A1+6)"7, k=0,1,2. (3.17)

Finally, we further improve the decay rate for 4 and Dgq due to the damping
mechanism of the Eq. (2.2d). In fact, multiplying (2.2d) by g and integrating over
R3, we have

d 1
T llall*+l1gll*=—{q, Vo) <C[[ Vo> + llal|*, (3.18)
which implies that
dy o 1y 2
— = < . .
SlalP+3 gl <Clve) (3.19)
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Integrating (3.19) on time t, we have

t —T
lall2 Se g0l + [ =7 Dol ()

Sebt [T arn) Marge b4 09, @)
that is,
gl (146", (321)
Similarly, we also have
IDgl S 1+, (3:22)
This completes the proof of Theorem 1.1. O

Appendix A

In this section we give some Sobolev inequalities and Besov inequalities, which
have been used in the above sections.

Lemma A.1 (Gagliardo-Nirenberg inequality). Let 0 <m,k <[, then we have

ID*gllr <ClID™gll17*ID'lIEr,

T e )
p n q n r n
Lemma A.2 ([9, Lemma A.5]). Let s >0 and [ >0, then we have

o = ]‘
H= s+ 1

where k satisfies

ID"gll > <CIID™ g2 * gl

Lemma A.3 ([28, Theorem 1]). Let 0<s<n,1<p<q<oo,1/q+s/n=1/p, then

IA™glls <Clig]lLr-
Next, we give some lemmas on Besov space Bz_, S
Lemma A.4 ([27, Lemma 4.5]). Suppose k>0 and s >0, then we have

L4 K= ]'
B U I4+14s

ID*fll2 <CID* £ £



Z.Wu, W. Zhou and Y. Li / Commun. Math. Anal. Appl.,, 2 (2023), pp. 115-141 139

Lemma A.5 ([27, Lemma 4.6]). Suppose that s>0and 1<p<2. We have the embedding
LP C B;go with1/24-s/3=1/p. In particular, we have

£ 155 < Cllfllze-
Lemma A.6 ([29, Lemma A.7]). If 1 <ry <rp < oo, then

B;S CcB;S

2,11 215"

Lemma A.7 ([29, Lemma A.8]). If m>1>kand 1<p <q <r <oo, then we have
g < & 1-a
Isilag, <Cligly Nl

where l=ka+m(1—«), 1/g=a/r+1—a/p.
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