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Abstract. In this work we prove the existence and uniqueness theorems of the
solutions to the relativistic Boltzmann equation for analytic initial fluctuations
on a time interval independent of the Knudsen number € > 0. As € =0, we
prove that the solution of the relativistic Boltzmann equation tends to the lo-
cal relativistic Maxwellian, whose fluid-dynamical parameters solve the rela-
tivistic Euler equations and the convergence rate is also obtained. Due to this
convergence rate, the Hilbert expansion is verified in the short time interval for
the relativistic Boltzmann equation. We also consider the physically important
initial layer problem. As a by-product, an existence theorem for the relativis-
tic Euler equations without the assumption of the non-vacuum fluid states is
obtained.
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1 Introduction

The relativistic Boltzmann equation, which is a fundamental model describing
the motion of fast moving particles in kinetic theory, takes the form of

P®8XF:—%C(F,F). (1.1)
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Here ® represents the Lorentz inner product (+———) of 4-vectors. As is custom-
ary we write X = (xo,x) with x €R% and xg= —t, and P=(po,p) with momentum
p € R3 and energy po = +/c2+|p|2, where ¢ denotes the speed of light. For conve-

nience of presentation, we rewrite (1.1) as
1
OF+p-VaF =~ Q(F,F) (12)

with Q(F,F)=C(F,F)/po, where the unknown F=F¢(t,x,p) stands for the density
distribution function of time £ >0, space x € R3 and momentum pe R3 and the di-
mensionless parameter € is the Knudsen number, which is the ratio of the particle
mean free path to a characteristic physical length scale. Here the dot represents
the standard Euclidean dot product, and the normalized velocity of a particle is
denoted as p p

f=C =,
P T ViTIpRe

For notational simplicity we normalize all the physical constants to be one. Then

po=+/1+1p|% ﬁ:%. (1.3)

We rewrite (1.2) supplemented with initial data as

1
E)tF—I—ﬁ-VxF:EQ(F,F), F(0,x,p)=Fy(x,p). (1.4)

To describe the relativistic Boltzmann collision term, we introduce the relative
momentum g as

g=g(w)=\/2(poqo—p-q—1) (1.5)

and also the quantity s as

s=s(p,q) =8 +4=2(poqo—p-q+1). (1.6)

Note that s = g?+4 and this may differer from that in [19] by a constant factor.
The M¢ller velocity is given by
2
| P 41

UfP:%(Pr‘i):\/%—q—o % 20

Then we may express the collision operator Q(F,G) in the form (see [11,14,19])

Q(F,G)= /N /Ssz(g,@) [F(p")G(q')—F(p)G(q)] dgdw, (1.8)

2
2poqo
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where dw is the surface measure on the unit sphere 52 in R3, and ¢(g,0) is the
scattering kernel. As is standard, we abbreviate F(t,x,p) by F(p), etc., and use
primes to represent the results of collisions. The conservation of momentum and
energy is

p+q =p+aq, (1.9)
VP 1 2= 14 p P+ 1+ g2 (1.10)

for any p,q € R3. Finally, the scattering angle 6 is defined as follows. Given 4-
vectors P = (po,p) and Q = (go,q), with the Lorentz inner product, the angle 6 is
given by

(P-Q)®(P'-Q)
(P-Q)@(P-Q) "
Here g9 =+/1+1q|? and gq{ = \/1+]q|?>. As in [42], by (1.9) and (1.10), the post-

collisional momentum can be written

;P8 (p+q) w
y = 2<w+(e (o) LD )

cosf =

2
ra g (1.11)
!/

(P+q)'w)
= — = —]_ —_— |,
(=318 (wre-1)prp PELS
where 0= (po+4o)/+/s. The energies are then
, _ Po+490 g ,
Po+qo & 8

=" ~5 5V PF

This and (1.11) clearly satisfy (1.9) and (1.10). Given any function n = n(t,x),
6=0(t,x) and u=u(t,x), we define the corresponding Maxwellian | =](n,0,u;p)
as follows:

]:](”IQIU}P) =

471175(2) eXP(‘Z(\/(lﬂu!Z)(H!P!Z)—wp)), z:%. (1.12)

Here K»(z) is the Bessel function defined in (1.18). It can be shown (see e.g. [11,
Chapter 2] and [43]) that

Q(F,F)=0 < F isa Maxwellian of the form J(n,0,u;p). (1.13)



D.-C. Yang and H.-J. Yu / Commun. Math. Anal. Appl,, 2 (2023), pp. 142-220 145

As the classical version, if (n,6,u) are constants in x and t, a Maxwellian ] is
called a global relativistic Maxwellian. If they depend on x and ¢, a Maxwellian |
is called a local relativistic Maxwellian.

We now state the conditions on the collisional cross-section as in [14,19,42].

Hypothesis on the collision kernel. We assume the collision kernel ¢(g,0) in
(1.8) satisfies the following growth/decay estimates:

ga—|—1
1+¢

c1&—sinY0<c(g,0) <ca(g"+g )sin¥6, (1.14)

where ¢1 and ¢ are positive constants, b€[0,1/2),a€[0,2—2b), and either Y >0 or

. 1 1
Y| <m1n{2—a,§ —b,§(2—2b—a)} .

In the present paper we consider the asymptotic problem for the nonlinear
relativistic Boltzmann equation (1.4) as € — 0, at the level of the relativistic Euler
equation. To find the corresponding reduced problem, suppose F = F¢ has a limit
FY and €(9;F¢+p-VF¢) —0 as e —0. Then letting € tend to 0, we find

Q(F,F%) =o. (1.15)

By (1.12) and (1.13), we have that F* =F°(1,0,u;p) is the local relativistic Maxwel-
lians (1.12). We define the collision invariants

ho(p)=1, hj(p)=pj, 1=j<3, ha(p)=po.
For a smooth function F(p), the collision operator satisfies
(hj,Q(F,F))=0, 0<j<4. (1.16)

Here the sign (-,-) is the standard L? (]R%,) inner product. We have from (1.4) and

(1.16) that

2 g FE) 4 (hyp-VF) =0, 0<j<4. 1.17)

Passing to the limit as € — 0 and using (1.12) and (1.17), we can arrive at the
relativistic Euler equations. Then we shall deduce the relativistic Euler equations
asin [3,35,43].

As in [11, Chapter 2], the Bessel function K;(z) is defined by

i(z)= ((22]'].))]',! % / ooe_)‘(/\z—zz)f_%d)\, j>0. (1.18)
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We have the following properties for the Bessel function in [11, Chapter 2]
2j
Kj+1(z) = —Kj(z) +Kj-1(2),

Z
j— 1 )!
1<]-(z,)_2 U= 1' 1/ AN A2—2)iRan, 1.

By using this, (1.12), (1.18) and the direct calculations, one has

1 2 ) dP__

=3 JolPPIn00p)5] =

_ g (3, Ki(z)
5—/}R3p0](n,6,0,p)dp—n< +K2(z))'

N

By these we define as

¢(Z)=5+P=n<g+§;gig)+ﬁ

>
Thanks to the classical decomposition [3,11,43], we have

d .
T;j t,x):Aspipj](n,Q,u;p)?z:—Pgi]'—i—(é’—l—P)uiuj, 0<1,j<3.

Here ug=/1+|u|? and g;; is the metric tensor given by

go0=1,
gii:_lr if i:1,2,3,

Thus we have from (1.19)-(1.21) and this that
( d
Ton(t, )= [ popol 20,15p) 7 = —P-+n(z) 1+ ul?),

d .
Tjo(f/x)=/R3le?o](n,9,u;p)p—z=n¢(z)ujuo, 1<j<3,

»Ve deﬁne some quantities as
nu-(tx)—_/ p}(n@up)— 0<7<3
] 7 R3 ] Yy 0 4 _] — .

d . .
Tij tx):A3Pinf(”r9ru;P)?ZZ—Pgij+n<1>(2)uiuj, 1<i,j<3.
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(1.19)

(1.20)

(1.21)

(1.22)

(1.23)
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By using this, (1.17) and (1.23), we deduce the relativistic Euler equations as
(0
o (ny/1+]ul?)+ Z;
]

d 3 _
o7 (1®(2)uin/T+[uf?) Za— —Pgii+n®(z)uju;) =0, 1<i<3,  (1.24)

%(—P-{—n@( )(14|ul?) i ( \/1—|—|u|2)

L =

o(nu
) o,
ax]

supplemented by the equations

_ (3. K@\, n 1
nq)(z)_n<z+K2(z)>+z' P—Z, z=1.

The system (1.24) may be considered as the Euler equations derived from the
relativistic Boltzmann equation. This is also obtained as the first approximation
to the Hilbert expansion as the classical case.

Integrating (1.17) over ¢, taking € —0, and putting t =0, one has

(hj,F°(0)) = (hj, Fo). (1.25)
Denote by Q* the symmetrized bilinear form
Q*(F,G)(p)
5 |, Losr @0 [EG)G W)+ )G () ~F(n)Ga)— Flg)G(p)] dadeo. (126)

Let Jo = Jo(p) = J(1,1,0;p), which is a global relativistic Maxwellian as (1.12).
We define the standard perturbation f(t,x,p) to this relativistic Maxwellian as
F=Jo++/Jof The relativistic Boltzmann equation (1.4) for f = f¢(t,x,p) is given

by
S +PVef = LfH T (RS, FOxp)=Folup) (1.27)

Here the standard linearized collision operator L is (see [14,19])

Lf= \/— Q*(JoJof)=—v(p)f+Kf. (1.28)

Above the multiplication operator takes the form

=/H23/gszv¢a(g,9)]o(q)dqdw. (1.29)
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Notice that K= K; —Kj is given by [14,19]

Kif= [ [ esr(@0/Tol@)o(p) () dadc,

Kaf = [ [ oort@ Oy W { @) )+ oe)ra') | e

The nonlinear collision operator I'(f1, f2) is defined by

T(f1,f2) —Q*(\/To 1V Tof2)- (1.30)

To present the results in this paper, the following notations are needed. Let L?
be the Hilbert space of complex-valued function f(y) on LZ(IR;) with the inner
product

(fi8r= | .. f ()8 g(y)dy,

and the corresponding norm ||-||. We also use the following L® norm with the
p-weight as

lullg = sup (1+|p))Plu(p)l, BER.
pER3

For any function u € §'(IR$ x IR;;) with respect to the variable x, we define as
i(k,p)=Fru(k,p)= (27{)_% / \ e ® Xy (x,p)dx, keR3, i=+/—1.
Ry
Let Xg’l denote the Banach space equipped with the norm

[llasp= sup e (1+[k)) (1+|p)P[a(k,p)| <o, (1.31)
k,peR3

where a, [, BER. Thenif a >0, u e Xg’l are analytic in x € R3+iB,, where

By={xeR’||x|<a}.

w,l

The space X g is the closed subspace of Xg'l such that

uexgl & uex”‘l |7 (x([k|+|p|>R)i (k,p)) ||, wrp 0 R — 0o, (1.32)



D.-C. Yang and H.-J. Yu / Commun. Math. Anal. Appl,, 2 (2023), pp. 142-220 149

where x(|k|+|p| > R) is the characteristic function of the domain |k|+|p| > R in
IR? x ]Rfj. Then we define the Banach spaces

Yg’%l([O,T]) = {uzu(t) | 1tllay, 1, = S?P} () la—yt,p <00}, (1.33)
te|0, T

where 7€R, I CR is an interval and B°(I;X) denote the space of bounded contin-
uous functions defined on I with values in a Banach space X. Similarly C%(I;X)
will denote the space of X-valued continuous function on I. We also define the
space

YA e
Zy 1 =B (0,00 V5™ (10,7])),  [u

wylpr= sup  |[uc(t)[la—qe1p.  (1.35)
€>0,t€[0,7]

With the above preparation, the main results can be stated as follows.

Theorem 1.1. Suppose that «>0, 1>3 and B>5/2. There exist positive numbers ag, a,
and for the initial data fy satisfying fo € Xg’l and || fol|a,1,8 < ao, the followings hold with
some positive numbers y and T:

(i) For each € >0, (1.4) has a unique classical solution F = Jo-++/Jof on the time

interval [0,7] such that f = f€ e Zg;Z'l,

1 e pe <ol follesp 3ufe €CO((0,00):%57 (0,7])).

(i) As € — 0, f€ converges to a limit f° € Yg’%l((O,T]) strongly in Yg’jil([é,r]) for
any 6 > 0.

(iii) For t€(0,7], F°(t)=Jo++/Jof°(t) is a local relativistic Maxwellian whose hydro-
dynamical quantities (n(t,x),u(t,x),0(t,x)) of FO(t) solve the relativistic Euler
equations (1.24) with the initial data (1.25) in classical sense.

In Theorem 1.1, n(t,x) =0 may be allowed if gy can be found large enough.
Then u(t,x) and 6(t,x) happen to be singular at those point x where n(t,x) =0
and no uniqueness results are known for such initial data.

The following result is about the convergence rate about €. It is far short for
the verification of the Hilbert expansion.
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Theorem 1.2. Suppose that «>0,1>3+0 with c€(0,1) and p>7 /2. There exist positive
numbers ay < ag,a} and for the initial data fy satisfying fo € Xg'l and || folla,1,6 < ag- For
any t € (0,7] and any € >0 small enough, the solution f€ obtained in Theorem 1.1 has
the convergence rate as

o
2

£ =P ) e yt-op1 <0t (55)

The above convergence is not uniform in ¢ near t =0 and the limit f has
a discontinuity at t =0. This singular behavior at € =t =0 describes the initial
layer of the solution to the relativistic Boltzmann equation. In order for the initial
layer not to appear, if the initial F itself is a local relativistic Maxwellian, we have
the following uniform convergence.

Theorem 1.3. Suppose that x>0,1>3 and B>7/2. If Fy=Jo-++/]o fo is a local relativis-

tic Maxwellian and fo € Xgi Jlrl, for the solution f€ and f° in Theorem 1.1, f€ converges

to f0¢ YE’W’Z([O,T]) strongly in Yg’jil([O,T]) as € — 0. Moreover, the hydrodynamical

quantities (n(t,x),u(t,x),0(t,x)) of FO(t) are unique classical solution to the Cauchy
problem for (1.24) with the initial data (1.25).

In the rest of the introduction, we will first review some previous works re-
lated to this paper. A brief history of relativistic kinetic theory (cf. [8,11]) was
given in [42]; interested readers may refer to that paper and references therein.
Here we only recall the local-in-time solution [4], solutions and hydrodynamics
for the linearized equation [13,14], large-data solutions [15,33] by DiPerna-Lions’
renormalized theory [12], small-data solutions near vacuum [18,43], asymptotic
stability of the relativistic Maxwellian for hard potentials [17,19,20,27,31,32, 48]
and for soft potentials [42, 44], and stability of solutions with respect to initial
data [28-30].

There have been numerous important contributions to the subject of fluid dy-
namic limits of the non-relativistic Boltzmann equation. In the context of DiPerna
and Lions [12] renormalized weak solutions, we mention the fluid limits has been
extensively studied in [1,2,21,22,38,41] and the references therein. Due to length
constraints, it is impossible to give a comprehensive list. For fluid limits in the
context of strong solutions to the non-relativistic Euler and Boltzmann equations,
we mention the work of Nishida [39], Ukai and Asano [46], Caflisch [5], Guo [23],
Liu et al. [37], Guo and Jang [25], Guo et al. [26] and the references therein.

For the compressible Euler limit, there are less results about this. For a given
smooth solution of the compressible Euler equations for gas dynamics, Caflisch
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constructed a corresponding solution of the Boltzmann equation with a zero ini-
tial condition for the remainder and hard potentials in [5], which tends to the
solution of Euler equations as the mean free path tends to zero, and the Hilbert
expansion about the local Maxwellian associated with the solution of Euler equa-
tions is used in the construction of the solution to the Boltzmann equation. Under
both hard and soft potentials, Guo et al. [26] made use of some L?-L* interplay
estimates in [24] to remove the assumption on the initial data of the remainder
in [5] and the positivity of the initial datum can be guaranteed. Their results
are generalized in [25] to the Vlasov-Poisson-Boltzmann system. Lachowicz also
considered the initial layer and the local existence theorem for the Boltzmann
equation in [36]. On the other hand, for € > 0, Nishida [39] constructed the lo-
cal solution in the analytical function space by the abstract Cauchy-Kovalevski
theorem and the spectral structure of the Boltzmann equation. Then he proved
that this solution approaches the local Maxwellian distribution with the hydro-
dynamic quantities related to satisfy the nonlinear compressible Euler equations
as € —0. Later Ukai and Asano [46] improved Nishida’s results by using the clas-
sical contraction mapping principle on a space with a time-dependent norm and
also considered the initial layer of the Boltzmann equation.

Much less is known for the relativistic Boltzmann equation. Formal fluid limit
calculations are shown in the textbooks [8,11]. Linearized hydrodynamics are
also studied in [13,14]. Speck and Strain [43] first constructed the local solu-
tion of the complicated relativistic Euler equations around the constant state in
the Sobolev space with the two conjectures and later these two conjectures were
proved in [6]. Then they made use of some new L2-L® interplay estimates in [24],
some new relativistic estimates in [42] and the Hilbert expansion about the local
relativistic Maxwellian associated with the solution of relativistic Euler equations
obtained in the first step to construct the local solution to the relativistic Boltz-
mann equation as in [5,25,26]. For a detailed discussion of the relativistic Euler
equations, we refer the reader to Christodoulou’s articles [9, 10,43].

In this paper we prove the local existence and uniqueness of the solutions
to the relativistic Boltzmann equation for analytic initial fluctuations on a time
interval independent of the Knudsen number € > 0. As € — 0, we prove that
the solution of the relativistic Boltzmann equation tends to the local relativistic
Maxwellian, whose fluid-dynamical parameters solve the relativistic Euler equa-
tions and the convergence rate is obtained. The Hilbert expansion is verified in
the short time interval for the relativistic Boltzmann equation. We also consider
the physically important initial layer problem. It seems difficult to obtain the
solutions to the relativistic Euler equations with vacuum in the Sobolev space.
In this case the vacuum state may be allowed if ag in Theorem 1.1 can be found
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large enough. As a by-product, an existence result for the relativistic Euler sys-
tem without the assumption of the non-vacuum fluid states is obtained in this
paper. Our methods and results can be viewed as an extension of the program
initiated by Nishida [39] and Ukai and Asano [46], who proved analogous re-
sults for the non-relativistic Boltzmann equation and Euler equations. We will
utilize strategies from Nishida [39] and Ukai and Asano [46] to get the local ex-
istence, limit convergence as well as the related convergence rate and the initial
layer of the relativistic Boltzmann equation by the spectrum structure of the lin-
earized relativistic Boltzmann equation. Although the spectrum structure of the
linearized relativistic Boltzmann equation has been studied in [13,14], we need
more detailed spectral information to prove our results. For this, we first analyze
the spectral structure of the linearized relativistic Boltzmann equation by using
the semigroup theory, the linear operator perturbation theory and some ideas
in [45,47] to get the complete spectral results. For the relativistic case, the decay
about p of the operator K is very slow by (2.4) and we are forced to repeat to
use the iterations of the operator K to get the desired estimates. When we prove
the Euler limit results, such a good iteration structure is destroyed and we can
not use such a iteration methods. We have to devise the convergence norm and
make use of the boundedness of p, which is unique for the relativistic case, to
compensate such a loss. To get the convergence rate, it is crucially used that the
boundedness of p and successive iteration to take care of the slow decay about p
of the operator K.

The rest of the paper is organized as follows. In Section 2, we employ the semi-
group theory and the linear operator perturbation theory to analyze the spectrum
structure of the linearized relativistic Boltzmann equation. In Section 3, we make
use of the spectrum structure of the linearized relativistic Boltzmann equation
and the classical contraction mapping principle on a space with a time-dependent
norm to get the local solution of the relativistic Boltzmann equation. In Sections 4
and 5, we consider the Euler limit of the relativistic Boltzmann equation and the
convergence rate. In the last section we consider the initial layer.

2 Spectrum analysis of the linearized equation

In this section, we will analyze the spectrum structure of the linearized relativistic
Boltzmann equation, which will be used for later analysis. To this end we first
quote some properties of L from [19,20]. The operator L has the decomposition
L=—A+K, where v(p) is the multiplication operator

A=v(p) L. (R3), vopg <v(p)<vip <wvi(1+]pl), a€[0,2) 2.1)
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with some positive constants vy and v;. And the operator K is a self-adjoint com-
pact operator on LZ(]R%) with a real symmetric integral kernel K(p,q) which en-
joys the estimates

sup [ [K(p.g)ldg<eo, sup [ |K(paq)Pdq<co, 2
p IR p IR
For any I €R and any small ¢ >0, we easily see
(1+|g) eI <G+ [pP) 1+ Ip—gP)le= =1 <G (1+|p?).

By using this and the similar arguments as [19, p. 327], for any € R and 7 :=
1—[3|Y|4+a+2b]/2€(0,1], one has

_B _1
Kl a+1gP)tdg <C(1+|p) 1. 3
For any B € R, we have from (2.2) and (2.3) that

IKfllg <Clifllg—y, [IKfllo<CIIfl- (2.4)

The linearized operator L is an unbounded, self-adjoint and non-positive ope-
rator on L2 (]R%) with th.e domain D(L) = {f € L.Z(]R?,.);v(p)f eL? (IR%)} The null
space of the operator L is the space of collision invariants

N:span{\m,Plx/Tfpzx/T/P3\/TzP0\m}'

By the direct calculations as [20], we arrive at an orthonormal basis for A as

N =span{yo,P1,92,13, s }- (2.5)

Define Py as a velocity projection operator from L2 (]R:;) to N and denote
Qo=I—Py. Then any function f(t,x,p) for any fixed (t,x) can be uniquely de-
composed as the sum of the macroscopic component Ppf and microscopic com-

ponent Qo f.
Define the operators as

Aezz—ﬁ-vx—é/\, BG::Ae—i—%K. (2.6)

If €= f€(t) is a solution to (1.27), then it should solve the integral equation

FE = for [ eI IR (), £5(5)) s @7
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We make use of (2.6) and the Fourier transform to arrive at the operators as
e . A 1 »He . ~ 1
A¢(k):= —zk-p—EA, Bf(k):= —zk-p-i—EL. (2.8)
Here
FED(A* (k) ={ f T2 (R3);v(p)f € I2(R), ik-pf € 1 (R3) }

and D(A¢(k))=D(B (k).

We further denote B(k) = B'(k) and A(k) = Al(k). In what follows we will
study the spectrum structure of the operator B(k). To this end we shall use o(A)
to denote the spectrum of the operator A. The discrete spectrum of A, 0;(A), is
the set of all isolated eigenvalues with finite multiplicity. The essential spectrum
of A, 0,55(A), is the set 0(A)\o;(A). We denote Res(A) to be the resolvent set
of the operator A. We also use D(A) to denote the domain of definition of the

operator A. By virtue of (2.1) and (2.8), we readily see that A (k) is a maximally
dissipative closed operator in LZ(]R%). This shows that A(k) generates a continu-
ous contraction semigroup on L*(IR;). We have that

{A:ReA>—vg} CRes(A(k)), 0ess(A(k)) C{A:ReA< —vp}.

In order to analyze the spectrum structure of B(k), we need the following key
estimates in the sequel.

Lemma 2.1. There is a constant C >0 such that the following estimates hold:

(i) For any 6 >0, we have

—~ _ 7 _ 7
sup ||(A—A(k)) K[| <Cs 1+—3<r;+3>|k| ) as k| — oo, (2.9)
ReA> -1+,
ImA€ER

(ii) If |k| <kg for any ko >0, we have

sup [[(A—A(k) K| <C 3 [ImA| T as [ImA] — oo, (210)
ReA> -1+,
|k <kq

Here ||- || is the operator norm in L2.
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Proof. Let 1p(p) be the characteristic function of the domain D C IR%. By virtue of
(2.4) and (2.8), we see

n -1 2 -1,2
[1<x (A= AK) TKF = [ 112l (- A) 7 PIKF ()
1
ip|<R [ReA+v(p)|?+|ImA+k-p

<C|IfI? |2dp. (2.11)

Denote the last integral by J. For any R >1 and any small o€ (0,1/2), we set
2= {peR®||p| <R [mA+k-p|<elkl}, To={peR||p|<R}-%;.

Denote mesD by the Lebesgue measure of the domain D CR3. One has

mesZ1=/|p<R11mA+k-p|<g|k(P)dP=/ 11 k| —1ma, gfk|—1ma] (k- P)dp

pI<R
R ,m . ) )
=27 [ [ 1ty (K117 | cos0)sino]p2d0d
R
=27k~ [ IpPlpl alpl
7T
></ 1 gk~ 1mA, olk| —1mn] (| k|| P cos@)d ([k| p| cosb)

[k ||P|
—2rlef [ pPlpl il [ Q\H_m,mk\_my)dy

-1 1 KR/ V1
e T N T 7

It follows from this that mesX; <C QR3. Obviously mesX, < CR3. Thus one has
J<CR*(6 %0+ (elk[)~?).

If we choose 0= (6/|k|)?/3, then g € (0,1/2) as |k| — co. By these facts and (2.11),
we arrive at R L 1
1y <r (A= A(K) K[| <CRI63 |k 5. (2.12)

By virtue of (2.3), we get

KA [ IK(pa)lda [ IK(p.a)IIf (@) g

<C+pP)E [ IK(pg)llf(a) Pdy.



156 D.-C. Yang and H.-J. Yu / Commun. Math. Anal. Appl,, 2 (2023), pp. 142-220

If ReA > —vy+46, we have from (2.1), (2.2) and this that
Hlp|>R(A—ﬁ(k))_1Ksz:/IR31|p>R’ (A=A®K) " PIKf(p)Pdp

A2y —1
= |p>R(!ReA+V(P)!2+!ImA+k'P|z) [Kf(p)|*dp

<cs 2R [ [ [K(pa)llf(a) Pdadp < Co 2R 1P
Thus we can obtain
I1,5r (A—A(K) K| <CoIRE. (2.13)
It follows from (2.12) and (2.13) that
[(A—A(k)) K| <C(57'R™2 +R363[k|73).
If we choose R= (|k|/8)%/3(1%3))  then R >1 as |k| — co. As |k| — oo, one has
|(A=A() K| <co™ " 30 0,

This completes the proof of (2.9). If |k| <kg, |p| <R and |ImA|>2kgR, one has

koR |ImA |
ImA+k-p| > [ImA|—|k||p| > [ImA|— > .
Ak 1=l ] | > 1mA| - 05 > 27

We have from this and (2.11) that
1,<r(A—AK)) " K||"<C (624 ImA|?) " R3.
i< 12112 2 2y~ 153
It follows from this and (2.13) that
A—A(k)) K[| <C(07IR™2+R2[ImA|7Y).
1 1 1 3 1

If we choose R=(|[ImA|/8)%/(7113) then R>1 as [ImA| — co. As [ImA| — oo, one
has R . X )
|(A=A(k)) K| < C5~ 73 [tmA| 73,

This concludes the proof of the lemma. O

Lemma 2.2. For any § >0, there exists a constant 1) > 0 such that the following results
hold:
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(i) Forany k€R3, {A: ReA>0}U{A: —1p+6 <ReA <0, [ImA|>1; } CRes(B(k)).

(ii) The set o(B(k))N{A:—1p+6 <ReA <0} consists of a finite number of eigenvalues
of o(B(k)).

(iii) When k#0, B(k) has no eigenvalues on the imaginary axis. If A is an eigenvalue
of B(k), then ReA <0. If ReA=0, A=0 if and only if k=0.

Proof. If ReA>—vy+4, for any k€R®, we have from (2.10) that || (A—A(k)) 'K| —
0, as [ImA| — co. Then there exists 73 >0 such that for any k, ReA > —vp+J, and
IImA| >y, ||(A—A(k))"'K|| <1/2. Then the Neumann series gives the bounded
inverse (I—(A—A(k)) 1K) 1. If ReA> —vy+J and |[ImA|>T;, we write the second
resolvent equation

(A=B(K) "= (A—A(K) "+ (A—AK) 'K(A=BK) . (214)
This gives
(A=B(k) "= (I-(A—A®K) 'K) T (A—A®K) . (2.15)
By these we deduce that A € Res(B(k)). Thus we have
{A: =g+ <ReA <0, [ImA| >3 } CRes(B(k)). (2.16)

Since K is a bounded operator on L2 (]R%), B(k) is a bounded perturbation of a

continuous semigroup generator A (k). Hence, B(k) generates a continuous semi-
group on L2 (]R:;), cf. [40]. Since the operator L is non-positive, we have

Re(B(k)f,f)=(Lf.f) <

Hence, B (k) generates a continuous contraction semigroup on L2 (]R3) By this we

have that {A: ReA >0} CRes(B(k)). This and (2.16) imply that (i) holds.
On the other hand, since K is a compact operator on L2 (]R3) B(k) is a compact

perturbation of A(k), thanks to [34, Theorem IV. 1.9], we have that
Tess (B(k)) = 0ess (A(k)) C{A:ReA < —1p}.

Thus we know that o(B(k))N{A: —1p <ReA} consists of discrete eigenvalues with
possible accumulation points on the boundary of {A: —vy <ReA}. Since

o(B(k))N{A:—vg+J<ReA<0} C {A:—1g+I<ReA <0, [ImA| <71}
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is a compact set in {A: —1p <ReA} and it does not touch the boundary of {A:
—vp <ReA}, the number of eigenvalues in it is finite. Thus (ii) holds.
Let ¢ #0 such that B(k)¢ = A¢. Then we have

M¢ll>=(B(k)¢,p) = (Lo, p) —i(p ke, ).

Noticing that L is non-positive, we have ReA <0. If k #0 and ReA =0, we have
L¢ =0, which implies that ¢ € N. The eigenvalue equation is reduced to (ImA+
p-k)p =0. We deduce from this that k=0 and ImA =0. This is a contradiction.
This implies that B(k) has no eigenvalues on the imaginary axis for k #0. Thus
(iii) holds. 0

Lemma 2.3. There exists a constant pg > 0 such that for g€ D(L)NN*

—(Lg,g) > po||vig|

Proof. By Lemma 2.2, we have that opss(L) C (—00,—1p]. Thus 04(L) C (—p,0). If
there is an isolated discrete eigenvalue of L in (—1p,0), which is corresponding to
the eigenfunction g, we take this eigenvalue to be —1. Otherwise we take y1 =1p.
Hence, we have

—(Lg,8) >8>

By using (2.1) and the fact that K is bounded in L2 (IR%), for any € >0 small enough,
we have

—(Lg,g) > (1—e)1||g|*+€(Ag,8) —€(Kg,g)
1 1
> (1—€)p||gl* +voelvzgll*— Cellgl|* > mollv2gll*.
Here we take po=vpe. O

In the following lemma we shall give the spectrum structure of B(k) when k
is away from zero.

Lemma 2.4. For any ko >0, there exists 19 =1o(xo) > 0 such that for all |k| > xo,
o(B(k)) C{A:ReA< —19}.

Proof. If ReA > —vy+4, we have from (2.9) that ||(A—A(k)) K| — 0, as |k| — co.
Then there exists «; >0 such that for |k| >k, ||[I—(A—A(k)) 7 K] 71| <2. If ReA >
—vp+0 and |k| > 7, we have from (2.15) that A € Res(B(k)). Thus for any |k| >x;,
we have that

04(B(k)) C {A:ReA < —1p+4}. (2.17)
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We claim that for any o > 0, there exists 0p >0 such that for all |k| € (xo,x1],
04(B(k)) C{A:ReA < —0cp}. (2.18)

By Lemma 2.2, 0,ss(B(k)) C {A:ReA < —1p}. If we take 19 = min{vy— 4,00}, this
completes the proof of the lemma.
In what follows we shall show (2.18). Suppose that (2.18) is violated. Then

there exists the eigenvalues A, €C, k, € R® and the corresponding eigenfunctions
¢n € D(B(ky)) C L?(IR?) such that

B(kn)pn=(L—ip-kn)pn=Aun, |lPull=1, n=1,2,3,..., (2.19)

and .
—— <ReAy <0, Ko<|ku|<rr. (2.20)

Clearly {A, } is bounded sequence. If not, we assume ImA,, — co. By Lemma 2.1,
limy—e0||(An — A(ky)) 1K|| =0 and thus A, € Res(B(ky)) by (2.15). This is a con-
tradiction. Thus, up to a subsequence, we have that k, —koand A, —idgasn—oo,
where A is a real number and x( < |ko| <x;. Since the operator K is compact, up
to a subsequence, K¢, — h € L2. Tt follow from (2.19) that

_ Koy
A tipky+v(p)

$n

Letting 1 — 0o, one has

_ K¢y N h
 Aptipky+v(p) ixo+ip-ko+v(p)

Pn =¢ 0.

It follows from this that 1 = K¢ and idg¢ = B(kg)¢p. This shows that B(ky) has
a pure imaginary eigenvalue. By Lemma 2.2(iii) one has kg = Ag = 0. This is
contradictive to the fact that kg <|kg| <x7. The proof of the lemma is complete. [

In what follows we shall give the spectrum structure of B(k) when k is near
zero.

Lemma 2.5. For any ko >0 small enough, there exists 19 =1y(xo) >0 such that for any
|k| S Ko,

(i) o(B(k))N{A:ReA> —10} = {A;([K]) } -
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(ii) Let Aj(k) and ej(k) be the eigenvalue and the corresponding eigenfunction of the
operator B(k) with 0<j<4. For |k| <xy, Aj(k) and e;(k,p) are analytic in |k| and
have the asymptotic expansions

AR =2 ([k) =AY k| +A 2 (k2 + O ([k[), K — 0,  (21)
ej(k,p)=e;([k|,p-w,p)=el” +|klel' +O(KP), [k — 0  (222)

with the coefficients /\](1) =—ic;j where c; is in (2.28), A](z) <0isin (2.32). And e](.l)
with 1=0,1,2 are (2.28), (2.30) and (2.31). Here k= |k|w and {ej(k,p)};.lzo can be
normalized as

<ei (k,p),e]' (—k,p)> = (51']', 0 S i,j S 4.

(iii) Denote the eigen-projection and eigen-nilpotent corresponding to the eigenvalue
Aj(k) by Pi(k) and Q;(k), which are analytic in |k| for |k| <xo. It holds that, for
0<j<4

Pi(k) =P (w)+[K|P!" (w) + k2P (w), Qj(k)=0,

where Pj(l) (w) with1=0,1,2 are defined in (2.33) and (2.34) with P, :Zj‘zo P]-(O) ().
Moreover, for any p', B €R, one has

|55 <cusils (2.23)

Proof. Since L is invariant with respect to the rotation R of p € R® by the direct
calculations and Rk-Rp =k-p, we see that the eigenvalues only depend on |k|.
Hence, (L—ilk|(p-w))e(k,p) =A(|k|)e(k,p) where k= |k|w. By this we know that
e(k,p) =e(|k|,p-w,p). Since B(k) =L—ip-k, we rewrite B(k) as B(z) = L+zp-w
where z= —i|k|. It is easily seen that

Ip-wgl? < g < C(ILgl>+ lgl?).

This shows that the operator w-pI is L-bounded. Thus we regards B(z) as the
analytic families of Type (A) [40, p.16] for |k| <xo, where kg is small enough. We
see that B(z) is self-adjoint in L2 (]R‘;) for any z € R. Since 0 is a discrete eigen-
value of multiplicity 5, by [40, Theorem XII.13] and its proof, there are 5 discrete
eigenvalues A;(|k[) of B(k) with Aj(0) =0, which are analytic in |k| for k| <.
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And the corresponding eigenfunctions e;(|k[,f-w,p) and eigen-projections P;(k)
are also analytic in |k| for |k|<#xo. The definition of the eigen-nilpotents Q;(k) cor-
responding to the eigenvalue A;(k) can be found in [34, p.181]. By a general the-
orem on the perturbation of symmetric operator [34, p.120], the eigen-nilpotents
Qj(k) vanishes.

If e;(k,p) is an eigenfunction corresponding to the eigenvalue A;(k) of B(k),
tAhen ej(—k,p) is an eigenfunction corresponding to the eigenvalue A;(—k) of
B(—k). Then we have for any 0<7,j <2,

(k)(ej(k,p).ei(—k,p))

—<B Jej(k,p),ei(—k,p)) = (ej(k,p),B(—k ) '(—kP)>
—<e] k/P ’ 1( k) i(_k/p)>:A <e] p)>

Then we obtain (e;(k,p),e;(—k,p))=0 when 0<i#j<2. The normalization can be
determined by (e;(k,p),ej(—k,p)) =1. For j=3, 4, we use the Gram-Schmidt or-
thogonalization to determine (e;(k,p),e;(—k,p)) =d;;. Thus we have {ej(k,p)}?‘zo
can be normalized as

(ei(k,p)ej(—=k,p))=0dij, 0<i,j<4.

After showing the existence and analyticity of the function {A;(|k|),e;(k,p) ;*:0,
we are in a position to compute the Taylor expansions by the idea of [7,16]

Aj([k)= D K, ejlep) = Y el K| (2.24)
n=0

Here k= |k|w. Comparing terms of the same order in |k|, we get

Le](O) :/\](O)e](o), 0<j<4, (2.25)
Ll = (A +i(p-0)) e, 0<j<4, (@20
Le](n):@](l)Jrl(p ) ](" 1) Z n>2, 0<j<4. (2.27)

By (2.25) and the fact that A;(0) =0, one has that )x](-o) =0 and e](-o) is some linear

combination of (2.5). We define the operator A(w)=Py(p-w)Py. By using (2.5),
we set

=(p1yo,¥1), M= (P12, Ps).
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We denote w' as the vector w’s transpose. We have a matrix representation of

A(w) as
0 mw 0
(mwt 0 n'w)t) )
0 mw 0

It is easy to compute its eigenvalues ¢; and normalized eigenvectors E; which are
given by

(
—2
C0=\/m2_|_m2, Eo= ‘/ m2+2m2¢0+\/72w]¢] w,7m2+2m2¢4’
Cl:—\/?ﬂ2+mz, “ m2+2m21/)0 \/72 ]LIJ] V m2+2m2¢4/
2.28)
=0, 7 (
2 \/ 2ot m2+m2¢4

W),

||
MUJ

c3=0,

—.
I
—_

c4=0,

™
W

Il
gl

@)
Pl
&
s

‘W.
—_

\

where Ci(w) and Cé (w) are the components of the unit vectors C4(w) and Cs5(w),
which satisfies

C4(w)-C5(w)=0, Cy(w)w=0, Cs(w)-w=0.
If we take e](p) =E; in (2.28), we have from (2.26) and (2.28) that
A = —i< (p-w)e](.o),e](.o)> — —i(Py(p-w)POE; Ej) = —ic;, 0<j<4.  (229)
Noting that e](.o) =E;, we have from (2.26) that
e](.l) :iL_lQo(ﬁ'w)EjJre}, (2.30)

where e} € N as (2.28) and L~ ! denotes the inverse of L restricted to N'* by
Lemma 2.3. By (2.27), we have

(2.31)
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Here e}/ €N as (2.28). If we choose e} suitably, we have from (2.31) and (2.30) that

AP =—(i(p-w)ef) el ) = (L7 Qo((p-w)E;, Qo((p-w)E; ) <. (2.32)

Continuing to use (2.24) and (2.27), we can obtain any order expansions of eigen-

(n)

value and eigenfunction. We also know that e J with n >3 is some linear combi-

nations of E; plus some terms as (L™'Qy(p-w))*E; where k is an integer. Next

(n)

we will prove that the term e ;s almost exponential decay about p, that is,

e](.n) = O(|p|=>) for any j and n. In fact we only prove L™ 'Qy(p-w)E; and the

other term can be proved by the induction.
We set
L_lQo(;ﬁ~cu)E]':gEJ\/'L and A_lQo(ﬁ-w)Ej:g—A_lKg

For any >0, we have from (2.1) and (2.4) that

Igllp <[l A7 Qo(p-w)Es]|, A~ Kgll, < A~ Qo(p-w)E |, +Cliglpy-
We iterate this estimate successively to get

Igllp < ClIAT Qo(p-w)Ej|| s+ [IKgllo < Cl[A™ Qo (p-w)Ej ,+Cligll-

We have from Lemma 2.3 that

col|A%g]|" < (Lg,) = (Qo(p-)E;8) < Cl| A~ Qo(p-w)E;|*+ || aTg] "
It follows from the above two estimates that

1L Qo(p-w)E; | 5= lglls < C[| Qu(p-w)E; | s < Cp.

Thus we prove that e](-n) =O(|p|~®). If we take the constant xy small enough, we
know that e;(k,p) is almost exponential decay about p.

Let C; be a small circle which encloses A;(k) with 0<j<4 but encloses no other
eigenvalue. Then for any f € L2 (]Rf;), we have from the expression of e;(k,p) that,

0f = 5. . (A=B() ™ fdr=(Fej(—kp))e;p)

27 C;

= (LENE+ Ik ((fEel) +(f.e)E) ) +O(KP)f.  (233)
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Denote that
PO =(FE)E, B @)=L+ (e B @39

We use P].(Z) (w) to denote the remaining part of (2.33). Clearly
0 4
Pof =) P (w)f =) _(fE)E;
j=0 j=0

By virtue of (2.33), (2.34) and the decay of E; and e](n) about p, we can prove (2.23).
This completes the proof. O

Lemma 2.6. For any given 6 >0, the following results hold:
(i) If ReA > —vy+0, for any u € L2, we have

0= Akl <

(ii) If ReA > —vp+06, we have
sup [[(A—A(K) ]| <C,

ReA>—vg+9,
ImA€R, keR3

and (A— A (k)= is continuous in (A, k).

(iii) If A=—0p+iTERes(B (k))ﬂRes(A(k)) with any T€R and a given o€ (0,v9—9),
we have that 1€ Res((A—A(k)) 1K) and

sup ||(I- ()_x—g(k))_lK)_lH <C.
TER,kERS

Here || -|| is the operator norm in L2.

Proof. If ReA > —vy+6 for any 6 >0, (A— A(k)) ! exists on L2. For any u € L2, one
has

[ 10 A0) ] P

" u(p)P dpdImA
/ /1R3|Re/\—|—1/ + |[ImA+k-p|? pasm

1 C
2 Sz
S/]R3|u(p)’ dp/_oo 52+|Im)\+k-ﬁ|2d1m/\§ ) lull”
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For any u € L?, one has

’ 2

-~

-1 2_ |u(p)
[(A=AK)) " uf _/IR3 [ReA+v(p) 2+ [ImA+k- 7|2

C
tp< Sl
For any (Aq,kq1) and (Ay,ky) with ReA; > —vp+6 for i=1,2, we have
~ -1 ~ ~1 C
[(M—A(k1)) “u—(A2—Alkr)) uHSﬁ“””(’/\l—)\zlﬂkl—kﬂ)-

Thus (A—A(k)) ! is continuous in (A, k).

If A = —0p+iT€Res(B(k))NRes(A(k)), we claim that 1€ Res((A—A(k))1K).
If not, since (A—A(k)) K is compact in L2, 1 € o4((A—A(k)) !K). For some
uel? u=(A—A(k))"'Ku and B(k)u=Au. Then A is a eigenvalue of B(k) and
this is a contradiction by the fact that A €Res(B(k)). Thus 1€Res((A—A(k))1K).
By (2.9), there exists k; > 0 such that if [k| > k; and any T € R3, we have that
[(A—A(k)"1K||<1/2 and

up (- (A~ A1)

|k| >k, TER

K) <2

By (2.10), there exists 7y > 0 such that if [t| > 7 and any |k <k;, we have that
I(A—A(k))~'K|[[<1/2 and
sup [|(I- (A= A(K))"

‘k|§k1,|T‘>T1

K) <2

By (ii), we have that (A—A(k)) 'K and (I— (A—A(k)) 1K) ! are continuous
in (7,k) by the Neumann series. On the compact set {|k| <ky,|t| <71}, we have
that

sup ||(I- (A-A(k) 'K) || <C.

‘k|§k1/|T‘ST1

Thus (iii) holds. This completes the proof of this lemma. ]

Lemma 2.7. There exists a constant o > 0 such that the following (i) and (ii) hold for
any g€ D(B(k)):

(i) For any k with |k| > o, there exists o7 >0 such that

|eB®g|| <Ce|g]. (2.35)
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(ii) Put Q(k)= I—Z?‘:OPj(k). For any k, |k| <k, there exists 0o > 0 such that
e QMg | < Cemljg]- (2.36)

Proof. For any A € Res(B(k))NRes(A(k)), we have from (2.14) and (2.15) that

A—A(K) "+ (A= Ak) TK(I-(A—-A®K) 'K) T (A-A®K)
(A AR) T +Z(A k). (2.37)

By the Laplace inverse transform, for any y; >0,t>0 and any g€ L? (]R%), one has
—~ y1+ioco R _
etB(k)g:L,/ LM (A—B(k)) 1g(p)d/\. (2.38)
2711 Jy, —ioo
By this and (2.37), we have

~ ~ +1
Mg =MW gt tim [ A Z (0 K)g(p)dn. (2.39)

Y200 2711y, —iy

It follows from (2.1) that
e Og| <emg]. (240)
We shift the integral path of (2.39) from ReA =y; to ReA = —15 where 75 >0 is
the one given in Lemma 2.4. We can choose 1y such that the contour integral of

eMZ(A,k) on the rectangular path does not contain the eigenvalues when |k| > xq.
Thus we arrive at

+i
[ ez og(p)ar
y

1~y
—To+iyn yatiy2
- eMZ(AK)g(p)dA+ —eMZ(Ak)g(p)dA
—To—1iy2 —To+1Y2
—To—1Yy
+ / T MZ(Ak)g(p)dA. (2.41)
Y1—1y2

By Lemma 2.1, we have that

li ReA+ iy, — k|| =o.
A, 0P| (Reive=A(0) K|
ke]R3



D.-C. Yang and H.-J. Yu / Commun. Math. Anal. Appl,, 2 (2023), pp. 142-220 167

It follows from this that

sup || (1—(ReA=iyo—A(K)) 'K) [ <C,
Re/\zfro,
keR3

if y is large enough. By this, (2.37) and Lemma 2.6(ii), we have

lim sup HZ ReA+tiyy,k H<Chm sup H(Re/\izyz— ))_1KH:0.

Y27 Rer> -1, Y27P Rer>
keR3 keRa

It follows from this that

y1+iy
H/l Mz /\k)g(p)d/\H—l—

TQ—H]/Z

“To—iy2
e Z(Mk)g(p)dA|l — 0 as yp — oo
Yyi—1y2
Next we shall consider the first term of (2.41). Since {\;ReA=—10} CRes(A(k))
and B(k) has no eigenvalue on the line ReA=—1 for [ImA| being bounded, —1+
iy € Res(A(k))NRes(B(k)). By Lemma 2.6(iii) and (2.37), for any g, € L*(RR}),
one has

—To+iy Y .
‘< / ’ Ze”Z(/\,k)g(p)d/\,h>‘=‘< / 2e(_TOJ”S)tZ(—To+is,k)g(p)ds,h>‘
—Y2

—To—iY2

§Ce—T0f||K||/_y;2 I (—To-l—iS—A\(k))_lgH I (—To—l-is—ﬁ(—k))_thds,

which is less than Ce™™!||g||||#|| by Lemma 2.6(i). By (2.39) and the above esti-
mates, (2.35) holds. By using Lemmas 2.4 and 2.5 and the similar arguments as
the above, we can prove that (2.36) holds and we omit the proof. This completes
the proof of this lemma. O

Remark 2.1. The time decay rates of the solutions to the linearized relativistic
Boltzmann equation have been proved in [20]. Since we know the precise spec-
trum structure of the linearized equation in Lemmas 2.4 and 2.5, we can make
use of the arguments as the above and the direct calculations to get the time de-
cay rates of the solutions to the linearized equation as that in [20].

Lemma 2.8. There exist constants x>0, 00 >0 and C>0 such that the following results
hold:

(i) For |k|<xq, one has

4
k) _ Ze?»j(\kl)fpj(k) +U(t,k),
i=0
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where Ai(|k|) and P;(k) are in Lemma 2.5. The operator U= U(t,k) is given by

u:etg(k)Q(k) _ Q(k)etB (k),

and for any B € R, the operator U has the decomposition

U= A0 QM) +Uy (), [|Uu]s < Ce ' (Jullp—y + ).
(ii) For any |k| > xo, we have

e B =AW L Un (L), |[Uullp < Ce " (||u| gy +ull).

Proof. For any A €Res(A(k))NRes(B(k)), we have
5y —1 2~y —1 >y —1 5y —1
(A=B(k)) "=(A-A(K) +(A-AK) K(A-B(K)
Taking the inverse Laplace transform on both sides of this yields

o!BR) — otA(K) 4 (tA(K) g 4 otB(K) (2.42)

for all t >0, where * means the convolution in ¢,

t
g*hz/o g(t—s)h(s)ds. (2.43)

Then we iterate it | —1 times with [ €N to obtain that

B4 Z{ O] A0y [t A0 K] B0 .44

It follows from (2.1) that ||e!A®) || < Ce="0!||u]|. For some fixed I € N with [ >
|B|/7+2 and any ¢=1,...,]—1, we have from (2.1) and (2.4) that

e300k e A0 < Citem oy <Ce .

For any |k| > ko, one has from Lemma 2.7 that Hetg(k)uH < Ce %!|u||. By using
this, (2.1), (2.4) and the fact that K is bounded in L? (]Rfj), we have from the direct
calculations that ~ ~

H [etA(k)K*}letB(k)uH’B < Ce_‘74t\|u||.
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For any |k| > kg, if we denote the last two term in (2.44) by U,(t,k) and op =
min{os,04}, we have from (2.44) and the above estimates that (ii) holds.

For any |k| <o, since P](k) with j=0,1,...,4 is the eigen-projection correspond-
ing to the eigenvalue A;(|k|) of the operator B(k) by Lemma 2.5, we have

B(k)Pj(k)u=A;(|k|) P; (k).
Thus one has
(A=B(k)) Pj(k)u= (A—=A;([k|)) Pj(k)u,
which implies, for any A € Res(ﬁ (k)),
(A—=B(k)) "' Pi(k)u= (A= A;(|k])) " Pi(k)u.

It follows that:

() " =L (A=A (1kD) " -+ (A=B(0) Qb

j=

By using the inverse Laplace transform on both sides and (2.44), we arrive at

4 _
By =Y NP (kyu-+ePO Q(k)u

4
=y e MKip (k) )i+t A u+2{ tA K+] ¢ tA(k)}Q(k)u

+ [ 4O K] e BOQ (k). (2.45)

We denote U(t,k) by the sum of the three terms in (2.45). For any |k| <k, one has

from Lemma 2.7 that ||et§(k)Q(k)uH§Ce_‘71t||u\|. It follows from (2.45) and the
similar arguments as (ii) that (i) holds. The proof of the lemma is complete.  [J

Notice that B(k) =B (k) and B¢(k) = B(ek)/e. By Lemmas 2.4, 2.5 and 2.8, we
have the spectral analysis results of the operator B¢ (k).

Theorem 2.1. There exist positive constants g, op and C > 0 such that the followings
hold for each € > 0:

(i) For any |k| <xq/€, we have that
!B (k) Ze j(lekDp, i(ek)+Ul(e,t,k),

where
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(a) Let Aj(|ek|) and ej(|ek|) with 0 <j<4 be the eigenvalue and the correspond-
ing eigenfunction of the operator BE(k). And Aj(|ek|) and ej(|ek|,p) are
analytic in |k| as in Lemma 2.5 and has the following asymptotic expansions:

Ai(lek]) = |ek|+)\ Jek2+0(|ek|?), lek| — 0,
e;(|ek|,p) = e](|ek]p wp)—e +]€k|e +C’)(]ek|) lek|] — 0

with the coefficients )\](1) = —icj with ¢;€R and )\](2) € R with /\](2) <0

(b) The eigen-projection corresponding to the eigenvalue Aj(e|k|) on L? (]R‘;) is
denoted by P;j(ek). For each j, one has

Pi(ek) =P (w)+[ek| P\ (w) +[ek|? P (w).
Moreover, for any B/, B€R, one has

|B @], <Clflle, 1=012

(c) Putting Q(ek)=1 —2;-1:0 P;(ek), the operator U = U (e, t,k) is given by
U =P M Q(ek) = Q(ek)e'®,
and the operator U has the decomposition
U=eAWOQ(ek)+Un (e 1K), [|Unullp<Ce ¥ (||ull—y+lul).
(ii) Forany |k|>xo/€, one has
Re Ae _ oot
!0 =0 LUy (e k), Uaullp<Ce™ < (Jluflg—y+ull)-

This theorem is main results in this section and it will be used crucially in the
later analysis.

3 Existence of local solutions

In this section, we shall prove the existence of the solution f€(t) to the relativistic
Boltzmann equation for any € >0 in a finite time interval independent of €. We
make use of the spectral analysis results in the previous section and the contrac-
tion mapping principle to (2.7). For this, we first consider the first term in (2.7).
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Lemma 3.1. Let fy eXg'l witha>0,1>0and B>3/2. Forany t>0,y>0and a —yt>0,
one has

HetBEfO Hzx—'yt,l,ﬁ <Cllfo

Proof. By virtue of Theorem 2.1, we define

wlp- (3.1)

( 6
!B fy = ZEf(t)fO,
j=0
K . t -~ .
FeES () fo=x (|k| < zo) MENED (ek) fo, j=0,1,.....4,
K ~
FES(Dfo=x (K <2 )Uetb)fo,

-~

K pe
| FE fo=x (K> e fo.

(3.2)

By using Theorem 2.1(i), we have
MCE %)emk)épj(ek)ﬁHﬁgcnﬁnﬁ.
For any B>3/2, we easily see
x (1< 2 ) utesfo +lx(1K1>"2) e K] <Cllolls+Clfoll <Cllfols

These estimates, (3.2) and (1.31) imply that this lemma holds. This completes the
proof. O

Recalling (2.1), (3.2), (2.43) and Qo= I — P), we define the operator H¢ by

e 1
HEfe(t) :=e'P « QOEAfe(t). (3.3)
In what follows we assume that
x>0, v>0, T:%, telo,t]. (3.4)
Lemma 3.2. Letting f€(t) € Yg’%l ([0,7]) withany 1 >0and p>5/2, for any t€[0,7],

one has
|H® f¢

1
w,,1,B,t < C (1+;) er

where the constant C >0 is independent of vy and t.

w,,1,B,tr (3-5)
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Proof. Thanks to (3.2), we can rewrite (3.3) as
1 .
HE ()= ES (1) Qo AfE(H), 0<j<6 (3.6)
For 0<;j<4, by Theorem 2.1(i), one has
Pi(ek)Qu = lek| (B} (w) +[eklP/* (w) ) Qo.
And for any B’ >0, we also have
1P;(ek)QoAFE (5)|] 5 < ClekllIF* (5l
For 0 <j <4, we have from these facts that
e TR (A4 [k))! (1+[p) P FHEF(8))|

t t—s o~
<MK [ (< 2) M B ey Qo AT ) | s
0

B—1
t_ _ C
SC/ e M=) k] () [l syt p—185 < = sup || € llarysp1-
0 756[0,1?]
For 0 <j <4, one has from this that
C
Hi (O pris g1 <= sup [1f°(8) la—yst,p-1- 3.7)
H j H,x yt1B—1 Y eeior a—s,LB

It follows from (3.6), (3.2) and Theorem 2.1 that

t - .
FHs () = [ (k< 2) (- 9FMQ(ek) +Us (1-5.0)) Qoz AT ()ds. (39
By virtue of Theorem 2.1(i), one has
1A Q(ek)QoAF(5) 5_y < CIIF* (s) I p-1-
For the first term in (3.8), we have from Theorem 2.1 and this that
[ (10 <2) =20 0(ek) 0L AT 5)ds
SCe(“_“)‘k'(lJr|k|)l(1+|P|)ﬁ !
' Ko —(—) (t—s) 1 e
X/OX(WS?) yA Q(ek) QoA (s)| s

eI (L k) (1| p )P

)
<C sup [ llopp1 [ ¢ E ) (”)ds<Csup Floipr 39)
s€[0,¢] s€[0,£]
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For the second term in (3.8), for any g >5/2, we have from (2.1) and Theorem 2.1
that

e(lx—"rt)lk\(1+|k|) (1_|_|p|)!3 1/ (|k|< )Ul(e,t—s,k)Qo%Afe(S)ds

< el (1 ¢ [k / (161 <) ||t (et =5 0)Q0- AFEs)]|, s

<ol M1 i) [0 (HQoAfe g1y QAT )] )ds
<Csup [|f|a- 'yslﬁ/ c(t=s) ds<Csup [P vs,1,B (3.10)
s€[0,t] s€[0,f]

By using (3.8)-(3.10), we can obtain

HH5f€ H,x vt,1,B— 1<Csup er( )er vs,1,B- (3-11)
s€[0,¢]

By the similar arguments as (3.11), the estimate of (3.11) is true for Hg f€. By using
this, (3.11), (3.7), (3.6), and (3.3), we arrive at

1
V£ ()t g1 < C (1+—) sup 11£5(5) la—rss p
T/ sefot

If we use any #; € [0, ] to replace ¢ in the above estimate, we can obtain the similar
estimate. Thus we have from this fact that

1 F s 1f<c(1+ )nf o (3.12)

We shall recover the loss of the p-weight by the smoothing property of K in (2.4).
It follows from (2.42) and (3.3) that

foefe(t):/ (1-5)A%(k) g, = Afe ds+/ (=) foHefe( s)ds. (3.13)
0
For the first term in (3.13), one has
t
O (1)) (1+p)P | [ 98 E 00 AT (5)ds
0

t v A~
< Cel 1M (14 [K)! (1+p))? | e—%—S)—yA—lQoAfe(s)!ds

<Csup [l ot [ H I P s < oup N guip (19
s€[0,¢] s€[0,£]
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For the second term, one has from (2.4) that

t ~
e<“—7f>|k(1+yk|)l(1+|p|)f"/ e(t_S)Ae(k)%K}"xHefe(s)ds
0
<Ce<“—7f>kl(1+|k|)l/te—”§<f—5>1uf Hefe(s)]|,_, ds
= 0 € X ,B—I’]

<Csup [[Hf(s) ||IX—’)’S,1,,B—77‘ (3.15)
s€[0,¢]
Thus, for any ¢ € [0,7], we have from (1.31) and (3.13)-(3.15) that
IHfE ) la—yt,1,8 SClUf Mo+ CIH f ey 18-,
It follows from this that

||H€f€||oc,'y,l,ﬁ,t < Cer ||tx,’y,l,/3,t+C||H€f€||uc,'y,l,ﬁ—77,t- (3.16)
Noticing that 17 € (0,1], we iterate the above estimate in finite times to get
IHf a1, < ClF Myt +CIH ) layt, -1t (3.17)
Combining this and (3.12), we conclude the proof of (3.5). O
Lemma 3.3. Suppose that any 1 >3,8>0, and hy,hy € Yg’%l ([0,7]). Then one has
AT (e ko) [y < Clll e plliz st p- (3.18)

Proof. It is easily seen that
FohN" Tl h) = (277)3 /IR AT (hy (LK) (1K) ) K
By [19, Theorem 2.1], one has
[ATIT (1) ||, < Clia Il 2 - (3.19)
By this, we arrive at
e Ak (14 p))P| FeA™'T (B, 1) |
< Cele=1K (1 4 [k])! /R B (k= )| gl | gk
<Cl llamrt s pll2lla—rt,pe™ "M (14| K])
></]R3(1+|k—k'|)—l(1+|k'|)—le—<“—7f><k—k’l+k’|>dk'

< Cllrlla—rtspllf2lla—ytp(1+ Ik!)l/R3(1+ k=K' ) " (141K )~ ak

< Cth Htx—'yt,l,,B ||h2 ||D¢—'yt,l,[5/
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where we have used the inequality that for any [ >3,
(1+|k|)l/3(1+|k—k’|)‘l(1+|k’|)‘ldk’§C.
R

This completes the proof of the lemma. O

Theorem 3.1. Suppose that p>5/2,1>3 and (3.4) holds. Then there are positive con-
stants ag and ay such that if fo € Xg'l and || folla,p < ao and for any € >0, (2.7) has

a unique solution f€ & Yg’%l([O,T]) with || f€

DC,'Y,Z,[‘;,T S al Hfo “ll/ﬁ.

Proof. By (2.7), we define the nonlinear map N€ by
N[fE)(t) =™ fo+ HEATIT(fC, ). (3.20)

Note that QoT'(f¢,f¢)=T(f¢,f). By Lemmas 3.1-3.3, one has

[N [f]

1
7,18, <Cillfolla1p+C2 (1 + ;) Il f€ il%l’ﬁﬂ, (3.21)

and

HNe[fe]_Ne[he]H :HHGA_lr(fe—i—he,fe—he)H

w187

1
<G <1+;> ||f€+h€||D¢,’Y,l,ﬁ,’f||f€_hEHIX,’y,l,ﬁ,T' (3~22)

w187

Let ag=(4C1C2) ! and || fo

a1,p<ao. We choose y >0 such that

[ follazp
a0— | folla,1,p

If we put

1 -1 1 1 %
o= (26 (145 ) Ufolusg) 1o w=1 (1= (142 ) 2 Ufoluss)

then p € (0,1). Denote by Yj the closed ball

Yo={f ey (oIl

oc,l,,B}

w,,1,B,T < ay ||f0
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in the space Yg’%l([O,T]). Clearly, Y is a complete metric space with the metric

induced by the norm ||+ ||4,4,1,5,r- From the above estimates, it follows that for any

€, h¢ €Yy,
INU, e <l ol (3.23)
and
1
HNE [fe] —N° [he] Hzx,'y,l,,B,T <2C; <1+ ;) aq ||f0 w,l,pB fe —he w,,1,B,T
<ull fe=hap1p,c (3.24)

Therefore N€ is a contraction map on Yy if || fol[a,4,1,56 < @0, and has a unique fixed
point f€ = f€(t) € Yy. This complete the proof of this theorem. O

In what follows we shall prove that f = f€(t) constructed in Theorem 3.1 is
a classical solution to (1.27) if fy € Xg'l . Once we prove this, we complete the
proof of Theorem 1.1(i). For this we will prove the following theorem.

Theorem 3.2. Let f€ and fy be those of Theorem 3.1. If, in addition, fy € X!, then
= fe e 7% and is a classical solution to (1.27).
BT

= /l -~
Proof. Let X; denote the space of f €5'(R3 xR}) satisfying (1.31) and the infinity

condition in (1.32). It is a Banach space with the norm (1.31) and F; is isometric
~ua,l

. ~a,l ~
from Xg'l to X; . Thus if A°(k) is a generator in Xj , s0 is A€,

Notice that |e~(tkP+v(p)/€)t| < p=tt/€ Tt holds that

He—(ik'r""%V(P))ff’

vot =~

e fllg
p £l
and for any compact set QO C R} x IR%,

o~ (ikptgv(p))t  BO ((0,00)¢ x [0,00);;L%(€2)).
By this and the infinity condition in (1.32) we prove
PN . 1 ~ ~a,l
oA (k)f:e—(lk~P+gV(p))tf€ BO (((),oo)e X [0,oo)t;Xﬁ ) (3.25)

~u,l

This continuity in ¢ shows that e!A°(K) defines a semigroup on Xz . It is genera-
tor is A¢(k) with the domain D(A€(k)). Hence, for any € >0, A€ is a generator
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in Xg’l with the domain D(A€) induced from that of A¢(k) satisfies (3.25) with

an obvious modification. In addition, X;ﬁl C D(A®).
We redefine B¢ as

B€=A€+%K, D(B%) = D(A¥).

Since the operator K is bounded and A€ is a semigroup generator in Xg'l , for any

€>0, Bf is also a semigroup generator in X! g - For any fe X“ !, it holds that

=y (e K*)l ‘.

Thanks to (2.1), (2.4) and (3.25), for the operator A€, the convergence is uni-
form strongly in Xg’l for (e,t) €[6,00) x [0,t] for any 6,y >0 and

1\ g .
<etA EK*> et fEBO([é,oo)x [O,to];Xg’l).

Thus, 1ff€X’“

e f e BC ((O,oo) X [O,w);Xg’l) (3.26)

as a function of (e,t) € (0,00) X [0,00).
If f=fe e ZyY", for any fixed R >0, AF; 1 (x(|p| <R)f¢) € Zy?' by (2.1). By
this and (3.26), one has

HEF (x(Ipl S R)FF) €C((0,00)6Y5 ™ ([0,7)) ).

By this and Lemma 3.2, one has

IEF P> R)FE) e

< (1) 1B GO pl> R |y = 0 a5 R = o

By these facts and f=f¢€Z %71 e arrive at H€ fee Zgzl

BT’
If hy=he (t,x,p) € Z% 270 Let

“71 with i=1,2, we will show that A~1T'(hy,h;) EZﬁ .

BT

LB _ RO Lyl _ g
ViA=B ((O,OO)X[O,T],Xﬁ) and V= 0 VP
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Then ZE:Z’I is a strong closure of V in 742 by the infinity condition in (1.32). For
hy,hy €V, then A~1T (hy,hy) €V by the similar arguments as (3.18). By using these
and the proof of (3.18), we can obtain the desired results.

By the above facts, if f; GX}’;’Z, we have from (3.20) that N¢[£€](t) GZgiz’l. Define
by Z the closed ball

zo={f=rez;7|Ifl. 15} (327)

,')/,l ﬁ T—

By the similar arguments as Theorem 3.1, we can obtain a solution f = f¢(t) to
(2.7) in Zy. Then we show that f = f€(t) is a classical solution to (1.27). For any
h>0 and t € [0,7—¢] with any § >0 small enough, we have from (3.20) that

1

o (NELfI(E+m) = N[£]())
:%(ehB€ )Ne fe %/ (t+h—s) Q I‘(fe‘( )fe‘( ))
=:01+0>7. (3.28)

Since N¢[f€] € Zgﬁ'l, N¢[f¢] € D(B°®) if B¢ is considered in the space Xg:;’t’l_l,

Then, for fixed € and t,v7 — B*N€[f€] (h — 0) strongly there by the semigroup
property. Put I'(s) =T'(f¢(s),f¢(s)) and write

Uz——r ]’l/ SBE dSQO ( )

s 1
- / B2 Qo (T(t+h—s)—T(£))ds
=:03+04. (3.29)

Since T'(t) € Z%7? L, T(H)evy l 0,7|) for any fixed € >0, the first term v3 in (3.29)
B—1,7 B—1 y

tends to 0 as 1 — 0 by the semigroup property. Next we estimate the term v4. We
easily see

eI (L k) (T (t+-h—s) —T (1))
:eﬂlk\(1+|k|)l—1( —(Hh=s)KIT (14 p—g) — e~ VKT (¢ 1))
+pla—r(t+h— S))\kl(1+|k’)l 1(ev(h s)|k| _ ) (t+h—s)
=:T1(t,h—s,k,p)+T2(t,h—s,kp). (3.30)
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For 0 <s<h with h —0, we see

T2 (t,h—s,k,p)| <e@=YUEFR=K (4 k)1 (7= _1)T (4 h—s)|
< Cry(h—s) [kl YD (1 |k YT (E4+h—s)|
< C(h—s)e @7 tFh=sDIK (1 4 |k T (t+h—s)]. (3.31)

We have from this, (3.18), (3.30) and Theorem 2.1 that

H/ ’k|< (Ik)EP; (ek)Qo Fz(th s,k,p)ds

B—1

<c [x(s )|k|<h S)els =DM (-
C., C

Sgl’l sup \|F(t+h )H,x y(t+h—s),1,8— 15— hz”f”tx’yl/%'r’

0<s<h

H/s—lds

and

H/ ’k|< (€Ik)EP; (ek)Qo rl(th s,k,p)ds

p-1
Ko wlk| 1-1
<c [ x (i< e)|k|e (1+KI)
XH(3—70+hﬂNHf(b+h__) e~ VKT (1) )H -

ggh sup || Fy (e " =SIMT (¢4 h—s)—e~ WHF )H(xlﬁ 1

We also have

H/ ’k| < Q(ek)Qo~ rz(t h—s,k,p)ds

p-1
g/ (k< )i(h )= TEH=DIK (1 1 k| [ F(t4-h—
C,

C,
gzh sup [[T(t+h—5) g (t4n— S)1p— 1< —n? Hf“oc’yl,BT’
0<s<h

Hﬁ—lds

and

h K A€ 1
/0 )((]k| < ?O)eSA (k)Q(ek)Qogl“l(t,h—s,k,p)ds

B—1
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h Ko 1
< < 2 )= £K|k‘ -1
_C/O x(|k!_ e)ee (1+1[k|)

x‘}e—v(f+h—5)\klf(t+h_ )—eMHT (1) Gl _1

< Shsup [ (oI (1 hs) e THE(E) |,y

For the term with U; with |k| <k /e and the case that |k| > /€, we can treat it
similarly. Thus we can obtain

HU4H04—71‘,Z—1,/3—1

C L e
SE( sup H]_—xl(e v(t+h S)““T(t—l—h— )—e vtlk\r )Hleﬁ 1—|—h||f||a,rlﬁ.[>

0<s<h

For fixed € and ¢, clearly the second term in the above inequality tends to 0 as

h—0. Since T'(t) € Y*"'([0,7]), we also have that the first term in the above

B—1
inequality tends to 0 as # — 0. Thus we have that v, —+0as h—0in X; Il F

any h <0 and t € [§,7] with any small § >0, we can obtain the similar results. By
using (3.28), (3.29) and these facts we have from f€=N|f€| that d € /dt exists and
satisfies

or

AT~ B+ T (£ £5(0) €Y (0.1))

Since f€(t) is analytlc in xeR3 —i—zB,X_f,t, this shows that f€(t) is a classical solution
to (1.27). This completes the proof the theorem. O

4 Hydrodynamic limit of the local solutions

In this section, we will prove the Euler limit of the relativistic Boltzmann equa-
tion. We shall use the contraction mapping principle to obtain the relevant limit.
For B >5/2, we define the space

Wi = {f feezyr! |32 e v ((0,71), Y6 >0,

||f€ f || zx'yl (let —>0 as €—>0} (41)

In the below we assume that $>5/2,e€(0,1],0€[0,1],] >0 and (3.4) holds. And
there exists an absolute constant C >0 such that T < C and y < C. We define the
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norm as

£, = sup () 1) larsioops, 0€OL). (@2

0<e’<e,
0<s<t

For 0<j<4, we further define the operators E°(t) and E]Q(t) by EV(t) :Z?:O E?(t)
with o
A K[t (0)
FENDfo=e™ PO fo(k,), te (0], 4.3)

Lemma 4.1. Suppose fq € Xgl Then one has
(i) e'B fo e Wy with the limit E°(t) fo.

(i) [ fo—E°(t) folg /1 g1 < Cll follasp-

Proof. For any B1,B2 € R, we have from Theorem 2.1 that

iA k|t (0) 2 0) 7 -

AWz, <clo], <clfl,

For any ¢ € (0,7], we have from this and (4.3) that

IE*(®)foll e, < Cll folla1p- (4.4)

Noting that fo € X%! we have from the above similar arguments as (4.4) that

IEC D F ! (x (K1 +1p1>R) fo) |, i1

<C||F¢ ( |k’+’P’>RfO)HM,ﬁ — 0 as R — +oo.

Thus we have from these facts that E°(t) fo € Yg’%l ((0,7]). By Lemma 3.1, for any
t€10,7], one has

1€ foll,—1.5 < Cll follas -

We also have

e F 1 (x (|k]+]p’>R)f0)Hzx—7t,l,/3

<C||F (x(|k|+|p|>R) fo Hlxl,ﬁ — 0 as R — +oo.

Thus we prove that e!F* fy € Z'X o«
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Then we shall show the convergence property in Wgz ! 1f |k| <R with R<xq /e,
for any o € [0,1], one has from Theorem 2.1 that

(D
ez/\]. \k|t( (\k|)——z)x \k|t 1)‘

< Ce| A ||kt < CeR*7[K|7, (4.5)

., (1
el N Wlf‘ _

where we have used that for any 2 € C with Rea <0 and o€ [0,1],
le? —1| <Cla|”. (4.6)

For any B1, B2 €R, we have from Theorem 2.1 that
| (Pj(ek)—Pj(O))j?oHﬁl <Celkl||foll 5, < CeR™ K| | fol .- 4.7)

We decompose fj as
fo=F k(K <R)fo+F 'x (k> R) fo:= fo+ 7 - (48)
By using (3.2), (4.3) and (4.8), for any 0 <j <4, we have from Theorem 2.1 that
Fx(E5(H—E} (D) fo
= x(k| <R) (MR Byek) - HIPO) 7
=1 (K < R){ NIV (By(ek)— P fy + (e
By using this, (4.5) and (4.7), for any 0<j <4, we have

1F(ES () —E)(D) foll g < CeR*[KI7| fol| 5
B B

(1)
i(elkl)E _ 7 Ik\t)pj(o)ﬁo}

This implies that

I (Ef (t)— <Ce

fOHzx ytl—o,p—1— (4.9)

For any t >0 and >5/2, we have from (3.2) and Theorem 2.1 that
IFES(D ol 5y <Ce <l fo

g M= min(vg,0p).
This implies that

HES)foll eyt o p1 S Ce M follai—o,p (4.10)
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By the choice of R, one has that FxE{ f) =0. It follows from (4.9), (4.10) and this
that

€ _ _ut
H( * EO foHlx yt,l—0o,— 1§C( RZ 0+€ Z)HfO“erl/ﬁ' (411)
For any ¢ >0, we choose t € [¢,7],0 =0 and R:K0€_1/4 in (4.11) to get
H( tBe EO fonx t,1,B—1
§C<e_?+KO€2>||fo||,x,1,ﬁ >0 as e — 0. (4.12)

For B>5/2, we have from Lemma 3.1 that || Fre'®"f||5_; < C||j?||/3_1. This, (4.8)
and (1.32) imply

e <CJ| 7 (x (K> R) o) [l 1-1

<C|F M (x (K +1pl>R)fo) [l = 0 (413)

Hzx yt1,6—1

as R— +oo0. It follows from (4.3) and (4.8) that, as R — +oo,

HEO Hzx yt,1,B— 1<CH‘F ( |k’>Rf0)Hleﬁ 1
<C||F: (x |k’+’p’>Rf0)erl,,B — 0. (4.14)
Thus we can obtain
H(etBe_EO(t) 0, yhLB—1
<C|Ftx (k[ +lpl>R)fo)|| ., — 0 as e — O. (4.15)

wl,B

By using (4.8), (4.12) and (4.15), we have proved (i). Then we prove (ii).
It follows from (4.13) and (4.14) that
(e —E°(1)) <CF (k> R)fo) [l

<CA+R) ™ folla,1,p- (4.16)

HD( ytl—0o,p—1—

If we choose t € (0,7], 0 € (0,1) and R=xpe~ /2 in (4.11), we get

€ €\ 2 [ z
1" —E°(1)) fo ligti—ep1<C ((fz) RERE 2)
<C(3) Mfollusp: (4.17)
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Here we have used the fact that

supx*e ' <Ct™* forany a,t>0. (4.18)
x>0

By using (4.16), (4.17) and (4.2), we have proved (ii). This completes the proof of
the lemma. m

For 0 <j <4, we define the operators H]Q by

0 AV 1k[E (1) 73
FHOF(B) =™ W KPO (@)« QuAF(E), e (0,1]. (4.19)
Lemma 4.2. Suppose that f = f¢ € W'\ " with the limit f°. For 0<j <4, one has
0 fe a "rl ; it 10 0
(i) HjfeWg'l" with the limit H; f".
(i) [HO(fS— PO < (C/p)If = fOIee .
Proof. For any B1,82 € R and 1 <j <4, we have from Theorem 2.1 that

| (@)Que)]| | <CIIR®),.

For any t1,t; € [0,] with t; < f;, we arrive at

’ B1
t ~ 5)

<C [ VKIS lpts <C [ ke M A ) () s (20
1 1

tr ., (1) —~
/ TS PO () Qo AT(s) ds

5]

By this, for any 6 >0, one has

\k|t s)

eI (14 k]! k[P () QoAR(s)ds

B—o

_ C
<C sup Hh ||1x vs,1,Bp—o / e UL S)|k’d5§ — sup Hh(S)HDc—'ys,l,,B—U- (4.21)
sE€[4,t]

It follows from (4.20) that

&=k (1 4 ]! ikl (t=s) k[P (@) QoA (s)ds

B—o
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)
<C sup [1(5) laqotp-o | €70 klds
s€(0,0] 0

C 0 -
<= sup () famnsipoa [ (t=5) s

7 s€(0,0]
Cé _

<—(t=0)"" sup [|1(s)lla—rys1p-0- (4.22)
r s€(0,0]

Here we used the fact that e~ 7(t=5) Kl |k|(t—s) < C for t>s.
For any t € (0,7] and 0 =0, we have from (4.19), (4.21) and (4.22) with 6 =1¢/2

that
C

sop [, yp1p<

te(0,7]
that is, HOf0 € Y5 ((0,7]). Similarly H)f¢ € ZgT". Since f = f¢ € Wyl with the
limit fY, there exists C >0 independent of € such that

If

,'y,l,BT+ sup Hfo Hzx 'ysl/ﬁ—c

s€(0,7]

For any ¢ >0,0 € (0,6),0 =1 and t € [¢,T], we have from this, (4.21) and (4.22) that
sup |[HJ(f€—f)(t)

}a—'yt,l,ﬁ—l

telg, 7]

_C 0 Cé 1

<— sup )M emsi g1t —(6=06)"". (4.23)
%qm]” lersiss %%

Since f = f€ € W“ 1 with the limit f°, we have from this, (4.1) and (4.23) that

H]Q fee Wﬂ’g ' w1th the limit H]Q fY. This concludes the proof of the first result in

the lemma.
For any t € (0,7] and 0 € (0,1), we have from (4.20) and (4.2) that

o (1 i) | [ B @) Qo (7~ 77) (5)ds

B—1
t I\ 2 N %
07€,T,0 —lkl(t— € C /e 071€,T,0
=1 fy I (5) e (5) I 20
Here we used the fact that, for any o € (0,1),

t
/ et t=s)ps =g < C+ O, (4.25)
0
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This, (4.19) and (4.2) will give the second result in the lemma. This completes the

proof of the lemma. O
Assume that R€ (1,x0/€). For any f€ € ng , we define as
fo=F R S RF) +F (k> RIf)i=fr+fre - (426)
Lemma 4.3. Recall H of (3.6) and H} of (4.19) with 0<j<4. For f=f¢ €Wy, 0 ! one
has
) [|(HS ~HO) &l s < (C/VER Fllaj e

(ii) [(H]G_H]O)fR],i?lfﬁ 1= (C/')’) 1_7R2 U”f”tx’yl/%r
Proof. For any B1,82€R,0<j<4and ¢=0,1,2, we have from Theorem 2.1 that
| @)Quare)]| <R

Noting that x(|k| < (xo/€))x(|k| <R) = x(|k| <R), we have from (4.5) and (4.6)
that

e(zx—’yt)\k|(1+|k’)l—¢7
LAl iVl () 1 %
/O(el =N ) Pi(elk) Qo Ak (s)ds

< Celt (1K) ["elkPa(K <R)| ()

X

B—1

Hﬁ—lds

<CeR?™ sup [|f la—rsprt / e~ (=9 k|ds
s€(0,t]

Ce _,_
< —R*° sup erutx—vs,l,/i- (4.27)
i s€[0,t]

Here we have used the fact that
Pi(elk|)Qo = ekl ( PV () + ekl PP () ) Qo.
It follows that

Eoo @ikl (r—s 1 -
=ML ) 1+ )P | [0 (Byelkl) —elkl P ) QoA T (s)ds
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t o~
§Ce(“_7t)k|(1+|k])l_‘7/ elkx ([l <R)|| f<(s)] 5_yds
0
t
SCGRl_U sup ||f€||1x—'ys,l,,8—1/ e—V(t—S)\k||k|d5
s€[0,¢] 0

Ce 1_
<—R"7 sup ||f€||tx—'ys,l,ﬁ~ (4.28)
r s€[0,t]

Recalling H]e of (3.6) and H]Q of (4.19), for r =0 and t € [0,7], we have from (4.27)
and (4.28) that

C
H (Hje_H]Q)flez Htx—'yt,l,ﬁ—l < ;eRz I1f aLBT

Thus we have proved (i) and then we prove (ii). For any €’ € (0,€), c € (0,1) and
t€[0,7], we have from (4.27) and (4.28) that

/ / C —
[CH = HD SR N op 2 =5 RS

o,,1LB,T
By using this and (4.2), we arrive at
0 &T,0 C1 1-¢ 50— C 1-¢ o
(H—HD)fR] S IR Sl g S e TRl
This completes the proof of the lemma. O

For the study of Ht in (3.6), we need the following operator:
BE < (t)=efhe Qo A (1), (429)
Lemma 4.4. Recall H of (3.6) and HE of (4.29). For f=f€ € WE‘:Z’I, one has
() || (HS = FI8) filla—yt1,5-1 < CeR | f 1 -

(ii) [(Hg—HE) fe]S 5 <Cel=7/2R1=7|

Proof. It follows from (2.8) that

a,LBT

1 ~
EL: B¢ (k)+ik-p.
Thus we can obtain

eéLﬁzetge(k)ﬁ—l—etge(k)(ik-;ﬁ)*eéLﬁ. (4.30)
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Letting ue Xg’l with >3/2, we have from Theorem 3.2 that B0 7€ CO((0,00) x
[O,m)t,Xg’l_l). Thus (4.30) holds in Xg'l lifue Xg’l
Noting that eL/¢Qy = Qqef"/¢ = QqefL/¢Qy, we have from (3.6), (4.29), (4.30)

and Theorem 2.1 that
Fx[(HS—HS) ff]
=<Q< > Qo>ee *Qo AfR<> Qek)e <><ik~ﬁ>*eiL*Qo§AE%<t>

For any B1,62€RR,1<j<4 and /=0,1,2, we have from Theorem 2.1 that
1(Q(ek) —Qo)flp,

—H(|ekyzp +]ek|2ZP )fHﬂlgchynfnﬁz. (4.32)
It follows from (4.29) and Theorem 2.1 that

—~ t s ~
FHEE (1) = /O (e—TV(P)+U1(e,t—s,O)>Qoé/\fﬁ(s)ds. (4.33)

For the first term in (4.33), we have that

elkle =T (14 k)= (14 pl )P

[ #1000 Az ()

< Cel el M4 ) (4 )P [ S DI AT Qo Ty ) s
t—s

1—0|| g€ ' ——v( )V(p) 1-0
<CeR7|f Hzx,v,l,/&—l,f/o ?dsﬁ CeR Hf”tx,v,l,ﬁ—lm (4.34)

For the second term in (4.33), for B >5/2, we have from Theorem 2.1 that

t ~
elkle® M (14 ])' 7 (1+ [p])P 1| [t (est—5,0)Qo ATk (s)ds

t 1. =
gceyk|1_ae("‘_7t)k|(1+’k|)l/o HU1(€,f—S/0)QOEAf1§(S)Hﬁ_lds

t oglt—s ~ -~
< CeRI e MK e (| QoA+ QoA ()] ) ds

t
<R e [

o(t=s) 1 B
c EdsﬁCeRl N f a6, (4.35)



D.-C. Yang and H.-J. Yu / Commun. Math. Anal. Appl,, 2 (2023), pp. 142-220 189
Thus we have from (4.33)-(4.35) that
elkle!® =T (L4 k)| Fe(HS £ |5y < CeR'™ | fllay -
By using this, (4.32) and (1.31), we arrive at
15 (k) ~ Q) P (BEFR) sy 1 SCR™ Ifllmipr (436
Now we estimate the second term in (4.31). We see
eeLfo—e_i fo+ / 2 -s) KeeLfods (4.37)
It follows from this and (4.29) that
7€ r€ ! —M(t—s) 1 e ! —M(t—s)l 7€ f€
FLHEFS () =/0 e E 0900 Af (s)ds+/0 e U _KF S i (s)ds. (4.39)

For the first term in (4.38), we have that

t v A~
e ple® 1M1+ k)0 1+ )P [[eE Q0 AT ()ds
0

£ty ~
<O M4 )Y 1+ |pl)P [ e eI A1 g0Af ) s
0

_ E vy v _
<R f e [ o E I P s <RI 1 (4.39)

For the second term, one has from (2.4) that

t v ~
e plele 1M (14 )/ 1+ |pl)P 1| [~ 809 Tk F B ()ds
0

ty -
§C|k|1—ae(1x—7t)|k(1_|_|k|)l/ e_?o(t_s)%foHgfﬁ(S)
0

Hﬁ—l—nds

<CR'™|[Hs fg]| (440)

w,y,1,B—1,1
Thus we can obtain

Hjarl[ak'ﬁ)]a(iigfﬁ)]Ha—ynk—mﬁ—l
S CRl_U ( ||f||0€,’)/,l,,B,T+ Hﬁgfﬁ Hl)é,')/,l,ﬁ—l,’f) : (441)
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By the similar arguments as (4.33)-(4.35), for $>5/2, we can obtain

1ES f& 512 S Cll Nl e

In view of this and (4.41), we arrive at
17 [k )P (HSFR) 11,2 S CR M fllat e (4.42)
Set g =g = Fy '[(ik-p) Fx (HEFS)]- It follows from Theorem 2.1 that
U(e,t,k)*g(t) = /Ot (e(t_s)ge(k)Q(ek) +U (e,t—s,k)) 2(s)ds.
We see that

@D (4 (k=14 [o1EL] [ et=9A® O ek)ae (s)ds
(T+[k)™7(A+|pl) Q(ek)g°(s)
0

to
< Celr =1 (14 )7 [ e~ 209 g<(s) p-1ds
0

Eoy
S C||g€ ||DC,'Y,Z_U,‘B_1,T/() e_?(t_S)dS S Ce”ge ||DC,'Y,Z_U-,[‘3—1,T'

And we also have

eI (1 k)7 (14 [l )P

/Otlll(e,t—s,k))ge(s)ds
gCe@“W"‘(1+|k|)l“7/0te‘€0 (Hg (s )||I3_1_,7—|-||§€(s)||)ds

-
<C|l¢* er,v,l—cr,/%—l,r/o e~ (t=s)ds <Cellg* ||1x,"/,l—g,/5_1,T.
Thus we can obtain
H‘/—-x_l[ Gtk*g :|HD( ytl—0o,f— 1—C€||g ||“'Yl op-17"
By view of this and (4.42), we arrive at
|1t [ue t k) (k- p) P (FSF) oyt op1 < CER™ N fllasyt o
We have from (4.31), (4.36) and this that
(35~ FI5) 811 <Rl

By view of this and (4.2), we arrive at

€,T,0

[(HS HS)fR} LB~ 1<CT Rl U||f||oc’ylﬁr<ce Rl_U“f“oc,’y,l,,B,T-

This completes the proof of the lemma. O
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Since the operator L has 0 as an isolated eigenvalue, L~! does not exist but
L~1Qy does. Put
HY=—-L71QuA. (4.43)

Next we will prove that L~1QgA is bounded in LE" with B> 3/2. Note that

L™ QoA = —Qoln + L™ QoKhy.
Assume that i, € N+ and h; such that L~1QyKhy =h;,. Then
A"YQuKhy = —hy+ A" Khs.
One has
Izl < | A~ QoK 5+ | A~ Ko
<Clhllg—y—g +Clih2llp—y-g
We iterate this estimate successively to get
1h2[g < Clima[|g+Cl[Kha o +Cl[ Khz o
<Cllhlg+Clim[|+Cllh2|| < Cli11 || g+Cl| 2 |-
We have from Lemma 2.3 that
pol[vEha|[* < — (Lo hz) = —(QoKh,ha)
< Bl 2+CllKh | < B2 [[v3ha |+l |2
For any B>3/2, we have from the above two estimates that
HL_lQoKhH,;: [h2lg < Clh1]|5-
Thus we arrive at

| H3hy H/;= L1 QoA HB: |Qoh1 — L1 QoK H/z <C|[h]lp- (4.44)

This implies that HY is bounded on Yg'%l((O,T]) with any §>3/2.

Lemma 4.5. Recall HY of (4.43) and HE of (4.29). For f=f€¢€ WE’Z’Z and any 6 € (0,),
one has

(5= H) £y py < CeTE+6R) | FluapetC(5) LA g

Here y=min(vy,00) and the norm [[-]]t’l_a 5 is defined as

[[fe ol op= SUp (t > H}' ’Y\k|tj’r\€() e ’Y\k|5fe )Hlxl o5 (4.45)

t—o6<s<t
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Proof. By using (4.29), for any J € (0,f), we make the decomposition

I7€ £€ (1 0 SL SL T€(1 o\ _ fE
FHESR() = [ et QoL AR (s + [ ot Qo A(Fr(t—s)~ Fr (1))
/ LQO AfR (t—s)ds
- / ! QO—Afﬁ(t)ds— / e%LgolAﬁg(t)ds
/ A(fR(t—s)—fr(t) d5+/ e< Qo= AfR(t s)ds

= FHYfe+ Zw]. (4.46)
j=2

Here we have used the fact that the Laplace transform of a semigroup is the re-
solvent of its generator. Then we first estimate the term w;y. It follows from The-
orem 2.1 that

Psp o1 4 Eo s 1, 4
wy= [ eELQOEAfE(t—s)ds:/(S (e_EV(p)Qo—i-Ul(e,s,O))EAfﬁ(t—s)ds.

We have from this and (4.26) that

too N
o= (14 K]}/ (1 p]) ! Ae‘f"(p)QolAfE(t—S)ds

t
LRy e L Y (TS

_ a8
<Ce ¢ flla,y,1,p,7-

For the second term, for B >5/2, one has

[P

t —~
=K (14 |k|) = (14 | p] )P / Ul(e,s,())%/\fﬁ(t—s)ds
1

<MK [T 2 (AR (-9 |y, + [ ATR(-5)] )as
< Ceve||f

o,,LB,T

Thus we have from the above two estimates that

“F;1w4Ha—7t,l—a,ﬂ—1 < Cehe [ flla,8c (4.47)
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By using Theorem 2.1 and the similar arguments as (4.47), we can obtain

B 0
H}—x 1w2Hzx—'yt,l—0,ﬁ—1 <CeHe Hf”“ﬁrl/ﬁﬁ'
Next we estimate the term w3. We easily see
eI (1 k)7 (Fe (t—s) — Fa (b))
=M1 k) (eI R (1) —e MR (1)

+el @ (t=s)Ikl (1 4 k] )1—0(3—75\14 — 1)1?12(,}_5)
i=hq(t,s,k,p)+ha(t,s,kp).

For the term h;(t,s,k,p), we have from Theorem 2.1 that

5 S 5 S
/ eeLQoéAhz(t,s,k,p)ds:/ (e_gv(p) Qo+Ui(e,5,0)) %Ahz(t,s,k,p)ds.
0 0
For 0 <s <t, by using (4.6), (4.26) and (4.49), we see

[ (t,5,k,p)| < el 1D (14 k)= (77 —1) fj (£ —5)
< Coys|klel D (14 [k[)! 7| R (t—s)]
< CsRYTe@= =Dk (1 k| ) | FE (t—s) .

For the term h;(t,s,k,p), we have from this, (4.18) and (4.50) that

H/ —evl QolAhz(t,s,k,p)ds

-1
§51;p/0 e ev(p HA YQoAhy(t,s,k,p) Hﬁ .

<CRY |y sup | e‘g”“’)ﬁ—p)s”lsﬁc‘ml‘”ﬂf lomipir
p /0

For the second term in (4.50), for B >5/2, we have from Theorem 2.1 that

1
H / Ul(e,s,O)%Ahz(t,s,k,p)ds
0

B—1
g s 1
< [ e (AR (s p) g1y + [ Al K p) ) s

g s 1 -
T

193

(4.48)

(4.49)

(4.50)
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Here we used the fact that
[ AR (t,s,k,p)|lg—1-4+I[Aha(t,s,k p)l| <Cllha(t,s,k p)llp-
For 0 <s < é, we have from (4.49) and (4.45) that

a5k p) g < | F (e M FR (1)~ 7 Bt —9)) [, s
<C< ) [[fe 1xl o,p-1°

For the term Ky (t,s,k,p), we have from (4.50) that

5
e~V (P) Qo= Ahl(t s, k,p)ds

B—1
<sup/ HA 'QoA (15 k,p)|| 5_yd

S

<CUFI op 18‘;10/0 6‘5”(")&(—)0 C(3) U Uiopr

€ t—s
Here we used the fact that
t _
/ e b(t=s)pl+o (t—s) “ds<Ct . (4.51)
0 s

For the second term in (4.50), for B >5/2, one has

0
/Ul(e,s,O)éAhl(t,s,k,p)ds
0

B—1
6 s 1
< [ e (AR (b p) g1+ [ ABs (tikp) ) ds

<Clflus- (7,8/ _006_ _S> ds <C< ) [ Tat—op

By using (4.46), (4.49) and the estimates of the term hy(t,s,k,p) and hy(t,s,k,p) as
the above, we can obtain

e THI(1-4 ) 0 (1 pl)P~ s | < CORY | F e+ C(5) LA g
This implies
Fe! <CSR'||f| +c(5)
H x w3H1x ytl—0o,B— 1— f a,LB,T [[f wl—o,p

By using (4.46)-(4.48) and this, we can get the desired estimate. This completes
the proof of the lemma. O
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Lemma 4.6. Suppose that f = f€ WE’Z’I with the limit f°. Recall HE of (3.3) and put
HY —Z OH0 Then one has

(i) Hefeewg’j' with the limit H f°.
(ii)

[Hejre o HOfO} Z/,;/,(liﬁ_l

1
<C(142) (Iflagaprt FE =P 5+ sup 1155 )-
Y O<e'<e

Here o€ (0,1) and the norm [f€] .7 |  is defined as

¢ su € S) | a—yti—o p- 4.52
=, oo (7= IO F O agpiop @52
Proof. It follows from Theorem 3.2 that H¢ f€ € Zgzl with any f>5/2. By using

(4.44) and Lemma 4.2(i), we know that H°f0 € Yg’%l ((0,7]) with any >5/2. We
have from (4.26) and the assumptions that

HEfe—HOfO = (HE— HO)f + (HE = HO) fo + HOF = f9). (459

It follows from (4.44) that Hg fee th,l with the limit H? sf°- 0. And for any 0<j<4,

we have from Lemma 4.2(i) that H]Q fee Wgz ! with the limit H]Q 0. Thus, for any

0(fre_ £0V] .
g>0/ ||H (f f )Hy‘giyl,l([gﬂ_])—)oase—)()

Put R =xpe /4. By (4.26), (4.44) and the similar arguments as (3.12), we ar-
rive at

[(H —HO) f|| yt1p—1
<c< )H]—" Y(x ]k|+|p|>R)f€)Ha,%l,ﬁ/T — 0 as € — 0.

Recalling (4.26) and Hg of (3.6), then Hg fz =0. Thus, we have from this, Lem-
mas 4.3(i), 4.4(i) and 4.5 with c=0 that

H(H —H) fRHtx vhLB—1— C(1+’1Y)(€R2+5R+e_y ) f ,“r/l/fTJrCer]]Mﬂ



196 D.-C. Yang and H.-J. Yu / Commun. Math. Anal. Appl,, 2 (2023), pp. 142-220

Note that

fx_l (e—fyt\k|]’c\6(t)) c BO([O,OO)E X [OIT]t;Xg’l) :

We further put 6 =€!/? and we have from (4.45) that [[f e]]i’i g—0ase—0. Thus
we arrive at

H(HE—HO)fl"iH&_%l/ﬁ_1 — 0 as € — 0.

By virtue of (4.53) and the above estimates, for any ¢ >0, we have

€re__ 7009

Thus we have proved (i). Then we prove (ii). For any f>5/2 and 0 €(0,1), we
have from (4.44) that

HHg(fe _fo) H,X_nr,gll_gllg_l < C”fe _fo ||tx—'yt,l—¢7,/3—1~
It follows from Lemma 4.2(ii) that, for any 0<j <4,
(HY (=) s 1_—[f — 1 s
By (4.2) and the above two estimates we arrive at
1
[HO(f¢—f)] efjﬁ <C <1+;) [fe—fo];;f;j{,ﬁ_l. (4.54)

Put R=xpe /2. For B>5/2 and [ >0, by (4.26), (4.44) and the similar arguments
as (3.12), we arrive at

IRy S (1 I O R g

sc(u%) 1+R) | f

w,,1,B,T:
By (4.2) and this, one has
1
(01~ HORRI 51 <0 (12 ) If o <C (142 ) Wflasape: - 455)

For any s € (0,f), by (4.6), one has

eI (14 k)| (1 e T S p<Cr7(E=5)7Nf Nla—rys -
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Thus we can obtain
HJ,—_-;l (e—'ﬂk“]/c\e(t) _e—'ﬂk|s]/c\6(s)) wl—op
< Cer(t) _fe (S) Hoc—’yt,l—a,ﬁ+C’YU(t_S)UerHoc—'ys,l,,B'
By using this, (4.45) and (4.52), we arrive at

Put R=1xge /2 and 6 =€!/2t. We have from (4.2), (4.18), Lemma 4.5 and these
facts that

€,T,0

[(HS—H3) fR] 1,1

<CO+T ) gt Ce ( sup 18+ g

O<e'<e

<Cl|f

wripetC osup [FE107) o (4.56)

O<e'<e

It follows from Lemma 4.4(ii) that

€,T,0

[(HS HS)fR],x%lﬂ 1<C€1 le U||f||lx’)’lﬁ’f C€2||f||tx'yl/37 (457)

We have from (4.56) and (4.57) that

[(H5—H) f&]

w51 SCllflasyipetC sup [FIE9, 5 (4.58)

0<e'<e

It follows from Lemma 4.3(ii) that, for any 0<j <4,

€,T,0

/T, C ¢ o C
[(H]'G_H]Q)fle{h,%l,ﬁ_l < ;el ZRZ 0||f||zx,’y,l,ﬁ,7§ ;“f“zx,'y,l,ﬁ,r- (459)

Noticing that Hf f; =0, we have from (4.58) and (4.59) that

(01~ ORI 51 <C (142 ) g+ sup IFTE5 e 60

0<e'<e

By using (4.53)-(4.55) and (4.60) we can deduce Lemma 4.6(ii). This completes the
proof of the lemma. O

In what follows we shall give the proof of Theorem 1.1(ii) and (iii).



198 D.-C. Yang and H.-J. Yu / Commun. Math. Anal. Appl,, 2 (2023), pp. 142-220

Proof of assertions (ii) and (iii) of Theorem 1.1. Suppose that f = f€ ¢ W’X ! with the
limit Y. For any B>5/2, we have from Theorem 3.2 that

ATIT(fE ) ezgt!, ATIT(F, ) e Vg ((0,1)).

By Lemma 3.3 one has

AT f) = AT Oy pa
- HA_lI‘(fe_fO’fe—l_fO) Hzx—'yt,l,ﬁ—l
SCIF+ Moyt =1l €= FOllazytrp—1-

For any ¢ >0, we have from this that
—1 . — 0
HA r(felfe)_ rf f Hy”"ﬂ[gﬂ)
<C(Marna et 17 Ngams o, ) = F g oy
This implies

HA_lr(feffe)—A_lr(foffo)Hyggq’([g,r]) — 0 as e =0

Hence, A1T(f¢,f€) € Wgzl with the limit A~1T (£, f%). By using this and Lem-

ma 4.6(i), we deduce that HEA~IT(f¢,f€) € ngj'l with the limit HOA~IT(f°, f0).
We have from Lemma 4.1(i) that !5 f Wgzl with the limit E%(t) fo. Hence, N¢
in (3.20) is a contraction map in the space Wg:Z'lﬂZo by Theorem 3.2 and then

the solution f¢(t) in Theorem 1.1(i) is in Wgz ! The completes the proof of Theo-
rem 1.1(ii). Then, for any ¢ € (0,7], we arrive at

IO =E"t) fo+HATT(£2(1),f(1)). (4.61)

Noting that QOP]-(O) (w) =0, we have from (4.3) that QoE’(t) =0. It follows from

(2.34) that QOZDj(l) (w)Qo=0. Recalling (4.19), we deduce that QOH]Q=O for 0<j<4.
It follows from these facts, (4.19), (4.43) and (4.61) that

QofO(t)=QoHIAT'T(fO(), £2(t)) =—L'T(f°(1).£°(1)),

4.62
LA (1) = —T(f2(1),£°(1)). o
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If we put FO(t)=Jo++/Jof°(t), we arrive at the relation (1.15). Thus F(t) is a local
relativistic Maxwellian as (1.12).

By using (2.34) and (4.61), we have from (4.3), (4.19) and (4.43) that Py f°(0) =
Py fo, which gives the initial data (1.25) of the relativistic Euler equations (1.24).
Since f€(t) is analytic in x € R3+iB,_;, then the hydrodynamical quantities of
FY(t) is a classical solution to the system (1.24). This completes the proof of Theo-
rem 1.1(iii). O

5 Convergence rate of the solution

In this section we will prove the convergence rate about € of f€(t)— f°(t) as e—0
in (4.1). For this, we first consider the Holder continuity in ¢ of the solutions to
the linearized relativistic Boltzmann equation uniformly for € € (0,1).

Lemma 5.1. Suppose that fo € Xg’l . Recalling (4.52), for any B>3/2 and | > o with
c€(0,1), one has

[ fol o1 p < (.1)

Proof. For any B1,62>0,0<j<4, and 0 <s <t <7, we have from (3.2), (4.6) and
Theorem 2.1 that

[ (B ()= ES(6) foll , = [ (1K1 < Z2) UKD (M0 1) Py fo

<Cs”rk|”( ) 1Follga

1

By this we can obtain

OBl sopr=C(5)
We notice that
€ _ K0\ tBe (k)
FE (O fo=x (Il >2)eT® fy

K ne K re 1 €
=2 (k> =2 )W fotx (K > 2 ) A Ok FEE(Dfo. (53)

(5.2)

For any >0, we first prove that

H}";l(etge(k)ﬁ)—esge(k)ﬁ)) Htx—'yt,l—(f,ﬁgc (t s) || (5.4)
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In fact, we have from (4.6), (4.18), (2.1) and the bounded-ness of p that

‘etAE(k)]’%_esﬁe(k)]’% — |2 (~v(p)+iek-p) (et%s(—v(p)+iek-ﬁ)_1)j’c\‘

<c(5) @wemIfl 65)

Thus (5.4) follows from this. For the second term in (5.3), one has

/ R s
/oe(t_sl)Ae(k)%K}“ng(Sﬂfodﬁ_/O i SKFEG (s1) fods:

:(e(t—s)ﬁe(k)_l)/ose(s s Ae(k) 1 K]:xE6(Sl)de51

+ / (t=s1)A K]-“ E(s1) fods:. (5.6)

We denote the two terms in (5.6) by I; and I,. By the similar arguments as (5.5),

one has
S

_ t—s\”
‘e(t—s)A (k)_l‘ SC <U(p)7) (1+|k|)‘7

Note that 7 €(0,1], 0 € (0,1). For the term I;, we have from this, (2.1), (4.18) and
Theorem 2.1 that

t—s

s e 1
|11|<c( <p>—) (k)7 | [em0A 0 LR g () fos

I/\

c(*> ) A+ )1+ [ 2oL E B o) ol ot
c(tes) (1 [K])7 | (1+ |pl) (D
e e <\|fo||ﬁ prot | foll)ds:

(L+]K))" 1+rpr>—<ﬁ—1>e—ﬁ(g) I folls

IN

O

t S

IN

C

m

IN

C (L+ kDT @+ D~ foll.

92

( )
()
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By (4.18), for any 0 € (0,1) and s € (0,¢), one has
o 1-0c . o
. <f_s) _ (f_S) e Lit=s) (f_s) et (2) <c <f_s) 57)
€ s € € S
For the term I,, we have from this, (2.4) and Theorem 2.1 that
Bl Cp) Y [fe fStW££6aﬁwﬁ1nﬂ
COL+[p)y ) [ 205 (1ol 1z + ol
_(B_1) _Hs [E—=8\ , =~ —s
C(1+[pl) e J(i;)nﬁmﬁsc( EE) @) Dl

Thus, by using (5.6) and the above estimates, we arrive at

H;f—l t<f sndc( 1 _KFEg(s1) fods
x xLg\°1) /0451

—./—“ / S Sl foE6(sl)f0dsl

a—vytl—0o,—1
<C ( ) (5.8)
By using (5.3), (5.4) and this, we can obtain
t—s\’
50~ EE(6)) ol yyr-pr =€ (57 69

By the similar arguments as this, the term E£(t) fy shares the same estimate. Thus
we have from (5.2), (5.9) and (3.2) that

€ € t—s v
HetB f0—€SB fOHa—'yt,l—U,/S—l =C <T)
Recalling (4.52), we have from this that
[[ tBefO]],Xylﬁ 1—C||f0||le/3 (5~10)

We shall recover the loss of the p-weight by the smoothing property of K in (2.4).
We notice that

ne -~ A€ ~ ne 1
3(1) =P ) fy = et A7) f 4 etA <k>EK*§(t). (5.11)
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For any b >0, by (4.6) and (4.18), one has
/Ste_bslbdsl =e 15 (1—eP(t=3)) <Ce b5 (bs)7 (bs) 7 (b(t—s)) " <C (FTS) U. (5.12)
For any b >0, we easily see
/Ose_bslb(s—sl)_‘fdsl <Cs™". (5.13)

For the second term in (5.11), we have from (3.1), (5.10), (5.12) and (5.13) that

\
|

<C||g°

t ~ S ~
]-"x_l/ es14 (k)%ng(t—sl)dsl—]-"x_l/ 14 (k)%ng(s—sl)dsl
0 0

a—t,l—0,p

Eoo
f;l/ eslAe(k)%ng(t—sl)dsl

FF [0 IR (g (1)~ (5—s1) dsy
0

x—t,l—o,p
t 511
_unil
lX,')/,l—(T,‘B—T],T/S e Ve Edsl

S . ﬂl
-I-C/O e VOGEng(t_sl)_ge(s_sl)Hlx—yt,l—cf,ﬁ—ﬂdsl
t—s\’ eNTo Sl t=s ’
C(T) ||f0 pc,l—U,ﬁ+C[[g ]]pc,'y,l,ﬁ_q/o e Oeg — dsq
t—s

g
<C (T) (Ifolless+ 181515, )-

In view of (5.4), (4.52), (5.11) and this, we have

IN

[ fol s <C (I follaspt [ Fol 5 5, )

By using (5.4), (5.11) and (5.10), for # € (0,1], we iterate this successively in the
tinite times to get (5.1). This completes the proof of the lemma. O

Recalling (4.52), for any p>5/2 and | > with 0 €(0,1), we assume

PTp= s (755) 1F0-FOlmap<C. G149

0<s<t<t t—s
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Lemma 5.2. Assume that (5.14) holds. Recalling (3.3), one has

11708, <€ (12) (1 ani-opa IR )
Proof. For any 0 <s <t <T, by using (3.3), one has
Fr(Hf(t)—H f(s))
b5 ~
:/ eslBe(k)QoéAfe(t—Sl)dsl

® sBe 1 e e
+/0€13 (k)QOEA{f (t=s1)—f(s—s1) }ds1
S (5.15)

We first estimate the term I3. For any 1,52 >0, we have from (3.2), (5.15), (5.12)
and Theorem 2.1 that

K , 51 1, ~
x (1K< 22 ) ML Py (ek) Qo AF (=51 )dsy

t
<C(1+ph)Pre @A k)T £ a0 aﬁﬂ/ e~ 1 [k|dsy

C/t—s
S?(T) (L pl) e @4 ) )|y

By this, for any 0 <j <4, we have

C[(t—s\’
§_<T> ||f€||tx,'y,l—(7,ﬁ2,r- (5~16)

a—ytl—0o,B1 v

tEf(Sl)QolAf(t—Sl)dﬁ
s €

We then consider E¢(t) in (3.2). It follows from (3.2), (5.12) and Theorem 2.1 that

' K0\ s1A¢(k) NS
‘/S X(’k|>z)el QOEAf (t—sq1)dsy
<C(1+Ipl) D M1 i)~

Eos
X HA_lQOAfeHzx,'y,l—o',ﬁ—l,’r/ e_elv(p)@dsl

t—s _(B—
<c( - ) (1 1p)) = e I )~ £ 11
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For B>5/2, we have from Theorem 2.1 that

t Ko 1 -~
X (k1> 72) Uale,s1k) QAT (t=s1)ds:

t s
<CO1HIpl) e ) f e [ 0% Ly
t_S v _(ﬁ_ (p( 'Yt |k‘ l 0' €
<C({——) @+IpD) (LKD) ™ a0,

By these two estimates, we arrive at

t —~
/S Eg(51)Q(%Afe(t—sl)ds1

<C(22) I lapi-ope 617

a—ytl—0o,p—1

The term E£(t) in (3.2) can be treated in the same way. Thus we have from (5.15)-
(5.17) that

- 1 t—s
|7 g <€ (145) (5 ) Flomiope  (G18)

We then estimate the term I in (5.15). It follows from (3.2), (5.15), (5.14), (5.13)
and Theorem 2.1 that

s (e 51 1 Te Te
‘/ X |k|<@ Al Ik\)SPj(ek)QOEA{f (t—s1)—f(5—s1) }dsq
<C(1+p))~ P 1+ [k~
S
—(a—y(t—s1))|k
></0 e~ (mr(t=s1)] ||k’er(t_sl)_fe(s_sl>Hzx—'y(t—sl),l—(f,ﬁdsl

< CHpl) e (L ) O e (5 s

<S(122)" el e O

By this and (3.2), for any 0 <;j <4, we have

H/SEf(Sl)QolA{fe(t_sl)_f?e(S—Sl)}dm

x—t,l—0o,p—1

C €
<S(55) 1, (5.19)
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We then consider E¢(t). We have from (3.2), (5.15), (5.14), (5.13) and Theorem 2.1
that

)/ |k’> S1A€ ( ) lQ A{fet s1 fe S—$1 }dSl
<C(1+|p) P Vem =t ‘k'(1+|k|)_ )

S sy, V(P) - 7e fe
X/O o (p)?HA 1Q0A{f (t—s1)—f (S_Sl)}Hzx—'y(t—sl),l—o',ﬁ—ldsl

S s1

—(B=1) p—(a=7t)[K| (1—0) g€ _?V()V(P) t—s\7
<C(1+1p)) YOI (14 |k[) ¢ [[f]]mlﬁ nZk — ds;

t—s\"
- —(B=1) p—(a=7t)[K] (1=
<c(5) e M) O
For B>5/2, we have from Theorem 2.1 that
s K 1, .~ A
)/O)(Ok]>?0> Uz(e,sl,k)QogA{fe(t—sl)—fe(s—sl)}dsl

<Cl1+{pl) Ve 1)
f e 0 T 50l g

s s 1/ t=s\’
<C(1+|pl)~E Ve M (1 k) 0= e ( - ) ds,

t—s\7 _
<0 (5] (o Ve g ) 0L

By this and (3.2), we arrive at

H/SEg(Sl)QOEA{F(t_Sl)_fe(S—Sl)}dm

a—t,l—0,B1

<c< ) LF155 16 (5.20)

The term E£(t) can be treated in the same way. Thus we have from (5.15), (5.19)
and (5.20) that

1
H‘Fx_ll‘lex yt,l—o,B— 1_C(1+7)< ) [[fe]](xryllg (5-21)
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By using (5.15), (3.2), (6.18) and (5.21), we arrive at
HHefe(t) _Hefe (S) DC—’Yt,l—U',ﬁ—l

ce(ie]) () 0r

Recalling (5.14), we have from this that

155551 <C (142 ) (i + DT )

For $>5/2 and | > ¢, we have from this and (3.12) that

w,y,1—0,B, rt+ [[fe]] a1, :3)

[[Hefe]]p('ylﬁ 1+||H€f€

<c(1+2) (el

We will make use of the smoothing property of K in (2.4) to recover the loss of the
p-weight. Notice that

t 6
FeHEfE() = / plt=sD)A°(k) o 2 Afe(sl)dsl

+ / (t=s1)A K]-"XHG F€(s1)ds,. (5.23)
We first estimate the first part of (5.23). One has

t ~ ~ s A€ >
/eslAe(k)QoéAfe(t—Sl)dsl—/ 14 (k)QOEAfe(S_Sl)dsl
0 0
t ~ ~
:/ eS1A€(k)QO%Af€(t—S1)dsl
5

s A 1 -~
+/0 e14 (k)QOEA(fe(t_Sl)_fe(s_sl))dsl
=I5+ 1.

w,yl—0o,B-1,1

/’)//l (% ﬁ T+ [[fe]] ,')/,l ﬁ) (5.22)

(5.24)
For the term I5, for 1 € (0,1], we have from (5.12) that

tA ~
‘ ]-"x_l/ eSlAe(k)QoéAfe(t—sl)dsl
S

<Csup / V(P)

<c( ) i

a—t,l—0,p

dsy sup HA QOAf S1 H

a—ysy,l—0,
0<s, <t r511=0p

/'Y/l _U/,B/T'
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For the term I, we have from (5.12) and (5.14) that

i

<csup/ HA "QOA(FE(t=51) = FE(5=51)) |y (1ey) 1o p 51

c 511/ t—s e
<C[[f ,%lﬁsup/ <E) ds <C( ) [[f oc'y,l,B

We then estimate the second part of (5.23). One has

5 1, T
F [ et (")Qo—A(fe(t—sl)—fe(s—sl))dsl

x—ytl—o,p

t ~c 5 Te
/ S14 (k)%K}“xHefe(t_sl)dsl—/ ¢4 (k%K}—xHefe(s—sl)dsl
0 0
t G
:/ 514 (k)%K}“XHefe(t—sl)dsl
S

+ / Se513€<k>%K;€x(H€ fé(t—s1)—HEf¢(s—s1))ds. (5.25)
0

We denote the terms in (5.25) by I; and Ig. For the term I7, we have from (2.4) and
(5.12) that

t G
Hf;l e51A (k%K}"xHefe(t—sl)dsl

a—ytl—0o,pB

<c/ VOe—d51 sup ||Hef<(s1)]|

0<s, <t

<C(22) IH oo

For the term Ig, we have from (2.4) and (5.13) that

x—ys1,l—0,p—1

H];-x—l/Seslﬁ€(k)%K]:x(Hefe(t_sl)_Hefe(s_sl»dsl
0

a—t,l—0,B
S s
§C/ e_VO%%HHefe(t—sl)—Hefe(s—sl)H dsq
0
s
€ € — 611 t—s
<C[[Hf]],7,l/3 ]7/ e 0 e<s—sl> dsq

<c< ) [HEFIEE g

a—y(t=s1)l—0,p—1
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By using (5.23)-(5.25) and the above estimates, we arrive at
[HEFE(8) = HE fE(5) la—yt, 10,
<C(22) (I It IHF
It follows from this and (5.14) that
H £ 5 < C (1 o et LTS g P Lo e H T FTES )
This and (3.16) imply
[HEFIT0 o | HE
<C(I£1l, et IHFT sy )

By using (5.22) and (5.23), for 57 € (0,1), we iterate this successively in the finite
times to get the estimate in this lemma. The proof is complete. O

w,y,l—0o,B— 1’],T+[[H€f€]] a,,1,8— ;7)

w,y,l—0,B,T
1— UﬁT—i_[[fe]]p( 'Y’ ﬁ+||H€f€

Recalling (4.2), for any p>7/2 and | > with 0 €(0,1), we assume that

P57, = sup () 1) laroiop1<C.  (526)

O<e'<e0<s<T

Lemma 5.3. Assume that (5.26) holds. Recalling (3.3), one has
1
[Hefeliﬁﬁ,ﬁ-léc(H;) Lyt pa 6-27)
Proof. For 0<j<4 and t € [0,7], we have from (3.6), (3.2), (5.13) and Theorem 2.1
that
eI (A k)0 (14 |p)P 2| FoH £ (1)

<e M) [ (1< 2 e
0

(RQuAF ()] d

ks () 2 _C A
cargefem(Z) “w<(2) i

For 0 <j <4, one has from this that

[32

[H fe]jc;(; g 2< [ fe]erfrf"{, g1 (5.28)
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It follows from (3.6), (3.2) and Theorem 2.1 that
fog’fe’o
= / k<) (et <>Q<e’k)+u1(e',t—s,k))QogAﬁ%s)ds. (5.29)

For the first term in (5.29), for any f>7/2, we have from (5.13) and Theorem 2.1
that

eI (14 [K[)1=0 (14 |p| )P 2

¢ Ko R 1 e
fy (i< 2) Mo AT ()
SCe(,)<—vt)\1<|(1+|k|)l—‘7(1+|p|)ﬁ_2

V(p)

< [ (K<) e P M At Qe Qo F (s s

- E_vp gy v(p) 52 " 2 /T
Ui fye #E (5) wese(G) T

For the second term in (5.29), for any B >7/2, we have from (2.1), (5.13) and
Theorem 2.1 that

X

eI (L4 k)7 (14| pl) P2

/ <|k|< )Ul(et )Qol,/\fel(s)ds’

<Mk ['x (rk|< D) |urtet-shQuzaf @) o
)1

S (IlQoaf s H/; sy QAT ()] )ds

t oglt=s) 1 /s2\ 2
<CUFI e [ (—) as=c(5) I

Thus, by using (5.29), (5.26) and the above two estimates, we have

e
0

[Hsf<],, ;tlfﬁ » <C[fy, 5’,(17,/5—1- (5.30)

The term H{f€ can be treated in the same way. By (3.6), (5.28) and (5.30), we
arrive at

1
He U5 2 <0 (140 ) FIE pr 43D
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We will use the smoothing property of K in (2.4) again. It follows from (2.44) and
(3.3) that

n / (1=9)4°'( K]-"XHG €' (s)ds (5.32)

For the first term in (5.32), one has

e 1IK (14 k)= (14 |p|)F~!

/0 (t—s) A€’ ( Qo Afe() ‘

v(p)
Sce(tx—'ytﬂk(1+|k|)l—0(1+|p|),8—1/ e (t—S)l/ }/?
0

“1QuAFE (s) |ds

q

T, t g g v(p) (8 E £\ ,
<CUTgp e TIEEG) wsc(s) P
For the second term in (5.32), one has from (2.4) that

t e’ A,
oI 1) = (1 )| [t L (o)

t Y !
< Cel K (14 |k| )17 / e—e—(f’(f—sgufoe 7€ (s) ds
0

Hﬁ—l—n

g
2

tz €,T,0
=¢ ( ) Hf] vl p=1=1"
Thus, by using (5.32) and the above two estimates, we arrive at

S L p1 < ULy gt CIH S T g1y

Noticing that 7 € (0,1], we iterate the above estimate in finite times to get

HE f it p-1 = CU Tt poa TCIH Ny pooe

Combining this and (5.31), we deduce the desired estimate. This completes the
proof of the lemma. O

Proof of Theorem 1.2. For any €y >0 small enough and f = f¢ with the limit f°, we
introduce the norm

1=

gt sup {IF =1 AT} 639

0<e<eg
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As in (3.20), we define the nonlinear map N¢ by
Ne[fe) () =e" fo+ HEATT (£, f°). (5.34)

For any 0<s <t <t and ¢ >3, we have from (3.18) that

|A~H (T (u(t),0 ()) T (u(s),0(s) ))Ha 7t€/3
(t)—u(s

= [ATH T (ult) = uls),o(t) =T (uls),0(t) =0(5) ) [y 5115
< Cllu(t) —u(s)|la- ~,t£/z|| ()er—yt,é,/s
+Cllo(8) —o(s)lla—yr,epllu(s) la—rtep- (5.35)
For any [ >3+0, by using (5.14) and (5.35), we arrive at
(AT F] 15 S Clf Nari-op e LIRS 1 (5.36)

Note that QoI'(f¢,f€) =T(f¢,f¢). By using Lemma 5.2, (5.14), (3.18) and this, one
has

[HEATIT(fS, fe)]]mz/z
<0 (142 ) (I8 TG it (AT T )
<0 (142 ) (1o Iflani-ee LT )

It follows from Lemma 5.1 that
¢ fol 4.7 1 5, < Coll follasp-

Since f = f€ ¢ ng ! with the limit 19,
175 =Flly

[¢,7]) < ||f||zx,’y,l,/3—1,~[

for any € >0 small enough and any ¢ > 0. Then

11y (o)) S 2 F v p-1e
for any ¢ > 0. Since f° € Yg’%l ((0,7]), as ¢— 0, one has that

HfOHYgile((O,TD SZHfH“/,)//l/,B_l/T.
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We have from (3.18) that

HA_lI‘(fe’fe) _A_lr(fo’fo) Hzx—'yt,l—(f,,B—l
< Cer _fOHtx—'yt,l—U,/S—l ||f€+f0||tx—'yt,l—a,/3—1-

By using these facts and (5.26), one has
(AT f) = AT O s SCI a1 [fE =) gy (B3D)
For any [ > 3+0, we have from (5.36) that
[ATT( O 1 s S Cl e i-a P TE (5.38)

By using Lemma 4.6(i), (3.18), (5.37) and (5.38), one has
[HeA—lr(fe fe) _HOA—lr(fO fO)] Z,;i(lf,ﬁ—l
<O (100 ) (I TGy [T AT

+ sup [A” r( fe fe)]]zx'yl,8>

O<e'<e
SC( ) (||f||a71/37+||f ,X,%l,ﬁ_lﬁ[fe_fo]igflflﬁ_l
e s L1 0p) (5.39)

O<e'<e
It follows from Lemma 4.1(ii) that
[ fo—E°(Dfo] 1 -1 < Cllfollatp-

It follows from Lemmas 3.1-3.3 that

HetBef 0 Hzx,’y,l,ﬁ,’f S

and

D‘/’Y/lrﬁ/T

1
|HEATIT(f€, £9) Htx,'y,l,/i’fg C <1+;) IAT'T(f€, £9)

gc@+%)wz

D‘/'Y/l/ﬁ/T'
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By using (5.33), (5.34) and the above estimates, we arrive at

[N ]]<C1||f0||le/3+cz(1+ )[[f]]2 (5.40)

Next we prove that N€ in (5.34) is contractive. For any f = f€ € W“/’Z’l and
h=h¢e WE’Z’Z with the limits f0 and 1%, we set G+ = G§. = f€+h€ and then their
limits are GY = f0+h°. Note that

T(f€,f€)—T(he,h€) =T (f+he, f¢—h) =T (GG ). (5.41)

By the similar arguments as in Theorem 1.1(ii), we have that A~!I'(G¢,G¢) €
W2 with the limit A~ IT(GY,GY). By using (5.41) and the similar arguments as

BT

(5.39), one has

€,T,0

[HEATIT(GS,GE) ~ H'AT'AT'T(G,GY) |

“/7/1118_1
<12 ) (IA (G G, [A'T(G,6) =2 T (GLEY) 1T
+ sup [ATT Ge
0<e’ge[[ ( )]]""YZ,B>
1
G lapipte |65 —C2 )7
+||G+ a,y,l—0,p,t SUP [[Ge]]tx'yl/s

O<el'<e

+ |G-

D‘r'Y/l_U/,BrT Sup [[G ]]Dc’ylﬁ)

O<el'<e

Here we used the fact that ||GY ||, Yl o) S ClIG[layy,1,6-1,c-
Y
By using Lemma 5.2, (5.14) and (5.35), we have

[HATIT(GS,G)], 5 18

§C<1+,),) (HA 1r Gj—'Ge )Ha,'y,l,/%~r+ [[A 1F Gi’Ge ):Hﬂé’)/lﬁ)
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1
<0 (142 ) (16 sl G- lusa gt [651 75516 i

+[[Ge]],x71,3“G+Htx'yl/37)

It follows from (3.22) that
i SC (142 )16

By using (5.41), (5.33), (56.34) and the above estimates, we arrive at

|H A™'T(GS,GE)

&,%,4,P, - D‘/’Y/l/ﬁ/T'

[N[f]— ]]<C2(1+ )[Lf h] [f +H]. (5.42)

By (5.40) and (5.42), it is clear that N¢ in (5.34) is contractive on a closed ball
{f=rc€ Zgzl | [f]<aj} provided || fols1p <ay where a and a are as in Theo-
rem 1.2. By (5.33) and (5.26), we obtain the desired estimates. This completes the
proof of Theorem 1.2. O

6 Initial layer of the solution

By Theorem 1.1(ii), the convergence is not uniform near t =0 and the initial layer
shall appear. However, if the initial data F is itself a local Maxwellian, the con-
vergence becomes uniform and the initial layer disappears. We shall prove this
in the following.

We introduce the function space

Ver ' ={f=f €25 |3 Vg (0D = Fllyan o,y 0,25 €0 (6)

/'YI /'YI

Obviously the space Vg is a subspace of W2 in (4.1) and so it is a Banach

space with the norm ||- || ,1,5,-- We readily have the following lemma.

Lemma 6.1. Let f=f°(t) € W“’g’l with the limit fO(t). Suppose that

foex¥,  sup || F (e MM FE () — fo)

0<s<t

et — 0, €t>0.

Then f€(t) € V’X”g’l if f€(t) is extended to e =0 by fO(t) for t >0 and by fo for t=0.
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Givena fye€ Xg’l, V(fo) denotes a closed subset of Vg/ o ! defined as

Vi) ={ vy | f0)=fo}. 6.2)

We now show NF€ in (3.20) maps V(fp) into itself for fy satisfying the conditions
in Theorem 1.3.

Due to the fact that fOGX“lHﬁXgl p-foOEXg’il, LfoeXg’il and fo€ D(B°).

Since d(e'B) /dt=e'B° B¢ holds on D(B¢), we have from (2.6) that

€ t € t € 1
o' fo=fo+ / &5 (—p-Vifo)ds+ / eI Lfods:= fotwi+ws.  (63)
0 0
By virtue of (4.62), we have that Lfy=—TI(fp, fo). Thus one has
t el t e 1
e_ [ (t—s)Bel _ _/ (t—s)B€ .+
w$ /0 e €Lfods A e Qoef(fo,fo)ds
By this and (3.3), we arrive at

HEAT'T(f¢ — fo, f€+ fo) = HEATIT(£6, £°) + b,
It follows from this, (3.20) and (6.3) that

NE[FE)(t) = fo+w§+H AT (€= fo, f€+ fo)- (6.4)
For the term w{, we have from (6.3) and (3.1) that
| Frwi| = ‘/ N (—ip-kfo)ds

S/o —=) K (1 k) T (14 p)) B || B F (_iﬁ'kﬁ))Htx—ys,l,ﬁ—lds
< Cte~ =M Q4 |k)) (14 |p)) "BV || Fy (_iﬁ'kﬁ))Htx,l,ﬁ—l'

This gives
Hwi Hzx—'yt,l,ﬁ_l < CtHfO Hzx,l—&—l,/&—l- (6.5)
For any p>7/2 and | >3, we have from Lemmas 3.2 and 3.3 that

[HEATIT (£~ fo.f€ + fo) Hzx—’yt,l,/%—l

1
§C<1—|——) SuP AT (f = fo £+ fo) ||, ys,1,B—1
Y/ 0<s<

1
gc(1+;) sup (14 follaysi gt £ — follacrsis1).

0<s<t
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By this and the direct calculations, we arrive at
HHeA_lr(fe —fo.f+fo) Hzx—’yt,l,/%—l

1
<c(103) 0 7l

X ( sup fo_l((e_ﬂkh—l)ﬁl) Ha,z,ﬁ—lJroiigtH]:x_l( |k‘sf€ f0 Hazﬁ 1)

0<s<t

1
<C (1+§) sup || £+ folla—ys,1,p-1

0<s<t

(t\|fo\|az+1ﬁ 1+ sup || F (e —Wklsf%s)—ﬁ)ua,l,ﬁ_l). (6.6)

0<s<t

Here we used the fact that, by (4.6)

sup || Fi (""" =1)f) 1y g1 < Ctll follas1,6-1-

0<s<t

We also have

H]:x_ 7WNG[JCG] fo)Hle,B 1
<IN = foll e pr+ 17 (€1 o) | 51
< HNG [fe](t)—foH,X_%l,/;_lJrCfoo||,x,z+1,/5—1- (6.7)

From the estimate (6.4) to (6.7), we arrive at
- —v|k|t \ye e
fo ( NI fo)H al,p—1
< CH follai1,p-1+ 1w e g1+ | HEATT (£ = fo, £+ fo) Ha—'yt,l,/%—l
1
<C <1+—) <1+ sup ||f€+f0||1x—'ys,l,/8—1>
Y 0<s<t
< (tlfollagrp1+ sup [Fot e MEFE(5) = o))
0<s<t
1
<0 (142 ) @+ I lanaprat Dollsg)

X <t||f0||uc,l+1,/3—1+ sup || Fy ! (7 f4 (5)— fo) Haz/z 1)
0<s<t
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By the similar arguments as the above, for any #; € [0,¢], we also have
H]:x_l(e_ﬂk‘tlﬁe[fe](tl)_ﬁ)) Htx,l,ﬁ—l
1
<C (1-1—;) (1+ ||f||tx,’y,l,/3—1,r+ ||f0||tx,l,,8—1)

< (oot sup |71 ETHF) o) )
0<s<t

Thus we arrive at

sup || F; (e " MENE[Fe) (1) —fo)

0<t <t a,l,p—1
1
<C (14_;) (1+ ||f pc,'y,l,,B—l,T‘i_ ||f0 pc,l,ﬁ—l)
(Aot sup 175 €T E) o))

If f=f¢€V(fo)and foe Xgi JlrlﬂXg’l, the last line in the above tends to 0 as f,
€ —07. Thus we prove that N€ in (3.20) maps V(fp) into itself if f; satisfying the
conditions in Theorem 1.3.

By Theorems 3.1 and 3.2, it is clear that N€ in (3.20) is contraction on V( fy)NZ
so that f¢(t) of Theorem 1.1 is in V(fp)NZy. This completes the proof of Theo-

rem 1.3.
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