
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 5, Number 1-2, Pages 57–65

AN OPTIMIZED CALCULATION METHOD FOR 3D-FDTD

PARALLELIZATION

JIANG XIE, ZHONGHUA ZHOU, BING HE, HUIRAN ZHANG, AND DONGBO DAI

Abstract. The finite-difference time-domain (FDTD) has been commonly used for electromagnet-
ic field simulation. However, parallelization of FDTD usually consumes large amount of memories

and very long time, especially when the target domain is in 3D space. And the communication

between calculating cores can be the bottleneck of the parallelize performance. In this paper we
propose an optimized method named Crossing Calculation Method to accelerate FDTD simu-

lation. Crossing Calculation Method can overlap the communication time which includes data

exchanging time and synchronization time between neighborhood calculating nodes. The result
shows that Crossing Calculation Method has linear speedup along with the increasing of calculat-

ing cores.

Key words. Parallel Computing, Finite-Difference Time-Domain, Crossing Calculation Method

and Communication Time Overlapping.

1. Introduction

The finite-difference time-domain (FDTD) method [1] is a popular numerical
computation method in electromagnetic field distribution analysis. Researchers
have done a lot of work to complete this method. Although some people have
promoted some absorbing boundary conditions theories [2, 3, 4] to reduce the sim-
ulation area, the simulation target area is still very large, especially when it comes
to a three-dimensional problem. The size of grid grows cubically so that the use of
memory is too large to simulate by a single computer and the computing time can
be very long. It is very important to make the simulation fast. Many researchers
have contributed a lot of useful work [6, 7, 8] on accelerating FDTD method.

Parallelization is usually used to make the simulation faster. The Message Pass-
ing Interface (MPI) [5] is a very common library for parallelization in CPU clusters.
It is very convenient to use MPI to parallel FDTD simulation on CPU [9]. Recently
GPU parallelization has become a hot issue in high performance calculation area,
researches have promoted some GPU parallelization method [10, 11, 12] and at the
same time some people have combined GPU and CPU [13, 14] to make the FDTD
simulation much more faster.

Those methods can better improve the simulation speed of FDTD, however in
the MPI based parallelization method [15, 16, 17, 18] when the calculation core
number increases the speedup increases slower because the communication time
which includes data exchanging time and synchronization time becomes a bottle-
neck. Sometimes it takes more time to communication than calculation. Figure 1
displays the speedup result of the classic parallelization method. Figure 2 shows
the percentage of the communication time.

We promote an optimized calculation method named Crossing Calculation Method
(CCM) to accelerate the parallelization. CCM overlaps the data exchanging time by
controlling the calculation nodes calculating from different directions. The experi-
ment results of our method in a CUP cluster with 160 Intel(R) Xeon(R) 2.53GHz

Received by the editors January 15, 2014 and, in revised form, March 21, 2014.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.

57



58 J. XIE, Z. ZHOU, B. HE, H. ZHANG, AND D. DAI

cores and 160 GB memory shows that CCM has linear speedup ratio along with
the increasing of calculating cores.

Figure 1. Speedup of classic FDTD parallelization method. In
this figure, with the increasing of the calculation core number the
increase rate of speedup declines. It mainly because the communi-
cation between cores becomes the bottleneck of the performance.

Figure 2. The percentage of the communication time of classic
FDTD parallelization method. In this figure, the percentage of
communication time increases as the core number increases and
sometime it even takes more than 50%.

2. CCM

2.1. FDTD Parallelization. FDTD method is easy to parallelize because the
whole calculation space region can be separated into some different small regions.
The sub regions are relative independent because only the neighboring regions share
some data. Figure 3 displays a basic architecture of the parallelization.



AN OPTIMIZED CALCULATION METHOD FOR 3D-FDTD PARALLELIZATION 59

The classic FDTD parallelization procedure of each subdomain follows the pseu-
do code below.

For time=0 to max time
From r i g h t to l e f t

Ca l cu la t e e l e c t r omagne t i c f i e l d
End
I f core index i s odd

Send the data to i t s ne ighbors
Receive data from i t s ne ighbor

Else
Receive data from i t s ne ighbor
Send the data to i t s ne ighbors

End
Synchronize u n t i l the o the r s f i n i s h data exchanging

End

During the simulation, the areas start calculating at the same time and at the
end of each time step every subdomain will share the data with their neighbors.
And this will consume some time, in addition, the computer cores are not totally
the same so that some extra work should be done t o make all the subdomains works
in the same time step. The communication time TCOM includes data exchanging
time TCX and synchronization time TCX (1). The total parallel time TPA includes
both communication time TCOM and calculating time TCAL (2).

(1) TCOM = TCX + TCS .

(2) TPA = TCOM + TCAL.

When it comes to the serial FDTD algorithm, the total simulation time TSE

only includes the calculation part TCAL2 (3). Usually, the calculating time TCAL

and data exchanging time TCX of each subdomain are always same due to the
calculation areas have the same size and the shared areas are also same in size as
it is showed in figure 3. So that TCAL is approach to TCAL2/N as the number of
subdomains is N (4). The synchronization time TCS is related to N . When N
increases the synchronization between different cores becomes more complicated so
that TCS also increases (5). Then the speedup R of the parallel method can be
generated by equation 6.

(3) TSE = TCAL2.

(4) TCAL = TCAL2/N.

(5) TCS = f(N).

(6) R = Tserial/Tparallel.

With some simple mathematical derivation we can get the final result of speedup
R from equation 7 in which R means speedup of the parallel method, N means
the core number, TCX means parallel communication time, TCS means parallel
synchronization time and TCAL means parallel calculating time.

(7) R = N/((TCX + TCS)/TCAL + 1).



60 J. XIE, Z. ZHOU, B. HE, H. ZHANG, AND D. DAI

To improve the speedup we can simply increase the calculation core number N ,
however this will also increase the denominator of equation 7. If we can reduce the
communication part of equation 7 the speedup result can be better. Than we come
out with our parallel method CCM.

Figure 3. Basic architecture of FDTD parallelization method.
The whole cubic simulation target is separated into several sub
simulation areas and the number of areas is generally equal to the
number of computer cores. Each subdomain shares the red part
with its closest area. For example, subdomain 2 shares its left
red part with subdomain 1 and sub shares its right red part with
subdomain 3.

Figure 4. Architecture of CCM. The architecture of CCM looks
the same as the basic parallel method in figure 3. However the
calculation method is different. In each time step the neighbor
subdomains calculate with different directions following the small
arrow under each subdomain. After one time loop the node can
directly continue next loop without any synchronization.

2.2. CCM Workflow. The key of CCM is that the neighbor areas calculate from
different directions so that they can exchanging data while doing calculation and
each subdomain does not have to keep in the same time step. The communication
part of equation 7 can be reduced and the speedup will increase without using
additional computer resources. Figure 4 shows the architecture of CCM.

CCM works following the pseudo code.



AN OPTIMIZED CALCULATION METHOD FOR 3D-FDTD PARALLELIZATION 61

For time=0 to max time
Begins a nonblocking r e c e i v e
I f core index i s odd

From r i g h t to l e f t
Ca l cu la t e e l e c t r omagne t i c f i e l d
I f f i n i s h shared area

Send the data to i t s ne ighbors
End

End
Else

From l e f t to r i g h t
Ca l cu la t e e l e c t r omagne t i c f i e l d
I f f i n i s h shared area

Send the data to i t s ne ighbors
End

End
End
Synchronize u n t i l the o the r s f i n i s h data exchanging

End

At the beginning of the time step, each subdomain will start a nonblocking
receiving service with the MPI Irecv function to receive data from its neighbors.
During the simulation, each area starts calculation at the same time and share
the data with their neighbors immediately after calculating the shared area. In
addition, the computer cores are not totally the same so that some extra work
should be done to make sure all the calculate cores are in the same time step.
However, it is not the same as the classic FDTD method that every subdomain
must be strictly in the same time step. For example, subdomain 1 and subdomain
2 start from different direction at the same time. Then subdomain 2 finishes the
simulation earlier. In CCM it can directly go to next time step because the shared
data of subdomain 1 in the right has already been calculated and transferred at
the first beginning by subdomain 1. However, if the simulation of subdomain 2 is
more than two steps faster than subdomain 1. Then the subdomain 2 should wait
the subdomain 1.

CCM overlaps the data exchanging time so that the TCX in equation 7 is 0 and
the speedup R can be calculated by equation 8.

(8) R = N/(TCS/TCAL + 1).

In equation 8, the speed up only related to the synchronization time when the
number of calculation cores N is constant. Because the synchronization of CCM
is not as strict as the classic parallel method, the TCS of CCM is smaller. And
theoretically, if the calculate cores and the size of the subdomains are totally the
same, TCS is always zero and the speedup R has linear increase along with the
increasing of calculating cores (9).

(9) R = N.

3. Experiment

In this section, we will introduce several experiments between the classic FDTD
parallelization method and CCM. We assume that the simulation area is in the
vacuum with a single source in the center of the area. Different area has different



62 J. XIE, Z. ZHOU, B. HE, H. ZHANG, AND D. DAI

number of grids. The size of each grid is 0.01m×0.01m×0.01m. Session 3.1 shows
the speedup and time consuming of each simulation target and session 3.2 shows the
percentage of the communication time PCOM (10) and the percentage of calculating
time PCAL can be calculated by equation 11. PCAL signifies the usage of the
computer calculating resources.

(10) PCOM = TCOM/Tparallel.

(11) PCAL = 1 − PCOM .

3.1. Speedup and Time Consuming. Figure 5 shows the speedup of the sim-
ulation of a 100×100×1000 area between the classic FDTD parallelization method
and CCM. The core numbers of each point in the figure are 1, 4, 10, 40, 80, 100
and 120.Figure 6 shows the time consuming of the simulation of a 500×500×2000
area between the classic FDTD parallelization method and CCM. Because the area
is too large to calculate by a single computer, we can only get the calculating time
of both method, the displayed value TD of time axis is calculated by equation 12
from the real time TR.

Figure 5. Speedup of the simulation of 100 × 100 × 1000 area.
When the core number is small both methods have similar speedup
and increase fast. As the core number increases the speedup of
the classic method increases slowly but the speed up of CCM still
increases fast and is nearly 2 times faster than the classic method.

(12) TD = 10Log10(TR).

3.2. Communication Time Percentage. Figure 7 shows PCOM of the simula-
tion of a 100×100×1000 area between the classic FDTD parallelization method and
CCM.Figure 8 shows PCOM of the simulation of a 500×500×2000 area between
the classic FDTD parallelization method and CCM. The result is the same as figure
7.

Figure 9 shows five different areas including 100×100×1000 , 100×100×2000 ,
200×200×2000, 500×500×1000 and 500×500×2000 simulation result between the



AN OPTIMIZED CALCULATION METHOD FOR 3D-FDTD PARALLELIZATION 63

Figure 6. Time consuming of the simulation area with 500×500×
2000. As the increase of the core number CCM always has better
performance than the classic parallelization method.

Figure 7. PCOM of the simulation area of 100×100×1000. When
the core number is less than 40 both methods have very little per-
centage and the PCOM of CCM is nearly 0. When the core number
increases, PCOM of CCM is less than classic method and in some
conditions PCOM of classic method even takes more than 50%.

classic FDTD parallelization method and CCM. The core number of each simulation
is 120.

4. Conclusion

As an optimized parallelization FDTD method, CCM has some advantages than
the classic method.

CCM does not need to strictly keep each subdomain in the same time step. As
the share data can be exchanged while calculating, when a subdomain finishes one
time step calculation it can go directly to the next time step.



64 J. XIE, Z. ZHOU, B. HE, H. ZHANG, AND D. DAI

Figure 8. PCOM of the simulation area with 500 × 500 × 2000.

Figure 9. PCOM of the simulation with 120 cores. PCOM of the
classic method is always very large and more than 50% and PCOM

of CCM is always less than 30%.

CCM has higher speedup than the classic method. From experiment result we
can find that CCM works much faster than the classic method as the speedup is
nearly twice higher than the classic method and when the number of cores increases
the speedup still has linear increase.

CCM has better performance in computing resource usage. PCOM of CCM is
always smaller.

Acknowledgments

This research is partially supported by the Specialized Research Fund for the
Doctoral Program of Higher Education [SRFDP 20113108120022], the Key Project



AN OPTIMIZED CALCULATION METHOD FOR 3D-FDTD PARALLELIZATION 65

of Science and Technology Commission of Shanghai Municipality [No. 11510500300],
and the Major Research Plan of NSFC [No. 91330116].

References

[1] Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations
in isotropic media. Antennas and Propagation, IEEE Transactions on, 14(3): 302-307(1966).

[2] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-

domain electromagnetic-field equations[J]. Electromagnetic Compatibility, IEEE Transaction-
s on, 1981 (4): 377-382(1981).

[3] Sacks Z S, Kingsland D M, Lee R, et al. A perfectly matched anisotropic absorber for use
as an absorbing boundary condition[J]. Antennas and Propagation, IEEE Transactions on,

43(12): 1460-1463(1995).

[4] Gedney S D. An anisotropic perfectly matched layer-absorbing medium for the trunca-
tion of FDTD lattices[J]. Antennas and Propagation, IEEE Transactions on, 44(12): 1630-

1639(1996).

[5] Gropp W, Lusk E, Doss N, et al. A high-performance, portable implementation of the MPI
message passing interface standard[J]. Parallel computing, 22(6): 789-828(1996).

[6] Srinivasan K, Engin E, Swaminathan M. Fast FDTD simulation of multiscale 3D models

using laguerre-MNA. Signal Propagation on Interconnects. SPI 2007. IEEE Workshop on.
IEEE, 2007: 141-144(2007).

[7] Sandeep S, Gasiewski A J. Electromagnetic analysis of radiometer calibration targets using

dispersive 3d FDTD. Antennas and Propagation, IEEE Transactions on, 60(6): 2821-2828
(2012).

[8] Miskiewicz M N, Bowen P T, Escuti M J. Efficient 3D FDTD analysis of arbitrary birefringent
and dichroic media with obliquely incident sources. SPIE OPTO. International Society for

Optics and Photonics: 82550W-82550W-10 (2012).

[9] Millington T M, Cassidy N J. Optimising GPR modelling: A practical, multi-threaded ap-
proach to 3D FDTD numerical modelling. Computers and Geosciences, 36(9): 1135-1144

(2010).

[10] Kim K H, Kim K H, Park Q H. Performance analysis and optimization of three-dimensional
FDTD on GPU using roofline model. Computer Physics Communications, 182(6): 1201-1207

(2011).

[11] Kim K H, Park Q H. Overlapping computation and communication of three-dimensional
FDTD on a GPU cluster. Computer Physics Communications, 183(11): 2364-2369 (2012).

[12] Shams R, Sadeghi P. On optimization of finite-difference time-domain (FDTD) computation

on heterogeneous and GPU clusters. Journal of Parallel and Distributed Computing, 71(4):
584-593 (2011).

[13] Francs J, Bleda S, Neipp C, et al. Performance analysis of FDTD applied to holographic vol-
ume gratings: Multi-core CPU versus GPU computing. Computer Physics Communications

(2012).

[14] Stefanski T P. Implementation of FDTD-compatible Green’s function on heterogeneous CPU-
GPU parallel processing system. Progress In Electromagnetics Research, 135: 297-316 (2013).

[15] D.D. Xu, H.W. Yang, The calculation of plasma reflection with parallel (FD)(TD)-T-2
method based on MPI, Optik, 124 1832-1835(2013).

[16] He Z L, Huang K, Zhang Y, et al. Study on High Performance of MPI-Based Parallel FDTD
from WorkStation to Super Computer Platform[J]. International Journal of Antennas and

Propagation, 2012 (2012).
[17] Stefaski T P, Chavannes N, Kuster N. Parallelization of the FDTD method based on the open

computing language and the message passing interface[J]. Microwave and Optical Technology
Letters, 54(3): 785-789 (2012).

[18] Qi X F, Guo L X, Tsang H. MPI-based Parallel FDTD for EM Scattering from Coated
Complex Targets[J]. Session 2AP, 255 (2010).

School of Computer Engineering and Science, Shanghai University, Shanghai SH 200444, China
E-mail : jiangx@shu.edu.cn


