
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn

Volume 5, Number 1, March 2023, 1–23 DOI:10.12150/jnma.2023.1

Dynamical Property Analysis of a Delayed
Diffusive Predator-prey Model with Fear Effect∗
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Abstract In this paper, we study a delayed diffusive predator-prey model
with fear effect and Holling II functional response. The stability of the pos-
itive equilibrium is investigated. We find that time delay can destabilize the
stable equilibrium and induce Hopf bifurcation. Diffusion may lead to Tur-
ing instability and inhomogeneous periodic solutions. Through the theory of
center manifold and normal form, some detailed formulas for determining the
property of Hopf bifurcation are presented. Some numerical simulations are
also provided.

Keywords Delay, Diffusion, Predator-prey, Turing instability, Hopf bifurca-
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1. Introduction

In recent years, reaction-diffusion models have been widely and profoundly applied
in biomathematics. Many scholars have paid attention to them and studied their
dynamics [13,14,16,25–28]. It was found that changes in population density depend
not only on time, but also on space. The predator and prey are non-homogeneous
in space. Thus, diffusion is a phenomenon that cannot be ignored. In [26], a cross-
diffusive predator-prey model with pack predation-herd behavior was considered.
Yang, Zhang and Yuan primarily investigated the Turing pattern caused by cross-
diffusion. In [16], Peng, Li and Zhang studied a toxin producing phytoplankton-
zooplankton system with prey-taxis. They mainly discussed prey-taxis induced
Turing instability and the local existence of the nonconstant positive steady state.
These papers show that diffusion may lead to Turing pattern and spatial inhomo-
geneous periodic oscillation, which are worth investigating. Motivated by them, we
also introduce diffusion terms into our model.

The purpose of this article is to investigate the stability of the positive equi-
librium, Turing instability and Hopf bifurcation of the new system. This paper is
organized as follows. In Section 2, we give a detailed description about the forma-
tion of our model. In Section 3, we analyze the stability of the positive equilibrium,
Turing instability and the existence of Hopf bifurcation. In Section 4, we study the
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property of Hopf bifurcation. In Section 5, some numerical simulations are shown.
Finally, a conclusion is presented in Section 6.

2. Model formulation

In this section, we will introduce the process of model formulation. Let us lay the
foundation for investigating the global dynamics of the system.

In the current study, a logistic equation is often used to model the growth of the
prey population in the absence of a predator. Suppose that the functional response
of predator-prey interaction is Holling type II. Then, the population densities of prey
and predator at the time T are denoted as X and Y respectively. First, consider a
two-dimensional Rosenzweig-MacArthur [18] predator-prey model with the form Ẋ = R0X(1− X

K0
)− CAXY

B+X ,

Ẏ = AXY
B+X −DY.

(2.1)

All parameters are positive and their biological meanings are shown in Table 1.

Table 1. Biological description of parameters in the paper

Parameter Definition Parameter Definition

X Prey density Y Predator density

R0 Prey intrinsic growth rate K0 Prey carrying capacity

A Maximum predation rate of predator B Half-saturation coefficient of predator

C−1 Conversion efficiency of predator D Natural mortality rate of predator

E Density restriction of predator K Fear parameter

With the development of the biomathematics, various predator-prey models have
been studied in [2, 8, 9, 11, 23, 24]. They found that the fear effect plays a crucial
role in the ecosystem. The physiological feature or behaviors of the prey population
may change due to the fear of predators, including the alteration of foraging [1],
breeding [4], inhabiting [17] and so on, which further affect their growth rate. Then,
consider the modified growth rate of the prey R0

1+KY . Moreover, the prey needs some
time to evaluate the predation risk for the perception of the dangers, and then it
makes the above changes. Hence, the fear effect does not reduce the growth of the
prey population instantaneously, but it needs time delay. Based on (2.1), Panday et
al. [15] proposed the following model and studied the permanence, local and global
stability, as well as Hopf bifurcation of this delayed differential equation Ẋ = R0

1+KY (T−T1)
X(1− X

K0
)− CAXY

B+X ,

Ẏ = AXY
B+X −DY.

(2.2)

As a matter of fact, many factors may affect the dynamics of a system such as
time delay, diffusion terms, density restriction and competition [3,6,7,10,20,21]. It is
well-known that when predator population becomes too large, a density restriction
may exist due to the intraspecific competition denoted as E. After introducing
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diffusion terms, time delay and density restriction term to model (2.2), we obtain ∂X
∂T = D1∆X + R0

1+KY (T−T1)
X(1− X

K0
)− CAXY

B+X ,

∂Y
∂T = D2∆Y + AXY

B+X −DY − EY
2.

(2.3)

Here, D1 andD2 are the diffusion coefficients of prey and predator respectively. This
model is closer to reality and better reflects natural regulation. For simplicity, the
non-dimensionalized model (2.3) is obtained by using the transformations: u = X

K0
,

v = CY
K0

and t = R0T . Then, we obtain the following model with the form

∂u(x,t)
∂t = d1∆u+ u( 1−u

1+kv(t−τ) −
αv

1+βu ), x ∈ (0, lπ), t > 0,

∂v(x,t)
∂t = d2∆v + v( αu

1+βu − γv − δ), x ∈ (0, lπ), t > 0,

ux(0, t) = vx(0, t) = 0, ux(lπ, t) = vx(lπ, t) = 0, t > 0,

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ [0, lπ], θ ∈ [−τ, 0],

(2.4)

where

α =
AK0

R0B
, β =

K0

B
, γ =

EK0

CR0
, δ =

D

R0
, k =

KK0

C
, d1 =

D1

R0
, d2 =

D2

CR0
,

and τ is the time delay. d1 and d2 are still the diffusion coefficients of prey and
predator. All parameters involved in our model are non-negative.

3. Analysis of the characteristic equations

Here, we only consider the positive equilibria of system (2.4), which are the positive
roots of u( 1−u

1+kv −
αv

1+βu ) = 0,

v( αu
1+βu − γv − δ) = 0.

(3.1)

By direct calculation, it is easy to get

v =
(α− βδ)u− δ

(1 + βu)γ
.

Hence, when δ
α−βδ < u < 1, α > βδ, v > 0 holds. From equation (3.1), we get

G(u) = s1u
4 + s2u

3 + s3u
2 + s4u+ s5 = 0, (3.2)

where

s1 = −β3γ2,

s2 = β2γ2(β − 3),

s3 = α2β(2kδ − γ) + αβ2δ(γ − kδ) + 3βγ2(β − 1)− α3k,

s4 = α2(2kδ − γ) + γ2(3β − 1) + 2αβδ(γ − kδ),
s5 = γ2 + αγδ − kαδ2.

After that, G( δ
α−βδ ) = α3γ2(α−βδ−δ)

(α−βδ)4 can be obtained. Then, we derive the following

lemma.
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Lemma 3.1. For system (2.4), when u ∈ [ δ
α−βδ , 1], the following statements are

true.

(i) (0,0) and (1,0) are two boundary equilibria.

(ii) If δ < α
β+1 , then there is at least one positive equilibrium.

(iii) If β ≤ 1 and δ < α
β+1 , then there exists one positive equilibrium.

(iv) If β > 1 and α(β−1)
β(β+1) < δ < α

β+1 , then there exists one positive equilibrium.

(v) If β > 1, δ < α(β−1)
β(β+1) and k >

(α−βδ)2(α(β−1)−β(β+1)δ)(α(β−1+βγ+β2γ)−β(β+1)δ)
α2β2(1+β)2γ2(α−βδ−δ) ,

then system (2.4) has one positive equilibrium.

Proof. Suppose u ∈ [ δ
α−βδ , 1]. Through the first equation of (3.1), we define

M1(u) = v =
1

2

(
−α+

√
α2 − 4αk(βu2 + (1− β)u− 1)

)
, (3.3)

M2(u) = v =
1

2

(
−α−

√
α2 − 4αk(βu2 + (1− β)u− 1)

)
. (3.4)

Through the second equation of (3.1), we let

J(u) = v =
(α− βδ)u− δ
γ(1 + βu)

. (3.5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

-8

-6

-4

-2

0

2

4

v

M
1

J
M

2

Figure 1. The graphs of M1(u), M2(u) and J(u) for the values α = 5, β = 1, γ = 0.6, δ = 0.4, k = 1,

and δ
α−βδ ≈ 0.0869, u ∈ [0.0869, 1]

Then, the positive equilibrium (u0, v0) is the intersection point between the
curves M1(u) and J(u) , or M2(u) and J(u) in u − v plan. Let α > βδ + δ. It is
easy to show that

M1

(
δ

α− βδ

)
=

1

2

(
−α+ α

√
1 +

4k(α− βδ − δ)
(α− βδ)2

)
> 0, M1(1) = 0,

M2

(
δ

α− βδ

)
=

1

2

(
−α− α

√
1 +

4k(α− βδ − δ)
(α− βδ)2

)
< 0, M2(1) = −α < 0,

J

(
δ

α− βδ

)
= 0, J(1) =

α− βδ − δ
γ(1 + β)

> 0, J

(
β − 1

2β

)
=
αβ − α− βδ − β2δ

βγ(1 + β)
.

(3.6)
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Figure 2. The graphs of M1(u), M2(u) and J(u) for the values α = 1.5, β = 2, γ = 0.6, δ = 0.4, k = 2.1,

and δ
α−βδ ≈ 0.5714, u ∈ [0.5714, 1]
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Figure 3. The graphs of M1(u), M2(u) and J(u) for the values α = 5, β = 2.6, γ = 0.6, δ = 0.4, k = 2.1,

and δ
α−βδ ≈ 0.1010, u ∈ [0.1010, 1]

Moreover,

M ′1(u) = − kα(1− β + 2uβ)√
α2 − 4kα(βu2 + (1− β)u− 1)

,

M ′2(u) =
kα(1− β + 2uβ)√

α2 − 4kα(βu2 + (1− β)u− 1)
,

J ′(u) =
α

γ(1 + βu)2
> 0.

(3.7)

Case 1. When β ≤ 1, we have M ′1(u) < 0 and M2(u)′ > 0. Hence, M1(u) is
monotonically decreasing, and M2(u) is monotonically increasing in [ δ

α−βδ , 1]. For

M1( δ
α−βδ ) > J( δ

α−βδ ), we know that the curves M1(u) and J(u) will intersect at

(u0, v0). Due to M2(1) < J( δ
α−βδ ), then the curves M2(u) and J(u) will not inter-

sect in [ δ
α−βδ , 1]. Thus, there exists a unique positive equilibrium. The numerical

simulation is shown in Figure 1, which completes the proof.
Case 2. When β > 1 and δ

α−βδ >
β−1
2β , from M ′1(u) = 0, we get uc = β−1

2β .

Then, M1(u) is monotonically decreasing in [ δ
α−βδ , 1]. Similar to Case 1, there exists

a unique positive equilibrium (see Figure 2).
Case 3. When β > 1 and δ

α−βδ <
β−1
2β , then M1(u) is monotonically increasing

in [ δ
α−βδ ,

β−1
2β ], and is monotonically decreasing in [β−12β , 1], and the monotonicity
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of M2(u) is opposite to M1(u). J(u) is monotonically increasing in [β−12β , 1]. Under

the condition of Lemma 3.1(v), we have J(β−12β ) < M1( δ
α−βδ ). For M1( δ

α−βδ ) >

J( δ
α−βδ ), M1(1) < J1(1) and the values of M2(u) are always less than J(u). Then,

there is only one intersection point between the curves M1(u) and J(u) for u ∈
[β−12β , 1]. Thus, system (2.4) has only one unique positive equilibrium (see Figure

3).
Next, we are going to discuss the stability of the positive equilibrium P (u0, v0).
Denote

u1(t) = u(·, t), u2(t) = v(·, t), U = (u1, u2)T ,

X = C([0, lπ],R2), and Cτ := C([−τ, 0], X).

Linearizing system (2.4) at P = (u0, v0), we have

U̇ = D∆U(t) + L(Ut). (3.8)

Here,

D =

d1 0

0 d2

 , dom(D∆) = {(u, v)T : u, v ∈ C2([0, lπ],R2), ux, vx = 0, x = 0, lπ},

and L : Cτ 7→ X is defined by

L(φt) = L1φ(0) + L2φ(−τ).

For φ = (φ1, φ2)T ∈ Cτ , with

L1 =

a1 a2

b1 b2

 , L2 =

 0 c

0 0

 ,

φ(t) = (φ1(t), φ2(t))T , φ(t)(·) = (φ1(t+ ·), φ2(t+ ·))T .

a1 :=
1− 2u0
1 + kv0

− αv0
(1 + βu0)2

, a2 :=
−αu0

1 + βu0
< 0,

b1 :=
αv0

(1 + βu0)2
> 0, b2 := −γv0 < 0, c :=

ku0(u0 − 1)

(1 + kv0)2
.

(3.9)

From Wu [22], we know that the characteristic equation of linear system (3.8) is

λy − d∆y − L(eλy) = 0, y ∈ dom(d∆), y 6= 0. (3.10)

It is obvious that the eigenvalue problem

−ϕ′′ = µϕ, x ∈ (0, lπ); ϕ′(0) = ϕ′(lπ) = 0

has eigenvalues µn = n2/l2 (n = 0, 1, · · · ) with the corresponding eigenfunction

ϕn(x) = cos
nπ

l
, n = 0, 1, · · · .

Substituting

y =

∞∑
n=0

 y1n

y2n

 cos
nπ

l



Dynamical Property Analysis of a Predator-prey Model 7

into the characteristic equation (3.10), it follows thata1 − d1n
2

l2 a2 + ce−λτ

b1 b2 − d2n
2

l2

 y1n

y2n

 = λ

 y1n

y2n

 , n = 0, 1, · · · .

Hence, the characteristic equation (3.10) is equivalent to

∆n(λ, τ) = λ2 + λAn +Bn − b1ce−λτ = 0, (3.11)

where

An = (d1+d2)
n2

l2
−a1−b2, Bn = d1d2

n4

l4
−(d1b2+d2a1)

n2

l2
+a1b2−a2b1, Cn = b1c.

Then, we make the following hypothesis

(H ) a1 + b2 < 0, a1b2 − a2b1 − b1c > 0. (3.12)

3.1. Non-delay model

When τ = 0, the characteristic equation becomes

λ2 − Tnλ+Dn = 0, n ∈ N0, (3.13)

where Tn = a1 + b2 − (d1 + d2)n
2

l2 ,

Dn = d1d2
n4

l4 − (d1b2 + a1d2)n
2

l2 + a1b2 − a2b1 − b1c,

and the eigenvalues are given by

λni (r) =
Tn ±

√
T 2
n − 4Dn

2
, n ∈ N0. (3.14)

Define the parameters

q =
d1b2 + d2a1

2d1d2
,m = (d1b2 + d2a1)2 − 4d1d2(a1b2 − a2b1 − b1c), p± = q ±

√
m

2d1d2
.

Theorem 3.1. Suppose that d1 = d2 = 0, τ = 0 and (H) hold. Then, the equilib-
rium (u0, v0) is locally asymptotically stable.

Theorem 3.2. Suppose that d1 > 0, d2 > 0, τ = 0 and (H) hold. Then, for model
(2.4), the following statements are true.

(i) If q ≤ 0, then the equilibrium (u0, v0) is locally asymptotically stable.

(ii) If q > 0, m < 0, then the equilibrium (u0, v0) is locally asymptotically stable.

(iii) If q > 0, m > 0, and there is no k ∈ N such that n2

l2 ∈ (p−, p+), then the
equilibrium (u0, v0) is locally asymptotically stable.

(iv) If q > 0, m > 0, and there is a k ∈ N such that n2

l2 ∈ (p−, p+), then the
equilibrium (u0, v0) is Turing unstable.
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Proof. By calculation, we have Tn < 0 and Dn > 0, for q ≤ 0. Therefore, all
eigenvalues have negative real parts. Then, the equilibrium (u0, v0) is locally asymp-
totically stable (statement (i) is true). Similarly, statements (i)-(iii) are also true.
If the conditions in statement (iv) hold, then there exists at least one eigenvalue
root with positive real part. Then, the equilibrium (u0, v0) is Turing unstable.

From the above analysis, we have found that β is related to the stability of the
positive equilibrium. Diffusion can induce Turing instability, which further affects
the dynamics of the system. Thus, we choose β as the bifurcation parameter and
find the propers d1 and d2 to investigate our system. Fix the following parameters

d1 = 0.001, d2 = 5, α = 5, β = 2, γ = 0.6, δ = 0.4, k = 2.1. (3.15)

Then, the equilibrium is P (u0, v0) ≈ (0.12, 0.16), and (H ) is satisfied. If β = 2,
we know that P (u0, v0) is Turing unstable (shown in Figure 4). Biologically, our
results indicate that the diffusion terms and half-saturation constant will break the
equilibrium state and lead to a spatially inhomogeneous population distribution.

Figure 4. The numerical simulations of system (2.4) with τ = 0 and the initial condition at (0.12, 0.16).
Left: component u (stable); Right: component v (stable)

3.2. Delay model

Assume that one of conditions (i-iii) in Theorem 3.2 and (H ) hold. Thus, we obtain
∆n(0, τ) = Bn − Cn = Dn > 0. Then, we have the following conclusion.

Lemma 3.2. Suppose that one of conditions (i-iii) in Theorem 3.2 and (H) hold.
Then, λ = 0 is not a root of equation (3.11) for any n ∈ N0.

Our purpose is to find the critical value of τ , so that there is a pair of simple
purely imaginary eigenvalues. Suppose that iω(ω > 0) is a root of (3.11), we have

−ω2 + iωAn +Bn − Cn(cosωτ − i sinωτ) = 0.

Then, we obtain −ω2 +Bn − Cn cosωτ = 0,

ωAn + Cn sinωτ = 0,

which leads to
ω4 + ω2(A2

n − 2Bn) +B2
n − C2

n = 0. (3.16)
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Letting z = ω2, then (3.16) becomes

z2 + z(A2
n − 2Bn) +B2

n − C2
n = 0, (3.17)

which has the roots

z± =
1

2

[
−(A2

n − 2Bn)±
√

(A2
n − 2Bn)2 − 4(B2

n − C2
n)
]
.

Provided that one of conditions (i-iii) in Theorem 3.2 and (H ) hold, we have

A2
n − 2Bn =

(
d1
n2

l2
− a1

)2

+

(
d2
n2

l2
− b2

)2

+ 2a2b1 > 0,

Bn − Cn = Dn > 0,

Bn + Cn = d1d2
n4

l4
− (d1b2 + d2a1)

n2

l2
+ a1b2 − a2b1 + b1c.

Define
S = {n ∈ N0|equation (3.17) has positive roots}. (3.18)

Then, the following lemma holds.

Lemma 3.3. Suppose that one of conditions (i-iii) in Theorem 3.2, (H) and S 6= ∅
hold. Then, (3.11) has a pair of purely imaginary roots ±iωn (n ∈ S) at

τ jn = τ0n +
2jπ

ωn
, j = 0, 1, 2, · · · , (3.19)

where

τ0n =


1
ω±n

arccos(Vcos), Vsin ≥ 0;

1
ω±n

[2π − arccos(Vcos)], Vsin < 0.
(3.20)

Vcos =
Bn − ω2

n

Cn
, Vsin =

√
C2
n − (Bn − ω2)2

Cn
(3.21)

and

ωn =

√
1

2

[
−(A2

n − 2Bn) +
√

(A2
n − 2Bn)2 − 4(B2

n − C2
n)
]
. (3.22)

Assume that λn(τ) = αn(τ)+iωn(τ) is the root of (3.11), which satisfies αn(τ jn) = 0
and ωn(τ jn) = ωn, when τ is close to τ jn. Then, we calculate the transversality
condition.

Lemma 3.4. Suppose that one of conditions (i-iii) in Theorem 3.2 and (H) hold.
Then,

α′n(τ jn) =
dλ

dτ

∣∣∣∣
τ=τjn

> 0 for n ∈ S and j ∈ N0.

Proof. Differentiating two sides of (3.11) with respect τ , we obtain(
dλ

dτ

)−1
= −2λ+An + τCne

−λτ

λCne−λτ
.
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After that,

Re

(
dλ

dτ

)−1
τ=τjn

=
A2
n − 2Bn + 2ω2

n

C2
n

=

√
(A2

n − 2Bn)2 − 4(B2
n − C2

n)

C2
n

> 0.

Thus, α′n(τ jn) > 0.
Find τ jm = τkn , for some m 6= n may occur. In this paper, we do not consider

this case. Namely, we consider

τ ∈ D := {τ jn : τ jm 6= τkn , m 6= n, m, n ∈ S, j, k ∈ N0}.

Define τ∗ = min{τ ∈ D}.

According to the above analysis, we have the following theorem.

Theorem 3.3. For system (2.4), suppose that one of conditions (i-iii) in Theorem
3.2 and (H) hold. Then, the following statements are true.

(1) If S = ∅, then the equilibrium P (u0, v0) is locally asymptotically stable for
τ ≥ 0.

(2) If S 6= ∅, τ ∈ [0, τ∗), then the equilibrium P (u0, v0) is locally asymptotically
stable, and unstable for τ > τ∗.

(3) τ = τ j0 (j ∈ N0 ) are the Hopf bifurcation values of system (2.4), and the
bifurcating periodic solutions are spatially homogeneous, which coincide with
the periodic solutions of the corresponding FDE system. When τ ∈ D/{τk0 :
k ∈ N0}, system (2.4) also undergoes a Hopf bifurcation and the bifurcating
periodic solutions are spatially non-homogeneous.

4. Direction and stability of spatial Hopf bifurca-
tion

Next, we will investigate the property of Hopf bifurcation by the theory of center
manifold and normal form [12, 19, 22]. For fixed j ∈ N0 and n ∈ S, make τ̃ = τ jn.
Let ũ(x, t) = u(x, τt) − u0 , ṽ(x, t) = v(x, τt) − v0. For convenience, we drop the
tilde. Then, system (2.4) becomes

∂u
∂t = τ

[
d1∆u+ (u+ u0)

(
1−(u+u0)

1+k(v(t−1)+v0) −
α(v+v0)

1+β(u+u0)

)]
,

∂v
∂t = τ

[
d2∆v + (v + v0)

(
α(u+u0)

1+β(u+u0)
− γ(v + v0)− δ

)]
.

(4.1)

For x ∈ (0, lπ), t > 0, suppose

τ = τ̃ + µ, u1(t) = u(·, t), u2(t) = v(·, t) and U = (u1, u2)T .

Under the phase space C1 := C([−1, 0], X), (4.1) can be written as

dU(t)

dt
= τ̃D∆U(t) + Lτ̃ (Ut) + F (Ut, µ), (4.2)

where

Lµ(φ) = µ

a1φ1(0) + a2φ2(0) + cφ2(−1)

b1φ1(0) + b2φ2(0)

 , (4.3)
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F (φ, µ) = µD∆φ+ Lµ(φ) + f(φ, µ), (4.4)

with

f(φ, µ) =(τ̃ + µ)(F1(φ, µ), F2(φ, µ))T ,

F1(φ, µ) =(φ1(0) + u0)

(
1− (φ1(0) + u0)

1 + k(φ2(−1) + v0)
− α(φ2(0) + v0)

1 + β(φ1(0) + u0)

)
− a1φ1(0)− a2φ2(0)− cφ2(−1),

F2(φ, µ) =(φ2(0) + v0)

(
α(φ1(0) + u0)

1 + β(φ1(0) + u0)
− γ(φ2(0) + v0)− δ

)
− b1φ1(0)− b2φ2(0)

respectively, for φ = (φ1, φ2)T ∈ C1.
The linear equation is

dU(t)

dt
= τ̃D∆U(t) + Lτ̃ (Ut). (4.5)

Based on [12, 19, 22], the solution of (4.2) on the center manifold is given, and
the normal form of the system (2.4) is calculated. The detailed calculation process
is shown in appendix. Finally, we obtain the following quantities, which determine
the direction and stability of bifurcating periodic orbits with the form c1(0) = i

2ωnτ̃
(g20g11 − 2|g11|2 − |g02|

2

3 ) + 1
2g21, µ2 = − Re(c1(0))

Re(λ′(τjn))
,

T2 = − 1
ωnτ̃

[Im(c1(0)) + µ2Im(λ′(τ jn))], β2 = 2Re(c1(0)).
(4.6)

Theorem 4.1. For any critical value τ jn, we have that

(i) µ2 determines the directions of the Hopf bifurcation: if µ2 > 0 (respectively
< 0), then the Hopf bifurcation is forward (respectively backward). That is,
the bifurcating periodic solutions exist for τ > τ jn (respectively τ < τ jn).

(ii) β2 determines the stability of the bifurcating periodic solutions on the center
manifold: if β2 < 0 (respectively > 0), then the bifurcating periodic solutions
are orbitally asymptotically stable (respectively unstable).

(iii) T2 determines the period of bifurcating periodic solutions: if T2 > 0 (respec-
tively T2 < 0), then the period increases (respectively decreases).

5. Numerical simulations

In order to explore the influence of time delay, we choose time delay as the bifur-
cation parameter, and some numerical simulations are presented by using Matlab.
Referring to [15], for system (2.4), choose the suitable parameters

d1 = 2, d2 = 2, α = 5, β = 1, γ = 0.6, δ = 0.4, k = 2.1. (5.1)

Then, we know that u0 ≈ 0.11, v0 ≈ 0.15, S = {0} 6= ∅ and (H ) hold. From (3.20)
and (3.22), we obtain τ∗ = τ00 ≈ 1.7455 and ω0 ≈ 0.5839. By Theorem 3.3, we find
that the equilibrium P (u0, v0) is locally asymptotically stable, when τ ∈ [0, τ∗),
which is shown in Figure 5. Then, we choose τ = 1, and the initial condition is
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(0.11, 0.15). At this moment, the predator and prey can coexist. They tend to the
interior equilibrium P (0.11, 0.15) over time. Then, we increase the delay parameter
to investigate the rich dynamics of model (2.4). By Theorem 3.3 (iii), we know
that the equilibrium P (u0, v0) will lose its stability, and Hopf bifurcation will occur,
if τ crosses τ00 . Then, the predator and prey may show oscillatory behavior. By
Theorem 4.1,

µ2 ≈ 3237.47 > 0, β2 ≈ −117.955 < 0 and T2 ≈ 121.168 > 0.

Therefore, the direction of the bifurcation is forward, and the bifurcating period
solutions are locally asymptotically stable. Moreover, the period of bifurcating
periodic solutions increases, which is shown in Figure 6. Then, we choose τ = 2,
and the initial condition is (0.11, 0.15). In this case, the predator and prey can also
coexist. However, they coexist in the way of periodic oscillation. Hence, we confirm
that time delay has an impact on the stability of the positive equilibrium. A large
delay can cause periodic oscillation in a delayed diffusive predator-prey system with
fear effect.

Figure 5. The numerical simulations of system (2.4) with τ = 1 and the initial condition at (0.11 −
0.01sin(x), 0.15 − 0.01cos(x)). Left: component u (locally asymptotically stable); Right: component v
(locally asymptotically stable)

Figure 6. The numerical simulations of system (2.4) with τ = 2 and the initial condition at (0.11 −
0.01sin(x), 0.15− 0.01cos(x)). Left: component u (stable); Right: component v (stable)

6. Conclusion

Predator-prey model has always been a hot topic in biomathematics. Fear effect
is widespread in nature. Rich dynamic behaviors appear among prey population
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due to the scarcity of predators. Diffusion may result in Turing instability and the
non-homogeneous bifurcating periodic solutions. Hence, in this paper, we analyze a
predator-prey model with diffusion terms, density restriction and fear induced time
delay.

First, the existence and stability of the positive equilibrium can be known
through the characteristic equation. The conditions which lead to the Turing in-
stability are also derived. Second, by studying the delay model and regarding time
delay as the bifurcation parameter, we get the existence conditions of Hopf bifurca-
tion based on the Hopf bifurcation theory. Next, by the theory of center manifold
and normal form, we obtain some formulas to decide the direction of bifurcation and
the stability of the bifurcating periodic solutions. In fact, Hopf bifurcation occurs,
when time delay is larger than the critical value. At this moment, predators and
prey coexist in the way of periodic oscillations. Finally, some numerical simulations
are given to illustrate the above conclusions.

7. Appendix

Here, we will investigate the property of Hopf bifurcation by the theory of center
manifold and normal form [12,19,22]. For fixed j ∈ N0 and n ∈ S, we denote τ̃ = τ jn.
Let ũ(x, t) = u(x, τt) − u0 , ṽ(x, t) = v(x, τt) − v0. For convenience, we drop the
tilde. Then, the system (2.4) becomes

∂u

∂t
= τ

[
d1∆u+ (u+ u0)

(
1− (u+ u0)

1 + k(v(t− 1) + v0)
− α(v + v0)

1 + β(u+ u0)

)]
,

∂v

∂t
= τ

[
d2∆v + (v + v0)

(
α(u+ u0)

1 + β(u+ u0)
− γ(v + v0)− δ

)]
,

(7.1)

for x ∈ (0, lπ), t > 0. Suppose

τ = τ̃ + µ, u1(t) = u(·, t), u2(t) = v(·, t) and U = (u1, u2)T .

Under the phase space C1 := C([−1, 0], X), (7.1) can be written as

dU(t)

dt
= τ̃D∆U(t) + Lτ̃ (Ut) + F (Ut, µ), (7.2)

where

Lµ(φ) = µ

a1φ1(0) + a2φ2(0) + cφ2(−1)

b1φ1(0) + b2φ2(0)

 , (7.3)

F (φ, µ) = µD∆φ+ Lµ(φ) + f(φ, µ), (7.4)

with

f(φ, µ) =(τ̃ + µ)(F1(φ, µ), F2(φ, µ))T ,

F1(φ, µ) =(φ1(0) + u0)

(
1− (φ1(0) + u0)

1 + k(φ2(−1) + v0)
− α(φ2(0) + v0)

1 + β(φ1(0) + u0)

)
− a1φ1(0)− a2φ2(0)− cφ2(−1),

F2(φ, µ) =(φ2(0) + v0)

(
α(φ1(0) + u0)

1 + β(φ1(0) + u0)
− γ(φ2(0) + v0)− δ

)
− b1φ1(0)− b2φ2(0)
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respectively, for φ = (φ1, φ2)T ∈ C1.
Discuss the linear equation

dU(t)

dt
= τ̃D∆U(t) + Lτ̃ (Ut). (7.5)

From Section 3, we know that Λn := {iωnτ̃ ,−iωnτ̃} are the characteristic values of

dz(t)

dt
= −τ̃Dn

2

l2
z(t) + Lτ̃ (zt). (7.6)

By Riesz representation theorem, there is a 2 × 2 matrix function ηn(σ, τ̃) −1 ≤
σ ≤ 0, whose elements are of bounded variation functions such that

−τ̃Dn
2

l2
φ(0) + Lτ̃ (φ) =

∫ 0

−1
dηn(σ, τ)φ(σ),

for φ ∈ C([−1, 0],R2).
Choose

ηn(σ, τ) =


τE, σ = 0,

0, σ ∈ (−1, 0),

−τF, σ = −1,

(7.7)

where

E =

a1 − d1 n
2

l2 a2

b1 b2 − d2 n
2

l2

 , F =

 0 c

0 0

 . (7.8)

Suppose that A(τ̃) is the infinitesimal generator of semigroup included by the
solutions of equation (7.6). Then, A∗ is the formal adjoint of A(τ̃) under the bilinear
pairing

(ψ, φ) = ψ(0)φ(0)−
∫ 0

−1

∫ σ

ξ=0

ψ(ξ − σ)dηn(σ, τ̃)φ(ξ)dξ

= ψ(0)φ(0) + τ̃

∫ 0

−1
ψ(ξ + 1)Fφ(ξ)dξ,

(7.9)

for φ ∈ C([−1, 0],R2), ψ ∈ C([−1, 0],R2). A(τ̃) has a pair of simple purely imag-
inary eigenvalues ±iωnτ̃ , and they are also the eigenvalues of A∗. Let P and
P ∗ be the center subspace. That is, the generalized eigenspaces of A(τ̃) and
A∗ are associated with Λn respectively. Then, P ∗ is the adjoint space of P and
dimP = dimP ∗ = 2.

We can prove that p1(σ) = (1, ξ)T eiωnτ̃σ (σ ∈ [−1, 0]), p2(σ) = p1(σ) are the
basis of A(τ̃) with Λn, and q1(r) = (1, η)e−iωnτ̃r (r ∈ [0, 1]), q2(r) = q1(r) are the
basis of A∗ with Λn, where

ξ =
b1

iωn − b2 + d2
n2

l2

, η =
−iωn + d1

n2

l2 − a1
b1

.
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Letting Φ = (Φ1,Φ2) and Ψ∗ = (Ψ∗1,Ψ
∗
2)T with

Φ1(σ) =
p1(σ) + p2(σ)

2
=

 Re
(
eiωnτ̃σ

)
Re
(
ξeiωnτ̃σ

)
=

 cos (ωnτ̃σ)

b1

(
d2n

2

l2
−b2)2+ω2

n

((d2n
2

l2 − b2) cosστ̃ωn + ωn sinστ̃ωn)

 ,

Φ2(σ) =
p1(σ)− p2(σ)

2i
=

 Im
(
eiωnτ̃σ

)
Im
(
ξeiωnτ̃σ

)
=

 sin (ωnτ̃σ)

b1

(
d2n

2

l2
−b2)2+ω2

n

(−ωn cosστ̃ωn + (d2n
2

l2 − b2) sinστ̃ωn)

 ,

for θ ∈ [−1, 0], and

Ψ∗1(r) =
q1(r) + q2(r)

2
=

 Re
(
e−iωnτ̃r

)
Re
(
ηe−iωnτ̃r

)


=

 cos (ωnτ̃ r)

d1n
2−a1l2
l2b1

cos rτ̃ωn − ωn
b1

sin rτ̃ωn

 ,

Ψ∗2(r) =
q1(r)− q2(r)

2i
=

 Im
(
e−iωnτ̃r

)
Im
(
ηe−iωnτ̃r

)


=

 − sin (ωnτ̃ r)

−ωn
b1

cos rτ̃ωn − d1n
2−a1l2
l2b1

sin rτ̃ωn

 ,

for r ∈ [0, 1], by (7.9), we can compute

D∗1 := (Ψ∗1,Φ1), D∗2 := (Ψ∗1,Φ2), D∗3 := (Ψ∗2,Φ1), D∗4 := (Ψ∗2,Φ2).

Let (Ψ∗,Φ) = (Ψ∗j ,Φk) =

D∗1 D∗2

D∗3 D∗4

 and

Ψ = (Ψ1,Ψ2)T = (Ψ∗,Φ)−1Ψ∗.

Then, (Ψ,Φ) = I2. Furthermore, define fn := (β1
n, β

2
n),

where

β1
n =

 cos nl x

0

 , β2
n =

 0

cos nl x

 .

We also define

c · fn = c1β
1
n + c2β

2
n, for c = (c1, c2)T ∈ C1.
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Thus, the center subspace of linear equation (7.5) is given by PCNC1 ⊕ PSC1, and
PSC1 represents the complement subspace of PCNC1 in C1,

< u, v >:=
1

lπ

∫ lπ

0

u1v1dx+
1

lπ

∫ lπ

0

u2v2dx,

for u = (u1, u2), v = (v1, v2), u, v ∈ X and < φ, f0 >= (< φ, f10 >,< φ, f20 >)T . Let
Aτ̃ be the infinitesimal generator of an analytic semigroup induced by the linear
system (7.5). Equation (7.1) becomes

dU(t)

dt
= Aτ̃Ut +R(Ut, µ), (7.10)

where

R(Ut, µ) =

0, θ ∈ [−1, 0);

F (Ut, µ), θ = 0.
(7.11)

Then, the solution is

Ut = Φ

x1

x2

 fn + h(x1, x2, µ), (7.12)

where x1

x2

 = (Ψ, < Ut, fn >)

and
h(x1, x2, µ) ∈ PSC1, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0.

In fact, the solution of (7.2) on the center manifold is given by

Ut = Φ

x1(t)

x2(t)

 fn + h(x1, x2, 0). (7.13)

Let z = x1 − ix2. Then,

Φ

x1

x2

 fn = (Φ1,Φ2)

 z+z
2

i(z−z)
2

 fn =
1

2
(p1z + p1z)fn

and

h(x1, x2, 0) = h

(
z + z

2
,
i(z − z)

2
, 0

)
.

Hence, equation (7.13) can be written in the following form

Ut =
1

2
(p1z + p1z)fn + h

(
z + z

2
,
i(z − z)

2
, 0

)
=

1

2
(p1z + p1z)fn +W (z, z),

(7.14)
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where

W (z, z) = h

(
z + z

2
,
i(z − z)

2
, 0

)
.

From [22], z satisfies

ż = iωnτ̃ z + g(z, z), (7.15)

where

g(z, z) = (Ψ1(0)− iΨ2(0)) < F (Ut, 0), fn > . (7.16)

Letting

W (z, z) = W20
z2

2
+W11zz +W02

z2

2
+ · · · , (7.17)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · , (7.18)

then, we have

ut(0) =
1

2
(z + z) cos

(nx
l

)
+W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+ · · · ,

vt(0) =
1

2
(ξz + ξz) cos

(nx
l

)
+W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+ · · · ,

ut(−1) =
1

2
(ze−iωnτ̃ + zeiωnτ̃ ) cos

(nx
l

)
+W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz

+W
(1)
02 (−1)

z2

2
+ · · · ,

vt(−1) =
1

2
(ξze−iωnτ̃ + ξzeiωnτ̃ ) cos

(nx
l

)
+W

(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz

+W
(2)
02 (−1)

z2

2
+ · · ·

and

F 1(Ut, 0) =
1

τ̃
F1 =α1u

2
t (0) + α2ut(0)vt(0) + α3ut(0)vt(−1) + α4v

2
t (−1)

+ α5u
3
t (0) + α6u

2
t (0)vt(0) + α7u

2
t (0)vt(−1)

+ α8ut(0)v2t (−1) + α9v
3
t (−1) +O(4),

(7.19)

F 2(Ut, 0) =
1

τ̃
F2 =β1u

2
t (0) + β2ut(0)vt(0) + β3v

2
t (0) + β4u

3
t (0)

+ β5u
2
t (0)vt(0) +O(4),

(7.20)

with

α1 =
αβv0

(1 + βu0)3
− 1

1 + kv0
, α2 = − α

(1 + βu0)2
, α3 =

−k + 2ku0
(1 + kv0)2

,

α4 =
k2(1− u0)u0
(1 + kv0)3

, α5 = − αβ2v0
(1 + βu0)4

, α6 =
αβ

(1 + βu0)3
, α7 =

k

(1 + kv0)2
,

α8 =
k2 − 2k2u0
(1 + kv0)3

, α9 =
k3(u0 − 1)u0
(1 + kv0)4

, β1 = − αβv0
(1 + βu0)3

, β2 =
α

(1 + βu0)2
,

β3 = −γ, β4 =
αβ2v0

(1 + βu0)4
, β5 = − αβ

(1 + βu0)3
.
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Hence,

F 1(Ut, 0) = cos2
(nx
l

)(z2
2
χ20 + zzχ11 +

z2

2
χ20

)
+
z2z

2
cos

nx

l
ς11 +

z2z

2
cos3

nx

l
ς12 + · · · ,

(7.21)

F 2(Ut, 0) = cos2
(nx
l

)(z2
2
%20 + zz%11 +

z2

2
%20

)
+
z2z

2
cos

nx

l
ς21 +

z2z

2
cos3

nx

l
ς22 + · · · ,

(7.22)

< F (Ut, 0), fn >=τ̃(F 1(Ut, 0)f1n + F 2(Ut, 0)f2n)

=
z2

2
τ̃

χ20

%20

Γ + zzτ̃

χ11

%11

Γ

+
z2

2
τ̃

χ20

%20

Γ +
z2z

2
τ̃

κ1

κ2

+ · · ·

(7.23)

with

Γ =
1

lπ

∫ lπ

0

cos3
(nx
l

)
dx,

χ20 =
1

2
(α1 + α2ξ + α3ξe

−iτ̃ωn + α4ξ
2e−2iτ̃ωn),

χ11 =
1

4

(
2α1 + α2(ξ + ξ̄) + 2α4ξξ̄ + e−iτ̃ωnα3(ξ̄e2iτ̃ωn + ξ)

)
,

ς11 = W 1
11(0)

(
2α1 + α2ξ + α3ξe

−iτ̃ωn
)

+W 2
11(−1)

(
α3 + 2α4ξe

−iτ̃ωn
)

+
1

2
W 1

20(0)
(
2α1 + α2ξ̄ + α3ξ̄e

iτ̃ωn
)

+
1

2
W 2

20(0)α2

+
1

2
W 2

20(−1)
(
α3 + 2α4ξ̄e

iτ̃ωn
)

+W 2
11(0)α2,

ς12 =
1

4
(3α5 + α6(2ξ + ξ̄) + α7(ξ̄eiτ̃ωn + 2ξe−iτ̃ωn)

+ α8(2ξξ̄ + ξ2e−2iτ̃ωn) + 3α9ξ
2ξ̄e−iτ̃ωn),

%20 =
1

2
(β1 + β2ξ + β3ξ

2),

%11 =
1

4
(2β1 + β2(ξ + ξ̄) + 2β3ξξ̄),

ς21 = W 1
11(0) (2β1 + β2ξ) +W 2

11(0) (β2 + 2β3ξ)

+
1

2
W 1

20(0)
(
2β1 + β2ξ̄

)
+

1

2
W 2

20(0)
(
β2 + 2β3ξ̄

)
,

ς22 =
1

4
(3β4 + β5(2ξ + ξ̄)),

κ1 = ς11
1

lπ

∫ lπ

0

cos2
(nx
l

)
dx+ ς12

1

lπ

∫ lπ

0

cos4
(nx
l

)
dx,

κ2 = ς21
1

lπ

∫ lπ

0

cos2
(nx
l

)
dx+ ς22

1

lπ

∫ lπ

0

cos4
(nx
l

)
dx.

(7.24)
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Denote

Ψ1(0)− iΨ2(0) := (γ1 γ2).

Finding

1

lπ

∫ lπ

0

cos3
(nx
l

)
dx = 0, n = 1, 2, 3, · · · ,

we have

(Ψ1(0)− iΨ2(0)) < F (Ut, 0), fn >=

z2

2
(γ1χ20 + γ2%20)Γτ̃ + zz(γ1χ11 + γ2%11)Γτ̃ +

z2

2
(γ1χ20 + γ2%20)Γτ̃

+
z2z

2
τ̃(γ1κ1 + γ2κ2) + · · · .

(7.25)

Then, by (7.16), (7.18) and (7.25), we have g20 = g11 = g02 = 0, for n = 1, 2, 3, · · · .
If n = 0, we have

g20 = γ1τ̃χ20 + γ2τ̃ %20, g11 = γ1τ̃χ11 + γ2τ̃ %11, g02 = γ1τ̃χ20 + γ2τ̃ %20,

and for n ∈ N0, g21 = τ̃(γ1κ1 + γ2κ2). Now, a complete description for g21 depends
on the algorithm for W20(θ) and W11(θ) for θ ∈ [−1, 0], which we shall compute.
From [22], we have

Ẇ (z, z) = W20zż +W11żz +W11zż +W02zż + · · · ,

Aτ̃W (z, z) = Aτ̃W20
z2

2
+Aτ̃W11zz +Aτ̃W02

z2

2
+ · · ·

and

Ẇ (z, z) = Aτ̃W +H(z, z),

where

H(z, z) = H20
z2

2
+W11zz +H02

z2

2
+ · · ·

= X0F (Ut, 0)− Φ(Ψ, < X0F (Ut, 0), fn > ·fn).

(7.26)

Thus, we have

(2iωnτ̃ −Aτ̃ )W20 = H20, −Aτ̃W11 = H11, (−2iωnτ̃ −Aτ̃ )W02 = H02. (7.27)

That is,

W20 = (2iωnτ̃ −Aτ̃ )−1H20, W11 = −A−1τ̃ H11, W02 = (−2iωnτ̃ −Aτ̃ )−1H02.

(7.28)
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By (7.25), for θ ∈ [−1, 0), we have

H(z, z) =− Φ(0)Ψ(0) < F (Ut, 0), fn > ·fn

=−
(
p1(θ) + p2(θ)

2
,
p1(θ)− p2(θ)

2i

)Φ1(0)

Φ2(0)

 < F (Ut, 0), fn > ·fn

=− 1

2
[p1(θ)(Φ1(0)− iΦ2(0)) + p2(θ)(Φ1(0) + iΦ2(0))] < F (Ut, 0), fn > ·fn

=− 1

2

[
(p1(θ)g20 + p2(θ)g02)

z2

2
+ (p1(θ)g11 + p2(θ)g11)zz

+(p1(θ)g02 + p2(θ)g20)
z2

2

]
+ · · · .

Therefore, by (7.26), for θ ∈ [−1, 0),

H20(θ) =

 0, n ∈ N,

− 1
2 (p1(θ)g20 + p2(θ)g02) · f0, n = 0,

H11(θ) =

 0, n ∈ N,

− 1
2 (p1(θ)g11 + p2(θ)g11) · f0, n = 0,

H02(θ) =

 0, n ∈ N,

− 1
2 (p1(θ)g02 + p2(θ)g20) · f0, n = 0,

and
H(z, z)(0) = F (Ut, 0)− Φ(Ψ, < F (Ut, 0), fn >) · fn,

where

H20(0) =


τ̃

χ20

%20

 cos2(nxl ), n ∈ N,

τ̃

χ20

%20

− 1
2 (p1(0)g20 + p2(0)g02) · f0, n = 0.

(7.29)

H11(0) =


τ̃

χ11

%11

 cos2(nxl ), n ∈ N,

τ̃

χ11

%11

− 1
2 (p1(0)g11 + p2(0)g11) · f0, n = 0.

(7.30)

By the definitions of Aτ̃ and (7.27), we have

Ẇ20 = Aτ̃W20 = 2iωnτ̃W20 +
1

2
(p1(θ)g20 + p2(θ)g02) · fn, − 1 ≤ θ < 0.

That is,

W20(θ) =
i

2iωnτ̃

(
g20p1(θ) +

g02
3
p2(θ)

)
· fn + E1e

2iωnτ̃θ,
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where

E1 =

W20(0), n = 1, 2, 3, · · · ,

W20(0)− i
2iωnτ̃

(
g20p1(θ) + g02

3 p2(θ)
)
· f0, n = 0.

By the definitions of Aτ̃ and (7.27), for −1 ≤ θ < 0, we have

−
(
g20p1(0) +

g02
3
p2(0)

)
· f0 + 2iωnτ̃E1 −Aτ̃

(
i

2ωnτ̃

(
g20p1(0) +

g02
3
p2(0)

)
· f0
)

−Aτ̃E1 − Lτ̃
(

i

2ωnτ̃

(
g20p1(0) +

g02
3
p2(0)

)
· fn + E1e

2iωnτ̃θ

)

= τ̃

χ20

%20

− 1

2
(p1(0)g20 + p2(0)g02) · f0.

As
Aτ̃p1(0) + Lτ̃ (p1 · f0) = iω0p1(0) · f0

and
Aτ̃p2(0) + Lτ̃ (p2 · f0) = −iω0p2(0) · f0,

we have

2iωnE1 −Aτ̃E1 − Lτ̃E1e
2iωn = τ̃

χ20

%20

 cos2
(nx
l

)
, n = 0, 1, 2, · · · .

That is,

E1 = τ̃E

χ20

%20

 cos2
(nx
l

)
,

where

E =

2iωnτ̃ + d1
n2

l2 − a1 −a2 − ce−2iωnτ̃

−b1 2iωnτ̃ + d2
n2

l2 − b2

−1 .
Similarly, from (7.28), we have

−Ẇ11 =
i

2ωnτ̃
(p1(θ)g11 + p2(θ)g11) · fn, − 1 ≤ θ < 0.

That is,

W11(θ) =
i

2iωnτ̃
(p1(θ)g11 − p1(θ)g11) + E2.

Similar to the procedure of computing W20, we have

E2 = τ̃E∗

χ11

%11

 cos2
(nx
l

)
,

where

E∗ =

d1
n2

l2 − a1 −a2 − c

−b1 d2
n2

l2 − b2

−1 .
Therefore, u2, β2 and T2 can be calculated.
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