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Abstract This work is concerned with the asymptotic behaviors of solutions
to a class of non-autonomous stochastic Ginzburg-Landau equations driven
by colored noise and deterministic non-autonomous terms defined on thin do-
mains. The existence and uniqueness of tempered pullback random attractors
are proved for the stochastic Ginzburg-Landau systems defined on (n + 1)-
dimensional narrow domain. Furthermore, the upper semicontinuity of these
attractors is established, when a family of (n + 1)-dimensional thin domains
collapse onto an n-dimensional domain.
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1. Introduction

In this paper, we investigate the asymptotic behavior of solutions of the following
non-autonomous stochastic Ginzburg-Landau equations driven by colored noise on
Oε with Neumann boundary conditions: for t > τ with τ ∈ R and x = (x∗, xn+1) ∈
Oε,

∂ûε

∂t
− (1 + iµ)∆ûε + ρûε = f(t, x, ûε) +G(t, x) +R(t, x, ûε)ζδ(θtω), x ∈ Oε,

∂ûε

∂νε
= 0, x ∈ ∂Oε,

(1.1)
with the initial condition

ûε(τ, x) = ûετ (x), x ∈ Oε, (1.2)
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where ûε(t, x) is a complex-valued function on R×Oε. In (1.1), i is the imaginary
unit, and µ, ρ are real constants and ρ > 0. νε is the unit outward normal vector
to ∂Oε. The so-called thin domain Oε (ε small) is given by

Oε =
{
x = (x∗, xn+1)| x∗ = (x1, x2, · · · , xn) ∈ Q, 0 < xn+1 < εg(x∗)

}
(1.3)

with 0 < ε ≤ 1 and g ∈ C2(Q, (0,+∞)), where Q is a smooth bounded domain in
Rn. Since g ∈ C2

(
Q, (0,+∞)

)
, there exist two positive constants β1 and β2 such

that

β1 ≤ g(x∗) ≤ β2, ∀ x∗ ∈ Q. (1.4)

Denote O = Q× (0, 1) and Õ = Q× (0, β2) which contain Oε for 0 < ε ≤ 1. The
nonlinearity f and the body force G satisfy some conditions, which are to be spec-
ified later. ζδ(θtω) with 0 < δ ≤ 1 is an Ornstein-Uhlenbeck (O-U) process (also
known as a colored noise).

The O-U process is a stationary Gaussian process with zero mathematical ex-
pectation, and the O-U process is the only existing Markovian Gaussian colored
noise (see, e.g. [6] and [23]). Furthermore, the O-U process is also called a col-
ored noise, because its power spectrum is not flat compared with the white noise
(see [2, 7, 9, 23–25,28,30]).

As we know, the Wiener process W can be chosen as a stochastic process to
represent the position of the Brownian particle. But the velocity of the particle
cannot be obtained from the Wiener process because of the nowhere differentiabili-
ty of the sample paths of W . However, the O-U process was originally constructed
to approximately describe the stochastic behavior of the velocity [25, 30]. Hence,
it can be further used to determine the position of the particle. Furthermore, as
demonstrated in [23], in many complex systems, stochastic fluctuations are actually
correlated. Therefore, they should be modeled by colored noise rather than white
noise.

During the study of stochastic dynamics, one of the most crucial issues arises
from the modeling of random forcing. To study such a random forcing, we need to
consider the time scale τd of the deterministic system and the time scale τr of the
random forcing. The stochastic forcing is modeled in different ways based on the
ratio of τr/τd. If τr/τd � 1, and the dynamical system is very slow with respect to
the temporal variability of its random drivers. Hence, the random forcing could be
modeled as white noise. If τr/τd ' 1, then the dynamics of the system is sensitive to
the autocorrelation of the random forcing, and therefore the random forcing should
be modeled by colored noise. Based on these considerations, the colored noise has
been used in many works to study the dynamics of physical and biological system
(see, e.g. [2, 7, 12–14,23,25,30] and the reference therein).

As ε → 0, the thin domain Oε collapses to an n-dimensional domain. In this
paper, we will see that the limiting behavior of the equation is determined by the
following system on the lower dimensional spatial domain Q: for t > τ with τ ∈ R
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and y∗ = (y1, · · · , yn) ∈ Q,

∂u0

∂t
− (1 + iµ)

1

g

n∑
i=1

(gu0yi)yi + ρu0 = f(t, y∗, 0, u0) +G(t, y∗, 0)

+R(t, x, u0)ζδ(θtω), y∗ ∈ Q,
∂u0

∂ν0
= 0, y∗ ∈ ∂Q,

(1.5)

with the initial condition

u0(τ, y∗) = u0τ (y∗), y∗ ∈ Q, (1.6)

where ν0 is the unit outward normal vector to ∂Q. Note that u0yi means ∂u0

∂yi
in

(1.5) and similar notations will be used throughout this paper.
The study of the asymptotic behavior of deterministic PDEs defined on thin

domains was first initiated by Hale and Raugel [10, 11]. Then, their results were
extended to various problems including stochastic problems (see, for instance, [1,
4, 5, 15,19–22]). However, almost all the studied stochastic equations are driven by
white noise. There are few equations driven by colored noise.

It is well-known that the Ginzburg-Landau equation is an important nonlin-
ear evolution equation, which is used to simplify mathematical models for pattern
formation in mechanics, physics and chemistry. For the deterministic Ginzburg-
Landau equation, the long-time behavior of solutions was investigated in [16,17,32].
For the stochastic Ginzburg-Landau equation, the study of the random attractor
can be found in [18, 29, 31]. In this work, we mainly focus on the dynamics of the
stochastic system (1.1) driven by colored noise and defined on the thin domain Oε
for small ε, and explore the limiting behavior of the system as ε→ 0.

The rest of the paper is organized as follows. In Section 2, we establish the
existence of a continuous cocycle in L2(O) for the stochastic equation defined on
the fixed domain O, which is converted from (1.1) and (1.2). We also describe the
existence of a continuous cocycle in L2(Q) for the stochastic equation (1.5) and
(1.6). In Section 3, we deduce all necessary uniform estimates of the solutions. In
Section 4, we prove the existence and uniqueness of tempered attractors for the
stochastic equation. In Section 5, we establish the upper semicontinuity of these
attractors.

2. Continuous Cocycles for random Ginzburg-
Landau systems

In this section, we will define a continuous cocycle for the following non-autonomous
Ginzburg-Landau systems driven by colored noise for x ∈ (x∗, xn+1) ∈ Oε

∂uε

∂t
− (1 + iµ)∆ûε + ρûε = f(t, x, ûε) +G(t, x) +R(t, x, ûε)ζδ(θtω), t > τ,

∂ûε

∂νε
= 0, x ∈ ∂Oε,

ûε(τ, x) = ûετ (x),
(2.1)
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where τ ∈ R, µ, ρ > 0 are constants, and G ∈ L2
loc(R, L∞(Õ)). ζδ(θtω)(0 < δ ≤ 1)

is an Ornstein-Uhlenbeck (O-U) process defined on the metric dynamical system
(Ω,F ,P, {θt}t∈R), where Ω = {ω ∈ C(R,R) : ω(0) = 0} is equipped with the
compact-open topology, F = B(Ω) is the Borel sigma-algebra of Ω, P is the Wiener
measure, and {θt}t∈R is the measure-preserving transformation group on Ω given

by θtω(·) = ω(·+t)−ω(t) for all (ω, t) ∈ Ω×R. In this paper, f , R : R×Õ×C→ R
are continuous functions such that for all x ∈ Õ and t, s ∈ R,

Ref(t, x, u)ū ≤ −γ|u|p + ψ1(t, x), (2.2)

∣∣∣∣∂f(t, x, u)

∂u

∣∣∣∣ ≤ β, (2.3)

∣∣∣∣∂f∂x (t, x, u)

∣∣∣∣ ≤ ψ2(t, x), (2.4)

ReR(t, x, u)ū ≤ −λ|u|q + ψ3(t, x), (2.5)

∣∣∣∣∂R∂u (t, x, u)

∣∣∣∣ ≤ κ, (2.6)

∣∣∣∣∂R∂x (t, x, u)

∣∣∣∣ ≤ ψ4(t, x), (2.7)

for u ∈ C, where p > q ≥ 2, γ, β and κ are positive constants, ψ1, ψ3∈ L1
loc(R, L∞(Õ)),

ψ2, ψ4 ∈ L2
loc(R, L∞(Õ)).

Remark 2.1. One may take f(t, x, u) = (1 + iv)|u|2σ1u and R(t, x, u) = |u|2σ2u
with 0 < σ1 < σ2, which satisfy the above conditions.

Next, we transfer problem (2.1) into the boundary value problem on the fixed do-
main O. For 0 < ε ≤ 1, we define a transformation Tε : Oε → O by Tε(x

∗, xn+1) =
(x∗, xn+1

εg(x∗) ) for x = (x∗, xn+1) ∈ Oε. Let y = (y∗, yn+1) = Tε(x
∗, xn+1). Then, we

have x∗ = y∗, xn+1 = εg(y∗)yn+1. By some calculations, we find that the Jacobian
matrix of Tε is given by

J =
∂(y1, · · · , yn+1)

∂(x1, · · · , xn+1)
=



1 0 · · · 0 0

0 1 · · · 0 0
...

0 0 · · · 1 0

−yn+1

g gy1 −
yn+1

g gy2 · · · −
yn+1

g gyn
1

εg(y∗)


.
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The determinant of J is |J | = 1
εg(y∗) . Let J∗ be the transpose of J . Then, we have

JJ∗ =



1 0 · · · 0 −yn+1

g gy1

0 1 · · · 0 −yn+1

g gy2
...

...
. . .

...
...

0 0 · · · 1 −yn+1

g gyn

−yn+1

g gy1 −
yn+1

g gy2 · · · −
yn+1

g gyn
n∑
i=1

(
yn+1

g gyi

)2
+
(

1
εg(y∗)

)2


.

It follows from [10] that the gradient operator, the Laplace operator in the original
variable x ∈ Oε and the new variable y ∈ O are related by

∇xû(x) = J∗∇yu(y) and 4xû(x) = |J |divy(|J |−1JJ∗∇yu(y)) =
1

g
divy(Pεu(y)),

where û(x) = u(y), ∇x is the gradient operator in x ∈ Oε, 4x is the Laplace
operator in x ∈ Oε, divy is the divergence operator, ∇y is the gradient operator in
y ∈ O, and Pε is the operator given by

Pεu(y) =



guy1 − gy1yn+1uyn+1

...

guyn − gynyn+1uyn+1

−
n∑
i=1

yn+1gyiuyi + 1
ε2g

(
1 +

n∑
i=1

(εyn+1gyi)
2

)
uyn+1


.

In the sequel, for x = (x∗, xn+1) ∈ Oε, y = (y∗, yn+1) ∈ O and t, s ∈ R, we
denote

uε(y) = ûε(x), f(t, x, s) = f(t, x∗, xn+1, s), f0(t, y∗, s) = f(t, y∗, 0, s),

fε(t, y
∗, yn+1, s) = f(t, y∗, ε, g(y∗)yn+1, s), Gε(t, y

∗, yn+1) = G(t, y∗, εg(y∗)yn+1),

G0(t, y∗) = f(t, y∗, 0), Rε(t, y
∗, yn+1, s) = R(t, y∗, εg(y∗)yn+1, s),

R0(t, y∗, s) = R(t, y∗, 0, s).

Then, problem (2.1) is equivalent to the following system for y = (y∗, yn+1) ∈ O
and t > τ ,

∂uε

∂t
− (1 + iµ)

1

g
divy(Pεu

ε) + ρuε = fε(t, y, u
ε) +Gε(t, y) +Rε(t, y, u

ε)ζδ(θtω),

Pεu
ε · ν = 0, y ∈ ∂O,

uε(τ, y) = uετ (y) = ûετ (T−1ε (y)),
(2.8)

where ν is the unit outward normal vector to ∂O.
To write problem (2.8) as an abstract system, we introduce an inner product

(·, ·)Hg(O) on L2(O) by

(u, v)Hg(O) =

∫
O
guv̄dy, for all u, v ∈ L2(O),
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and denote by Hg(O) the space equipped with this inner product. Since g is a
continuous function on Q, and satisfies (1.4), one can easily show that Hg(O) is a
Hilbert space with the norm equivalent to the natural norm of L2(O). For 0 < ε ≤ 1,
we introduce a bilinear form aε(·, ·) : H1(O)×H1(O)→ C given by

aε(u, v) =
(
J∗∇yu, J∗∇yv

)
Hg(O)

for u, v ∈ H1(O), (2.9)

where J∗∇yu =
(
uy1−

gy1
g yn+1uyn+1 , · · · , uyn−

gyn
g yn+1uyn+1 ,

1
εguyn+1

)
. Let H1

ε (O)

be the space H1(O) endowed with the norm

‖u‖H1
ε (O) =

(
‖u‖2H1(O) +

1

ε2
‖uyn+1

‖2L2(O)

) 1
2

. (2.10)

It yields from [10] that there exist positive constants ε0, η1 and η2 such that for all
0 < ε < ε0 and u ∈ H1(O),

η1‖u‖2H1
ε (O) ≤ aε(u, u) + ‖u‖2L2(O) ≤ η2‖u‖

2
H1
ε (O). (2.11)

Denoted by Aε, the linear self-adjoint operator is

Aεu = −1

g
divy(Pεu), u ∈ D(Aε) =

{
u ∈ H2(O) : Pεu · ν = 0 on ∂O

}
.

Then, we have

aε(u, v) = (Aεu, v)Hg(O), ∀u ∈ D(Aε), ∀v ∈ H1(O). (2.12)

Note that system (2.8) can be rewritten as
∂uε

∂t
+ (1 + iµ)Aεu

ε + ρuε = fε(t, y, u
ε) +Gε(t, y)

+Rε(t, y, u
ε)ζδ(θtω), y ∈ O, t > τ,

uε(τ) = uετ .

(2.13)

For systems (1.5)-(1.6), we introduce an inner product (·, ·)Hg(Q) on L2(Q) by

(u, v)Hg(Q) =

∫
Q
guv̄dy∗, for all u, v ∈ L2(Q),

and denote by Hg(Q) the space L2(Q) equipped with this product. Let a0(·, ·) :
H1(Q)×H1(Q)→ C be a bilinear form given by

a0(u, v) =

∫
Q
g∇u · ∇v̄dy∗.

Denoted by A0, the unbounded operator on Hg(Q) with domain D(A0) = {u ∈
H2(Q), ∂u∂ν0 = 0 on ∂Q} is defined by

A0u = −1

g

n∑
i=1

(guyi)yi , u ∈ D(A0).

Then, one has

a0(u, v) = (A0u, v)Hg(Q), ∀u ∈ D(A0), ∀v ∈ H1(Q).
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Therefore, systems (1.5)-(1.6) can be rewritten as
∂u0

∂t
+ (1 + iµ)A0u

0 + ρu0 = f0(t, y∗, u0) +G0(t, y∗)

+R0(t, y∗, u0)ζδ(θtω), y∗ ∈ Q, t > τ,

u0(τ) = u0τ .

(2.14)

For the rest of this paper, we consider the probability space (Ω,F ,P). Define
the time shift by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R. (2.15)

Then,
(
Ω,F ,P, {θt}t∈R

)
is a metric dynamical system. It follows from [3] that there

exists a {θt}t∈R-invariant subset of full measure (still denoted by Ω) such that

lim
t→±∞

ω(t)

t
= 0 for every ω ∈ Ω. (2.16)

Throughout this paper, for every ω ∈ Ω and δ ∈ (0, 1], we write

ζδ(ω) =
1

δ

∫ 0

−∞
e
s
δ dW = − 1

δ2

∫ 0

−∞
e
s
δω(s)ds. (2.17)

In addition, this process has the following properties from [8].

Lemma 2.1. For every ω ∈ Ω, the mapping t → ζδ(θtω) is continuous, and for
every 0 < δ ≤ 1,

lim
t→±∞

|ζδ(θtω)|
|t|

= 0 (2.18)

and

lim
t→±∞

1

t

∫ t

0

ζδ(θsω)ds = 0 uniformly for 0 < δ ≤ 1. (2.19)

Lemma 2.2. Let τ ∈ R, ω ∈ Ω and T > 0. Then, for every ε > 0, there exists
δ0 = δ0(τ, ω, T, ε) such that for all 0 < δ < δ0 and t ∈ [τ, τ + T ],∣∣∣∣∫ t

0

ζδ(θsω)ds− ω(t)

∣∣∣∣ < ε. (2.20)

By Lemma 2.2 and the continuity of ω, one has the following estimates imme-
diately.

Corollary 2.1. Let τ ∈ R, ω ∈ Ω and T > 0. Then, there exist δ0 = δ0(τ, ω, T )
and M = M(τ, ω, T ) > 0 such that for all 0 < δ < δ0 and t ∈ [τ, τ + T ],∣∣∣∣∫ t

0

ζδ(θsω)ds

∣∣∣∣ ≤M. (2.21)

Note that (2.13) is a deterministic equation which is parametrized by ω ∈ Ω.
By the Galerkin method, one can show that if f satisfies (2.2)–(2.4), then, for every
ω ∈ Ω, τ ∈ R and uετ ∈ L2(O), system (2.13) has a unique solution uε(·, τ, ω, uετ ) ∈
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C
(
[τ,∞), L2(O)

)
∩ L2

(
(τ, τ + T ), H1(O)

)
for every T > 0. Furthermore, one may

show that uε(t, τ, ω, uετ ) is
(
F ,B(L2(O))

)
-measure in ω ∈ Ω and continuous in uετ

with respect to the norm of L2(O). Now, we define a mapping Ψε : R+ × R ×
Ω × L2(O) → L2(O) for the problem (2.13). Given t ∈ R+, τ ∈ R, ω ∈ Ω and
uετ ∈ L2(O). Let

Ψε(t, τ, ω, u
ε
τ ) = uε(t+ τ, τ, θ−τω, u

ε
τ ). (2.22)

As stated in [26], the mapping Ψε is a continuous cocycle on L2(O) over the space(
Ω,F ,P, {θt}t∈R

)
.

Let Hε : L2(Oε)→ L2(O) be an affine mapping of the form

(Hεû(y)) = û(T−1ε y), ∀û ∈ L2(Oε).

Given t ∈ R+, τ ∈ R, ω ∈ Ω and ûετ ∈ L2(Oε), we can define a continuous cocycle
Ψ̂ε for problem (2.1) by the formula

Ψ̂ε(t, τ, ω, u
ε
τ ) = H−1ε Ψε(t, τ, ω,Hεu

ε
τ ),

where Ψε is the continuous cocycle for problem (2.13) on L2(O).
According to the arguments, it is easy to see that system (2.14) generates a

continuous cocycle Ψ0(t, τ, ω, u0τ ) in the space L2(Q). Denote Xε = L2(Oε), X0 =
L2(Q) and X1 = L2(O). For each i = ε, 0 or 1, let Di = {Di(τ, ω) : τ ∈ R, ω ∈ Ω}
be a family of nonempty subsets of Xi. Then, Di is called tempered (or subexpo-
nentially growing) if for every c > 0, the following holds:

lim
t→−∞

ect‖Di(τ + t, θtω)‖Xi = 0,

where ‖Di‖Xi = supx∈Di ‖x‖Xi . This definition is a straightforward extension of the
concept of tempered random subsets for autonomous random dynamical systems.
We also denote by Di, the collection of all families of tempered nonempty subsets
of Xi, i.e.,

Di = {Di = {Di(τ, ω) : τ ∈ R, ω ∈ Ω} : Di is tempered in Xi}.

The following condition will be needed when deriving uniform estimates of so-
lutions∫ τ

−∞
eρs
(
‖G(s, ·)‖2

L∞(Õ)
+‖ψ1(s, ·)‖L∞(Õ)+‖ψ3(s, ·)‖2

L∞(Õ)

)
ds <∞, ∀τ ∈ R.

(2.23)
When constructing tempered pullback attractors for the cocycle Ψε, we will assume
for any σ > 0 and τ ∈ R,

lim
r→−∞

eσr
∫ τ

−∞
eρs
(
‖G(s+r, ·)‖2

L∞(Õ)
+‖ψ1(s+r, ·)‖L∞(Õ)+‖ψ3(s+r, ·)‖2

L∞(Õ)

)
ds

= 0.

(2.24)

3. Uniform estimates of solutions

In this section, we derive uniform estimates of solutions for system (2.13). To get
started, we derive the estimates of solutions for problem (2.13) in Hg(O).



296 H. Lu & M. Zhang

Lemma 3.1. Assume that (2.2), (2.5) and (2.23) hold. Then, there exists ε0 > 0
such that for every 0 < ε < ε0, τ ∈ R, ω ∈ Ω and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈
D, there exists T = T (τ, ω,D1, δ) > 0, independent of ε, such that for all t ≥ T ,
the solution uε of system (2.13) with ω replaced by θ−τω satisfies

uε(τ, τ − t, θ−τω, uετ−t)‖2Hg(O) ≤ 1+M1

∫ 0

−∞
eρs
(
‖G(s+τ, ·)‖2

L∞(Õ)

+ψ1(s+τ, ·)‖L∞(Õ)+‖ψ3(s+τ, ·)‖2
L∞(Õ)

+ηδ(θsω)
)
ds

(3.1)

and∫ τ

τ−t
eρ(s−τ)

(
‖uε(s, τ−t, θ−τω, vετ−t)‖2H1

ε (O) + ‖uε(s, τ−t, θ−τω, uετ−t)‖
p
Lp(O)

)
ds

≤M2 +M2

∫ 0

−∞
eρs
(
‖G(s+τ, ·)‖2

L∞(Õ)
+‖ψ1(s+τ, ·)‖L∞(Õ)

+‖ψ3(s+τ, ·)‖2
L∞(Õ)

+ηδ(θsω)
)
ds,

(3.2)

where uετ−t ∈ D1(τ − t, θ−tω), and M1 and M2 are positive constants independent
of τ, ω, ε and D1.

Proof. Taking the inner product of (2.13) with uε in Hg(O) and taking the real
part, we obtain

d

dt
‖uε‖2Hg(O) + 2Re(1 + iµ)(Aεu

ε, uε)Hg(O) + 2ρ‖uε‖2Hg(O)

=2Re(fε(t, y, u
ε), uε)Hg(O) + 2Re(Gε(t, y), uε)Hg(O)

+ 2ζδ(θtω)Re(Rε(t, y, u
ε), uε)Hg(O).

(3.3)

For the second term on the left-hand side of (3.3), applying (2.12), one has

2Re(1 + iµ)(Aεu
ε, uε)Hg(O) = 2aε(u

ε, uε). (3.4)

For the first term on the right-hand side of (3.3), using (2.2) and (1.4), we have

2Re(fε(t, y, u
ε), uε)Hg(O) =2Re

∫
O
gf(t, y∗, εg(y∗)yn+1, u

ε)uεdy

≤− 2γ

∫
O
g|uε|pdy + 2

∫
O
gψ1(t, y∗, εg(y∗)yn+1)dy

≤− 2γβ1

∫
O
|uε|pdy + c‖ψ1(t, ·)‖L∞(Õ).

(3.5)

Applying Hölder’s inequality and Young’s inequality, the second term on the right-
hand side of (3.3) is bounded by

2Re(Gε(t, y), uε)Hg(O) ≤ 2‖Gε(t, y)‖Hg(O)‖uε‖Hg(O)

≤ 1

2
ρ‖uε‖2Hg(O) +

2

ρ
‖Gε(t, y)‖2Hg(O)
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≤ 1

2
ρ‖uε‖2Hg(O) + c‖G(t, ·)‖2

L∞(Õ)
. (3.6)

Applying (2.5), (1.4) and Young’s inequality, the last term on the right-hand side
of (3.3) is bounded by

2ζδ(θtω)Re(Rε(t, y, u
ε), uε)Hg(O)

≤ −2λζδ(θtω)

∫
O
g|uε|qdy + 2ζδ(θtω)

∫
O
gψ3(t, y∗, εg(y∗)yn+1)dy

≤ γβ1‖uε‖pp + c|ζδ(θtω)|
p
p−q + c|ζδ(θtω)|2 + c‖ψ3(t, ·)‖2

L∞(Õ)
. (3.7)

By (3.3)–(3.7), we obtain

d

dt
‖uε‖2Hg(O) +

3ρ

2
‖uε‖2Hg(O) + 2aε(u

ε, uε) + γβ1‖uε‖pp

≤ c
(
‖G(t, ·)‖2

L∞(Õ)
+ ‖ψ1(t, ·)‖L∞(Õ) + ‖ψ3(t, ·)‖2

L∞(Õ)
+ ηδ(θtω)

)
, (3.8)

where ηδ(θtω) = |ζδ(θtω)|
p
p−q + |ζδ(θtω)|2. Multiplying (3.8) by eρt and then inte-

grating the resulting inequality on (τ − t, τ) with τ ≥ 0, one has, for every ω ∈ Ω,

‖uε(τ, τ − t, ω, uετ−t)‖2Hg(O)

+ 2

∫ τ

τ−t
eρ(s−τ)aε(u

ε(s, τ − t, ω, uετ−t), uε(s, τ − t, ω, uετ−t))ds

+
1

2
ρ

∫ τ

τ−t
eρ(s−τ)‖uε(s, τ − t, ω, uετ−t)‖2Hg(O)ds

+ γβ1

∫ τ

τ−t
eρ(s−τ)‖uε(s, τ − t, ω, uετ−t)‖

p
Lp(O)ds

≤ e−ρt‖uετ−t‖2Hg(O) + ce−ρτ
∫ τ

−∞
eρs
(
‖G(s, ·)‖2

L∞(Õ)
+‖ψ1(s, ·)‖L∞(Õ)

+ψ3(s, ·)‖2
L∞(Õ)

+ ηδ(θsω)
)
ds.

(3.9)

Now, replacing ω by θ−τω in (3.9), we get

‖uε(τ, τ − t, θ−τω, uετ−t)‖2Hg(O)

+ 2

∫ τ

τ−t
eρ(s−τ)aε(u

ε(s, τ − t, θ−τω, uετ−t), uε(s, τ − t, θ−τω, uετ−t))ds

+
1

2
ρ

∫ τ

τ−t
eρ(s−τ)‖uε(s, τ − t, θ−τω, uετ−t)‖2Hg(O)ds

+ γβ1

∫ τ

τ−t
eρ(s−τ)‖uε(s, τ − t, θ−τω, uετ−t)‖

p
Lp(O)ds

≤ e−ρt‖uετ−t‖2Hg(O) + ce−ρτ
∫ τ

−∞
eρs
(
‖G(s, ·)‖2

L∞(Õ)
+ ‖ψ1(s, ·)‖L∞(Õ)

+ψ3(s, ·)‖2
L∞(Õ)

+ ηδ(θs−τω)
)
ds

≤ e−ρt‖uετ−t‖2Hg(O) + c

∫ 0

−∞
eρsηδ(θsω)ds+ c

∫ 0

−∞
eρs
(
‖G(s+ τ, ·)‖2

L∞(Õ)

+‖ψ1(s+ τ, ·)‖L∞(Õ) + ‖ψ3(s+ τ, ·)‖2
L∞(Õ)

)
ds.

(3.10)
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Note that uετ−t ∈ D1(τ− t, θ−tω) and D1 is tempered. We have e−ρt‖uετ−t‖2Hg(O) →
0, as t → ∞. Thus, there exists T = T (τ, ω,D1, δ) > 0 such that for all t ≥ T ,
e−ρt‖uετ−t‖2Hg(O) ≤ 1. Due to (2.18), the second term on the right-hand side of

(3.10) is well-defined. Then, the lemma follows immediately from (3.10) and (2.23).

As a consequence of Lemma 3.1, we obtain the following inequality which is
useful for deriving the uniform estimates of solutions in H1

ε (O).

Lemma 3.2. Assume that (2.2), (2.5) and (2.23) hold. Then, there exists ε0 > 0
such that for every 0 < ε < ε0, τ ∈ R, ω ∈ Ω and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈
D, there exists T1 = T1(τ, ω,D1, δ) ≥ 1, independent of ε, such that for all t ≥ T1,
the solution uε of system (2.13) with ω replaced by θ−τω satisfies∫ τ

τ−1

(
‖uε(s, τ−t, θ−τω, uετ−t)‖2H1

ε (O) + ‖uε(s, τ−t, θ−τω, uετ−t)‖
p
Lp(O)

)
ds

≤M3 +M3

∫ 0

−∞
eρs
(
‖G(s+τ, ·)‖2

L∞(Õ)
+‖ψ1(s+τ, ·)‖L∞(Õ)

+ψ3(s+τ, ·)‖2
L∞(Õ)

+ηδ(θsω)
)
ds,

(3.11)

where uετ−t ∈ D1(τ − t, θ−tω) and M3 is a positive constant independent of τ, ω, ε
and D1.

The following inequality is needed to deduce the uniform estimates of solutions
uε in H1

ε (O).

Lemma 3.3. Assume that (2.2)–(2.4) hold. One has, for u ∈ D(Aε),

Re(fε(t, y, u), Aεu)Hg(O) ≤M
(
aε(u, u) + ‖ψ2‖2L∞(Õ)

)
,

where M is a positive constant independent of ε.

Proof. By (2.9) and (2.12), we infer that

Re (fε(t, y, u), Aεu)Hg(O) = Re aε (fε(t, y, u), u)

= Re

n∑
i=1

∫
O

(
fεyi+fεuuyi−

gyi
g
yn+1(fεyn+1

+fεuuyn+1
)

)(
ūyi−

gyi
g
yn+1ūyn+1

)
gdy

+Re

∫
O

1

ε2g
(fεyn+1(t, y, u) + fεu(t, y, u)uyn+1)ūyn+1dy

= Re

n∑
i=1

∫
O
fεu(t, y, u)

∣∣∣∣uyi−gyig yn+1uyn+1

∣∣∣∣2 gdy
+Re

n∑
i=1

∫
O

(
fεyi(t, y, u)− gyi

g
yn+1fεyn+1

(t, y, u)

)(
ūyi −

gyi
g
yn+1ūyn+1

)
gdy

+Re

∫
O

1

ε2g
fεyn+1

(t, y, u)ūyn+1
dy +

∫
O

1

ε2g2
fεu(t, y, u)|uyn+1

|2gdy.

Together with (2.3) and (2.4), one has

Re (fε(t, y, u), Aεu)Hg(O) = Reaε (fε(t, y, u), u)
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≤ β aε(u, u) +

∫
O

1

ε2g

∣∣fεyn+1
(t, y, u)

∣∣ ∣∣uyn+1

∣∣ dy
+

n∑
i=1

∫
O

∣∣∣∣fεyi(t, y, u)− gyi
g
yn+1fεyn+1

(t, y, u)

∣∣∣∣ ∣∣∣∣uyi − gyi
g
yn+1uyn+1

∣∣∣∣ gdy
≤ β aε(u, u) +

1

2
aε(u, u) +

1

2

∫
O

1

ε2g2
|fεyn+1(t, y, u)|2gdy

+
1

2

n∑
i=1

∫
O

∣∣∣∣fεyi(t, y, u)− gyi
g
yn+1fεyn+1

(t, y, u)

∣∣∣∣2 gdy
≤
(
β +

1

2

)
aε(u, u) + c‖ψ2‖2L∞(Õ)

.

This completes the proof.

Similar to Lemma 3.3, we obtain the following lemma for the function Rε(t, y, u).

Lemma 3.4. Assume that (2.5)–(2.7) hold. One has, for u ∈ D(Aε),

Re(Rε(t, y, u), Aεu)Hg(O) ≤M
(
aε(u, u) + ‖ψ4‖2L∞(Õ)

)
,

where M is a positive constant independent of ε.

Lemma 3.5. Assume that (2.2)–(2.7) and (2.23) hold. Then, there exists ε0 > 0
such that for every 0 < ε < ε0, τ ∈ R, ω ∈ Ω and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈
D, there exists T1 = T1(τ, ω,D1, δ) ≥ 1, independent of ε, such that for all t ≥ T1,
the solution uε of system (2.13) with ω replaced by θ−τω satisfies

‖uε(τ, τ − t, θ−τω, uετ−t)‖2H1
ε (O)

≤M4 +M4

∫ 0

−∞
eρs
(
‖G(s+τ, ·)‖2

L∞(Õ)
+ ‖ψ1(s+τ, ·)‖L∞(Õ)

+ ‖ψ3(s+τ, ·)‖2
L∞(Õ)

+ ηδ(θsω) ) ds,

(3.12)

where uετ−t ∈ D1(τ − t, θ−tω), and M4 is a positive constant independent of ε.

Proof. Taking the inner product of (2.13) with Aεu
ε in Hg(O) and taking the

real part, we obtain

1

2

d

dt
aε(u

ε, uε) + ‖Aεuε‖2Hg(O) + ρ aε(u
ε, uε)

= Re(fε(t, y, u
ε), Aεu

ε)Hg(O) + Re(Gε(t, y), Aεu
ε)Hg(O)

+ ζδ(θtω)Re(Rε(t, y, u
ε), Aεu

ε)Hg(O).

(3.13)

For the first term of the right-hand side of (3.13), by Lemma 3.3, we have

Re(fε(t, y, u
ε), Aεu

ε)Hg(O) ≤ caε(uε, uε) + c‖ψ2(t, ·)‖2
L∞(Õ)

. (3.14)

For the second term of the right-hand side of (3.13), applying Young’s inequality,
we get

Re(Gε(t, y), Aεu
ε)Hg(O) ≤

1

2
‖Aεuε‖2Hg(O) +

1

2
‖Gε(t, y)‖2Hg(O)



300 H. Lu & M. Zhang

≤ 1

2
‖Aεuε‖2Hg(O) + c‖G(t, ·)‖2

L∞(Õ)
. (3.15)

For the last term of the right-hand side of (3.13), by Lemma 3.3, we deduce

ζδ(θtω)Re(Rε(t, y, u
ε), Aεu

ε)Hg(O)

≤ c |ζδ(θtω)| aε(uε, uε) + c |ζδ(θtω)| ‖ψ4(t, ·)‖2
L∞(Õ)

.
(3.16)

By (3.13)–(3.16), one has

d

dt
aε(u

ε, uε) + ‖Aεuε‖2Hg(O) + 2ρaε(u
ε, uε) ≤ c (1 + |ζδ(θtω)|) aε(uε, uε)

+ c
(
‖ψ2(t, ·)‖2

L∞(Õ)
+ |ζδ(θtω)| ‖ψ4(t, ·)‖2

L∞(Õ)
+ ‖G(t, ·)‖2

L∞(Õ)

)
,

(3.17)

which implies

d

dt
aε(u

ε, uε) ≤ c (1 + |ζδ(θtω)|) aε(uε, uε)

+ c
(
‖ψ2(t, ·)‖2

L∞(Õ)
+ |ζδ(θtω)| ‖ψ4(t, ·)‖2

L∞(Õ)
+ ‖G(t, ·)‖2

L∞(Õ)

)
.

(3.18)

Given t ∈ R+, τ ∈ R and s ∈ (τ − 1, τ), by integrating (3.18) on (s, τ), we have

aε
(
uε(τ, τ − t, ω, uετ−t), uε(τ, τ − t, ω, uετ−t)

)
≤ aε

(
uε(s, τ − t, ω, uετ−t), uε(s, τ − t, ω, uετ−t)

)
+ c

∫ τ

s

(1 + |ζδ(θξω)|) aε
(
uε(ξ, τ − t, ω, uετ−t), uε(ξ, τ − t, ω, uετ−t)

)
dξ

+ c

∫ τ

s

(
‖ψ2(ξ, ·)‖2

L∞(Õ)
+ |ζδ(θξω)| ‖ψ4(ξ, ·)‖2

L∞(Õ)
+ ‖G(ξ, ·)‖2

L∞(Õ)

)
dξ.

Now, we integrate the above with respect to s on (τ − 1, τ) to obtain

aε
(
uε(τ, τ − t, ω, uετ−t), uε(τ, τ − t, ω, uετ−t)

)
≤
∫ τ

τ−1
aε
(
uε(s, τ − t, ω, uετ−t), uε(s, τ − t, ω, uετ−t)

)
ds

+ c

∫ τ

τ−1
(1 + |ζδ(θsω)|) aε

(
uε(s, τ − t, ω, uετ−t), uε(s, τ − t, ω, uετ−t)

)
ds

+ c

∫ τ

τ−1

(
‖ψ2(ξ, ·)‖2

L∞(Õ)
+ |ζδ(θsω)| ‖ψ4(s, ·)‖2

L∞(Õ)
+ ‖G(s, ·)‖2

L∞(Õ)

)
ds.

Replacing ω by θ−τω gives

aε
(
uε(τ, τ − t, θ−τω, uετ−t), uε(τ, τ − t, θ−τω, uετ−t)

)
≤ (c1 + 1)

∫ τ

τ−1
aε
(
uε(s, τ − t, θ−τω, uετ−t), uε(s, τ − t, θ−τω, uετ−t)

)
ds

+ c2

∫ τ

τ−1

(
‖ψ2(ξ, ·)‖2

L∞(Õ)
+ ‖ψ4(s, ·)‖2

L∞(Õ)
+ ‖G(s, ·)‖2

L∞(Õ)

)
ds,

(3.19)

where c1 = c1(τ, ω) > 0 and c2 = c2(τ, ω) > 0. Together with Lemma 3.2, we obtain
the result.
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4. Existence of pullback random attractors

We establish the existence of D1-pullback attractor for the cocycle Ψε associated
with the stochastic problem (2.13) and D0-pullback attractor for the cocycle Ψ0

associated with the stochastic problem (2.14) respectively. First, we show that the
problem (2.13) has a tempered pullback absorbing set as stated below.

Lemma 4.1. Suppose that (2.2)–(2.7), (2.23) and (2.24) hold. Then, there exists
ε0 > 0 such that for every 0 < ε < ε0, the continuous cocycle Ψε associated with
problem (2.13) has a closed measurable D1-pullback absorbing set K ∈ D1 which is
given by, for every τ ∈ R and ω ∈ Ω,

K(τ, ω) =
{
uε ∈ L2(O) : ‖uε‖2L2(O) ≤ L(τ, ω)

}
,

where

L(τ, ω)= M ′ +M ′

×
∫ 0

−∞
eρs
(
‖G(s+τ, ·)‖2

L∞(Õ)
+‖ψ1(s+τ, ·)‖L∞(Õ)+‖ψ3(s+τ, ·)‖2

L∞(Õ)
+ηδ(θsω)

)
ds,

and M ′ is a positive constant independent of ε.

Proof. For uετ−t ∈ D1(τ − t, θ−tω), by Lemma 3.5, we obtain

‖uε(τ, τ − t, θ−τω, uετ−t)‖2H1
ε (O) ≤ L(τ, ω). (4.1)

Therefore, for every τ ∈ R, ω ∈ Ω and D1 ∈ D1, there exists T = T (τ, ω, δ,D1) ≥ 1,
independent of ε, such that for all t ≥ T ,

Ψε(t, τ − t, θ−tω,D1(τ − t, θ−tω)) ⊆ K(τ, ω).

Next, we prove that K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} is tempered. Let σ be an
arbitrary positive constant and consider

lim
r→−∞

eσr‖K(τ + r, θrω)‖2L2(O) ≤ lim
r→−∞

eσrL(τ + r, θrω)

= lim
r→−∞

M ′eσr + lim
r→−∞

M ′eσr
∫ 0

−∞
eρsηδ(θs+rω)ds+ lim

r→−∞
M ′eσr

∫ 0

−∞
eρsK1ds

= M ′ lim
r→−∞

eσr+M ′ lim
r→−∞

e(σ−ρ)r
∫ t

−∞
eρsηδ(θsω)ds+M ′e−ρτ lim

r→−∞
eσr
∫ τ

−∞
eρsK2ds,

where

K1 =‖G(s+τ+r, ·)‖2
L∞(Õ)

+‖ψ1(s+τ+r, ·)‖L∞(Õ)+‖ψ3(s+τ+r, ·)‖2
L∞(Õ)

,

K2 =‖G(s+r, ·)‖2
L∞(Õ)

+‖ψ1(s+τ, ·)‖L∞(Õ)+‖ψ3(s+τ, ·)‖2
L∞(Õ)

.

With (2.24) and Lemma 2.1, we deduce

lim
r→−∞

eσr‖K(τ + r, θrω)‖2L2(O) = 0.

Hence, K(τ, ω) is tempered in L2(O). On the other hand, it is evident that, for
every τ ∈ R, L(τ, ·) : Ω→ R is (F ,B(R))-measurable. Consequently, K is a closed
measurable D1-pullback absorbing set for Ψε in D1.
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Lemma 4.2. Suppose that (2.2)–(2.7) and (2.23) hold. Then, for every τ ∈ R,
ω ∈ Ω and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, the sequence Ψε(tn, τ −
tn, θ−tnω, u

ε
τ−t,n) has a convergent subsequence in L2(O), provided tn → ∞ and

uετ−t,n ∈ D1(τ − tn, θ−tnω).

Proof. First, for uετ−t ∈ D1(τ − t, θ−tω), by Lemmas 3.1, 3.2 and 3.5, there exist
T1 = T1(τ, ω,D, δ) ≥ 1 and c1(τ, ω, δ) > 0 such that for all t ≥ T1,

‖Ψε(t, τ − t, θ−tω, uετ−t)‖2H1
ε (O) ≤ c1. (4.2)

Let N1 = N1(τ, ω,D, δ) ≥ 1 be large enough such that tn ≥ T1 for n ≥ N1. Then,
by (4.2), for all n ≥ N1,

‖Ψε(tn, τ − tn, θ−tnω, uετ−tn)‖2H1
ε (O) ≤ c1. (4.3)

By the compactness of embedding H1
ε (O) ↪→ L2(O), it follows from (4.3) that there

is φ ∈ L2(O) such that, up to some subsequence,

Ψε(tn, τ − tn, θ−tnω, uετ−t,n)→ φ strongly in L2(O),

as desired.

Theorem 4.1. Suppose that (2.2)–(2.7), (2.23) and (2.24) hold. Then, there exists
ε0 > 0 such that for every 0 < ε < ε0, the continuous cocycle Ψε has a unique D1-
pullback attractor Aε = {Aε(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 in L2(O). In addition,
if G, f, ψ1, ψ2 are T -periodic with respect to t with T > 0, then the attractor Aε is
also T -periodic.

Proof. From Lemma 4.1, we know that Ψε has a closed measurable D1-pullback
absorbing setK. Applying Lemma 4.2, we get that Ψε isD1-pullback asymptotically
compact in L2(O). Hence, we obtain the existence of a unique D1-pullback attractor
for the cocycle Ψε following from [27] immediately. If G, f, ψ1, ψ2 are T -periodic
with respect to t, then the continuous cocycle Ψε and the absorbing set K are also
T -periodic, which implies the T -periodicity of the attractor.

Similar results also hold for the solutions of problem (2.14), and more precisely,
we have the following theorem.

Theorem 4.2. Suppose that (2.2)–(2.7), (2.23) and (2.24) hold. Then, the con-
tinuous cocycle Ψ0 has a unique D0-pullback attractor A0 = {A0(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D0 in L2(O). In addition, if G, f, ψ1, ψ2 are T -periodic with respect to t with
T > 0, then the attractor A0 is also T -periodic.

5. Upper-semicontinuity of random attractors

Now, we establish the upper semicontinuity of the random attractor Aε. To that
end, we first derive the uniform estimates of solutions.

Lemma 5.1. Suppose that (2.2)–(2.7) hold. Then, there exists ε0 > 0 such that
for every 0 < ε < ε0, τ ∈ R, ω ∈ Ω, T > 0 and uετ ∈ Hg(O), the solution uε of
(2.13) satisfies, for all t ∈ [τ, τ + T ],∫ t

τ

‖uε(s, τ, ω, uετ )‖2H1
ε (O)ds ≤ M̂‖u

ε
τ‖2Hg(O)
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+ M̂

∫ τ+T

τ

(
‖G(s, ·)‖2

L∞(Õ)
+‖ψ1(s, ·)‖L∞(Õ)+‖ψ3(s, ·)‖2

L∞(Õ)
+ηδ(θsω)

)
ds,

where M̂ is a positive constant independent of ε.

Proof. Multiplying (3.8) by eρt and then integrating the resulting inequality on
(τ, t), we deduce that for every ω ∈ Ω and t ∈ [τ, τ + T ],

‖uε(t, τ, ω, uετ )‖2Hg(O) + 2

∫ t

τ

eρ(s−t)aε(u
ε(s, τ, ω, uετ ), uε(s, τ, ω, uετ ))ds

+
1

2
ρ

∫ t

τ

eρ(s−t)‖uε(s, τ, ω, vετ )‖2Hg(O)ds+ γβ1

∫ t

τ

eρ(s−t)‖uε(s, τ, ω, uετ )‖pLp(O)ds

≤ e−ρ(t−τ)‖uετ‖2Hg(O)

+ c

∫ t

τ

eρ(s−t)
(
‖G(s, ·)‖2

L∞(Õ)
+ ‖ψ1(s, ·)‖L∞(Õ) + ‖ψ3(s, ·)‖2

L∞(Õ)
+ ηδ(θsω)

)
ds

≤ ‖uετ‖2Hg(O)

+ c

∫ τ+T

τ

(
‖G(s, ·)‖2

L∞(Õ)
+ ‖ψ1(s, ·)‖L∞(Õ) + ‖ψ3(s, ·)‖2

L∞(Õ)
+ ηδ(θsω)

)
ds,

(5.1)

which along with the same argument as that of Lemma 3.2 completes the proof.

Similarly, we can obtain the following estimates.

Lemma 5.2. Suppose that (2.2)–(2.7) hold. Then, for every τ ∈ R, ω ∈ Ω, T > 0
and u0τ ∈ Hg(O), the solution u0 of (2.14) satisfies, for all t ∈ [τ, τ + T ],∫ t

τ

‖u0(s, τ, ω, u0τ )‖2H1(O)ds ≤ M̂‖u
0
τ‖2Hg(O)

+ M̂

∫ τ+T

τ

(
‖G(s, ·)‖2

L∞(Õ)
+‖ψ1(s, ·)‖L∞(Õ)+‖ψ3(s, ·)‖2

L∞(Õ)
+ηδ(θsω)

)
ds,

where M̂ is a positive constant independent of ε.

Given u ∈ L2(O), and let Mu be the average function of u in yn+1 defined by

Mu =

∫ 1

0

u(y∗, yn+1)dyn+1.

The following result on the average function can be found in [10].

Lemma 5.3. If u ∈ H1(O), thenMu ∈ H1(Q) and ‖u−Mu‖Hg(O) ≤ cε‖u‖H1
ε (O),

where c is a constant, independent of ε.

In the sequel, we further assume that the functions f and G satisfy

‖fε(t, ·, s)− f0(t, ·, s)‖L2(O) ≤ ϕ1(t)ε, for all t, s ∈ R, (5.2)

‖Gε(t, ·)−G0(t, ·)‖L2(O) ≤ ϕ2(t)ε, for all t ∈ R (5.3)
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and

‖Rε(t, ·, s)−R0(t, ·, s)‖L2(O) ≤ ϕ3(t)ε, for all t, s ∈ R, (5.4)

where ϕi(t) ∈ L2
loc(R) for i = 1, 2, 3. Since L2(Q) can be embedded naturally into

L2(O) as the subspace of functions independent of yn+1, we can consider the cocycle
Ψ0 as a mapping from L2(Q) into L2(O). In this sense, we can compare Ψ0 and
Ψε.

Theorem 5.1. Suppose that (2.2)–(2.7) and (5.2)–(5.4) hold. Given τ ∈ R, ω ∈ Ω
and a positive number η̂(τ, ω), if uετ ∈ H1

ε (O) such that ‖uετ‖H1
ε (O) ≤ η̂(τ, ω), then

one has, for any t ≥ τ ,

lim
ε→0
‖Ψε(t, τ, ω, u

ε
τ )−Ψ0(t, τ, ω,Mu0τ )‖L2(O) = 0.

Proof. Taking the inner product of (2.14) with gφ, where φ ∈ H1(Q), we infer∫
Q
g
du0

dt
φ̄dy∗ + (1 + iµ)

n∑
i=1

∫
Q
gu0yi φ̄yidy

∗ + ρ

∫
Q
gu0φ̄dy∗

=

∫
Q
gf(t, y∗, 0, u0)φ̄dy∗ +

∫
Q
gG(t, y∗, 0)φ̄dy∗ + ζδ(θtω)

∫
Q
gR(t, y∗, 0, u0)φ̄dy∗.

If ξ ∈ H1(O), then
∫ 1

0
ξ(y∗, yn+1)dyn+1 ∈ H1(Q). Therefore, for any ξ ∈ H1(O),

we have(
du0

dt
, ξ

)
Hg(O)

+ (1 + iµ)

n∑
i=1

(
u0yi , ξyi

)
Hg(O)

+ ρ
(
u0, ξ

)
Hg(O)

=
(
f(t, y∗, 0, u0), ξ

)
Hg(O)

+ (G(t, y∗, 0), ξ)Hg(O) + ζδ(θtω)
(
R(t, y∗, 0, u0), ξ

)
Hg(O)

.

Since u0 is independent of yn+1, the above equality gives, for any ξ ∈ H1(O) and
0 < ε ≤ 1,(

du0

dt
, ξ

)
Hg(O)

+ (1 + iµ)aε
(
u0, ξ

)
+ ρ

(
u0, ξ

)
Hg(O)

=
(
f(t, y∗, 0, u0), ξ

)
Hg(O)

+ (G(t, y∗, 0), ξ)Hg(O)

+ ζδ(θtω)
(
R(t, y∗, 0, u0), ξ

)
Hg(O)

− (1 + iµ)

n∑
i=1

(
gyi
g
u0yi , yn+1ξyn+1

)
Hg(O)

.

(5.5)

Due to (5.5) and (2.13), one has, for any ξ ∈, H1(O)(
duε

dt
− du0

dt
, ξ

)
Hg(O)

+ (1 + iµ)aε
(
uε − u0, ξ

)
+ ρ

(
uε − u0, ξ

)
Hg(O)

=
(
fε(t, y

∗,yn+1, u
ε)−f(t, y∗, 0, u0), ξ

)
Hg(O)

+(Gε(t, y
∗, yn+1)−G(t, y∗, 0), ξ)Hg(O)

+ζδ(θtω)
(
Rε(t, y

∗, yn+1, u
ε)−R(t, y∗, 0, u0), ξ

)
Hg(O)

+(1 + iµ)

n∑
i=1

(
gyi
g
u0yi , yn+1ξyn+1

)
Hg(O)

. (5.6)
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Setting ξ = uε − u0 and then taking the real part, (5.6) becomes

1

2

d

dt
‖uε − u0‖2Hg(O) + aε

(
uε − u0, uε − u0

)
+ ρ‖uε − u0‖2Hg(O)

= Re
(
fε(t, y

∗, yn+1, u
ε)− f(t, y∗, 0, u0), uε − u0

)
Hg(O)

+Re
(
Gε(t, y

∗, yn+1)−G(t, y∗, 0), uε − u0
)
Hg(O)

+ζδ(θtω)Re
(
Rε(t, y

∗, yn+1, u
ε)−R(t, y∗, 0, u0), uε − u0

)
Hg(O)

+Re(1 + iµ)

n∑
i=1

(
gyi
g
u0yi , yn+1(uεyn+1

− u0yn+1
)

)
Hg(O)

. (5.7)

By (2.3) and (5.2), we have

Re
(
fε(t, y

∗, yn+1, u
ε)− f(t, y∗, 0, u0), uε − u0

)
Hg(O)

= Re
(
f(t, y∗, εg(y∗)yn+1, u

ε)− f(t, y∗, εg(y∗)yn+1, u
0), uε − u0

)
Hg(O)

+Re
(
f(t, y∗, εg(y∗)yn+1, u

0)− f(t, y∗, 0, u0), uε − u0
)
Hg(O)

≤ β‖uε − u0‖2Hg(O) + cεϕ2
1(t) + cε

(
‖uε‖2Hg(O) + ‖u0‖2Hg(O)

)
. (5.8)

By (5.3), we obtain

Re
(
Gε(t, y

∗, yn+1)−G(t, y∗, 0), uε − u0
)
Hg(O)

≤ ‖Gε(t, y∗, yn+1)−G(t, y∗, 0)‖Hg(O)‖uε − u0‖2Hg(O)

≤ cϕ2(t)ε‖vε − v0‖2Hg(O)

≤ cεϕ2
2(t) + cε

(
‖uε‖2Hg(O) + ‖u0‖2Hg(O)

)
. (5.9)

By (2.6) and (5.4), we deduce

ζδ(θtω)Re
(
Rε(t, y

∗, yn+1, u
ε)−R(t, y∗, 0, u0), uε − u0

)
Hg(O)

= ζδ(θtω)Re
(
R(t, y∗, εg(y∗)yn+1, u

ε)−R(t, y∗, εg(y∗)yn+1, u
0), uε − u0

)
Hg(O)

+ ζδ(θtω)Re
(
R(t, y∗, εg(y∗)yn+1, u

0)−R(t, y∗, 0, u0), uε − u0
)
Hg(O)

≤ κ‖uε − u0‖2Hg(O) + cε|ζδ(θtω)|2ϕ2
3(t) + cε|ζδ(θtω)|2

(
‖uε‖2Hg(O) + ‖u0‖2Hg(O)

)
.

(5.10)

Finally, by (2.10), we get

Re(1 + iµ)

n∑
i=1

(
gyi
g
u0yi , yn+1(uεyn+1

− u0yn+1
)

)
Hg(O)

= Re(1 + iµ)

n∑
i=1

(
gyiu

0
yi , yn+1(uεyn+1

− u0yn+1
)
)
L2(O)

≤ cε‖u0‖H1(Q)‖uε − u0‖2H1
ε (O)

≤ cε
(
‖uε‖2H1

ε (O) + ‖u0‖2H1(Q)

)
. (5.11)
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From (5.7)–(5.11), we obtain, for t ≥ τ ,

d

dt
‖uε − u0‖2Hg(O) ≤ λ‖u

ε − u0‖2Hg(O) + cε
(
‖uε‖2H1

ε (O) + ‖u0‖2H1(Q)

)
+ cε

2∑
i=1

ϕ2
i (t) + cε|ζδ(θtω)|2ϕ2

3(t) + cε(1 + |ζδ(θtω)|2)
(
‖uε‖2Hg(O)

+‖u0‖2Hg(O)

)
,

(5.12)

where λ = 2(β + κ). Multiplying (5.12) by e−λt and then integrating the resulting
inequality on (τ, t), we deduce

‖uε(t)− u0(t)‖2Hg(O)

≤ eλ(t−τ)‖uε(τ)− u0(τ)‖2Hg(O) + cε

∫ t

τ

eλ(t−s)
(
‖uε‖2H1

ε (O) + ‖u0‖2H1(Q)

)
ds

+ cε

2∑
i=1

∫ t

τ

eλ(t−s)ϕ2
i (s)ds+ cε

∫ t

τ

eλ(t−s)|ζδ(θsω)|2ϕ2
3(s)ds

+ cε

∫ t

τ

eλ(t−s)(1 + |ζδ(θsω)|2)
(
‖uε‖2Hg(O) + ‖u0‖2Hg(O)

)
ds

≤ eλ(t−τ)‖uε(τ)− u0(τ)‖2Hg(O) + cεeλ(t−τ)
∫ t

τ

(
‖uε‖2H1

ε (O) + ‖u0‖2H1(Q)

)
ds

+ cεeλ(t−τ)
2∑
i=1

∫ t

τ

ϕ2
i (s)ds+ cεeλ(t−τ) max

τ≤s≤t
|ζδ(θsω)|2

∫ t

τ

ϕ2
3(s)ds

+ cεeλ(t−τ)(1 + max
τ≤s≤t

|ζδ(θsω)|2)

∫ t

τ

(
‖uε‖2Hg(O) + ‖u0‖2Hg(O)

)
ds.

(5.13)

By Lemma 5.1 and Lemma 5.2, there exists a positive constant % = %(τ, ω, ρ, T )
such that for all t ∈ [τ, τ + T ] with T > 0,

‖uε(t)− u0(t)‖2Hg(O)

≤ eλT ‖uε(τ)− u0(τ)‖2Hg(O) + %εeλT

[
‖uετ‖2Hg(O) + ‖u0τ‖2Hg(Q)+

3∑
i=1

∫ τ+T

τ

ϕ2
i (s)ds

+

∫ τ+T

τ

(
‖G(s, ·)‖2

L∞(Õ)
+ ‖ψ1(s, ·)‖L∞(Õ) + ‖ψ3(s, ·)‖2

L∞(Õ)
+ηδ(θsω)

)
ds

]
.

(5.14)
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Utilizing Lemma 5.3 and (5.14), for all t ∈ [τ, τ + T ], we have

‖uε(t, τ, ω, uετ )− u0(t, τ, ω,Muετ )‖2Hg(O)

≤ eλT ‖uετ −Muετ‖2Hg(O) + %εeλT

[
‖uετ‖2Hg(O) + ‖Muετ‖2Hg(Q)+

3∑
i=1

∫ τ+T

τ

ϕ2
i (s)ds

+

∫ τ+T

τ

(
‖G(s, ·)‖2

L∞(Õ)
+ ‖ψ1(s, ·)‖L∞(Õ) + ‖ψ3(s, ·)‖2

L∞(Õ)
+ηδ(θsω)

)
ds

]

≤ cε2‖uετ‖2H1
ε (O) + %εeλT

[
‖uετ‖2Hg(O) + ‖Muετ‖2Hg(Q) +

3∑
i=1

∫ τ+T

τ

ϕ2
i (s)ds

+

∫ τ+T

τ

(
‖G(s, ·)‖2

L∞(Õ)
+ ‖ψ1(s, ·)‖L∞(Õ) + ‖ψ3(s, ·)‖2

L∞(Õ)
+ ηδ(θsω)

)
ds

]
.

(5.15)

By (5.14) and the assumption that ‖uετ‖H1
ε (O) ≤ η̂(τ, ω), we get the desired result.

We finally establish the upper semicontinuity of random attractors as ε→ 0.

Theorem 5.2. Suppose that (2.2)–(2.7), (2.23), (2.24) and (5.2)–(5.4) hold. Then,
for every τ ∈ R and ω ∈ Ω,

lim
ε→0

distL2(O)(Aε(τ, ω),A0(τ, ω)) = 0.

Proof. Given τ ∈ R and ω ∈ Ω, by the invariance of Aε and (4.1), there exists
ε0 > 0 such that

‖u‖2H1
ε (O) ≤ L(τ, ω) for all 0 < ε < ε0 and u ∈ Aε(τ, ω), (5.16)

where L(τ, ω) is the positive constant in (4.1) which is independent of ε. Let K =
{K(τ, ω) : τ ∈ R, ω ∈ Ω} be the D1-pullback absorbing set of Ψε obtained in
Lemma 4.1 and denote K0 = {K0(τ, ω) : τ ∈ R, ω ∈ Ω} with K0(τ, ω) = {Mu :
u ∈ K(τ, ω)}. Then, K0 is tempered in L2(Q) and hence K0 ∈ D0. Since A0 is
the D0-pullback attractor of Ψ0 in L2(Q), given η > 0, we infer that there exists
T = T (η, τ, ω) ≥ 1 such that

distL2(Q)(Ψ0(T, τ − T, θ−Tω,K0(τ − T, θ−Tω)),A0(τ, ω)) <
1

2
η. (5.17)

By the invariance of Aε(τ, ω), we obtain that for any xε ∈ Aε(τ, ω), there exists
yε ∈ Aε(τ − T, θ−Tω) such that

xε = Ψε(T, τ − T, θ−Tω, yε). (5.18)

By (5.16) and Theorem 5.1, we obtain

lim
ε→0
‖Ψε(T, τ − T, θ−Tω, yε)−Ψ0(T, τ − T, θ−Tω,Myε)‖L2(O) = 0.

Hence, there exists ε1 ∈ (0, ε0) such that for all ε < ε1,

‖Ψε(T, τ − T, θ−Tω, yε)−Ψ0(T, τ − T, θ−Tω,Myε)‖L2(O) <
1

2
η. (5.19)
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Since yε ∈ Aε(τ − T, θ−Tω) and Aε(τ − T, θ−Tω) ⊆ K(τ − T, θ−Tω), we know
Myε ∈ K0(τ − T, θ−Tω), which along with (5.17) implies

distL2(Q)(Ψ0(T, τ − T, θ−Tω,Myε),A0(τ, ω)) <
1

2
η. (5.20)

By (5.19) and (5.20), one has, for all ε < ε1,

distL2(O)(Ψε(T, τ − T, θ−Tω, yε),A0(τ, ω)) < η. (5.21)

By (5.18) and (5.21), we deduce, for all ε < ε1,

distL2(O)(xε,A0(τ, ω)) < η, for all xε ∈ Aε(τ, ω).

This indicates that for all ε < ε1,

distL2(O)(Aε(τ, ω),A0(τ, ω)) ≤ η,

as desired.
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