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Dynamical Analysis for a General Jerky Equation
with Random Excitation⇤

Diandian Tang1 and Jingli Ren1,†

Abstract A general jerky equation with random excitation is investigated in

this paper. Before introducing the random excitation term, the equation is re-

duced to a two-dimensional model when undergoing a Hopf bifurcation. Then

the model with the parametric excitation and external excitation is converted

to a stochastic di↵erential equation with singularity based on the stochas-

tic average theory. For the equation, its dynamical behaviors are analyzed

in di↵erent parameters’ spaces, including the stability, stochastic bifurcation

and stationary solution. Besides, numerical simulations are given to show the

asymptotic behavior of the stationary solution.

Keywords Jerky equation, stochastic stability, stochastic bifurcation, sta-
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1. Introduction

In the real world, the motion of objects is inevitably influenced by environmental
factors, internal structures and other unknown elements. As a result, stochastic
systems can predict the evolution of trends more precisely. Furthermore, it fosters
the development of random dynamical systems [2] that have widespread applications
in physics [15, 24,25], economics [4, 8, 12] and ecosystems [5, 9, 10, 13,17,26].

The jerky equation, which is a third-order explicit autonomous ordinary di↵er-
ential equation represented as

...
u = J(u, u̇, ü), describes the motion of objects in

terms of displacement u, velocity u̇, acceleration ü and jerk
...
u . In 1998, Eichhorn et

al., proposed seven jerky equations JD1�JD7, which encompassed nineteen impor-
tant physical chaotic frameworks (A-S) [6] and Rössler’s toroidal (TR) model [21].
Later on, Ren, Yu and Zhu, [20] performed a comprehensive dynamical analysis of
discrete-time JD1 and continuous-time JD1 with delayed feedback. Correspond-
ingly, Tang, Zhang and Ren [22] systematically investigated the following general
jerky equation that comprises JD1 � JD7

...
u = ↵0 + ↵1u+ ↵2u̇+ ↵3ü+ ↵4u

2 + ↵5u̇
2 + ↵6uu̇+ ↵7uü, (1.1)

where ↵i are the parameters, and i = 0, 1, . . . , 7. They determined precise bifurca-
tion conditions for Fold, Hopf, Zero-Hopf and Bogdanov-Takens bifurcations. The
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rich dynamical behaviors of equation (1.1) appeal us to investigate its stochastic
dynamics, when it is disturbed by the parametric and external excitations. There-
fore, we introduce a new stochastic model by incorporating noises into equation
(1.1). Before adding the stochasticity, we reduce (1.1) to a two-dimensional equa-
tion, when it undergoes Hopf bifurcation by the center manifold theory. Then we
add the parametric and external excitations to the two-dimensional equation, and
transform it into a stochastic di↵erential equation (SDE) with singularity by using
the Khasminskii limit theorem [11,23] and the stochastic averaging method [16,19].
Interestingly, we obtain a nonlinear SDE comprising a singularity term. Following
that, we discuss the stochastic stability using the singular boundary theory [14,27],
and prove that the SDE without singularity undergoes the stochastic D-bifurcation
and stochastic P -bifurcation [3,7,18]. Furthermore, we calculate the stationary so-
lution for SDE with singularity by deriving its probability density function. Finally,
we give numerical simulations to show the asymptotic behavior of the stationary
solution with respect to various parameters.

2. Preparation

In this section, we reduce equation (1.1) to a two-dimensional system, when it
undergoes Hopf bifurcation.

By setting u̇ = v, v̇ = w in (1.1), the equilibrium (u⇤, 0, 0) where Hopf bifurcation
occurs in [22] is as follows.

• u⇤ = �
↵0
↵1

, when ↵1 6= 0, ↵4 = 0;

• u⇤ = �↵1�
p
�

2↵4
or u⇤ = �↵1+

p
�

2↵4
, when ↵4 6= 0, ↵2

1 > 4↵4↵0, where � =p
↵2
1 � 4↵4↵0.

Making the transformation ū ! u � u⇤, v̄ ! v, w̄ ! w, and still using the original
notations u, v, w, system (1.1) becomes

8
>>><

>>>:

u̇ = v,

v̇ = w,

ẇ = ↵4u2 + ↵5v2 + ↵6uv + ↵7uw

+(2↵4u⇤ + ↵1)u+ (↵6u⇤ + ↵2)v + (↵7u⇤ + ↵3)w.

(2.1)

The Jacobian matrix of (2.1) evaluated at (0, 0, 0) is

A =

0

BBB@

0 1 0

0 0 1

�� �� �↵

1

CCCA
. (2.2)

The characteristic equation of (2.1) at the equilibrium (0, 0, 0) takes the form �3 +
↵�2+��+� = 0, where ↵ = �(↵7u⇤+↵3), � = �(↵6u⇤+↵2), and � = �(2↵4u⇤+
↵1). Substituting � = iµ into the characteristic equation yields a relation among
↵, � and �. If

� =
�

↵
, � = µ2,
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the characteristic equation has a pair of purely imaginary roots �1,2 = ±iµ, where
µ > 0. Suppose that ↵ > 0. Then another characteristic root is �3 = �↵ < 0.
The next step is to calculate the local center manifold of the equilibrium (0, 0, 0)
for system (2.1). Let q, p 2 C3 be complex eigenvectors which satisfy

Aq = iµq, AT p = �iµp, hp, qi = 1.

We obtain

q =

0

BBB@

q1

q2

q3

1

CCCA
=

0

BBB@

1

iµ

�µ2

1

CCCA
, p =

0

BBB@

p1

p2

p3

1

CCCA
=

1

2µ(µ3 + i�)

0

BBB@

i�µ

iµ3
� �

�µ2

1

CCCA
.

Let x = (u, v, w)T = zq + z̄q̄ + y and

(
z = hp, xi,

y = x� hp, xiq � hp̄, xiq̄,

where z 2 C1, y 2 R3. According to the center manifold theory, we have y =
1
2h20z2 + h11zz̄ +

1
2h02z̄2 +O(|z|3), where h20, h11, h02 2 R3.

Before simplifying ż, we need to calculate the coe�cients h20, h11, h02 of y. Com-
paring ẏ with the original equation and the representation of the center manifold
y = 1

2h20z2 + h11zz̄ +
1
2h02z̄2, we obtain

8
><

>:

(2iµI �A)h20 = H20,

Ah11 = H11,

(�2iµI �A)h02 = H̄20,

where I is the 3⇥ 3 identity matrix and

(
H20 = F (q, q)� hp, F (q, q)iq � hp̄, F (q, q)iq̄,

H11 = F (q, q̄)� hp, F (q, q̄)iq � hp̄, F (q, q̄)iq̄,

F (m,n) =

0

BBB@

0

0

2↵4m1n1 + 2↵5m2n2 + ↵6m1n2 + ↵6m2n1 + ↵7m1n3 + ↵7m3n1

1

CCCA
,

where m = (m1,m2,m3)T , n = (n1, n2, n3)T 2 R3. Therefore, we deduce
h20 = (h201, h202, h203)T , h11 = (h111, h112, h113)T , h02 = (h021, h022, h023)T , where

h201 =
3�q2p̄3 + �p3q̄2 � 2q3q22 p̄3 � 2p3q3q2q̄2 � 4q23 p̄3 + 2�p3q2 � 4p3q23 + q3

3q3(2q2q3 � �)
⇥1,

h202 =
2�q22 p̄3 + 2�p3q2q̄2 + �q3(p̄3 + p3)� 6q23q2p̄3 � 2p3q23(2q̄2 + q2) + 2q3q2

3q3(2q2q3 � �)
⇥1,

h203 =
��q2p̄3 + �p3q̄2 � 2q3q22 p̄3 � 2p3q3q2q̄2 � 4q23 p̄3 � 2�p3q2 � 4p3q23 + 4q3

3(2q2q3 � �)
⇥1,
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h111 =
p̄3q2 + p3q̄2

q3
⇥2, h112 = (p̄3 + p3)⇥2, h113 = (p̄3q2 + p3q̄2)⇥2,

h021 =�
�q2p̄3 � �p3q̄2 � 2q3q22 p̄3 � 2p3q3q2q̄2 + 4q23 p̄3 + 2�p3q2 + 4p3q23 � q3

3q3(2q2q3 + �)
⇥̄1,

h022 =�
2�q2(q2p̄3 + p3q̄2)� �q3(p̄3 + p3) + 2q23q2(p̄3 � p3) + 4p3q23 q̄2 + 2q3q2

3q3(2q2q3 + �)
⇥̄1,

h023 =�
�q2p̄3 � �p3q̄2 � 2q3q22 p̄3 � 2p3q3q2q̄2 � 4q23 p̄3 + 2�p3q2 � 4p3q23 + 4q3

3(2q2q3 + �)
⇥̄1,

⇥1 =2k4 + 2k3q
2
2 + 2k6q2 + 2k5q3, ⇥2 = 2k4 + 2k3q2q̄2 + 2k5q3.

Finally, equation (2.1) can be reduced into

ż = iµz + p3(↵4x
2
1 + ↵5x

2
2 + ↵6x1x2 + ↵7x1x3)

= iµz + g20z
2 + g11zz̄ + g02z̄

2 + g30z
3 + g21z

2z̄ + g12zz̄
2 + g03z̄

3 + g40z
4

+ g31z
3z̄ + g22z

2z̄2 + g13zz̄
3 + g04z̄

4 +O(|z|5),

(2.3)

where

g20 = ↵4 + ↵6q2 + ↵7q3 + ↵5q
2
2 ,

g11 = 2↵4 + ↵6q2 + ↵7q3 + 2↵5q2q̄2 + ↵6q̄2 + ↵7q̄3,

g02 = ↵4 + ↵6q̄2 + ↵7q̄3 + ↵5q̄
2
2 ,

g30 = ↵4h201 + ↵5h202q2 +
1

2
↵6h202 +

1

2
↵6h201q2 +

1

2
↵7h203 +

1

2
↵7h201q3,

g21 = ↵4h201 +
1

2
↵6h202 +

1

2
↵7h203 + ↵5h202q̄2 +

1

2
↵6h201q̄2 +

1

2
↵7h201q̄3

+ 2↵4h111 + 2↵5h112q2 + ↵6h112 + ↵6h111q2 + ↵7h113 + ↵7h111q3,

g12 = 2↵4h111 + ↵6h112 + ↵7h113 + 2↵5h112q̄2 + ↵6h111q̄2 + ↵7h111q̄3

+ ↵4h021 + ↵5h022q2 +
1

2
↵6h022 +

1

2
↵6h021q2 +

1

2
↵7h023 +

1

2
↵7h021q3,

g03 =↵4h021 +
1

2
↵6h022 +

1

2
↵7h023 + ↵5h022q̄2 +

1

2
↵6h021q̄2 +

1

2
↵7h021q̄3,

g40 =
1

4
↵4h

2
201 +

1

4
↵5h

2
202 +

1

4
↵6h201h202 +

1

4
↵7h201h203,

g31 = ↵4h111h201 + ↵5h112h202 +
1

2
↵6h112h201 +

1

2
↵6h111h202

+
1

2
↵7h113h201 +

1

2
↵7h111h203,

g22 = ↵4h
2
111 + ↵6h112h111 + ↵7h113h111 +

1

2
↵4h021h201 + ↵5h

2
112 +

1

2
↵5h022h202

+
1

4
↵6h022h201 +

1

4
↵6h021h202 +

1

4
↵7h023h201 +

1

4
↵7h021h203,

g13 = ↵4h21h111 + ↵5h22h112 +
1

2
↵6h22h111 +

1

2
↵6h21h112

+
1

2
↵7h23h111 +

1

2
↵7h21h113,

g04 =
1

4
↵4h

2
021 +

1

4
↵5h

2
022 +

1

4
↵6h021h022 +

1

4
↵7h021h023.
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Let z = z1 + iz2 and truncating higher-order terms. Then we have

8
>>><

>>>:

ż1 = �µz2 +m20z21 +m11z1z2 +m02z22 +m30z31 +m21z21z2 +m12z1z22
+m03z32 +m40z41 +m31z31z2 +m22z21z

2
2 +m13z1z32 +m04z42 ,

ż2 = µz1 + n20z21 + n11z1z2 + n02z22 + n30z31 + n21z21z2 + n12z1z22
+n03z32 + n40z41 + n31z31z2 + n22z21z

2
2 + n13z1z32 + n04z42 ,

(2.4)

where

m20 = <(g02 + g11 + g20), m11 = =(2g02 � 2g20),

m02 = <(g11 � g02 � g20), m30 = <(g03 + g12 + g21 + g30),

m21 = =(3g03 + g12 � g21 � 3g30), m12 = <(g12 + g21 � 3g30 � 3g03),

m03 = =(g12 � g21 � g03 + g30), m40 = <(g04 + g13 + g22 + g31 + g40),

m31 = =(4g04 + 2g13 � 2g31 � 4g40), m22 = <(2g22 � 6g04 � 6g40),

m13 = =(4g40 + 2g13 � 2g31 � 4g04), m04 = <(g04 � g13 + g22 � g31 + g40),

n20 = =(g02 + g11 + g20), n11 = <(2g20 � 2g02),

n02 = =(g11 � g02 � g20), n30 = =(g03 + g12 + g21 + g30),

n21 = <(3g30 + g21 � g12 � 3g03), n12 = =(g12 + g21 � 3g30 � 3g03),

n03 = <(g21 � g12 � g30 + g03), n40 = =(g04 + g13 + g22 + g31 + g40),

n31 = <(4g40 + 2g31 � 2g13 � 4g04), n22 = =(2g22 � 6g04 � 6g40),

n13 = <(4g04 + 2g31 � 2g13 � 4g40), n04 = =(g04 � g13 + g22 � g31 + g40),

where <(·) and =(·) respectively represent the real part and imaginary part of (·).

3. Modeling

In this section, we mainly propose a stochastic model through transforming the
reduced system into an SDE. Under the parametric µ and the external excitations,
equation (2.4) becomes

8
>>><

>>>:

ż1 = �µz2 ++m20z21 +m11z1z2 +m02z22 +m30z31 +m21z21z2 +m12z1z22 +m03z32
+m40z41 +m31z31z2 +m22z21z

2
2 +m13z1z32 +m04z42 + "

1
2 ⇠1(t)z2 + "⇠2(t),

ż2 = µz1 + n20z21 + n11z1z2 + n02z22 + n30z31 + n21z21z2 + n12z1z22 + n03z32
+n40z41 + n31z31z2 + n22z21z

2
2 + n13z1z32 + n04z42 + "

1
2 ⇠3(t)z1 + "⇠4(t),

(3.1)
where " is a small parameter, ⇠i(t) = ⇠i(!, t) with ! 2 ⌦ and i = 1, 2, 3, 4 are the
independent stationary stochastic processes with zero mean. Here (⌦,F ,P) is the
probability space. Let z1 = "

1
2 r sin' and z2 = "

1
2 r cos', where ' = µt � �. Then
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equation (3.1) becomes
8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ṙ = "
1
2 (m20r2 sin

2 '+m11r2 sin
2 ' cos'+m02r2 sin' cos2 '+ "

1
2 r3(m30 sin

4 '

+m21 sin
3 ' cos'+m12 sin

2 ' cos2 '+m03 sin' cos3 ') + "r4(m40 sin
5 '

+m31 sin
4 ' cos'+m22 sin

3 ' cos2 '+m13 sin
2 ' cos3 '+m04 sin' cos4 ')

+n20r2 sin
2 ' cos'+ n11r2 sin' cos2 '+n02r2 cos3 '+ "

1
2 r3(n30 sin

3 ' cos'

+n21 sin
2 ' cos2 '+ n12 sin' cos3 '+ n03 cos4 ') + "r4(n40 sin

4 ' cos'

+n31 sin
3 ' cos2 '+ n22 sin

2 ' cos3 '+ n13 sin' cos4 '+ n04 cos5 ')

+(⇠1(t) + ⇠3(t))r sin' cos'+ ⇠2(t) sin'+ ⇠4(t) cos'),

�̇ = "
1
2 (r(m20 sin

2 ' cos'+m11 sin' cos2 '+m02 cos3 ') + "
1
2 r2(m30 sin

3 ' cos'

+m21 sin
2 ' cos2 '+m12 sin' cos3 '+m03 cos4 ') + "r3(m40 sin

4 ' cos'

+m31 sin
3 ' cos2 '+m22 sin

2 ' cos3 '+m13 sin' cos4 '+m04 cos5 ')

�r(n20 sin
3 '+ n11 sin

2 ' cos'+ n02 sin' cos2 ')� "
1
2 r2(n30 sin

4 '

+n21 sin
3 ' cos'+ n12 sin

2 ' cos2 '+ n03 sin' cos3 ')� "r3(n40 sin
5 '

+n31 sin
4 ' cos'+ n22 sin

3 ' cos2 '+ n13 sin
2 ' cos3 '+ n04 sin' cos4 ')

+⇠1(t) cos2 '� ⇠3(t) sin
2 '+ ⇠2(t)

cos'
r � ⇠4(t)

sin'
r ).

(3.2)
We have the following theorem.

Theorem 3.1. For equation (3.2), it can be written as

dX

dt
= "

1
2 (X, t, ⇠(t), "), X(0) = X0, (3.3)

where X = (r,�)T ,  (X, t, ⇠(t), ") = ( 1(X, t, ⇠(t), "), 2(X, t, ⇠(t), "))T , X0 =
(r0,�0)T , ⇠(t) = (⇠1, ⇠2, ⇠3, ⇠4)T has piecewise continuous trajectories with probabil-
ity one and satisfies the strong mixing condition. Then, as " ! 0, the solution to
(3.3) weakly converges to a di↵usive Markov process X̄ = (r̄, �̄)T on a time interval
of order 1/", which satisfies the SDE

dX̄ = m(X̄)dt+ �(X̄)dWt, (3.4)

where m(X̄) = (m1,m2)T and �(X̄) =

0

@�11 �12

�21 �22

1

A with

mi =M

(
G1

i (X, t) +
@G0

i (X, t)

@Xj
G0

j (X, t)

)
(3.5)

+M

(Z 0

�1
E{@F

0
i (X, t, ⇠t)

@Xj
F 0
j (X, t+ ⌧, ⇠t+⌧ )}d⌧

)
,

�kj =M

(Z 1

�1
E{F 0

k (X, t, ⇠t)F
0
j (X, t+ ⌧, ⇠t+⌧ )}d⌧

)
,

and Wt = (Wr̄,W�̄)
T is a two-dimensional Wiener process, E(Wt) = 0 and E(W 2

t ) =
t. Here E represents the expectation and M is the averaging operator M(·) =
1
T

R t0+T
t0

(·)dt. Denote

 i(X, t, ⇠(t), ") = F 0
i (X, t, ⇠t) +G0

i (X, t) + "
1
2G1

i (X, t), i = 1, 2, (3.6)
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where

F 0
1 (X, t, ⇠t) = (⇠1(t) + ⇠3(t))r sin' cos'+ ⇠2(t) sin'+ ⇠4(t) cos',

G0
1(X, t) = m20r

2 sin3 '+m11r
2 sin2 ' cos'+m02r

2 sin' cos2 '

+ n20r
2 sin2 ' cos'+ n11r

2 sin' cos2 '+ n02r
2 cos3 ',

G1
1(X, t) = r3(m30 sin

4 '+m21 sin
3 ' cos'+m12 sin

2 ' cos2 '+m03 sin' cos3 '

+ n30 sin
3 ' cos'+ n21 sin

2 ' cos2 '+ n12 sin' cos3 '+ n03 cos
4 ')

+ "
1
2 r4(m40 sin

5 '+m31 sin
4 ' cos'+m22 sin

3 ' cos2 '

+m13 sin
2 ' cos3 '+m04 sin' cos4 '+ n40 sin

4 ' cos'

+ n31 sin
3 ' cos2 '+ n22 sin

2 ' cos3 '+ n13 sin' cos4 '

+ n04 cos
5 '),

F 0
2 (X, t, ⇠t) = ⇠1(t) cos

2 '� ⇠3(t) sin
2 '+ ⇠2(t)

cos'

r
� ⇠4(t)

sin'

r
,

G0
2(X, t) = m20r sin

2 ' cos'+m11r sin' cos2 '+m02r cos
3 '

� n20r sin
3 '� n11r sin

2 ' cos'� n02r sin' cos2 ',

G1
2(X, t) = r2(m30 sin

3 ' cos'+m21 sin
2 ' cos2 '+m12 sin' cos3 '+m03 cos

4 '

� n30 sin
4 '� n21 sin

3 ' cos'� n12 sin
2 ' cos2 '� n03 sin' cos3 ')

+ "
1
2 r3(m40 sin

4 ' cos'+m31 sin
3 ' cos2 '+m22 sin

2 ' cos3 '

+m13 sin' cos4 '+m04 cos
5 '� n40 sin

5 '� n31 sin
4 ' cos'

� n22 sin
3 ' cos2 '� n13 sin

2 ' cos3 '� n04 sin' cos4 ').

Proof. According to Theorem 2 in [16], we obtain immediately that the solution
of equation (3.3) converges weakly to a di↵usive Markov process X̄ = (r̄, �̄)T , which
satisfies the SDE (

dr̄ = m1dt+ �11dWr̄ + �12dW�̄,

d�̄ = m2dt+ �21dWr̄ + �22dW�̄,

where

m1 =
d1
r̄

+
d2
8
r̄ +

d3
8
r̄3, �2

11 = d4 +
d5
8
r̄2,

m2 =d6 +
d7
r̄2

+
d8
8
r̄2, �2

22 = d9 +
d10
r̄2

, �12 = �21 = 0,

d1 =
1

2
(S2(µ) + S4(µ)), d2 = 3S1(2µ)� S3(2µ),

d3 =
1

2
(6m30 + 6n03 + 2n21 + 2n12 + 13(m2

20 +m2
02) + 3(m2

11 + n2
11) + 5(m2

02

+ n2
20) + 6(m02m20 + n02n20) + 4(m11n20 +m02n11 �m20n11 �m11n02)),

d4 =2d1, d5 = 2(S1(2µ) + S3(2µ)),

d6 =�
1

4
(H1(2µ) +H3(2µ)), d7 = S4(µ)�H2(µ),

d8 =6m03 + 2m21 � 2n12 � 6n30 + 3m11(m20 �m02 � n11)

+ 4(m02n02 � n20n11 �m20n20),

d9 =
1

2
(S1(0) + S3(0)) +

1

4
(S1(2µ) + S3(2µ)), d10 = S2(µ) + S4(µ).
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Here (
Si(⇣) =

R 0
�1 E(⇠i(t)⇠i(t+ ⌧) cos(⇣⌧))d⌧,

Hi(⇣) =
R 0
�1 E(⇠i(t)⇠i(t+ ⌧) sin(⇣⌧))d⌧.

4. Stochastic dynamics

In this section, we focus on the stochastic dynamical behavior of the averaging
amplitude r̄, which satisfies the following SDE

dr̄ = (
d1
r̄

+
d2
8
r̄ +

d3
8
r̄3)dt+ (d4 +

d5
8
r̄2)

1
2 dWr̄. (4.1)

Definition 4.1. (Stochastic stability [1]) The equilibrium solution X(t) of the
stochastic di↵erential equation

dX(t) = f(t,X(t))dt+G(t,X(t))dW (t), t � t0, X(t0) = c, (4.2)

is called stochastically stable (stable in probability), if for every ✏ > 0,

lim
c!0

P ( sup
t0t<1

|X(c)| � ✏) = 0,

where f(t,X(t)) is the function mapping [t0,1) ⇥ Rn into Rn with f(t, 0) = 0,
G(t,X(t)) is the function mapping [t0,1)⇥Rn into Rn

⇥Rm with G(t, 0) = 0, and
W (t) is an m-dimensional Brownian motion.

Before getting the global stochastic stability of the system, we need to introduce
the singular boundary theory. The SDE (4.1) can be written as

dr̄ = m(r̄)dt+ �(r̄)dWr̄

with the boundary 0 and +1, where

m(r̄) =
d1
r̄

+
d2
8
r̄ +

d3
8
r̄3, �(r̄) = (d4 +

d5
8
r̄2)

1
2 .

If �(r̄) = 0 at the boundary, this boundary is called the first kind singular boundary.
If m(r̄) is unbounded at the boundary, this boundary is called the second kind sin-
gular boundary. For the first kind, the di↵usion exponent ⇢1, the drifting exponent
⇢2 and the characteristic value ⇢3 are defined as follows:

�2(r̄) = O|r̄ � r|⇢1 , r̄ ! r, m(r̄) = O|r̄ � r|⇢2 , r̄ ! r,

⇢3(r̄) = lim
r̄!r+

2m(r̄)(r̄ � r+)⇢1�⇢2

�2(r̄)
, ⇢3(r̄) = � lim

r̄!r�

2m(r̄)(r� � r̄)⇢1�⇢2

�2(r̄)
.

For the second kind, the di↵usion exponent ⇢1, the drifting exponent ⇢2 and the
characteristic value ⇢3 are defined as follows:

�2(r̄) = O|r̄ � r|�⇢1 , r̄ ! r, m(r̄) = O|r̄ � r|�⇢2 , r̄ ! r,

⇢3(r̄) = lim
r̄!r+

2m(r̄)(r̄ � r+)⇢2�⇢1

�2(r̄)
, ⇢3(r̄) = � lim

r̄!r�

2m(r̄)(r� � r̄)⇢2�⇢1

�2(r̄)
.
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There are four classifications of boundaries: regular boundary, exceeded boundary,
accessible boundary and natural boundary (abbreviated as RB, EB, AB and NB).
Furthermore, the natural boundary has three kinds: attractively natural (ANB),
repulsively natural (RNB) and strictly natural (SNB). Di↵erent kinds of singular
boundaries and specific ⇢1, ⇢2, ⇢3 correspond to di↵erent boundaries (see [27] for
details).

Next, we analyze the stochastic dynamics for equation (4.1) in three subsections.

4.1. The first case

If d1 = 0, d3 = 0 and d4 = 0, equation (4.1) becomes a linear SDE

dr̄ = (
d2
8
r̄)dt+ (

d5
8
r̄2)

1
2 dWr̄. (4.3)

We have the following theorem on its local stability.

Theorem 4.1. If 2d2 < d5, then the trivial solution to (4.3) is stable in probability;
if 2d2 > d5, then the trivial solution to (4.3) is unstable in probability.

Proof. Let F (r̄, t) = ln(r̄(t)). Applying Itô’s formula, we have

dF (r̄, t) = (
d2
8

�
d5
16

)dt+ (
d5
8
)

1
2 dWr̄.

Integrating from 0 to t yields

ln(
r̄(t)

r̄(0)
) = (

d2
8

�
d5
16

)t+ (
d5
8
)

1
2Wr̄.

Hence, the solution to equation (4.3) can be solved as

r̄(t) = r̄(0) exp

✓
(
d2
8

�
d5
16

)t+ (
d5
8
)

1
2Wr̄

◆
. (4.4)

Define ||r̄(t)|| = (r̄(t))
1
2 and the Lyapunov exponent � = limt!+1

1
t ln ||r̄(t)||. Then

� = lim
t!+1

1

t
ln(r̄(t))

1
2 = lim

t!+1

1

2t
ln(r̄(t))

= lim
t!+1

1

2t
[ln(r̄(0)) + (

d2
8

�
d5
16

)t+ (
d5
8
)

1
2Wr̄]

=
d2
16

�
d5
32

.

Therefore, the trivial solution to (4.3) is stable for � < 0 and unstable for � > 0.

According to the singular boundary theory, we obtain the following theorem
from Table 1.

Theorem 4.2. (Global stochastic stability)

(i) If 2d2 > d5, the trivial solution of (4.3) is unstable;

(ii) If 2d2 < d5, the trivial solution of (4.3) is stable.
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4.2. The second case

If d1 = d4 = 0 and d3 6= 0, equation (4.1) becomes a nonlinear SDE

dr̄ = (
d2
8
r̄ +

d3
8
r̄3)dt+ (

d5
8
r̄2)

1
2 dWr̄. (4.5)

The classification of boundary refers to Table 2, and we have the following theorem.

Theorem 4.3. (Global stochastic stability)

(i) If 2d2 > d5 and d3 > 0, the trivial solution of (4.5) is unstable;

(ii) If 2d2 < d5 and d3 < 0, the trivial solution of (4.5) is stable.

In the following part, we analyze the stochastic bifurcation for equation (4.5).

Letting r̄ !

q
�

d3
8 r̄ and by Itô’s formula, we have

d

 r
�
d3
8
r̄

!
=

r
�
d3
8

✓
d2
8
r̄ +

d3
8
r̄3
◆
dt+

r
�
d3
8

✓
d5
8
r̄2
◆ 1

2

dWr̄

=

0

BBB@
d2
8

1q
�

d3
8

r
�
d3
8
r̄ +

d3
8

 r
�
d3
8

!3
1

✓q
�

d3
8

◆3 r̄
3

1

CCCA

r
�
d3
8
dt

+

r
�
d3
8

✓
d5
8
r̄2
◆ 1

2

dWr̄.

Still writing
q
�

d3
8 r̄ as r̄, then (4.5) becomes

dr̄ = (
d2
8
r̄ � r̄3)dt+ (

d5
8
r̄2)

1
2 dWr̄.

Through the transformation from an Itô SDE to a Stratonovich SDE, we get

dr̄ = (
d2
8
r̄ �

d5
16

r̄ � r̄3)dt+ (
d5
8
r̄2)

1
2 � dWr̄. (4.6)

From the theory of stochastic pitchfork bifurcation in [2], we deduce the invariant
measures for D-bifurcation and P -bifurcation.

Table 1. The indices at r̄ = 0 and r̄ = 1 respectively.

r̄ ⇢1 ⇢2 ⇢3 Condition Type

2d2 > d5 ANB

1 2 3 �
2d2
d5

2d2 < d5 RNB

2d2 = d5 SNB

2d2 > d5 RNB

0 2 1 2d2
d5

2d2 < d5 ANB

2d2 = d5 SNB
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Table 2. The indices at r̄ = 0 and r̄ = 1 respectively.

r̄ ⇢1 ⇢2 ⇢3 Condition Type

d3 > 0 EB

1 2 3 �
2d3
d5

d3 < 0 AB

2d2 > d5 RNB

0 2 1 2d2
d5

2d2 < d5 ANB

2d2 = d5 SNB

Theorem 4.4. The stochastic dynamical behaviors for (4.6) are as follows.

(i) It undergoes a D-bifurcation of the trivial reference measure �0 at 2d2 = d5,
where �0 is the random Dirac measure.

(ii) It undergoes a P-bifurcation of the invariant measures ⌫± at d2 = d5, and the
corresponding stationary measures of ⌫± are µ±(r), where

⌫± = �±d(!), d(!) =

✓
2

Z 0

�1
e(

d2
4 � d5

8 )t+
p

d5p
2

Wr̄(s)ds

◆� 1
2

,

µ+(r̄) =

8
><

>:

( 8
d5

)
1
2
� d2

d5

�(
d2
d5

� 1
2 )

r̄
2d2
d5

�2e�
8r̄2

d5 , r̄ > 0,

0, r̄  0,

µ�(r̄) = µ+(�r̄).

Proof. The solution to equation (4.6) is

'(t,!)r̄ =
r̄e(

d2
8 � d5

16 )t+
q

d5
8 Wr̄

✓
1 + 2r̄2

R t
0 e(

d2
8 � d5

16 )s+
q

d5
2 Wr̄(s)ds

◆ 1
2

.

The random domain D(t,!) of '(t,!) is

D(t,!) =

(
R, t � 0,

(�(t,!)�1,(t,!)�1), t < 0,

where (t,!) =

r

2|
R t
0 e(

d2
4 � d5

8 )s+
q

d5
2 Wr̄(s)ds|. Then the random range R(t,!) of

'(t,!) is

R(t,!) =

(
R, t  0,

(�r̄(t,!), r̄(t,!)), t > 0,

where r̄(t,!) = e(
d2
8 � d5

16 )t+
q

d5
8 Wr̄(t,!)�1.

(i) D(!) =
T
t2R

D(t,!), then

D(!) =

(
0, 2d2  d5,

[�(�1,!)�1,(�1,!)�1], 2d2 > d5.
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If 2d2  d5, the unique invariant measure is the random Dirac measure �0. The
linearized SDE is

dx = (
d2
8

�
d5
16

� 3r̄2)xdt+ (
d5
8
x2)

1
2 � dWr̄.

For r̄ = 0, the Lyapunov exponent is �(�0) = d2
8 �

d5
16  0. If 2d2 > d5, there

are two ergodic invariant measures ⌫± = �±d(!) in addition to the trivial reference
measure �0(�(�0) > 0), where d(!) = (�1,!)�1. The Lyapunov exponent is
�(⌫) = d5

8 �
d2
4 . Hence, we have a D-bifurcation of the trivial reference measure �0

at 2d2 = d5.
(ii) The measures ⌫± = �±d(!) correspond to the stationary measures

µ+(r̄) =

8
><

>:

( 8
d5

)
1
2
� d2

d5

�(
d2
d5

� 1
2 )

r̄
2d2
d5

�2e�
8r̄2

d5 , r̄ > 0,

0, r̄  0,

and µ�(r̄) = µ+(�r̄). This can be solved by the Fokker-Planck equation. Combin-
ing with µ±(r̄), we have a P -bifurcation of the invariant measures ⌫± at d2 = d5.

4.3. The third case

If d1, d3 and d4 are nonzero parameters, we investigate the dynamics of equation
(4.1).

When r̄ = 1, the di↵usion exponent, the drifting exponent and characteristic
value are 2, 3 and �

2d3
d5

, respectively. If d3 > 0, then r̄ = 1 is an EB; if d3 < 0,
then r̄ = 1 is an AB. For r̄ = 0, it is neither the first kind singular boundary
nor the second kind singular boundary. As a consequence, its global stability is
unclear. However, we can analyze the stationary solution to the probability density
function for equation (4.1). The probability density function is governed by the
corresponding Fokker-Planck equation

@p(r̄, t)

@t
= �

@

@r̄

✓
(
d1
r̄

+
d2
8
r̄ +

d3
8
r̄3)p(r̄, t)

◆
+

1

2

@2

@r̄2

✓
(d4 +

d5
8
r̄2)p(r̄, t)

◆
(4.7)

with the initial value p(r̄, t)t!t0 = �(r̄ � r̄0), where � is the Dirac delta function.
When @p(r̄, t)/@t = 0, we acquire the stationary solution by solving the following
second-order di↵erential equation

0 = �
@

@r̄

✓
(
d1
r̄

+
d2
8
r̄ +

d3
8
r̄3)p(r̄)

◆
+

1

2

@2

@r̄2

✓
(d4 +

d5
8
r̄2)p(r̄)

◆
. (4.8)

Performing a straightforward integration on (4.8), we obtain a first-order equation
Z r̄

r̄0

@

@r̄

✓
(
d1
r̄

+
d2
8
r̄ +

d3
8
r̄3)p(r̄)

◆
dr̄ =

Z r̄

r̄0

1

2

@2

@r2

✓
(d4 +

d5
8
r̄2)p(r̄)

◆
dr̄,

(
d1
r̄

+
d2
8
r̄ +

d3
8
r3)p(r̄)� C1 =

1

2

@

@r̄

✓
(d4 +

d5
8
r̄2)p(r̄)

◆
� C2,

where C1 = (d1
r̄0

+ d2
8 r̄0 +

d3
8 r̄30)p(r̄0) and C2 = 1

2
@
@r̄

�
(d4 +

d5
8 r̄2)p(r̄)

�
r̄=r̄0

. Simpli-
fying it as

@p(r̄)

@r̄
+ P (r̄)p(r̄) = Q(r̄), p(r0) = p0,
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where

P (r̄) =
�2(8d1

r̄ + d2r̄ � d5r̄ + d3r̄3)

8d4 + d5r̄2
, Q(r̄) =

16(C2 � C1)

8d4 + d5r̄2
.

Then the stationary solution is

p(r̄) =e�
R r̄
r0

P (x)dx
✓Z r̄

r̄0

Q(s)e
R s
r̄0

P (x)dxds+ p0

◆
,

=(⌅(r̄)� ⌅(r̄0))

✓
p0 +

Z r̄

r̄0

Q(s)(⌅�1(s)� ⌅�1(r̄0))ds

◆
, (4.9)

where

⌅(r̄) =e
d3r̄2

d5 r̄
2d1
d4 (8d4 + d5r̄

2)
�1� d1

d4
+

d2d5�8d3d4
d25 ,

C2 =
1

8
d5r̄0p0 +

1

2
(d4 +

d5
8
r̄20)

@⌅(r̄0)

@r̄
p0.

Next, we give the numerical simulation of p(r̄) to show its changes with respect
to parameters d1(d4 = 2d1), d2 and d5 (see Figure 1, Figure 2 and Figure 3). We do
not give the figure between d3 and p(r̄), because p(r̄) has little change with respect
to d3.
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Figure 1. The stationary density function p(r̄) with respect to d1(d4 = 2d1), when the other parameters
are d2 = �1.2, d3 = �0.25 and d5 = 8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

-0.05

0

0.05

0.1

0.15

0.2
d2=-1.2

d2=0.2

d2=1.2

d2=3.2

Figure 2. The stationary density function p(r̄) with respect to d2, when the other parameters are
d4 = 2d1 = 0.125, d3 = �0.25 and d5 = 8.
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Figure 3. The stationary density function p(r̄) with respect to d5, when the other parameters are
d4 = 2d1 = 0.125, d2 = �1.2 and d3 = �0.25.
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