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Abstract. In this article we are concerned with a simplified Ericksen-Leslie sys-
tem on R2, whose bounded domain case was considered in [Lin et al., Arch.
Ration. Mech. Anal. 197 (2010), 297–336]. With a study of its vorticity-stream
formulation, we establish a global existence result of weak solutions when ini-
tial orientation has finite energy and initial vorticity function lies in L1(R2).
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1 Introduction

1.1 Background and motivation

Ericksen-Leslie system is a hydrodynamic system modeling the flow of nematic
liquid crystals. Proposed in [7, 19] and references therein, it is a continuum the-
ory without molecular details of a liquid crystal material. Recently some re-
search works have been devoted to studying the relationships between the the-
ory of Ericksen-Leslie and two other favorable theories (Doi-Onsager theory and
Landau-de Gennes theory) for nematic liquid crystals. In [30] the Doi-Onsager
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theory (see [6,25]) is connected with the Ericksen-Leslie theory by taking the Deb-
orah number to zero. As a hydrodynamic Landau-de Gennes model, the Beris-
Edwards system (see [4]) was studied by the authors in [26, 27, 29]. Particularly
in [30], a Hilbert expansion was obtained for solutions of the Beris-Edwards sys-
tem with which a well prepared initial data is supplied. When elastic constants
are small, their work rigorously shows that the Ericksen-Leslie system serves as
the limit of the Beris-Edwards system before the first singular time. For the static
theory of liquid crystals, readers should be referred to [1, 24] for important con-
nections and differences between the Landau-de Gennes theory and the Oseen-
Frank theory. As far as the Ericksen-Leslie system is concerned, many research
works have been established on its well-posedness. In 2-D case, the existence of
global weak solution for a simplified Ericksen-Leslie equation has been obtained
by the authors in [20], where the domain is supposed to be bounded and smooth.
The associated uniqueness problem was later studied by Lin-Wang in [21]. In [14]
the author considered the same simplified Ericksen-Leslie equation but on the
whole space R2. When the spatial domain is R2 and the model is not restricted
to the simplified one studied in [20], the global existence of weak solutions for
the Ericksen-Leslie system with general Oseen-Frank energy are also well stud-
ied (see [15,16]). Amongst all the works in 2-D, global weak solutions have finite
energy and are smooth except possibly at finitely many singularities. Compared
with the 2-D case, our knowledge on the 3-D Ericksen-Leslie system is limited.
In [28] the authors established the local well-posedness of the general Ericksen-
Leslie system. For the sake of describing its maximal existence time interval,
a blow-up criterion (same as the one in [17]) is given. With this criterion, the
authors proceed to prove the global existence of the general Ericksen-Leslie sys-
tem under the assumption that initial data is small in some Sobolev spaces. The
spatial domain in [28] is R3. For the bounded smooth domain in R3, the authors
in [23] also established a global existence result for weak solution of simplified
Ericksen-Leslie equation. Different from [28], the consequence in [23] does not
rely on the smallness of initial data in Sobolev spaces. Instead Lin-Wang made
a geometrically small assumption in [23] for their initial data. More precisely by
supposing that initial macroscopic orientation takes its image on the upper hemi-
sphere, the simplified Ericksen-Leslie equation studied in [20] admits a global
weak solution on any bounded smooth domain in R

3, where initial data is only
required to be in the natural energy space. For more detailed mathematical stud-
ies of nematic liquid crystals, readers are referred to [22].

Without macroscopic orientation, the Ericksen-Leslie system is reduced to the
pure Navier-Stokes equation. It is well-known that the Navier-Stokes equation
admits a vorticity-stream formulation (see [5]). For the 2-D viscous fluid, taking
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curl of the Navier-Stokes equation leads to the following vorticity equation:

∂tω+v·∇ω=∆ω.

Here v is the velocity of fluid, ω= curlv is its vorticity. In [2] and the references
therein the global existence of the above vorticity equation is studied in R2, where
the velocity v is recovered by the Biot-Savart law. Initial vorticity is assumed to
be in the L1-space. In [12] (see also [3]), the regularity of initial data is slightly
weakened. The global existence of the vorticity equation in 2-D is shown to hold
with given initial data in the Radon measure space on R2. Besides the global ex-
istence result of the vorticity equation, the stability problem associated with the
Navier-Stokes equation in 2-D is also considered with the use of the above vortic-
ity equation (see e.g. [9,11,12]). In [12] the authors studied the long-time behavior
of the vorticity of the 2-D Navier-Stokes equation. With a smallness assumption
on the Reynolds number of initial vorticity, it is shown that solutions of the vortic-
ity equation approach to the so-called Oseen’s vortex as t→∞. The convergence
is algebraic in t. Still in [12], this result was further applied to study the stabil-
ity of Burger’s vortex for 3-D Navier-Stokes equation. Later in [9,11], the authors
considered the long-time behavior of vorticity and its stability for the 2-D Navier-
Stokes equation from the point of view of dynamical system. Finally, in [11] the
authors dropped the smallness assumption used in [12] for the Reynolds num-
ber of initial vorticity. A global stability result is obtained by LaSalle’s invariance
principle and the theory of Lyapunov. Some stability results on the 3-D Navier-
Stokes equation can be read from [10].

1.2 Vorticity equation of Ericksen-Leslie system

In this article we are concerned with the simplified hydrodynamic system for
nematic liquid crystals studied by Lin et al. [20]. The spatial domain is supposed
to be R2. With all parameters in the system normalized to be 1, the equation is
written as follows:











∂tφ+v·∇φ−∆φ= |∇φ|2φ in R
2×(0,∞), (1.1a)

∂tv+v·∇v−∆v=−∇p−∇·(∇φ⊙∇φ) in R
2×(0,∞), (1.1b)

∇·v=0 in R
2×(0,∞). (1.1c)

In (1.1) φ is an S2-valued macroscopic orientation of a nematic liquid crystal,
v : R2×(0,+∞)→R2 represents the velocity of fluid, p is the pressure function,
∇φ⊙∇φ denotes the 2×2 matrix whose entry on the i-th row and j-th column is
given by ∂iφ·∂jφ. As one can see, system (1.1) is a coupled system between the
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non-homogeneous incompressible Navier-Stokes equation and the transported
flow of harmonic maps. Since early studies of fluid dynamics, problems asso-
ciated with singular objects have been intriguing a lot of attentions from both
mathematicians and physicists. These singular objects include point vortices and
vortex filaments in fluid dynamics, which are related to vortex phenomena of
a fluid. Usually a system with such singular objects might not have a finite ki-
netic energy, or equivalently square integrable velocity. Explicit examples can be
given by the so-called Oseen vortices (see [11]). For some rigorous proof one may
refer to [5], where the authors show that for an incompressible velocity recovered
by the Biot-Savart law (vorticity has compact support in R2), it has finite kinetic
energy if and only if the total vorticity equals to 0. Thus, to study some vortex
phenomenon associated with (1.1), it is more convenient to consider the equation
of vorticity instead of velocity. In light of the above arguments, now we take curl
on both sides of the Eq. (1.1b). Still using Biot-Savart law to recover velocity from
vorticity, we can rewrite (1.1) in terms of the vorticity of v. That is the system











∂tφ+v·∇φ−∆φ= |∇φ|2φ in R
2×(0,∞), (1.2a)

v=K∗ω in R
2×(0,∞), (1.2b)

∂tω+v·∇ω−∆ω=−∇×∇·(∇φ⊙∇φ) in R
2×(0,∞). (1.2c)

In (1.2), the asterix ∗ denotes the standard convolution operation on R2. For all
x=(x1,x2)∈R2, K(x) is the Biot-Savart kernel given by

K(x)=
1

2π

x⊥

|x|2
,

where x⊥=(−x2,x1). Note that ∇·K=0 implies the incompressibility condition
∇·v=0. In the remaining of the article, (1.2) is referred as the vorticity equation
of the Ericksen-Leslie system (1.1).

1.3 Main results and organization of the article

Our first theorem is concerned with the local existence of classical solutions to
(1.2). Before we state the result, some notions should be given. First of all we
introduce some functional spaces in Definition 1.1, which will be used to control
velocity field v recovered by the Biot-Savart law. Since v=K∗ω for some vorticity
function ω, the decay of ω at spatial infinity plays important roles in estimat-
ing the Hölder norm and the kinetic energy of v. However, the standard Hölder
norms and Lp norms are not strong enough to control the decay of ω at spatial in-

finity. Therefore, we introduce the following C∗,k
β [I] and C∗

β(R
2) spaces, in which

functions decay exponentially at spatial infinity.
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Definition 1.1. Suppose that f takes value on some Euclidean space. Given a positive

constant β and a finite time interval I, we say f ∈C∗
β[I] if f is continuous on R2× I and

satisfies

||| f |||β;I :=sup
{

| f (x,t)|e
|x|
β : (x,t)∈R

2× I
}

<∞.

|||·|||β;I defines a norm on the space C∗β[I]. Equipped with this norm, C∗
β[I] is a Banach

space. Given a k∈N, we denote by C∗,k
β [I] the function space so that for all f ∈C∗,k

β [I],

it satisfies ∇i f ∈C∗
β[I]. Here the index i runs from 0 to k. C∗,k

β [I] is also a Banach space

with norm given by

||| f |||k;β;I :=
k

∑
i=0

|||∇i f |||β;I .

Similarly, we define C∗
β(R

2) to be the space so that for all f ∈C∗
β(R

2), it holds

||| f |||β :=sup
{

| f (x)|e
|x|g

β : x∈R
2
}

<∞.

Equipped with this norm, C∗
β(R

2) is a Banach space. Given a k∈N,C∗,k
β (R2) denotes

the function space so that for all f ∈C∗,k
β (R2), it satisfies ∇i f ∈C∗

β(R
2). Here i runs

from 0 to k. The space C∗,k
β (R2) is also a Banach space with norm given by

||| f |||k;β :=
k

∑
i=0

|||∇i f |||β.

In Section 2, we are concerned with some important properties associated
with the functional spaces given in Definition 1.1. With these properties, the fol-
lowing theorem is shown in Section 3 by a fixed-point argument. Notice that in
Theorem 1.1 below, we call (φ,ω) a classic solution of (1.2) on R2×[0,T] if on this
domain (∂tφ,∂tω), (∇iφ,∇iω), i=0,1,2, are continuous and satisfy (1.2) in a point-
wise sense.

Theorem 1.1. Suppose that ω0 ∈ C∗,2
2 (R2) and φ0 is an S2-valued function with

φ0−e ∈C∗,4
1 (R2). Then there exists a T∗ > 0 such that (1.2) admits a classic solution

on R2×[0,T∗] with the given initial data (φ0,ω0). If we denote by (φ,ω) the classic

solution, then we also have

(φ−e,ω)∈C∗,4
1 [0,T∗]×C∗,2

2 [0,T∗].

Here e∈S2 is a constant unit vector in R3.
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Our next theorem is about the local existence of solutions for (1.2) with initial
data (φ0,ω0)∈H1

e (R
2;S2)×L1(R2). Here for a given e∈S2,H1

e (R
2;S2) denotes the

space given below

H1
e(R

2;S2) :=
{

φ : φ(x)∈S
2 for almost all x∈R

2 and φ−e∈H1(R2)
}

.

Approximating (φ0−e,ω0) by a sequence of smooth pairs with compact support,
we can find a sequence of solutions of (1.2) whose initial data equal to the smooth
pairs. In Section 4, we show that these solutions exist in a uniform time interval.
Thus, by appropriate compactness arguments, we can show

Theorem 1.2. Suppose that (φ0,ω0) is an initial data in H1
e(R

2;S2)×L1(R2). Then

there exists a T∗>0 and a smooth solution, denoted by (φ,ω), of (1.2) on (0,T∗) so that

the following properties hold:

(i) As t↓0, we have
(

φ(·,t)−e,ω(·,t)
)

−→
(

φ0−e,ω0

)

strongly in H1(R2)×L1(R2).

Let (L1(R2)∩Lp(R2))∗ be the dual space of L1(R2)∩Lp(R2). Then as t↓0, the velocity

v=K∗ω satisfies

v(·,t) −→ v0=K∗ω0 strongly in
(

L1(R2)∩Lp(R2)
)∗

for all p>2.

Here we equip the space L1(R2)∩Lp(R2) with the norm defined by ‖·‖1+‖·‖p. More-

over, we also have

(φ−e,ω)∈L∞
(

[0,T∗];H
1(R2)

)

×L∞
(

[0,T∗];L
1(R2)

)

.

(ii) Fixing a τ∈(0,T∗) and denoting by ω̄ the unique mild solution (see [3, Chapter 4])

of the following initial value problem:
{

∂tω̄−∆ω̄+ v̄·∇ω̄=0 on R2×(τ,∞),

ω̄(·,τ)=ω(·,τ), v̄=K∗ω̄,
(1.3)

then we can decompose the velocity field v into the sum

v= v̄+v∗ on R
2×[τ,T∗]. (1.4)

The velocity field v∗ lies in the space L∞([τ,T∗];L2(R2))∩L2([τ,T∗];H1(R2)) and sat-

isfies the global energy inequality given below
∫

R2×{t2}
|v∗|2+|∇φ|2+

∫ t2

t1

∫

R2
|∇v∗|2+

∣

∣∆φ+|∇φ|2φ
∣

∣

2

≤exp

{

c
∫ t2

t1

∥

∥∇v̄
∥

∥

∞

}

∫

R2×{t1}
|v∗|2+|∇φ|2. (1.5)
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Here c>0 is an universal constant. t1 and t2 satisfy τ≤ t1< t2≤T∗. Moreover, as t↓τ,

v∗(·,t) converges to 0 strongly in L2.

(iii) If ω0∈L1∩Lp for some p>1, then τ in part (ii) can take value 0. The decomposition

of the velocity field v in (1.4) holds on R2×[0,T∗].

We are also concerned about the global weak solutions of (1.1). Notice the
decomposition of v in (1.4). v̄ already exists on the time interval (τ,∞). Therefore,
to extend v globally in time, we just need extend v∗ to R2×(τ,∞). In light of the
global energy inequality (1.5), such extension of v∗ is expected. As a consequence,
we have

Theorem 1.3. Given (φ0,ω0)∈H1
e (R

2;S2)×L1(R2), there exists a global weak solution

of (1.1) in the sense given as follows:

(i) For some T∗ > 0, (φ,v) is a smooth solution of (1.1) on R2×(0,T∗). Moreover,

parts (i)-(ii) in Theorem 1.2 hold for (φ,v,ω), where ω is the vorticity of v.

(ii) Let (ω̄,v̄) be the same as in part (ii) of Theorem 1.2. Then on R2×[τ,∞),v can be

decomposed into the sum v= v̄+v∗. (φ,v∗) satisfies the global energy inequality (1.5) for

all t1 and t2 satisfying τ≤ t1< t2<∞. Moreover, (φ,v∗) is a global weak solution of the

following system:






















∂tφ+v∗ ·∇φ−∆φ=−v̄·∇φ+|∇φ|2φ on R2×(τ,∞),

∂tv
∗+v∗ ·∇v∗−∆v∗

=−v∗ ·∇v̄− v̄·∇v∗−∇p∗−∇·
(

∇φ⊙∇φ
)

on R2×
(

τ,∞
)

,

∇·v∗=0,

together with the initial condition

(φ,v∗)
∣

∣

t=τ
=
(

φ(·,τ),0
)

.

More precisely it holds

−
∫ T

τ

∫

R2
〈φ−e,η′ψ〉+

∫ T

τ

∫

R2
〈v∗ ·∇φ,ηψ〉+

∫ T

τ

∫

R2
η∇ψ :∇φ

=η(τ)
∫

R2
〈φ(·,τ)−e,ψ〉−

∫ T

τ

∫

R2
〈v̄·∇φ,ηψ〉+

∫ T

τ

∫

R2
|∇φ|2〈φ,ηψ〉,

−
∫ T

τ

∫

R2
〈v∗,η′ϕ〉+

∫ T

τ

∫

R2
〈v∗ ·∇v∗,ηϕ〉+

∫ T

τ

∫

R2
η∇v∗ :∇ϕ

=−
∫ T

τ

∫

R2
〈v∗ ·∇v̄,ηϕ〉−

∫ T

τ

∫

R2
〈v̄·∇v∗,ηϕ〉+

∫ T

τ

∫

R2
η∇φ⊙∇φ :∇ϕ
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for all T ∈ [τ,∞],ψ ∈H1(R2;R3), ϕ ∈H1
div(R

2;R2) and η ∈C∞[τ,T] with η(T) = 0.

Here

H1
div(R

2;R2)=closure of C∞
c (R2;R2)∩{v : divv=0} in H1(R2;R2).

1.4 Notations

In this article we use Lp,Wk,p and Ck,α to denote the standard Lp-space, Wk,p-
Sobolev spaces and Ck,α-spaces on R2. The corresponding norms are denoted by
‖·‖p,‖·‖k,p and ‖·‖Ck,α , respectively. For the Hölder space Cα, we also use [·]α
to denote its semi-Hölder norm. If p= 2, then we use Hk to denote the Sobolev
spaces Wk,2. On the space-time R2×I, where I is an arbitrary time interval, we
say a function is Cα/2,α if it is Cα/2-Hölder continuous with respect to the time
variable and Cα-Hölder continuous with respect to the space variables. Some
times we also use |·|0;I to denote the L∞-norm of a continuous function on R2×I.
Letting X be a functional space on R2 with norm ‖·‖X, usually we denote by
Lp(I;X) the space so that for all f ∈Lp(I;X), f (·,t) lies in X for almost every t∈ I
and ‖ f (·,t)‖X is Lp-integrable on I. If g(·,t) is a continuous mapping from I to X
with topology on X induced by ‖·‖X, then we call g∈C[I;X]. Moreover, in this
article A . B means that there is a universal constant c so that A ≤ cB. If we
want to emphasize the dependence of c on parameters a and b, then we use the
notation A.a,b B.

2 Preliminary results

This section is devoted to studying some basic properties associated with func-

tions in C∗,k
β [I] and C∗,k

β (R2) (see Definition 1.1), where k is a non-negative integer.

When k= 0, the spaces C∗,0
β [I] and C∗,0

β (R2) coincide with C∗
β[I] and C∗

β(R
2), re-

spectively. The first lemma is about solution of a nonhomogeneous linear heat
equation with nonhomogeneous term in C∗

β[0,T]. Throughout the article we use

G to denote the standard heat kernel in R2.

Lemma 2.1. Suppose that β and T are two positive constants, and α and θ are two

constants in (0,1). Given g a function in L∞([0,T];Cα(R2))∩C∗
β[0,T], we define

Φ[g](x,t)=
∫ t

0

∫

R2
G(x−z,t−s)g(z,s)dzds, ∀(x,t)∈R

2×[0,T]. (2.1)
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Then Φ[g] is a solution of the following nonhomogenous Cauchy problem:

{

∂t f −∆ f = g in R2×[0,T],

f ≡0 at t=0.
(2.2)

Moreover, Φ[g] satisfies the estimate given below

|||Φ[g]|||β;[0,T]+T
1
2 |||∇Φ[g]|||β;[0,T]. |||g|||β;[0,T]Te

2T
β2 . (2.3)

The second-order derivatives of Φ[g] can be estimated by

∣

∣

∣

∣

∣

∣∇2Φ[g]
∣

∣

∣

∣

∣

∣

β
θ ;[0,T]

.θ,α max
t∈[0,T]

[g(·,t)]1−θ
α |||g|||θβ;[0,T]T

(1−θ)α
2 e

2Tθ2

β2 . (2.4)

Proof. By [8, Chapter 1, Theorem 12], Φ[g] is a solution of (2.2). Moreover, Φ[g],
∂tΦ[g] and ∇iΦ[g], i=1,2, are continuous on R2×[0,T]. Thus, we are left to show

(2.3) and (2.4). Let f denote the function Φ[g]. By (2.1) and the norm |||·|||β;[0,T]

given in Definition 1.1, f (x,t) can be estimated as follows:

| f (x,t)|≤ |||g|||β;[0,T]

∫ t

0

∫

R2

1

4π(t−s)
e
− |x−z|2

4(t−s) e
− |z|

β dzds.

Applying the change of variable ξ = x−z to the integral on the right-hand side

above, we get

| f (x,t)|≤ |||g|||β;[0,T]

∫ t

0

∫

R2

1

4π(t−s)
e
− |ξ |2

4(t−s) e
− |ξ−x|+|ξ |

β e
|ξ |
β dξds

≤|||g|||β;[0,T]e
− |x|

β

∫ t

0

∫

R2

1

4π(t−s)
e
− |ξ |2

4(t−s) e
|ξ |
β dξds.

Now we let 2η= ξ/(t−s)1/2 and reduce the last estimate to

| f (x,t)|. |||g|||β;[0,T]e
− |x|

β

∫ t

0

∫

R2
e
−|η|2+

2(t−s)
1
2 |η|

β dηds

. |||g|||β;[0,T]te
− |x|

β + 2t
β2 . (2.5)

The first derivatives of f can be represented as follows:

∇ f (x,t)=
1

2

∫ t

0

∫

R2
G(x−z,t−s)g(z,s)

z−x

t−s
dzds. (2.6)
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Similarly, to the above arguments for f , the following estimate holds for ∇ f :

|∇ f (x,t)|. |||g|||β;[0,T]

∫ t

0

∫

R2
e
− |x−z|2

4(t−s) e
− |z|

β
|x−z|

(t−s)2
dzds

. |||g|||β;[0,T]

∫ t

0

∫

R2
e
− |ξ |2

4(t−s) e
− |ξ−x|

β − |ξ |
β e

|ξ |
β

|ξ|

(t−s)2
dξds

. |||g|||β;[0,T]e
− |x|

β

∫ t

0

∫

R2
e
−|η|2+

2(t−s)
1
2 |η|

β
|η|

(t−s)
1
2

dηds

. |||g|||β;[0,T] t
1
2 e

− |x|
β + 2t

β2 . (2.7)

In light of (2.6), the second-order derivatives of f can be represented as fol-

lows:

∂ij f (x,t)=
1

2

∫ t

0

∫

R2
G(x−z,t−s)[g(z,s)−g(x,s)]

×

[

(zi−xi)(zj−xj)

2(t−s)2
−

δij

t−s

]

dzds, (2.8)

where δij is the Kronecker delta. Therefore, we can estimate ∂ij f as shown below

|∂ij f (x,t)|

.
∫ t

0

∫

R2
G(x−z,t−s)|g(z,s)−g(x,s)|θ |g(z,s)−g(x,s)|1−θ

[

|z−x|2

(t−s)2
+

1

t−s

]

dzds

. max
t∈[0,T]

[

g(·,t)
]1−θ

α

∫ t

0

∫

R2
G(z,t−s)

|z|2+(t−s)

(t−s)2
|z|(1−θ)α

(

|g(x−z,s)|θ+|g(x,s)|θ
)

.θ,α max
t∈[0,T]

[g(·,t)
]1−θ

α
|||g|||θβ;[0,T] t

(1−θ)α
2 e

− θ|x|
β + 2tθ2

β2 .

The third inequality above holds by similar arguments as in the derivations of

(2.5) and (2.7). The proof is then finished in light of (2.5) and (2.7) and the last

estimate.

In the next lemma, we present an L∞Cβ-estimate for the second-order deriva-
tives of f , where β∈(0,α) and f =Φ[g] as in Lemma 2.1. Since the proof is similar
to the proof of [13, Lemma 4.4], we omit it here.

Lemma 2.2. Under the same assumptions for g as in Lemma 2.1, ∇2 f lies in the space

L∞([0,T];Cβ(R2)) for all β∈(0,α). Here f =Φ[g] is a solution of (2.2). Moreover, ∇2 f

satisfies the estimate given below
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max
t∈[0,T]

[

∇2 f (·,t)
]

β
.α,β max

t∈[0,T]
[g(·,t)]αT

α
2−

β
2 .

As for the initial value problem for the homogeneous linear heat equation, we
have

Lemma 2.3. Suppose that g ∈ Ck(R2) with k ∈ N∪{0}. Moreover, we assume that

∇kg∈C∗
β(R

2) for some β>0. With the function g, we define

Ψ[g](x,t)=
∫

R2
G(x−z,t)g(z)dz, ∀(x,t)∈R

2×[0,T].

Then Ψ[g] is a solution of the following initial value problem:
{

∂tF−∆F=0 in R2×[0,T],

F= g at t=0.

Moreover, for all T>0,Ψ[g] satisfies the estimate given below

∣

∣

∣

∣

∣

∣∇kΨ[g]β;[0,T]

∣

∣

∣

∣

∣

∣.
∣

∣

∣

∣

∣

∣∇kg
∣

∣

∣

∣

∣

∣

β
e

2T
β2 .

Proof. For simplicity we use F to denote the function Ψ[g]. By making derivatives

k times, it holds

∇kF(x,t)=
∫

R2
G(x−z,t)∇kg(z)dz, ∀(x,t)∈R

2×[0,T].

Since ∇kg∈C∗
β(R

2), we then have

|∇kF(x,t)|≤ |||∇k g|||β

∫

R2
G(x−z,t)e

− |z|
β dz.

The proof then follows by a similar argument as the derivation of (2.5).

Now we consider some embedding properties associated with C∗
β[I] and

C∗
β(R

2).

Lemma 2.4. For any p∈ [1,∞) and β>0, the space C∗
β(R

2) is embedded into Lp(R2).

Moreover, for any f ∈C∗
β(R

2), we have

‖ f‖p.p,β ||| f |||β.

In the same fashion C∗
β[I] is embedded into the space C(I;Lp(R2)). Here I is a finite time

interval. For any f ∈C∗
β[I], the following estimate is satisfied:

‖ f‖L∞(I;Lp(R2)).p,β ||| f |||β;I.
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Proof. The proof of the estimates in this lemma is simple in that f is exponentially

decay at spatial infinity if f ∈ C∗
β[I] or C∗

β(R
2). We only need show that f (t,·)

is a continuous mapping from I to Lp(R2) if f ∈ C∗
β[I]. Let tn be an arbitrary

sequence in I which converges to some t0∈ I. Since f ∈C∗
β[I], it holds

| f (tn,x)− f (t0,x)|. | f (tn,x)|e
|x|
β e

− |x|
β +| f (t0,x)|e

|x|
β e

− |x|
β . ||| f |||β;I e

− |x|
β .

The most right-hand side above is Lp-integrable on R2. Thus, the continuity of the

function f and Lebesgue’s dominated convergence theorem imply that f (tn,·)−→
f (t0,·) in Lp, as n→∞. The proof is finished.

This lemma combined with the Calderon-Zygmund estimate leads to the fol-
lowing result.

Lemma 2.5. If ω∈C∗
β(R

2), then for all p∈(2,∞),v=K∗ω lies in W1,p(R2). Moreover,

by Morrey’s inequality, we have

‖v‖C(p−2)/p .p ‖v‖1,p.p ‖ω‖ 2p
p+2

+‖ω‖p.p,β |||ω|||β.

Here the first inequality is Morrey’s inequality. The second inequality above is the

Calderon-Zygmund estimate. The last inequality uses our Lemma 2.4.

In the end we study the continuity of v=K∗ω with ω∈C∗
β[0,T].

Lemma 2.6. If ω∈C∗
β[0,T], then v=K∗ω is continuous on R2×[0,T].

Proof. Suppose that (x0,t0) is an arbitrary point on R2×[0,T] and {(xn,tn)} ⊂
R

2×[0,T] is an arbitrary sequence which converges to (x0,t0). By the definition

of v, we have

v(xn,tn)=
∫

R2
K(z)ω(xn−z,tn)dz. (2.9)

In light of ω∈C∗
β[0,T], it holds

|K(z)ω(xn−z,tn)|. |z|−1|ω(xn−z,tn)|e
|xn−z|

β e
− |xn−z|

β

.β,maxn |xn| |||ω|||β;[0,T]|z|
−1e

− |z|
β .

Here we have used the boundedness of the sequence {xn}. Since the function

on the most-right-hand side above is integrable on R2 and ω is continuous on

R2×[0,T], then by (2.9) and the Lebesgue’s dominated convergence theorem, we

have v(xn,tn)→v(x0,t0) as n→∞. The proof is finished.
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3 Existence of short-time classic solutions

In this section, we prove Theorem 1.1.

3.1 Sketch of the proof and some preliminary lemmas

Our proof is based on a fixed point argument in the functional space X given
below

X :=
{

(

φ,ω
)

: |||φ−φ∗|||2;1;[0,T]+|||∇3φ−∇3φ∗|||2;[0,T]+|||ω−ω∗|||1;2;[0,T]

+|||∇2ω−∇2ω∗|||4;[0,T]≤1 and (φ,ω)
∣

∣

t=0
=(φ0,ω0)

}

, (3.1)

where with the operator Ψ defined in Lemma 2.3, (φ∗,ω∗) := (Ψ[φ0],Ψ[ω0]) is
a solution of the following initial value problem:

{

∂tφ∗−∆φ∗=0, ∂tω∗−∆ω∗=0 in R2×(0,∞),

φ∗(·,0)=φ0(·), ω∗(·,0)=ω0(·).
(3.2)

Since we are studying local existence of (1.2), T can be supposed to be as small as
possible.

Now we sketch the proof and make some preliminary lemmas for later use.
Letting (φ,ω) be an arbitrary element in X and v=K∗ω, we denote by (ψ,w)=
S(φ,ω) the solution of the following Cauchy problem:















∂tψ−∆ψ=F(φ,ω) :=η(|φ|)
[

∣

∣∇φ̂
∣

∣

2
φ̂−v·∇φ̂

]

in R2×(0,T),

∂tw−∆w=−v·∇ω−∇×∇·(∇ψ⊙∇ψ) in R2×(0,T),

v=K∗ω, ψ(0,·)=φ0(·), w(0,·)=ω0 (·).

(3.3)

In (3.3) η is a non-negative smooth cut-off function defined on R+ which satisfies
η ≡ 1 on (1/2,∞) and η ≡ 0 on (0,1/4). Moreover, φ̂ = φ/|φ| is the normalized
vector of φ. If the operator S has a fixed point in X, then by (3.3), the fixed point
must solve the following initial value problem:











∂t φ−∆φ=F(φ,ω) in R
2×(0,T), (3.4a)

∂tω−∆ω=−v·∇ω−∇×∇·(∇φ⊙∇φ) in R
2×(0,T), (3.4b)

v=K∗ω, φ(0,·)=φ0(·), ω(0,·)=ω0(·). (3.4c)

A simple maximum principle yields that solutions of (3.4) with the images of φ0

in S2 is a solution of (1.2). Therefore, the proof of Theorem 1.1 is then reduced to
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show that S is a contraction mapping from X to itself. To do so, we substract (3.2)
from (3.3) and get the following Cauchy problem satisfied by (ψ−φ∗,w−ω∗):











∂t(ψ−φ∗)−∆(ψ−φ∗)=F(φ,ω) in R
2×(0,T), (3.5a)

∂t(w−ω∗)−∆(w−ω∗)=−v·∇ω−∇×∇·(∇ψ⊙∇ψ) in R
2×(0,T), (3.5b)

ψ(0,·)−φ∗(0,·)=0, w(0,·)−ω∗(0,·)=0. (3.5c)

Now we should prove (ψ,w)∈X. Thus, we need

Lemma 3.1. There exists a positive constant M so that for all (φ,ω)∈X, we have

|||F(φ,ω)|||1;1+|∇2F(φ,ω)|0 ≤M.

Here M depends on |||·|||4;1-norm of φ0−e and |||·|||2;2-norm of ω0.

In this lemma and the remainings of this section, if the space-time is R2×[0,T],
we always use |·|0 to simply denote the L∞-norm of a given quantity on R2×[0,T].
To show that S is a contraction mapping, the following lemma is required.

Lemma 3.2. There exists a positive constant M depending only on the |||·|||4;1-norm of

φ0−e and |||·|||2;2-norm of ω0 such that for all (φj,ωj)∈X, j=1,2, we have



































































|F(φ1,ω1)−F(φ2,ω2)|.M

1

∑
i=0

∣

∣∇iφ1−∇iφ2

∣

∣+

(

2

∑
i=1

|∇φi|

)

|v1−v2|, (3.6a)

|∇F(φ1,ω1)−∇F(φ2,ω2)|.M

2

∑
i=0

∣

∣∇iφ1−∇iφ2

∣

∣+

(

2

∑
i,j=1

∣

∣∇iφj

∣

∣

)

×

( 1

∑
i=0

∣

∣∇iv1−∇iv2

∣

∣

)

, (3.6b)

∣

∣∇2F(φ1,ω1)−∇2F(φ2,ω2)
∣

∣

0
.M

3

∑
i=0

∣

∣∇iφ1−∇iφ2

∣

∣

0
+

2

∑
i=0

∣

∣∇iv1−∇iv2

∣

∣

0
. (3.6c)

Here vj=K∗ωj, j=1,2, are two velocity fields recovered by the Biot-Savart law.

In the remaining of this section, we finish the proof of Lemma 3.1. With (3.9)
and (3.11) below, the proof of Lemma 3.2 can be easily obtained and hence, is
omitted for brevity.
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Proof of Lemma 3.1. Under the assumptions made for (φ0,ω0) in Theorem 1.1,

Lemma 2.3 implies that

|||φ∗−e|||4;1;[0,T]. |||φ0−e|||4;1e2T, (3.7a)

|||ω∗|||2;2;[0,T]. |||ω0|||2;2e
T
2 . (3.7b)

In view of the definition of the space X in (3.1), we have ω ∈C∗,2
4 [0,T] and φ ∈

C∗,3
2 [0,T], which yield, by Lemma 2.6, the continuity of v,∇v and ∇2v on R

2×
[0,T]. Therefore, we know that ∇iF(φ,ω), i=0,1,2, are all continuous on R2×[0,T].
We are left to show the estimate in Lemma 3.1.

For any p>2 and t∈ [0,T], it holds

‖∇iv(·,t)‖∞ .p ‖∇
iω(·,t)‖1+‖∇iω(·,t)‖p , i=0,1,2.

Taking supremum over all t∈[0,T] and using Lemma 2.4, we can reduce the above

estimates to

|∇iv|0. |||∇iω|||4;[0,T], i=0,1,2. (3.8)

Employing (3.7) and the definition of X in (3.1), we can show

|||φ−e|||2;1;[0,T]+|||∇3φ|||2;[0,T]. |||φ0−e|||4;1+1, (3.9)

|||ω|||1;2;[0,T]+|||∇2ω|||4;[0,T]. |||ω0|||2;2+1. (3.10)

Thus, by (3.8) and (3.10), it holds

2

∑
i=0

|∇iv|0≤M. (3.11)

Here and in what follows M is a constant depending only on the |||·|||4;1-norm of

φ0−e and |||·|||2;2-norm of ω0. In light of the definition of F(φ,ω) in (3.3), by (3.9),

(3.11) and direct calculations, we can show that














|F(φ,ω)|. |∇φ|2+|v||∇φ|,

|∇F(φ,ω)|. [|v|+|∇φ|]
[

|∇φ|2+|∇2φ|
]

+
[

|v|2+|∇v|
]

|∇φ|,

|∇2F(φ,ω)|0 ≤M.

(3.12)

Using (3.9), (3.11) and the first estimate in (3.12), we get

|F(φ,ω)|e|x|. |∇φ|2e|x|+|v|0|∇φ|e|x|≤M, ∀(x,t)∈R
2×[0,T].

Taking supreme over R
2×[0,T], we obtain the desired uniform boundedness of

F(φ,ω). Same arguments can be applied to show that ∇F(φ,ω) is uniformly

bounded from above by M in C∗
1 [0,T]. Here one just needs (3.9), (3.11) and the

second estimate in (3.12).
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3.2 Proof of Theorem 1.1

Now we proceed to the proof of Theorem 1.1.

Proof. In the proof we still use M to denote a large positive constant depending

only on the |||·|||4;1-norm of φ0−e and |||·|||2;2-norm of ω0.

Step 1. Let (φ,ω) be an arbitrary element in X. (ψ,w)=S(φ,ω) is the solution of

(3.5). The |||·|||1;1-norm of ψ−φ∗ can be estimated by Lemma 2.1. With (2.3) and

the (3.5a), one can show that

|||ψ−φ∗|||1;[0,T]+T
1
2 |||∇ψ−∇φ∗|||1;[0,T].T|||F(φ,ω)|||1;[0,T].

Applying Lemma 3.1 to the right-hand side above implies

|||ψ−φ∗|||1;[0,T]+T
1
2 |||∇ψ−∇φ∗|||1;[0,T].M T. (3.13)

Making spatial derivative one more time on both sides of the Eq. (3.5a), by Lem-

mas 2.1 and 3.1, we can derive that

|||∇ψ−∇φ∗|||1;[0,T]T
1
2 |||∇2ψ−∇2φ∗|||1;[0,T].T|||∇F(φ,ω)|||1;[0,T].M T. (3.14)

Moreover, in light of (2.4), ∇3ψ−∇3φ∗ can be estimated as follows:

∣

∣

∣

∣

∣

∣∇3ψ−∇3φ∗

∣

∣

∣

∣

∣

∣

2;[0,T]
.α T

α
4 max

t∈[0,T]
[∇F(φ,ω)(·,t)]

1
2
α |||∇F(φ,ω)|||

1
2

1;[0,T]

.α,M T
α
4 max

t∈[0,T]
[∇F(φ,ω)(·,t)]

1
2
α .

Here we take θ = 1/2 and β = 1 in (2.4). α is a constant in (0,1). In light of

Lemma 3.1, by interpolation inequality, we can show that

max
t∈[0,T]

[∇F(φ,ω)(·,t)]α . |∇F(φ,ω)|0+
∣

∣∇2F(φ,ω)
∣

∣

0
≤M. (3.15)

Thus, the above two estimates imply that

∣

∣

∣

∣

∣

∣∇3ψ−∇3φ∗

∣

∣

∣

∣

∣

∣

2;[0,T]
.α,M T

α
4 . (3.16)

Combining this estimate with the first estimate in (3.7), we have

∣

∣

∣

∣

∣

∣∇3ψ
∣

∣

∣

∣

∣

∣

2;[0,T]
≤M. (3.17)
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Furthermore, by (3.14) and the first estimate in (3.7), the following boundedness

holds:

|||∇ψ|||1;[0,T]+
∣

∣

∣

∣

∣

∣∇2ψ
∣

∣

∣

∣

∣

∣

1;[0,T]
≤M. (3.18)

In light of (3.10)-(3.11) and (3.17)-(3.18), one can easily show that

|||v·∇ω+∇×∇·(∇ψ⊙∇ψ)|||2;[0,T]≤M. (3.19)

Applying this estimate and Lemma 2.1 to the Eq. (3.5b) yields

|||w−ω∗|||2;[0,T]+T
1
2 |||∇w−∇ω∗|||2;[0,T].M T. (3.20)

Taking one more spatial derivative on both sideds of Eq. (3.5a), by (3.15) and

Lemma 2.2, we can show for any β∈ (0,α) that

max
t∈[0,T]

[

∇3ψ(·,t)−∇3φ∗(·,t)
]

β

.α,β max
t∈[0,T]

[∇F(φ,ω)(·,t)]α T
α
2−

β
2 .α,β,M T

α
2−

β
2 .

By an interpolation inequality, the first estimate in (3.7) yields

max
t∈[0,T]

[

∇3φ∗(·,t)
]

β
≤M.

Thus, the above two estimates imply that

max
t∈[0,T]

[

∇3ψ(·,t)
]

β
.β M. (3.21)

In light of this estimate, (3.10)-(3.11) and (3.17)-(3.18), by interpolation inequali-

ties, it can be shown that

max
t∈[0,T]

[v·∇ω+∇×∇·(∇ψ⊙∇ψ)]β.β M. (3.22)

Using this estimate, (3.19) and (2.4) in Lemma 2.1, ∇2w−∇2ω∗ can be estimated

as follows:
∣

∣

∣

∣

∣

∣∇2w−∇2ω∗

∣

∣

∣

∣

∣

∣

4;[0,T]
.β max

t∈[0,T]
[v·∇ω+∇×∇·(∇ψ⊙∇ψ)]

1
2
β

×|||v·∇ω+∇×∇·(∇ψ⊙∇ψ)|||
1
2

2;[0,T]
T

β
4

.β,M T
β
4 . (3.23)

Here we used the Eq. (3.5b). In light of (3.13)-(3.14), (3.16), (3.20) and (3.23), if we

take T depending on M and β to be small enough, then (ψ,w)∈X. This shows

that S is an operator from X to itself.
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Step 2. This step is devoted to showing that S is a contraction mapping. In the

remaining of this step we let (φ1,ω1) and (φ2,ω2) be two arbitrary elements in X.

For j = 1,2, we denote by vj the vector field K∗ωj. If (ψj,wj) = S(φj,ωj), j = 1,2,

then by (3.5) it holds























∂t(ψ1−ψ2)−∆(ψ1−ψ2)=F(φ1,ω1)−F(φ2,ω2) in R
2×(0,T), (3.24a)

∂t(w1−w2)−∆(w1−w2)=−
[

v1 ·∇ω1−v2 ·∇ω2

]

−
[

∇×∇·
(

∇ψ1⊙∇ψ1)−∇×∇·
(

∇ψ2⊙∇ψ2)
]

in R
2×(0,T), (3.24b)

ψ1(0,·)−ψ2(0,·)=0, w1(0,·)−w2(0,·)=0. (3.24c)

The |||·|||1;1-norm of ψ1−ψ2 can be estimated by Lemma 2.1. With (2.3) and the

Eq. (3.24a), one can show that

|||ψ−ψ2|||1;[0,T]+T
1
2 |||∇ψ1−∇ψ2|||1;[0,T].T|||F(φ1,ω1)−F(φ2,ω2)|||1;[0,T].

Using the estimate (3.6a) in Lemma 3.2 and (3.9), we have

|||F(φ1,ω1)−F(φ2,ω2)|||1;[0,T].M |||φ1−φ2|||1;1;[0,T]+|v1−v2|0.

The last two estimates imply that

|||ψ1−ψ2|||1;[0,T]+T
1
2 |||∇ψ1−∇ψ2|||1;[0,T].M T

[

|||φ1−φ2|||1;1;[0,T]+|v1−v2|0
]

.

Moreover, by Lemma 2.5, this estimate can be reduced to

|||ψ1−ψ2|||1;[0,T]+T
1
2 |||∇ψ1−∇ψ2|||1;[0,T]

.M T
[

|||φ1−φ2|||1;1;[0,T]+|||ω1−ω2|||2;[0,T]

]

≤T|||(φ1−φ2,ω1−ω2)|||X. (3.25)

Here we used |||(φ1−φ2,ω1−ω2)|||X to simply denote the sum

|||φ1−φ2|||2;1;[0,T]+
∣

∣

∣

∣

∣

∣∇3φ1−∇3φ2

∣

∣

∣

∣

∣

∣

2;[0,T]
+|||ω1−ω2|||1;2;[0,T]+

∣

∣

∣

∣

∣

∣∇2ω1−∇2ω2

∣

∣

∣

∣

∣

∣

4;[0,T]
.

Making spatial derivative one more time on both sides of the Eq. (3.24a), by Lem-

ma 2.1, we have

|||∇ψ1−∇ψ2|||1;[0,T]+T
1
2
∣

∣

∣

∣

∣

∣∇2ψ1−∇2ψ2

∣

∣

∣

∣

∣

∣

1;[0,T]

.T|||∇F(φ1,ω1)−∇F(φ2,ω2)|||1;[0,T].
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In light of the second estimate in Lemma 3.2, by Lemma 2.5, it holds

|||∇F(φ1,ω1)−∇F(φ2,ω2)|||1;[0,T]

.M |||φ1−φ2|||2;1;[0,T]+
1

∑
i=0

∣

∣∇iv1−∇iv2

∣

∣

0

.M |||φ1−φ2|||2;1;[0,T]+|||ω1−ω2|||1;2;[0,T]. (3.26)

The last two estimates then yield

|||∇ψ1−∇ψ2|||1;[0,T]+T
1
2
∣

∣

∣

∣

∣

∣∇2ψ1−∇2ψ2

∣

∣

∣

∣

∣

∣

1;[0,T]
.M T|||(φ1−φ2,ω1−ω2)|||X. (3.27)

The third-order derivatives of ψ1−ψ2 can be estimated by (2.4) and (3.26) as

follows:

∣

∣

∣

∣

∣

∣∇3ψ1−∇3ψ2

∣

∣

∣

∣

∣

∣

2;[0,T]
.α,MT

α
4 max

t∈[0,T]

[

∇F(φ1,ω1)(·,t)−∇F(φ2,ω2)(·,t)
]

1
2

α

×|||(φ1−φ2,ω1−ω2)|||
1
2
X. (3.28)

Here we take θ = 1/2 and β= 1 in (2.4). α is a constant in (0,1). In light of the

second and third estimates in Lemma 3.2, by interpolation inequality, we can

show that

max
t∈[0,T]

[∇F(φ1,ω1)(·,t)−∇F(φ2,ω2)]α

.
2

∑
i=1

∣

∣∇iF(φ1,ω1)−∇iF(φ2,ω2)
∣

∣

0

.M

3

∑
i=0

∣

∣∇iφ1−∇iφ2

∣

∣

0
+

2

∑
i=0

∣

∣∇iv1−∇iv2

∣

∣

0
.

By Lemma 2.5, this estimate can be reduced to

max
t∈[0,T]

[∇F(φ1,ω1)(·,t)−∇F(φ2,ω2)]α.M |||(φ1−φ2,ω1−ω2)|||X. (3.29)

Thus, (3.28)-(3.29) imply that

∣

∣

∣

∣

∣

∣∇3ψ−∇
3ψ2

∣

∣

∣

∣

∣

∣

2;[0,T]
.α,M T

α
4 |||(φ1−φ2,ω1−ω2)|||X. (3.30)

Direct calculations show that
∣

∣

∣

∣

∣

∣∇×∇·
(

∇ψ1⊙∇ψ1

)

−∇×∇·
(

∇ψ2⊙∇ψ2

)
∣

∣

∣

∣

∣

∣

2;[0,T]
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.
∣

∣∇ψ1

∣

∣

0

∣

∣

∣

∣

∣

∣∇3ψ1−∇3ψ2

∣

∣

∣

∣

∣

∣

2;[0,T]
+
∣

∣∇3ψ2

∣

∣

0
|||∇ψ1−∇ψ2|||2;[0,T]

+
[

∣

∣∇2ψ1

∣

∣

0
+
∣

∣∇2ψ2

∣

∣

0

]

∣

∣

∣

∣

∣

∣∇2ψ1−∇2ψ2

∣

∣

∣

∣

∣

∣

2;[0,T]
.

Therefore, by (3.17)-(3.18), (3.27) and (3.30), this estimate can be reduced to

|||∇×∇·(∇ψ1⊙∇ψ1)−∇×∇·(∇ψ2⊙∇ψ2)|||2;[0,T]

.α,M T
α
4 |||(φ1−φ2,ω1−ω2)|||X.

On the other hand using Lemma 2.5 and (3.10)-(3.11) yields

|||v1 ·∇ω1−v2 ·∇ω2|||2;[0,T]

. |v1−v2|0|||∇ω1|||2;[0,T]+|v2|0|||∇ω1−∇ω2|||2;[0,T]

. |||ω1−ω2|||2;[0,T]|||∇ω1|||2;[0,T]+|v2|0|||∇ω1−∇ω2|||2;[0,T]

.M |||ω1−ω2|||1;2;[0,T].

The last two estimates then imply that

|||R.H.S.|||2;[0,T].M |||(φ1−φ2,ω1−ω2)|||X. (3.31)

Here we used R.H.S. to simply denote the right-hand side of the Eq. (3.24b). Ap-

plying this estimate and Lemma 2.1 to the Eq. (3.24b), we get

|||w1−w2|||2;[0,T]+T
1
2 |||∇w1−∇w2|||2;[0,T].M T|||(φ1−φ2,ω1−ω2)|||X. (3.32)

Taking one more spatial derivative on both sideds of Eq. (3.24a), by (3.29) and

Lemma 2.2, we can show for any β∈ (0,α) that

max
t∈[0,T]

[

∇3ψ1(·,t)−∇3ψ2(·,t)
]

β

.α,β max
t∈[0,T]

[∇F(φ1,ω1)(·,t)−∇F(φ2,ω2)(·,t)]αT
α
2−

β
2

.α,β,M T
α
2−

β
2 |||(φ1−φ2,ω1−ω2)|||X.

Using this estimate, (3.17)-(3.18), (3.21), (3.27) and (3.30), by interpolation inequal-

ities, we have

max
t∈[0,T]

[

∇×∇·(∇ψ1⊙∇ψ1)−∇×∇·(∇ψ2⊙∇ψ2)
]

β

.α,β,M Tγ|||(φ1−φ2,ω1−ω2)|||X,
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where γ is a positive constant depending on α and β. The Hölder estimate for

v1 ·∇ω1−v2 ·∇ω2 can be estimated as follows:

max
t∈[0,T]

[v1 ·∇ω1−v2 ·∇ω2]β

. |∇ω1|0 max
t∈[0,T]

[v1−v2]β+|v1−v2|0 max
t∈[0,T]

[∇ω1]β

+|∇ω1−∇ω2|0 max
t∈[0,T]

[v2

]

β
+|v2|0 max

t∈[0,T]
[∇ω1−∇ω2]β

.M |||ω1−ω2|||1;2;[0,T]+
∣

∣

∣

∣

∣

∣∇2ω1−∇2ω2

∣

∣

∣

∣

∣

∣

4;[0,T]
.

To derive the above estimate, we used (3.10)-(3.11), Lemma 2.5 and various in-

terpolation inequalities. Combining the last two estimates, one can easily show

that

max
t∈[0,T]

[R.H.S.]β.β,M |||(φ1−φ2,ω1−ω2)|||X.

In light of this estimate and (3.31), the following estimate holds by (2.4) in Lem-

ma 2.1:

∣

∣

∣

∣

∣

∣∇2w1−∇2w2

∣

∣

∣

∣

∣

∣

4;[0,T]
.β max

t∈[0,T]
[R.H.S.]

1
2
β |||R.H.S.|||

1
2

2;[0,T]
T

β
4

.β,M T
β
4 |||(φ1−φ2,ω1−ω2)|||X. (3.33)

By (3.25), (3.27), (3.30) and (3.32)-(3.33), it holds

|||(ψ1−ψ2,w1−w2)|||X.β,M T
β
4 |||(φ1−φ2,ω1−ω2)|||X.

Therefore, S is a contraction mapping from X to itself, provided that T is small

enough.

Step 3. Now we choose T to be small enough. By the contraction mapping theo-

rem, S admits a fixed point in X. Denoting by (φ,ω) the fixed point, we know that

(φ,ω) is a solution of (3.4). Since φ∈C∗,2
1 [0,T], by Lemma 3.1 and the Eq. (3.4a),

we have ∂tφ∈C∗
1 [0,T]. It then turns out that

1−|φ(x,t)|≤ |φ(x,t)−φ0|≤
∫ t

0
|∂sφ(x,s)|ds

≤ t|||∂tφ|||1;[0,T], ∀(x,t)∈R
2×(0,T).
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If t < T∗ < T, where T∗ is sufficiently small, then |φ(x,t)| > 1/2, for all (x,t) ∈
R2×

(

0,T∗
)

. In light that η≡1 on (1/2,∞), the Eq. (3.4a) can then be reduced to

∂tφ−∆φ= |∇φ̂|2 φ̂−v·∇φ̂ on R
2×(0,T∗).

On the domain R2×(0,T∗), this equation yields

∂tρ−∆ρ=−2|∇φ−∇φ̂|2, where ρ= |φ−φ̂|2.

A standard maximal principle implies that ρ≡ 0 on R2×(0,T∗). In other words

on R2×(0,T∗), (φ,ω) is a solution of (1.2) with |φ|≡1.

Step 4. In this step we show that (φ,ω) ∈ C∗,4
1 [0,T∗]×C∗,2

2 [0,T∗]. Taking spatial

derivative one more time on the both sides of the Eq. (1.2a) and using φ∗ in (3.2),

we have

∂t(∂jφ−∂jφ∗)−∆(∂jφ−∂jφ∗)

=−∂jv·∇φ−v·∇∂jφ+2(∇φ :∇∂jφ)φ+|∇φ|2∂jφ. (3.34)

In light of (3.15) and Lemma 3.1, by Lemma 2.1, it holds ∇3φ−∇3φ∗ ∈C∗
β[0,T∗]

for all β∈ (1,∞). This result and the estimate (3.7a) imply that ∇3φ∈C∗
β[0,T∗] for

all β∈(1,∞). Taking one more spatial derivative on both sides of (3.34) and using

φ∗ in (3.2), we have

∂t(∂i∂jφ−∂i∂jφ∗)−∆(∂i∂jφ−∂i∂jφ∗
)

=−∂i∂jv·∇φ−v·∇∂i∂jφ+2(∇φ :∇∂i∂jφ)φ+l.o.t., (3.35)

where l.o.t. is a quantity containing all the lower order terms on the right-hand

side of (3.35). It can also be shown that l.o.t. lies in the space C∗
1 [0,T∗]. Applying

(2.3) to the above equation, we obtain

|||∇∂i∂jφ−∇∂i∂jφ∗|||β;[0,T∗]

.T
1
2
∗

(

|v|0;[0,T∗ ]+|∇φ|0;[0,T∗]

)

|||∇∂i∂jφ|||β;[0,T∗]

+|∇2v|0;[0,T∗]|||∇φ|||β;[0,T∗ ]+|||l.o.t.|||β;[0,T∗ ], β∈ (1,∞).

Employing (3.9) and (3.11), we can reduce the last estimate to

|||∇∂i∂jφ|||β;[0,T∗ ]. |||∇∂i∂jφ∗|||β;[0,T∗ ]+MT
1
2
∗ |||∇∂i∂jφ|||β;[0,T∗]

+M|||∇φ|||β;[0,T∗]
+|||l.o.t.|||β;[0,T∗]

. |||∇∂i∂jφ∗|||1;[0,T∗ ]+MT
1
2
∗ |||∇∂i∂jφ|||β;[0,T∗]

+M|||∇φ|||1;[0,T∗]
+|||l.o.t.|||1;[0,T∗]

.
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Thus, if we choose T∗ small enough depending on the constant M, then it follows

that

|||∇∂i∂jφ|||β;[0,T∗]. |||∇∂i∂jφ∗|||1;[0,T∗]+M|||∇φ|||1;[0,T∗ ]+|||l.o.t.|||1;[0,T∗ ]. (3.36)

Taking β→1 yields that ∇3φ∈C∗
1[0,T∗].

In light of (3.10), ∇2ω ∈C∗
4 [0,T∗]. Then by Lemma 2.5, ∇2v has finite L∞Cγ-

norm on R2×[0,T∗] for all γ∈(0,1). This result and (3.21) show that the right-hand

side of (3.35) lies in L∞([0,T∗];Cγ(R2)) for some γ∈ (0,1). Therefore, Lemma 2.1

shows that ∇4φ−∇4φ∗ ∈C∗
β[0,T∗] for all β> 1. Here we used the previous con-

sequence that ∇3φ ∈ C∗
1[0,T∗]. Therefore, in light of the estimate (3.7a), ∇4φ ∈

C∗
β[0,T∗] for all β>1. This result and interpolation inequality show that the right-

hand side of the Eq. (1.2c) has finite L∞Cγ-norm for all γ∈(0,), which furthermore

shows by (2.4) that ∇2ω−∇2ω∗ ∈C∗
α[0,T∗] for all α> 2. Here we have used the

fact that v·∇ω and the right-hand side of the Eq. (1.2c) lies in C∗
2[0,T∗]. Moreover,

by the second estimate in (3.7), it holds ∇2ω∗∈C∗
α[0,T∗] for all α> 2. Therefore,

we can imply from the above arguments that ∇2ω∈C∗
α[0,T∗] for all α> 2. Now

we make spatial derivative once for the Eq. (1.2c). It turns out that

∂t∇ω−∆∇ω=R1 :=−∇v·∇ω−v·∇2ω−∇4φ·∇φ−∇3φ·∇2φ. (3.37)

Similar derivation as for (3.36) shows that the |||·|||α;[0,T∗ ]-norm of ∇2ω is uni-

formly bounded from above by a constant independent of α. Then we take α→2

and get the optimal exponential decay of ∇2ω at spatial infinity. That is ∇2ω ∈
C∗

2 [0,T∗].

We are left to show that ∇4φ∈C∗
1[0,T∗]. Since ∇2v has finite L∞Cγ-norm on

R2×[0,T∗] for all γ∈ (0,1) and ∇4φ ∈C∗
β[0,T∗] for all β> 1, the right-hand side

of (3.35) has finite L∞C3/4-norm on R2×[0,T∗]. It then follows, by Lemma 2.2,

that ∇4φ−∇4φ∗ has finite L∞C1/2 norm on R2×[0,T∗]. Moreover, this norm is

bounded from above by a constant depending on M. As for ∇4φ∗, we do not

know that it has finite L∞C1/2-norm on R2×[0,T∗]. But we can represent ∇5φ∗ as

follows:

∇5φ∗(x,t)=
∫

R2
∇G(x−z,t)∇4φ0(z)dz, ∀(x,t)∈R

2×(0,∞).

Therefore, it holds, for all (x,t)∈R2×(0,∞), that

∣

∣∇5φ∗(x,t)
∣

∣.

∫

R2
G(x−z,t)

|x−z|

t

∣

∣∇4φ0(z)
∣

∣e|z|e−|z|. |||∇4φ0|||1t−
1
2 ,
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which furthermore implies the following L∞-boundedness of ∇5φ∗:

∥

∥∇5φ∗(·,t)
∥

∥

∞
.
∣

∣

∣

∣

∣

∣∇4φ0

∣

∣

∣

∣

∣

∣

1
t−

1
2 , ∀t∈ (0,∞). (3.38)

By (3.38) and the estimate (3.7a), we have, with an use of simple interpolation

inequality, that

∥

∥∇4φ∗(·,t)
∥

∥

C
1
2
.
∥

∥∇4φ∗(·,t)
∥

∥

∞
+
∥

∥∇5φ∗(·,t)
∥

∥

∞
.M t−

1
2 , ∀t∈ (0,T∗].

Therefore, the above arguments show that
∥

∥∇4φ(·,t)
∥

∥

C
1
2
≤
∥

∥∇4φ(·,t)−∇4φ∗(·,t)
∥

∥

C
1
2

+
∥

∥∇4φ∗(·,t)
∥

∥

C
1
2
.M t−

1
2 , ∀t∈ (0,T∗]. (3.39)

Using the same derivation as for (3.39), by the Eq. (1.2c), we get

‖∇2ω(·,t)‖
C

1
2
.M t−

1
2 , ∀t∈ (0,T∗]. (3.40)

Now we come back to (3.37). Using ω∗ in (3.2) and (2.8), we can represent ∇3ω−
∇3ω∗ as follows:

∂ij∇ω(x,t)−∂ij∇ω∗(x,t)

=
1

2

∫ t

0

∫

R2
G(x−z,t−s)[R1(z,s)−R1(x,s)]

[

(zi−xi)(zj−xj)

2(t−s)2
−

δij

t−s

]

dzds.

Here (x,t) is a fixed point in R
2×(0,T∗]. In light of (3.39)-(3.40) and the fact that

R1∈C∗
2 [0,T∗], it holds from the above equality that

|∂ij∇ω(x,t)−∂ij∇ω∗(x,t)|

.

∫ t

0

∫

R2
G(x−z,t−s)|R1(z,s)−R1(x,s)|

|z−x|2+(t−s)

(t−s)2
dzds

.M

∫ t

0

∫

R2
G(x−z,t−s)|R1(z,s)−R1(x,s)|

1
2

[

e−
|z|
4 +e−

|x|
4

] |z−x|2+(t−s)

(t−s)2
dzds

.M

∫ t

0

∫

R2
G(x−z,t−s)

|z−x|
1
4

s
1
4

[

e−
|z|
4 +e−

|x|
4

] |z−x|2+(t−s)

(t−s)2
dzds.

By the same derivation for (2.5), the above estimate can be reduced to

|∂ij∇ω(x,t)−∂ij∇ω∗(x,t)|.M e−
|x|
4 t−

1
8 . e−

|x|
4 t−

1
2 , ∀(x,t)∈R

2×(0,T∗].
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Similar derivation as for (3.38) yields that |||∇3ω∗(·,t)|||2.t−1/2. Thus, it holds by

this result and the last estimate that

|||∇3ω(·,t)|||4.M t−
1
2 , ∀t∈ (0,T∗].

Applying this estimate and Lemma 2.5, we have

‖∇3v(·,t)‖∞ . |||∇3ω(·,t)|||4.M t−
1
2 , ∀t∈ (0,T∗]. (3.41)

Now we make spatial derivative one more time on both sides of (3.35). It follows

that

∂t(∇
3φ−∇3φ∗)−∆(∇3φ−∇3φ∗)

=R2 :=−∇3v·∇φ−v·∇4φ+2(∇φ :∇4φ)φ+l.o.t.. (3.42)

It then turns out by (2.6) that

∇4φ(x,t)−∇4φ∗(x,t)=
1

2

∫ t

0

∫

R2
G(x−z,t−s)R2(z,s)

z−x

t−s
dzds.

This equality yields, for all (x,t)∈R2×(0,T∗], that
∣

∣∇4φ(x,t)−∇4φ∗(x,t)
∣

∣

.Me−|x|+
∫ t

0

∫

R2
G(x−z,t−s)|∇3v(z,s)||∇φ(z,s)|

|z−x|

t−s

+
(

|v|0;[0,T∗]+|∇φ|0;[0,T∗]

)

∫ t

0

∫

R2
G(x−z,t−s)

∣

∣∇4φ(z,s)
∣

∣

|z−x|

t−s
.

The first term on the right-hand side above follows from the term l.o.t. in (3.42).

In fact we know that l.o.t. ∈C∗
1 [0,T∗]. Therefore, (2.3) implies that Φ[l.o.t.] also

lies in C∗
1 [0,T∗], which gives us the first term on the right-hand side above. Using

(3.9), (3.11), (3.41) and the same derivation as for (2.5), we can get from the above

estimate that
∣

∣∇4φ(x,t)−∇4φ∗(x,t)
∣

∣

.M e−|x|+
∫ t

0

∫

R2
G(x−z,t−s)s−

1
2 e−|z| |z−x|

t−s

+|||∇4φ|||β;[0,T∗ ]

∫ t

0

∫

R2
G(x−z,t−s)e

− |z|
β
|z−x|

t−s

.M e−|x|+e−|x|
∫ t

0
(t−s)−

1
2 s−

1
2 ds+

∣

∣

∣

∣

∣

∣∇4φ
∣

∣

∣

∣

∣

∣

β;[0,T∗]
e
− |x|

β

∫ t

0
(t−s)−

1
2 ds

.M e−|x|+
∣

∣

∣

∣

∣

∣∇4φ
∣

∣

∣

∣

∣

∣

β;[0,T∗]
e
− |x|

β T
1
2
∗ .
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Here β is an arbitrary constant larger than 1. Multiplying e|x|/β on both sides of

the above estimate and taking supreme over (x,t)∈R2×[0,T∗], we have

∣

∣

∣

∣

∣

∣∇4φ−∇4φ∗

∣

∣

∣

∣

∣

∣

β;[0,T∗]
≤M+M

∣

∣

∣

∣

∣

∣∇4φ
∣

∣

∣

∣

∣

∣

β;[0,T∗]
T

1
2
∗ .

Using the first estimate in (3.7), we have ∇4φ∗ ∈ C∗
1 [0,T∗]. This result together

with the above estimate yield

∣

∣

∣

∣

∣

∣∇4φ
∣

∣

∣

∣

∣

∣

β;[0,T∗]
≤M+M

∣

∣

∣

∣

∣

∣∇4φ
∣

∣

∣

∣

∣

∣

β;[0,T∗]
T

1
2
∗ .

Now we choose T∗ small enough (smallness depends on M). The last estimate

can then be reduced to
∣

∣

∣

∣

∣

∣∇4φ
∣

∣

∣

∣

∣

∣

β;[0,T∗]
≤M.

Taking β→1, we know that ∇4φ∈C∗
1 [0,T∗]. The proof is then finished.

We also claim without proof that

Remark 3.1. Let (φ,ω) be the classic solution obtained from Theorem 1.1. v=K∗ω

is the velocity field recovered from ω by the Biot-Savart law. Then for any given

α∈ (0,1),v has finite Cα/2,α-norm on R
2×[0,T∗].

4 Local existence of weak solution

In this section, we study the local existence of solutions for Eq. (1.2) with
φ0∈H1

e(R
2;S2) and ω0 ∈L1(R2). Before we prove Theorem 1.2, two lemmas are

given as follows.

Lemma 4.1. Let (φ0,ω0) be a smooth initial data on R2. Moreover, we suppose that

(φ0−e,ω0) is compactly supported on R2. By Theorem 1.1, for some T> 0, the system

(1.2) admits a classic solution on R2×[0,T] with the given initial data (φ0,ω0). Then

for all p∈ (4/3,2) and t∈ [0,T], the following estimates hold:

Ap(t).p max
s∈[0,t]

s
1− 1

p ‖G(·,s)∗ω0‖p+A2
p(t)+B(t)C(t), (4.1)

B(t).p max
s∈[0,t]

s
1
4‖G(·,s)∗∇φ0‖4+Ap(t)B(t)+B2(t), (4.2)

C(t).p max
s∈[0,t]

s
1
2‖∇G(·,s)∗∇φ0‖2+Ap(t)B(t)+Ap(t)C(t)

+B(t)C(t)+B3(t). (4.3)
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Here for any t∈ [0,T], we define

Ap(t) := max
s∈[0,t]

s
1− 1

p‖ω(·,s)‖p ,

B(t) := max
s∈[0,t]

s
1
4‖∇φ(·,s)‖4,

C(t) := max
s∈[0,t]

s
1
2 ‖∇2φ(·,s)‖2.

(4.4)

Proof. The proof is divided into three steps.

Step 1. Let (x,t) be an arbitrary point in R2×[0,T]. By Eq. (1.2c), ω(x,t) can be

represented as shown below

ω(x,t)=
∫

R2
G(x−z,t)ω0(z)+

∫ t

0

∫

R2
G(x−z,t−s)

[

−∇z ·(ωv)+∇z ·(∇φ·∆φ)⊥
]

.

Integrating by part with respect to the z variable, we get from the above equality

that

ω(x,t)=
∫

R2
G(x−z,t)ω0(z)+

∫ t

0

∫

R2
∇zG(x−z,t−s)·

[

ωv−(∇φ·∆φ)⊥
]

. (4.5)

For any p∈ (4/3,2), 2p/(3p−2) and 2p/(4−p) are two numbers larger than 1.

Thus, it holds
∥

∥

∥

∥

∫ t

0

∫

R2
∇zG(x−z,t−s)·(ωv)

∥

∥

∥

∥

p

≤
∫ t

0

∥

∥

∥

∥

∫

R2
∇zG(x−z,t−s)·(ωv)

∥

∥

∥

∥

p

≤
∫ t

0
‖∇G(·,t−s)‖ 2p

3p−2
‖ωv‖ 2p

4−p
. (4.6)

The second inequality in (4.6) follows by Young’s inequality for convolutions.

With the use of Hölder’s inequality and Calderon-Zygmund estimate, ωv can be

estimated by

‖ωv‖ 2p
4−p

.‖ω‖p‖v‖ 2p
2−p

.p ‖ω‖2
p.

Applying the last estimate to (4.6) yields
∥

∥

∥

∥

∫ t

0

∫

R2
∇zG(x−z,t−s)·(ωv)

∥

∥

∥

∥

p

.p

∫ t

0
(t−s)

− 1
p ‖ω‖2

p. (4.7)
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Still using Young’s inequality for convolutions and noticing that 4p/(p+4)> 1,

we can show that
∥

∥

∥

∥

∫ t

0

∫

R2
∇zG(x−z,t−s)·(∇φ·∆φ)⊥

∥

∥

∥

∥

p

≤
∫ t

0

∥

∥

∥

∥

∫

R2
∇zG(x−z,t−s)·(∇φ·∆φ)⊥

∥

∥

∥

∥

p

≤
∫ t

0
‖∇G(·,t−s)‖ 4p

p+4
‖∇φ·∆φ‖ 4

3

.p

∫ t

0
(t−s)

− 5
4+

1
p ‖∇φ·∆φ‖ 4

3
.

It then turns out by (4.5), (4.7) and the last estimate that

‖ω(·,t)‖p ≤‖G(·,t)∗ω0‖p+Cp

∫ t

0
(t−s)

− 1
p ‖ω‖2

p

+Cp

∫ t

0
(t−s)

− 5
4+

1
p ‖∇φ·∆φ‖ 4

3

.p ‖G(·,t)∗ω0‖p+
∫ t

0
(t−s)

− 1
p ‖ω‖2

p

+
∫ t

0
(t−s)

− 5
4+

1
p ‖∇φ‖4‖∆φ‖2. (4.8)

Step 2. By the Eq. (1.2a), ∂jφ can be represented by

∂jφ(x,t)=
∫

R2
G(x−z,t)∂jφ0(z)

+
∫ t

0

∫

R2
∂zj

G(x−z,t−s)
[

v·∇φ−|∇φ|2φ
]

(z,s)
. (4.9)

Still by Young’s inequality for convolution, it can be shown that
∥

∥

∥

∥

∫ t

0

∫

R2
∂zj

G(x−z,t−s)[v·∇φ](z,s)

∥

∥

∥

∥

4

.
∫ t

0
‖∇G(·,t−s)‖ 2p

3p−2
‖v·∇φ‖ 4p

4−p

.p

∫ t

0
(t−s)

− 1
p ‖v‖ 2p

2−p
‖∇φ‖4

.p

∫ t

0
(t−s)

− 1
p ‖ω‖p‖∇φ‖4.
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The last inequality above used Calderon-Zygmund estimate. Same method can

be applied to show that
∥

∥

∥

∥

∫ t

0

∫

R2
∂zj

G(x−z,t−s)
[

|∇φ|2φ
]

(z,s)

∥

∥

∥

∥

4

.

∫ t

0
‖∇G(·,t−s)‖ 4

3
‖|∇φ|2‖2

.
∫ t

0
(t−s)−

3
4‖∇φ‖2

4.

Using the last two estimates, by (4.9), we have

‖∇φ(·,t)‖4 ≤
∥

∥G(·,t)∗∂jφ0

∥

∥

4
+Cp

∫ t

0
(t−s)

− 1
p‖ω‖p‖∇φ‖4

+C
∫ t

0
(t−s)−

3
4‖∇φ‖2

4. (4.10)

Taking spatial derivative one more time on both sides of (4.9) implies that

∂ijφ(x,t)=
∫

R2
∂iG(x−z,t)∂jφ0(z)

+
∫ t

0

∫

R2
∂xi

G(x−z,t−s)∂j

[

v·∇φ−|∇φ|2φ
]

(z,s)
. (4.11)

By Young’s inequality for convolutions, it holds
∥

∥

∥

∥

∫ t

0

∫

R2
∂xi

G(x−z,t−s)
[

∂jv·∇φ
]

(z,s)

∥

∥

∥

∥

2

≤
∫ t

0
‖∇G(·,t−s)‖ 4p

5p−4
‖∂jv·∇φ‖ 4p

p+4

.p

∫ t

0
(t−s)

− 1
4−

1
p‖∇v‖p‖∇φ‖4

.p

∫ t

0
(t−s)

− 1
4−

1
p‖ω‖p‖∇φ‖4.

Similar arguments yield the following three estimates:
∥

∥

∥

∥

∫ t

0

∫

R2
∂xi

G(x−z,t−s)
[

v·∇∂jφ
]

(z,s)

∥

∥

∥

∥

2

≤
∫ t

0
‖∇G(·,t−s)‖ 2p

3p−2
‖v·∇∂jφ‖p
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.p

∫ t

0
(t−s)

− 1
p ‖v‖ 2p

2−p
‖∇2φ‖2

.p

∫ t

0
(t−s)

− 1
p ‖ω‖p‖∇

2φ‖2,

∥

∥

∥

∥

∫ t

0

∫

R2
∂xi

G(x−z,t−s)
[

∇φ :∇∂jφ
]

(z,s)
φ(z,s)

∥

∥

∥

∥

2

≤
∫ t

0
‖∇G(·,t−s)‖ 4

3
‖∇φ :∇∂jφ‖ 4

3

.

∫ t

0
(t−s)−

3
4‖∇φ‖4‖∇

2φ‖2,

∥

∥

∥

∥

∫ t

0

∫

R2
∂xi

G(x−z,t−s)
[

|∇φ|2∂jφ
]

(z,s)

∥

∥

∥

∥

2

≤
∫ t

0
‖∇G(·,t−s)‖ 4

3
‖|∇φ|3

∥

∥

4
3

.

∫ t

0
(t−s)−

3
4‖∇φ‖3

4.

Applying the above four estimates to (4.11), we get

‖∇2φ(·,t)‖2.p ‖∇G(·,t)∗∇φ0‖2+
∫ t

0
(t−s)

− 1
4−

1
p ‖ω‖p‖∇φ‖4

+
∫ t

0
(t−s)

− 1
p‖ω‖p‖∇

2φ‖2

+
∫ t

0
(t−s)−

3
4‖∇φ‖4‖∇

2φ‖2+
∫ t

0
(t−s)−

3
4 ‖∇φ‖3

4. (4.12)

Step 3. Recalling the notations defined in (4.4), then by (4.8), we have, for all

s∈ [0,t], that

s
1− 1

p‖ω(·,s)‖p .p s
1− 1

p ‖G(·,s)∗ω0‖p+A2
p(t)s

1− 1
p

∫ s

0
(s−τ)

− 1
p τ

−2+ 2
p dτ

+B(t)C(t)s
1− 1

p

∫ s

0
(s−τ)

− 5
4+

1
p τ− 3

4 dτ

.p max
s∈[0,t]

s
1− 1

p ‖G(·,s)∗ω0‖p+A2
p(t)+B(t)C(t).

Taking supreme over s ∈ [0,t] yields (4.1). The proofs for (4.2)-(4.3) are similar.

One just needs to use (4.10) and (4.12).
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The estimate (4.1) in Lemma 4.1 also holds when p=4/3. More precisely we
have

Lemma 4.2. Suppose that (φ0,ω0) and (φ,ω) are the same as in Lemma 4.1. Then for

all t∈ [0,T], the estimate (4.1) also holds if p is taken to be 4/3.

Proof. Repeating the same arguments as the derivation for (4.8) yields

‖ω(·,t)‖ 4
3
.‖G(·,t)∗ω0‖ 4

3
+
∫ t

0
(t−s)−

3
4‖ω‖2

4
3

+
∫ t

0
(t−s)−

1
2‖∇φ‖4‖∆φ‖2.

Here t is an arbitrary number in [0,T]. Using the same arguments as for (4.10), we

have

A 4
3
(t). max

s∈[0,t]
s

1
4 ‖G(·,s)∗ω0‖ 4

3
+A2

4
3
(t)+B(t)C(t), ∀t∈ [0,T].

The proof is finished.

Now we prove part (i) of Theorem 1.2.

Proof of (i) in Theorem 1.2. We divide the proof into four steps.

Step 1. Let (φ0;n,ω0;n) be a sequence of smooth pairs so that as n→∞,

φ0;n−e −→ φ0−e strongly in H1(R2),

ω0;n −→ ω0 strongly in L1(R2).
(4.13)

Here φ0;n takes values in S2. Thus, for any ǫ>0, there exists an N∈N such that

‖∇φ0;m−∇φ0;N‖2+‖ω0;m−ω0;N‖1≤ǫ, ∀m>N. (4.14)

Moreover, we can suppose that (φ0;n−e,ω0;n) is compactly supported on R
2 for

all n∈N. It then turns out, for all t∈ (0,1), that

t
1− 1

p ‖G(·,t)∗ω0;m‖p≤ t
1− 1

p‖G(·,t)∗ω0;N‖p+t
1− 1

p ‖G(·,t)∗(ω0;m−ω0;N)‖p

.p t
1− 1

p max
t∈[0,1]

‖G(·,t)∗ω0;N‖p+‖ω0;m−ω0;N‖1

.p t
1− 1

p |||G(·,t)∗ω0;N |||1;[0,1]+‖ω0;m−ω0;N‖1

.p t
1− 1

p |||ω0;N |||1+‖ω0;m−ω0;N‖1.
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To derive the second inequality above, we used Young’s inequality for convolu-

tions. The third inequality is an application of Lemma 2.4 with β= 1. The last

inequality above holds by Lemma 2.3. In light of (4.14) and the last estimate, we

can choose τN > 0 small enough (the smallness depends on ǫ and |||ω0;N |||1) so

that

t
1− 1

p ‖G(·,t)∗ω0;m‖p.p ǫ, ∀t∈ [0τN ] and m>N. (4.15)

Similar arguments can be applied to show that

t
1
4 ‖G(·,t)∗∇φ0;m‖4.ǫ, (4.16a)

t
1
2 ‖∇G(·,t)∗∇φ0;m‖2.ǫ (4.16b)

for any t∈ [0,τN ] and m>N. Here we need (4.14), particularly the bound for the

L2-norm of ∇φ0;m−∇φ0;N in (4.14).

Step 2. In the next we fix an m>N and let p=8/5. In light of Theorem 1.1, there

exists a Tm ∈ [0,τN] so that (1.2) admits a classic solution on R2×[0,Tm] with the

given initial data (φ0;m,ω0;m). Moreover, the solution, denoted by (φm,ωm), also

satisfies

(φm,ωm)∈C∗,4
1 [0,Tm]×C∗,2

2 [0,Tm]. (4.17)

Associated with (φm,ωm), Am;8/5(·), Bm(·) and Cm(·) are quantities given in (4.4).

Here we used a subscript m, which means that these three quantities are defined

in terms of (φm,ωm). Letting δ be a positive number, we define

t∗1 =sup
{

t∈ (0,Tm) : Am; 8
5
(t)<δ

}

,

t∗2 =sup
{

t∈ (0,Tm) : Bm(t)<δ
}

,

t∗3 =sup
{

t∈ (0,Tm) : Cm(t)<δ
}

.

Moreover, we let s∗ be the minimum number between t∗1 , t∗2 and t∗3 . Clearly it

satisfies

s∗=min
{

t∗1 ,t∗2 ,t∗3
}

≤Tm≤τN .

Since s∗≤ t∗1∧t∗2 , it holds

Am; 8
5
(s∗)≤δ, Bm(s

∗)≤δ. (4.18)

In view of the estimate (4.16a) and (4.18), (4.2) then yields

Bm(s
∗).ǫ+δBm(s

∗).
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Now we choose δ to be small enough. The above estimate is then reduced to

Bm(s
∗).ǫ. (4.19)

Applying the estimate (4.16b) and (4.18)-(4.19) to (4.3), we obtain

Cm(s
∗).ǫ+δBm(s

∗)+δCm(s
∗).ǫ+δCm(s

∗).

Therefore, we can keep choosing δ small enough so that

Cm(s
∗).ǫ. (4.20)

Similar arguments can be applied to (4.1) and yields

Am; 8
5
(s∗).ǫ. (4.21)

Here we need (4.15) and (4.18)-(4.20). In view of (4.19)-(4.21), we can choose ǫ to

be small enough so that

Am; 8
5
(s∗)+Bm(s

∗)+Cm(s
∗)≤

1

2
δ. (4.22)

By (4.17), ωm,∇φm,∇2φm have finite |||·|||2;[0,Tm ]-norm. Lemma 2.4 then implies

that ‖ωm(·,t)‖8/5,‖∇φm(·,t)‖4 and ‖∇2φm(·,t)‖2 are continuous functions for t∈
[0,Tm]. If s∗ < Tm, then one of t∗i , i = 1,2,3, must be less than Tm. Suppose that

s∗=t∗1<Tm (the cases when s∗=t∗2 and s∗=t∗3 can be similarly treated). Then by the

definition of t∗1 at the beginning of this step, we have Am;8/5(t
∗
1)=δ. Here we used

the continuity of the function ‖ω(·,t)‖8/5 . On the other hand (4.22) shows that

Am;8/5(t
∗
1)=Am;8/5(s

∗)≤δ/2. This is a contradiction to the fact that Am;8/5(t
∗
1)=δ.

Thus, we have s∗=Tm.

Step 3. In this step, we extend the existence interval of (φm,ωm) from [0,Tm] to

[0,τN]. Suppose that T∗
m is a number in [Tm,τN] so that (φm,ωm) is a classic solution

of (1.2) on R2×[0,T∗
m). Moreover, it is assumed to satisfy

(φm,ωm)∈C∗,4
1 [0,T]×C∗,2

2 [0,T], ∀T<T∗
m. (4.23)

Using the same derivation for (4.22), we get

Am; 8
5
(T)+Bm(T)+Cm(T)≤

1

2
δ, ∀T<T∗

m.
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Particularly the above estimate yields

T
3
8

m‖ωm(·,t)‖ 8
5
+T

1
4

m‖∇φm(·,t)‖4+T
1
2

m‖∇
2φm(·,t)‖2.1, ∀t∈ [Tm/2,T∗

m). (4.24)

By Calderon-Zygmund estimate, it follows from (4.24) that

‖vm(·,t)‖8.‖ωm(·,t)‖ 8
5
.T

− 3
8

m , ∀t∈ [Tm/2,T∗
m). (4.25)

Now we consider the equation satisfied by (φm,vm). The equation satisfied by φm

can be obtained from the Eq. (1.2a). That is

∂tφm−∆φm=−vm ·∇φm+|∇φm|
2φm on R

2×[Tm/2,T∗
m). (4.26)

Using the Eqs. (1.2b), (1.2c), we know that vm satisfies

∇×(∂tvm−∆vm+vm ·∇vm)=−∇×(∇φm ·∆φm) on R
2×[Tm/2,T∗

m).

Therefore, we can find a pm so that

∂tvm−∆vm+vm ·∇vm=−∇pm−∇φm ·∆φm on R
2×[Tm/2,T∗

m). (4.27)

Since divvm=0, the equation satisfied by pm can be derived from the last equation

as follows:

−∆pm =div(vm ·∇vm)+div(∇φm ·∆φm). (4.28)

Moreover, pm can be represented by

pm(x,t)=−
1

2π

∫

R2

xj−zj

|x−z|2
[

vm ·∇vm,j+∂jφm ·∆φm

]

(z,t)
dz.

Using this representation and (4.24), by Calderon-Zygmund estimate, we have

the following estimate for ∇pm:

‖∇pm(·,t)‖ 4
3
.‖vm(·,t)·∇vm(·,t)‖ 4

3
+‖∇φm(·,t)·∆φm(·,t)‖ 4

3

.‖vm(·,t)‖8‖∇vm(·,t)‖ 8
5
+‖∇φm(·,t)‖4‖∆φm(·,t)‖2

.‖ωm(·,t)‖
2
8
5
+‖∇φm(·,t)‖4‖∆φm(·,t)‖2

≤ c(Tm), ∀t∈ [Tm/2,T∗
m). (4.29)

Here c(Tm) is a constant depending only on Tm. In light that the bounds in (4.24)-

(4.25) and (4.29) are independent of t ∈ [Tm/2,T∗
m), one can apply the standard
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Lp-estimate for parabolic and elliptic equations (see [18]) to (4.26)-(4.28) and ob-

tain the L∞-boundedness of (vm,∇φm) on R2×[Tm/2,T∗
m). Here we also need to

use Morrey’s inequality. Making derivatives on both sides of (4.26)-(4.28), we

can apply similar arguments for the L∞-boundedness of (vm,∇φm) to get the

L∞-boundedness of the higher-order derivatives of (vm,∇φm) on R
2×[Tm/2,T∗

m).
With the L∞-boundedness obtained above, by Arzelà-Ascoli theorem, (φm,vm)
and all their higher-order derivatives converge locally uniformly as t↑T∗

m. Since

ωm = curlvm, we also know that ωm and all its higher-order derivatives converge

locally uniformly as t↑T∗
m.

In the remaining of this step, we show the uniform boundedness of

|||φm(·,t)−e|||4;1 and |||ωm(·,t)|||2;2 for all t ∈ [T,T∗
m), where T is a number less

than T∗
m. Suppose that f is the solution of the following initial value problem:

{

∂t f −∆ f =0 on R2×(T,∞),

f (·,T)=φm(·,T).

Then by (2.3) in Lemma 2.1, we have, for all T1∈ (T,T∗
m), that

|||φm− f |||1;[T,T1]
+|||∇φm−∇ f |||1;[T,T1]

. (T1−T)
1
2
∣

∣

∣

∣

∣

∣vm ·∇φm+|∇φm|
2φm

∣

∣

∣

∣

∣

∣

1;[T,T1]

.c∗ (T
∗
m−T)

1
2 |||∇φm|||1;[T,T1]

,

where c∗ is a constant depending on the L∞-norm of (vm,∇φm) on R
2×[T,T∗

m).
Employing Lemma 2.3 yields

||| f −e|||1;[T,T1]
+|||∇ f |||1;[T,T1]

. |||φm(·,T)−e|||1+|||∇φm(·,T)|||1.

It then turns out by the last two estimates that

|||φm−e|||1;[T,T1]
+|||∇φm|||1;[T,T1]

. |||φm(·,T)−e|||1;1+c∗(T
∗
m−T)

1
2 |||∇φm|||1;[T,T1]

.

Now we choose T so that T∗
m−T is sufficiently small (smallness depends on the

constant c∗). The above estimate can then be reduced to

|||φm−e|||1;1;[T,T1]
. |||φm(·,T)−e|||1;1.

Therefore, |||·|||1;1-norm of φm(·,t)−e is uniformly bounded for all t∈ [T,T∗
m). This

shows that the limit of φm−e as t ↑ T∗
m has finite |||·|||1;1-norm. In light of (4.23),
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we can repeat the method used above and show that the limit of (φm−e,ωm) as

t ↑T∗
m is contained in the space C∗,4

1 (R2)×C∗,2
2 (R2). Letting the limit of (φm,ωm)

as t↑T∗
m be an initial data at T∗

m, by Theorem 1.1, we can keep solving the Eq. (1.2)

to a time interval [T∗
m,T∗

m+ǫ). By this way we can extend the solution (φm,ωm)
till the time arrives at τN .

Step 4. In the last step we have shown that the solution (φm,ωm) can be extended

to the time interval [0,τN] for all m>N. Using the same method as for (4.22), we

know that

Am; 8
5
(τN)+Bm(τN)+Cm(τN)≤

1

2
δ.

Thus, for all τ∈ (0,τN), it holds

τ
3
8‖ωm(·,t)‖ 8

5
+τ

1
4 ‖∇φm(·,t)‖4+τ

1
2
∥

∥∇2φm(·,t)
∥

∥

2
.1, ∀t∈ [τ,τN ]. (4.30)

By Calderon-Zygmund estimate, it follows from the above estimate that

‖vm(·,t)‖8.‖ωm(·,t)‖ 8
5
.τ− 3

8 , ∀t∈ [τ,τN ].

Same arguments as for (4.29) yields

‖∇pm(·,t)‖ 4
3
.‖ωm(·,t)‖

2
8
5
+‖∇φm(·,t)‖4‖∆φm(·,t)‖2 ≤ c(τ), ∀t∈ [τ,τN ].

Here c(τ) is a constant depending only on τ. In light of the last three estimates,

by the same arguments as in Step 3, we know that (φm,vm,ωm) (also their higher-

order derivatives) are L∞-bounded in R2×[τ,τN]. Moreover, the upper bound is

independent of m. Therefore, by Arzelà-Ascoli theorem and a diagonal process,

we can extract a subsequence, still denoted by (φm,vm,ωm) so that as m→∞, this

sequence converges locally uniformly on R2×(0,τN]. Now we denote by (φ,v,ω)
the limit of (φm,vm,ωm) as m→∞. Clearly on R2×(0,τN), it solves Eqs. (1.2a) and

(1.2c) in (1.2) smoothly. Now we show that

v=K∗ω. (4.31)

In view of (4.30), for any t ∈ [τ,τN],ωm(·,t) converges weakly in L8/5 to ω(·,t).
Letting ψ be a smooth test function compactly supported on R

2, then we have,

for all t∈ [τ,τN ], that
∫

R2
ψ(x)vm(x,t)dx=

∫

R2
ψ(x)dx

∫

R2
K(x−z)ωm(z,t)dz

=
∫

R2
ωm(z,t)dz

∫

R2
K(x−z)ψ(x)dx. (4.32)
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Since vm converges locally uniformly to v on R
2×[τ,τN], the most-left-hand side

of (4.32) satisfies

∫

R2
ψ(x)vm(x,t)dx −→

∫

R2
ψ(x)v(x,t)dx,

as m→∞. In light that K∗ψ∈L8/3, applying the L8/5-weak convergence of ωm(·,t)
then yields

∫

R2
ωm(z,t)dz

∫

R2
K(x−z)ψ(x)dx −→

∫

R2
ω(z,t)dz

∫

R2
K(x−z)ψ(x)dx,

as m→∞. Employing the last two convergence, we then can take m→∞ in (4.32)

and obtain
∫

R2
ψ(x)v(x,t)dx=

∫

R2
ω(z,t)dz

∫

R2
K(x−z)ψ(x)dx

=
∫

R2
ψ(x)dx

∫

R2
K(x−z)ω(z,t)dz.

Eq. (4.31) then follows.

In the remaining of the proof, we only need show that (φ(·,t),v(·,t),ω(·,t))
converges to (φ0,v0,ω0) as t↓0, in the sense given in Theorem 1.2. Let (φm,vm,ωm)
be the convergent subsequence obtained above. Using the same derivations as for

(4.19)-(4.21), for any ǫ>0, we can find a N′
>N and τN′ <τN so that

Am; 4
3
(τN′)+Bm(τN′)+Cm(τN′)≤ǫ, ∀m>N′. (4.33)

Here we used Lemma 4.2 so that the estimate for Am;p in (4.1) is valid when

p= 4/3. Using Calderon-Zygmund estimate and the estimate for Am;4/3(τN′) in

(4.33), we can bound the L4 norm of vm as follows:

‖vm(·,t)‖4.‖ωm(·,t)‖ 4
3
≤ǫt−

1
4 , ∀t∈ (0,τN′ ]. (4.34)

Now we prove the L2-convergence of φ(·,t)−e as t↓0. In light of (4.26), φm−e can

be represented by

φm(x,t)−e=G(·,t)∗(φ0;m−e)

+
∫ t

0

∫

R2
G(x−z,t−s)

[

−vm ·∇φm+|∇φm|
2φm

]

(z,s)
dzds. (4.35)
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Here (x,t) is an arbitrary point in R
2×(0,τN′). It then turns out, by the above

equality, that
∥

∥

(

φm(·,t)−e
)

−G(·,t)∗(φ0;m−e)
∥

∥

2

≤
∫ t

0

∥

∥−vm(·,s)·∇φm(·,s)+|∇φm|
2(·,s)φm(·,s)

∥

∥

2
ds

.

∫ t

0
‖vm(·,s)‖4‖∇φm(·,s)‖4+‖∇φm(·,s)‖

2
4ds.

With (4.33)-(4.34), this estimate can be reduced to

∥

∥

(

φm(·t)−e
)

−G(·,t)∗(φ0;m−e)
∥

∥

2
. ǫ2t

1
2 .

Since (φm(·,t)−e)−G(·,t)∗(φ0;m−e) converges to (φ(·,t)−e)−G(·,t)∗(φ0−e)
pointwisely as m → ∞, by Fatou’s lemma, we can take m → ∞ in the above es-

timate and get

∥

∥

(

φ(·,t)−e
)

−G(·,t)∗(φ0−e)
∥

∥

2
. ǫ2t

1
2 , ∀t∈ (0,τN′).

This estimate shows that φ−e has finite L∞
t L2

x-norm on R2×(0,τN′). In light that

G(·,t)∗(φ0−e) converges to φ0−e strongly in L2 as t ↓ 0, the above estimate also

implies that φ(·,t)−e converges to φ0−e strongly in L2 as t ↓ 0. Taking spatial

derivative once on both sides of (5.35), we get

∇φm(x,t)=G(·,t)∗∇φ0;m

+
∫ t

0

∫

R2
∇G(x−z,t−s)

[

−vm ·∇φm+|∇φm|
2φm

]

(z,s)
dzds.

Thus, it holds for all t∈ [0,τN′ ] that

‖∇φm(·,t)−G(·,t)∗∇φ0;m‖2

≤
∫ t

0
(t−s)−

1
2
∥

∥−vm(·,s)·∇φm(·,s)+|∇φm|
2(·,s)φm(·,s)

∥

∥

2
ds

.
∫ t

0
(t−s)−

1
2
(

‖vm(·,s)‖4‖∇φm(·,s)‖4+‖∇φm(·,s)‖
2
4

)

ds

. ǫ2
∫ t

0
(t−s)−

1
2 s−

1
2 ds.ǫ2. (4.36)

Here we also used (4.33)-(4.34). Still by Fatou’s lemma, we can take m→∞ in the

above estimate and get

‖∇φ(·,t)−G(·,t)∗∇φ0‖2. ǫ2, ∀t∈ (0,τN′). (4.37)
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This estimate shows that ∇φ has finite L∞
t L2

x-norm on R
2×(0,τN′). Since G(·,t)∗

∇φ0 converges to ∇φ0 strongly in L2 as t↓0, (4.37) also implies that ∇φ(·,t) con-

verges to ∇φ0 strongly in L2 as t ↓ 0. Similar arguments can be applied to the

vorticity ω. By the Eq. (1.2c), ωm can be represented by

ωm(x,t)=
∫

R2
G(x−z,t)ω0;m(z)

+
∫ t

0

∫

R2
∇zG(x−z,t−s)·

[

ωmvm−(∇φm ·∆φm)
⊥
]

(z,s)
dzds.

In view of Young’s inequality for convolutions, it then follows from the above

estimate that
∥

∥ωm(·,t)−G(·,t)∗ω0;m‖1

.
∫ t

0
‖∇G(·,t−s)‖1‖ωm(·,s)vm(·,s)‖1

+
∫ t

0
‖∇G(·,t−s)‖1‖∇φm(·,s)·∆φm(·,s)‖1.

By Hölder’s inequality and Calderon-Zygmund estimate, the last estimate yields

‖ωm(·,t)−G(·,t)∗ω0;m‖1

.
∫ t

0
(t−s)−

1
2‖ωm(·,s)vm(·,s)‖1+

∫ t

0
(t−s)−

1
2 ‖∇φm(·,s)·∆φm(·,s)‖1

.

∫ t

0
(t−s)−

1
2‖ωm(·,s)‖ 4

3
‖vm(·,s)‖4+

∫ t

0
(t−s)−

1
2‖∇φm(·,s)‖2‖∆φm(·,s)‖2

.

∫ t

0
(t−s)−

1
2‖ωm(·,s)‖

2
4
3
+ max

s∈(0,τN′)
‖∇φm(·,s)‖2

∫ t

0
(t−s)−

1
2‖∆φm(·,s)‖2.

In light of (4.36), ‖∇φm(·,s)‖2 is uniformly bounded for all s∈(0,τN′). The upper

bound depends only on the L2-norm of ∇φ0. Using result together with (4.33),

we can reduce the last estimate to

‖ωm(·,t)−G(·,t)∗ω0;m‖1

.ǫ2
∫ t

0
(t−s)−

1
2 s−

1
2 +c(‖∇φ0‖2)ǫ

∫ t

0
(t−s)−

1
2 s−

1
2

≤ c(‖∇φ0‖2)ǫ, ∀t∈ (0,τN′). (4.38)

Here c(‖∇φ0‖2) is a constant depending on the L2-norm of ∇φ0. Still by Fatou’s

lemma, we can take m→∞ in the above estimate and get

‖ω(·,t)−G(·,t)∗ω0‖1≤ c(‖∇φ0‖2)ǫ, ∀t∈ (0,τN′). (4.39)
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This estimate shows that ω has finite L∞L1-norm on R2×(0,τN′). Since G(·,t)∗ω0

converges to ω0 strongly in L1 as t↓0, (4.39) also implies that ω(·,t) converges to

ω0 strongly in L1 as t ↓ 0. The convergence of v(·,t) follows by a simple duality

argument. In fact for any ψ∈C∞
c (R2), we have

∫

R2
ψ(x)

(

v(x,t)−v0(x)
)

dx

=
∫

R2
ψ(x)

∫

R2
K(x−z)

(

ω(z,t)−ω0(z)
)

dzdx

=
∫

R2

(

ω(z,t)−ω0(z)
)

∫

R2
K(x−z)ψ(x)dxdz

=−
∫

R2

(

ω(z,t)−ω0(z)
)

∫

R2
K(z−x)ψ(x)dxdz.

Thus, it holds, for all p>2, that
∣

∣

∣

∣

∫

R2
ψ(x)

(

v(x,t)−v0(x)
)

dx

∣

∣

∣

∣

≤‖ω(·,t)−ω0(·)‖1‖K∗ψ‖∞

.p ‖ω(·,t)−ω0(·)‖1(‖ψ‖1+‖ψ‖p).

By density arguments, the above estimate still holds for all ψ ∈ L1∩Lp. Taking

supreme over all ψ∈L1∩Lp, we get from the above estimate that

‖v(·,t)−v0(·)‖(L1∩Lp)∗ .p ‖ω(·,t)−ω0(·)‖1.

The convergence of v(·,t) then follows since ω(·,t)→ω0 strongly in L1 as t↓0.

Slight modifications of the above proof leads to

Remark 4.1. Let (φ0,ω0) be the same as in Theorem 1.2. Then we can extend the

solution obtained in Theorem 1.2 to a global solution defined on R2×(0,∞), pro-

vided that ‖∇φ0‖2+‖ω0‖1≤ ǫ. Here ǫ>0 is a number suitably small. Moreover,

on R2×(0,∞), the extended solution is smooth.

5 Global existence of weak solution

This section is devoted to finishing the proofs of Theorems 1.2 and 1.3. The key
point to extend a solution globally in time is a global energy inequality concern-
ing the kinetic energy of v and the L2-norm of ∇φ. However, formally from the
Eq. (1.2c)
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Ω(t) :=
∫

R2
ω(x,t)dx

is a conserved quantity. If initially Ω(0) does not equal to 0, then for all t>0, Ω(t)
should not be 0. In light of [5, Proposition 3.3], we can not expect that the kinetic
energy of v is finite. A decomposition of v is required. Still by [5, Proposition 3.3],
if we want some part of the velocity v has finite kinetic energy, then the vorticity
function obtained by taking curl of this part should have zero value when it is
integrated over R2. Upon this consideration, we decompose v into the sum given
in (1.4). Formally by (1.3) and the Eq. (1.2c), the curl of v∗ is a conserved quantity
and satisfies

∫

R2×{t}
curlv∗=

∫

R2×{t}
ω−

∫

R2×{t}
ω̄

=
∫

R2×{τ}
ω−

∫

R2×{τ}
ω̄=0, ∀t∈ [τ,T∗].

Thus, we can expect that the kinetic energy of v∗ is finite. This is exactly part (ii)
of Theorem 1.2. Before proving it, in the next, we give a global energy inequality.
That is

Lemma 5.1 (Global Energy Inequality). Given t1 < t2, we suppose that (ψ,ū,u∗) is

a weak solution of the following system:


























∂tψ+u∗ ·∇ψ−∆ψ=−ū·∇ψ+|∇ψ|2ψ on R2×(t1,t2),

∂tu
∗+u∗ ·∇u∗−∆u∗

=−u∗ ·∇ū− ū·∇u∗−∇p∗−∇·(∇ψ⊙∇ψ) on R2×(t1,t2),

divū=divu∗=0.

(5.1)

Here p∗ is a pressure. ψ is an S2-valued map. If in addition we have














∇ψ∈L∞
(

[t1,t2];L
2
)

∩L2
(

[t1,t2];H
1
)

,

p∗∈L
4
3
(

[t1,t2];W
1, 4

3
)

,

ū∈L1
(

[t1,t2];W
1,∞
)

and u∗∈L∞
(

[t1,t2];L
2
)

∩L2
(

[t1,t2];H
1
)

,

(5.2)

then it holds
∫

R2×{t2}
|u∗|2+|∇ψ|2+

∫ t2

t1

∫

R2
|∇u∗|2+

∣

∣∆ψ+|∇ψ|2ψ
∣

∣

2

≤exp

{

c
∫ t2

t1

‖∇ū‖∞

}

∫

R2×{t1}
|u∗|2+|∇ψ|2.

Here c>0 is an universal constant.
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The proof of Lemma 5.1 follows similarly as the proof of [20, Lemma 4.1]. We
omit it here. The following lemma is also required in the proof of Theorem 1.2,
which is an improvement of [5, Proposition 3.3].

Lemma 5.2. Suppose that w∈C∗
β(R

2) for some β>0. Then u=K∗w∈L2(R2) if and

only if
∫

R2
w=0. (5.3)

If the |||·|||β-norm of w is bounded from above by a constant W, then the L2(R2)-norm of

u is bounded from above by a constant depending on W.

Proof. In light of Lemma 2.5, u is uniformly bounded on R2. The upper bound de-

pends on the |||·|||β-norm of w. Therefore, we only need to study the L2-integrabi-

lity of u on Bc
R. Here R is a positive radius sufficiently large. For any x∈Bc

R, u(x)
can be rewritten as follows:

u(x)=
1

2π

∫

R2

(x−z)⊥

|x−z|2
w(z)dz

=
1

2π

x⊥

|x|2

∫

R2
w(z)dz+

1

2π

∫

R2

[

(x−z)⊥

|x−z|2
−

x⊥

|x|2

]

w(z)dz. (5.4)

The last term in (5.4) can be further written as

∫

R2

[

(x−z)⊥

|x−z|2
−

x⊥

|x|2

]

w(z)dz

=
∫

{|z|<|x|
1
2 }

[

(x−z)⊥

|x−z|2
−

x⊥

|x|2

]

w(z)dz

+
∫

{|z|≥|x|
1
2 }

[

(x−z)⊥

|x−z|2
−

x⊥

|x|2

]

w(z)dz. (5.5)

Since |x|>R with R sufficiently large, then for all z with |z|< |x|1/2, we have

|x−z|−2= |x|−2

(

1−
2x ·z

|x|2
+
|z|2

|x|2

)−1

= |x|−2+O
(

|x|−
5
2

)

.

It turns out that
∣

∣

∣

∣

∣

(x−z)⊥

|x−z|2
−

x⊥

|x|2

∣

∣

∣

∣

∣

. |x|−
3
2
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for all x and z satisfying |x|>R and |z|< |x|1/2 . Applying the above estimate to

the first term on the right-hand side of (5.5), we get

∣

∣

∣

∣

∣

∫

{|z|<|x|
1
2 }

[

(x−z)⊥

|x−z|2
−

x⊥

|x|2

]

w(z)dz

∣

∣

∣

∣

∣

. |x|−
3
2

∫

R2
|w|≤ |x|−

3
2 |||w|||β

∫

R2
e
− |z|

β dz. (5.6)

If |z|≥ |x|1/2, then w(z) satisfies

|w(z)|≤ |||w|||β,e
− |z|

β ≤|||w|||β e
− |z|

2β e
− |x|

1
2

2β .

Thus, the second term on the right-hand side of (5.5) can be estimated by

∣

∣

∣

∣

∣

∫

{|z|≥|x|
1
2 }

[

(x−z)⊥

|x−z|2
−

x⊥

|x|2

]

w(z)dz

∣

∣

∣

∣

∣

.|||w|||β
|x|−1e

− |x|
1
2

2β

∫

R2
e
− |z|

2β dz+e
− |x|

1
2

2β

∫

R2

1

|x−z|
e
− |z|

2β dz

.β,|||w|||β
e
− |x|

1
2

2β . (5.7)

In view of (5.6)-(5.7), the last term in (5.4) is L2-integrable on Bc
R. Therefore, the

L2-integrability of u on Bc
R is equivalent to the L2-integrability of the first term on

the second line of (5.4), which is L2-integrable on Bc
R if and only if (5.3) holds. The

proof is finished.

In the next, we prove part (ii) and (iii) of Theorem 1.2.

Proof of (ii) and (iii) in Theorem 1.2. The arguments in the following are continued

from the last section, where part (i) of Theorem 1.2 was proved.

Step 5. In the proof of part (i) of Theorem 1.2 (see Step 4 there), the approxima-

tion solutions (φm,ωm) were shown to exist on the time interval (0,τN′ ], for all

m> N′. Moreover, for a fixed τ∈ (0,τN′), the L∞-norm of ωm on R2×[τ,τN′ ] are

uniformly bounded from above by a constant independent of m. Thus, by (4.38),

it follows that

‖ωm(·,t)‖p ≤ c1, ∀m>N′, p∈ [1,∞], t∈ [τ,τN′ ]. (5.8)
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Here c1 is a positive constant depending on p,τ and the initial data (φ0,ω0). In

view of (4.33), it holds

∥

∥∇2φm(·,t)
∥

∥

2
≤ c(τ), ∀m>N′, t∈ [τ,τN′ ].

With this estimate and (4.36), it follows that

‖∇φm(·,t)‖2+
∥

∥∇2φm(·,t)
∥

∥

2
≤ c2, ∀m>N′, t∈ [τ,τN′ ]. (5.9)

Here c2 is a constant depending on τ and the L2-norm of ∇φ0. Taking m→∞ in

(5.8)-(5.9), by Fatou’s lemma, we have

‖ω(·,t)‖p+‖∇φ(·,t)‖2+
∥

∥∇2φ(·,t)
∥

∥

2
≤ c1+c2 (5.10)

for any p∈ [1,∞] and t∈ [τ,τN′ ]. In the next we consider the velocity field vm =
K∗ωm. Let (ω̄m,v̄m) be the unique mild solution of the following initial value

problem:
{

∂tω̄m−∆ω̄m+ v̄m ·∇ω̄m=0 on R2×(τ,∞),

ω̄m(·,τ)=ωm(·,τ), v̄m =K∗ω̄m.
(5.11)

Using v̄m in (5.1), we can decompose vm into the sum vm = v̄m+v∗m. In view of

(5.11), v̄m satisfies the following Navier-Stokes equation:

∂tv̄m+ v̄m ·∇v̄m−∆v̄m =−∇ p̄m, (5.12)

where p̄m is the pressure which satisfies the Poisson equation

−∆p̄m =∂ij

(

v̄m;iv̄m;j

)

. (5.13)

Subtracting (5.12) from (4.27) yields

∂tv
∗
m+v∗m ·∇v∗m−∆v∗m =−v∗m ·∇v̄m− v̄m ·∇v∗m−∇p∗m

−∇·
(

∇φm⊙∇φm

)

on R
2×
(

τ,τN′

)

. (5.14)

By Calderon-Zygmund estimate and [3, Eq. (3.27)], it holds

‖v̄m(·,t)‖4.‖ω̄m(·,t)‖ 4
3
≤‖ωm(·,τ)‖L4/3∩L1 , ∀t>τ.

In light of (5.8), we get

‖v̄m(·,t)‖4 ≤ c1, ∀t>τ. (5.15)
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Since (v̄m, p̄m) satisfies (5.12)-(5.13) and (5.15), then by standard Lp-estimate for

parabolic and elliptic equations (see [18]), any derivative of v̄m is uniformly boun-

ded on R2×[τ+ǫ,∞) with the upper bound independent of m. Here ǫ>0 is a con-

stant arbitrarily given. Thus, by Arzelà-Ascoli theorem, we can extract a subse-

quence, still denoted by (ω̄m,v̄m), so that (ω̄m,v̄m) and all its derivatives converge

locally uniformly on R2×(τ,∞), as m→∞. The limit is denoted by (ω̄∞,v̄∞). Fix-

ing the subsequence obtained and using the fact (see [3, Eq. (3.27)]) that

‖ω̄m(·,t)‖q ≤‖ωm(·,τ)‖Lq∩L1 , ∀q∈ [1,∞], t>τ, (5.16)

we then have, for all p > 1 and t > τ, that the Lp-norm of ω̄m(·,t) is uniformly

bounded from above by a constant independent of m. Here we also used (5.8).

Thus, there is a subsequence, still denoted by ω̄m(·,t), so that ω̄m(·,t) converges

weakly in Lp to a limit as m→∞. This limit must equal to ω̄∞(·,t) in the sense of

distribution. It then follows that

ω̄m(·,t) −→ ω̄∞ weakly in Lp, ∀p>1, t>τ. (5.17)

In light of the local uniform convergence of v̄m and (5.17), it holds, by the same

derivations as for (4.31), that

v̄∞=K∗ω̄∞. (5.18)

Now we show that

(ω̄∞,v̄∞)=(ω̄,v̄), (5.19)

where ω̄ is the unique mild solution of (1.3). Since ω̄m is the mild solution of

(4.11), it can be represented by

ω̄m(x,t)=
∫

R2
G(x−z,t−τ)ωm(z,τ)dz

+
∫ t

τ

∫

R2
∇G(x−z,t−s)·ω̄m(z,s)v̄m(z,s)dzds. (5.20)

Here (x,t) is an arbitrary point in R2×(τ,∞). Applying [3, Eq. (3.28)] yields

‖v̄m(·,t)‖∞ .p ‖ωm(·,τ)‖L1∩Lp , ∀p>2, t≥τ. (5.21)

Therefore, by (5.8), (5.16), (5.21), ω̄m and v̄m are uniformly bounded on R2×[τ,∞).
Employing this uniform boundedness result and the fact that (ω̄m,v̄m,ωm(·,τ))
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converges to (ω̄∞,v̄∞,ω(·,τ)) pointwisely, by Lebesgue’s dominated convergence

theorem, we can take m→∞ in (5.20) and get

ω̄∞(x,t)=
∫

R2
G(x−z,t−τ)ω(z,τ)dz

+
∫ t

τ

∫

R2
∇G(x−z,t−s)·ω̄∞(z,s)v̄∞(z,s)dzds. (5.22)

Moreover, it also follows that (ω̄∞,v̄∞) are uniformly bounded on R2×[τ,∞).
Using the same derivation as for (5.16) and (5.21), we can also show that (ω̄,v̄) are

uniformly bounded on R2×[τ,∞) since ω(·,τ)∈Lp , for all p∈ [1,∞] (see (5.10)).

Using these two uniform boundedness results, (5.18) and (5.22), we can easily

show that (5.19) holds, by a similar fashion as the proof of [3, Lemma 4.2]. Here

one just needs to know that ω̄ and ω̄∞ share same initial data at t=τ. In light that

for all i=0,1,2,.. ., we have ∇ivm→∇iv and ∇iv̄m→∇i v̄ pointwisely, as m→∞, it

then turns out that

∇iv∗m −→ ∇iv∗, pointwisely on R
2×[τ,τN′ ], ∀i=0,1,2,.. . . (5.23)

Here v∗=v− v̄.

Step 6. This step is devoted to studying the uniform boundedness of the kinetic

energy of v∗m (see (5.31)). In order to use Lemma 5.1, we need φm, v̄m,v∗m and

p∗m satisfy the assumption (5.2). Here p∗m is the pressure in (5.14). By (5.9), ∇φm

satisfies the corresponding assumption in (5.2). In the following we consider v̄m,

v∗m and p∗m.

(I). Estimate of v̄m. The L∞ - estimate of v̄m is obtained in (5.21). Now we consider

the estimate for ∇v̄m. Using [3, Eq. (3.29)], one can find a τ∗ > τ, where τ∗−τ

depends on the L1∩Lp-norm of ωm(·,τ) such that

‖∇ω̄m(·,t)‖L1∩Lp .p (t−τ)−
1
2‖ωm(·,τ)‖L1∩Lp , ∀t∈ (τ,τ∗).

In light of (5.8), τ∗−τ can be independent of m. Therefore, it follows that

‖∇v̄m(·,t)‖∞ .p ‖∇ω̄m(·,t)‖L1∩Lp .p (t−τ)−
1
2‖ωm(·,τ)‖L1∩Lp , ∀t∈ (τ,τ∗).

By [3, Eq. (3.38)], we also have

‖∇v̄m(·,t)‖∞ ≤ c(‖ωm(·,τ)‖1)(t−τ)−1≤ c(‖ωm(·,τ)‖1)(τ∗−τ)−1, ∀t>τ∗.



350 Y. Chen and Y. Yu / Commun. Math. Anal. Appl., 2 (2023), pp. 304-356

Thus, the above two estimates imply that
∫ τN′

τ
‖∇v̄m(·,t)‖∞ =

∫ τN′∧τ∗

τ
‖∇v̄m(·,t)‖∞+

∫ τN′

τN′∧τ∗
‖∇v̄m(·,t)‖∞

.p ‖ωm(·,τ)‖L1∩Lp+c
(

‖ωm(·,τ)‖1

)

(τ∗−τ
)−1

≤ c3, (5.24)

where c3 is a positive constant independent of m.

(II). Estimate of v∗m. Since ωm(·,τ)∈C∗,2
2 (R2) and (ω̄m,v̄m) satisfies (5.11), then by

similar arguments as the proof of Theorem 1.1, we can show that ω̄m∈C∗,2
2 [τ,τ+δ],

for some δ>0 suitably small. In view of (5.8) and (5.21), similar arguments as in

Step 3 of the proof for Theorem 1.2 can be applied to show that ω̄m∈C∗,2
2 [τ,τ+δ],

for all δ> 0. Using the exponential decay of ω̄m at spatial infinity, by (5.11), we

have ∫

R2
ω̄m(x,t)dx=

∫

R2
ωm(x,τ)dx, ∀t∈ [τ,τN′ ]. (5.25)

As for ωm, since it satisfies

∂tωm+vm ·∇ωm−∆ωm =−∇×∇·(∇φm⊙∇φm),

then we can integrate the above equation over R
2 and get

∫

R2
ωm(x,t)dx=

∫

R2
ωm(x,τ)dx, ∀t∈ [τ,τN′ ]. (5.26)

Here we have used the exponential decay of ∇iφm for i=1,2,3. (5.25)-(5.26) imply

that ∫

R2
ωm(x,t)−ω̄m(x,t)dx=0, ∀t∈ [τ,τN′ ].

Since for all t ∈ [τ,τN′ ], ωm(·,t)−ω̄m(·,t) decays exponentially at spatial infin-

ity. Moreover, the |||·|||2-norm of ωm(·,t)−ω̄m(·,t) are uniformly bounded by the

norm of ωm−ω̄m in C∗
2 [τ,τN′ ] for all t∈[τ,τN′ ]. Therefore, we can apply Lemma 5.2

to v∗m=K∗ωm−K∗ω̄m and show that
∥

∥v∗m(·,t)
∥

∥

2
≤ c4

(

|||ωm−ω̄m|||2;[τ,τN′ ]

)

, ∀t∈ [τ,τN′ ]. (5.27)

The L2-estimate of ∇v∗m can be obtained by Calderon-Zygmund estimate as fol-

lows:
∫

R2×{t}

∣

∣∇v∗m
∣

∣

2
.
∫

R2×{t}
|∇vm|

2+
∫

R2×{t}
|∇v̄m|

2

.
∫

R2×{t}
|ωm|

2+
∫

R2×{t}
|ω̄m|

2.
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Here t∈ [τ,τN′ ] is arbitrarily given. Applying Lemma 2.4 and (5.16) to the most-

right-hand side above, we get
∫

R2×{t}

∣

∣∇v∗m
∣

∣

2
≤ c5+|||ωm|||

2
2;[τ,τN′ ]

, ∀t∈ (τ,τN′ ). (5.28)

Here c5 is a positive constant depending on τ and the initial data (φ0,ω0).

(III). Estimate of p∗m. Since v∗m is divergent free, it then follows by (5.14) that

−∆p∗m =∂ij

(

v∗m;iv
∗
m;j

)

+2∂ij

(

v̄m;iv
∗
m;j

)

+div
(

∇·(∇φm⊙∇φm)
)

.

Therefore, Calderon-Zygmund estimate implies that

‖p∗m‖ 4
3
.‖v∗m‖

2
8
3
+
∥

∥|v̄m||v
∗
m|
∥

∥

4
3
+‖∇φm‖

2
8
3
. (5.29)

On the other hand p∗m can be represented by

p∗m(x,t)=−(2π)−1
∫

R2

xj−zj

|x−z|2
[

v∗m ·∇v∗m,j+2v̄m ·∇v∗m,j+∂jφm ·∆φm

]

(z,t)
dz.

Still by Calderon-Zygmund estimate, it follows that

‖∇p∗m‖ 4
3
.‖v∗m ·∇v∗m‖ 4

3
+‖v̄m ·∇v∗m‖ 4

3
+‖∇φm ·∆φm‖ 4

3
. (5.30)

In light of (5.9), (5.15), (5.27)-(5.28), one then can apply Ladyzhenskaya’s inequal-

ity and Hölder’s inequality to the right-hand sides of (5.29)-(5.30) and show that

p∗m ∈L4/3([τ,τN′ ];W1,4/3).

Notice that (φm,v∗m) satisfies (5.26) and (5.14) on R2×(τ,τN′). (5.9) and the

above arguments in (I), (II), (III) show that φm, v̄m,v∗m and p∗m satisfy the assump-

tion (5.2). Thus, we can apply Lemma 5.1 to get, for all t∈ (τ,τN′), that
∫

R2×{t}
|v∗m|

2+|∇φm|
2+
∫ t

τ

∫

R2
|∇v∗m|

2+
∣

∣∆φm+|∇φm|
2φm

∣

∣

2

≤exp

{

c
∫ t

τ
‖∇v̄m‖∞

}

∫

R2×{τ}
|∇φm|

2.

Here we have used the fact that v∗m(·,τ)≡ 0. By (5.9) and (5.24), the right-hand

side above is uniformly bounded by a constant independent of m. Therefore, it

follows that

max
t∈[τ,τN′ ]

∫

R2×{t}
|v∗m|

2+|∇φm|
2

+
∫ τN′

τ

∫

R2
|∇v∗m|

2+
∣

∣∆φm+|∇φm|
2φm

∣

∣

2
≤ c6, ∀m>N′. (5.31)

Here c6>0 is a constant independent of m.
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Step 7. In view of (5.23) and the pointwise convergence of ∇iφm, i = 0,1,2, by

Fatou’s lemma, we can take m→∞ in (5.31) and get

max
t∈[τ,τN′ ]

∫

R2×{t}
|v∗|2+|∇φ|2+

∫ τN′

τ

∫

R2
|∇v∗|2+

∣

∣∆φ+|∇φ|2φ
∣

∣

2
≤ c6,

which furthermore implies

v∗∈L∞
(

[τ,τN′ ];L2
)

∩L2
(

[τ,τN′ ];H1
)

. (5.32)

As m→∞, v̄m → v̄ and ∇v̄m →∇v̄ pointwisely. Then by (5.15), (5.21), (5.24) and

Fatou’s lemma, we have

max
t∈[τ,τN′ ]

‖v̄(·,t)‖4+ max
t∈[τ,τN′ ]

‖v̄(·,t)‖∞+
∫ τN′

τ
‖∇v̄‖∞ <∞. (5.33)

In light of (5.10), (5.32)-(5.33), by the same arguments as in (III) of Step 6, we know

that

p∗∈L
4
3

(

[τ,τN′ ];W1, 4
3

)

. (5.34)

Here p∗ is the pressure in the following equation:

∂tv
∗+v∗ ·∇v∗−∆v∗=−v∗ ·∇v̄− v̄·∇v∗−∇p∗

−∇·(∇φ⊙∇φ) on R
2×(τ,τN′). (5.35)

The derivation of this equation is the same as (5.14). One just needs to know

that (φ,v) satisfies the Eq. (1.1b) and (ω̄,v̄) solves (1.3) in Theorem 1.2. (5.10),

(5.32)-(5.34) imply that φ,v̄,v∗ and p∗ satisfy the assumption (5.2). Recalling that

(φ,v∗) satisfies the Eqs. (1.2a) and (5.35) above, we then obtain the global energy

inequality (1.5) in Theorem 1.2, with an use of Lemma 5.1. Here we take T∗=τN′

in Theorem 1.2. Noticing that v∗(·,τ)≡0, then we have, by taking t1 =τ in (1.5),

that
∫

R2×{t}
|v∗|2+|∇φ|2+

∫ t

τ

∫

R2
|∇v∗|2+

∣

∣∆φ+|∇φ|2φ
∣

∣

2

≤exp

{

c
∫ t

τ
‖∇v̄‖∞

}

∫

R2×{τ}
|∇φ|2

for all t satisfying τ< t<τN′ . Since at t=τ,ω(·,τ)∈L1∩Lp for all p>2, then we

know, by similar arguments as for (5.24), that ‖∇v̄‖∞ is L1-integrable on [τ,τN′ ].
Therefore, we can take t→τ+ in the above estimate and get

limsup
t→τ+

∫

R2×{t}
|v∗|2+|∇φ|2≤

∫

R2×{τ}
|∇φ|2.
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Since ∇φ(·,t) converges weakly in L2 to ∇φ(·,τ), as t → τ+, by lower semi-

continuity of the L2-norm, we further have from the last inequality that
∫

R2×{τ}
|∇φ|2≤ limsup

t→τ+

∫

R2×{t}
|v∗|2+|∇φ|2≤

∫

R2×{τ}
|∇φ|2.

This shows that v∗(·,t)→0 and ∇φ(·,t)→∇φ(·,τ) strongly in L2 as t→τ+. Same

strong convergence and also the decomposition (1.4) hold when τ= 0, provided

that we know ω0 ∈L1∩Lp for some p> 1. Indeed, we just need to check the L1-

integrability of ‖∇v̄‖∞ near t = 0. Without loss of generality, in the following

arguments, we assume p∈ (1,2). Moreover, we let (ω̄,v̄) satisfy (1.3) with τ = 0

there. For any (x,t)∈R
2×(0,∞), it holds

∇ω̄(x,t)=∇G∗ω0−
∫ t

0

∫

R2
∇G(x−z,t−s)

(

v̄(z,s)·∇z

)

ω̄(z,s)dzds.

By Minkowski’s and Young’s inequality, it follows, for all

q∈

(

max

{

p,
2p

3p−2

}

,
2p

2−p

)

, (5.36)

that

‖∇ω̄(·,t)‖q ≤‖∇G∗ω0‖q+
∫ t

0
‖∇G(·,t−s)‖ 2pq

3pq−2q
‖v̄·∇ω̄‖ 2pq

2p+2q−pq
(s)ds

.p,q ‖∇G(·,t)‖ pq
pq+p−q

‖ω0‖p+
∫ t

0
(t−s)

− 1
p ‖v̄‖ 2p

2−p
‖∇ω̄‖q.

Applying Calderon-Zygmund estimate and [3, Eq. (3.27)], we get from the above

estimate that

‖∇ω̄(·,t)‖q .p,q t
− 1

2+
1
q−

1
p ‖ω0‖p+

∫ t

0
(t−s)

− 1
p ‖ω̄‖p‖∇ω̄‖q

. t
− 1

2+
1
q−

1
p ‖ω0‖p+‖ω0‖Lp∩L1

∫ t

0
(t−s)

− 1
p ‖∇ω̄‖q. (5.37)

Now we denote by A∗
q(·) the quantity

A∗
q(t)= max

0<τ<t
τ

1
2−

1
q+

1
p ‖∇ω̄(·,τ)‖q.

Then (5.37) can be reduced to

A∗
q(t).p,q ‖ω0‖p+A∗

q(t)t
1− 1

p ‖ω0‖Lp∩L1 .
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Therefore, we can find a T small enough (smallness depends on p,q and ‖ω0‖p)

such that

‖∇ω̄(·,t)‖q .p,q t
− 1

2+
1
q−

1
p ‖ω0‖p, ∀t∈ (0,T]. (5.38)

In light of

∇v̄(x,t)=
1

2π

∫

R2

(x−z)⊥

|x−z|2
∇ω̄(z,t)dz

=
1

2π

∫

|x−z|<1

(x−z)⊥

|x−z|2
∇ω̄(z,t)dz+

∫

|x−z|≥1

(x−z)⊥

|x−z|2
∇ω̄(z,t)dz,

then for q1∈ (1,2) and q2>2 satisfying (5.36), it holds

|∇v̄(x,t)|.
∫

|x−z|<1

1

|x−z|
|∇ω̄|(z,t)dz

+
∫

|x−z|≥1

1

|x−z|
|∇ω̄|(z,t)dz

≤‖∇ω̄(·,t)‖q2

(

∫

|x−z|<1

1

|x−z|q
′
2

dz

)

1
q′2

+‖∇ω̄(·,t)‖q1

(

∫

|x−z|≥1

1

|x−z|q
′
1

dz

)

1
q′
1

.q1,q2 ‖∇ω̄(·,t)‖q2 +‖∇ω̄(·,t)‖q1
.

Here q′1 and q′2 are Hölder conjugates of q1 and q2, respectively. Applying (5.38)

to the last estimate yields

‖∇v̄(·,t)‖∞ .p,q1,q2 ‖ω0‖p t
− 1

2+
1

q2
− 1

p +‖ω0‖p t
− 1

2+
1

q1
− 1

p , ∀t∈ (0,T].

Therefore, by (5.36), ‖∇v̄(·,t)‖∞ is integrable near t=0. The proof is finished.

In the end we finish this article by a proof of Theorem 1.3.

Proof of Theorem 1.3. In view of Theorem 1.2, (1.1) can be solved on (0,T∗). More-

over, the velocity v satisfies the decomposition (1.4). Since (φ,v∗) solves the sys-

tem


























∂tφ+v∗ ·∇φ−∆φ=−v̄·∇φ+|∇φ|2φ on R2×(τ,T∗),

∂tv
∗+v∗ ·∇v∗−∆v∗

=−v∗ ·∇v̄− v̄·∇v∗−∇p∗−∇·(∇φ⊙∇φ) on R2×
(

τ,T∗
)

,

divv̄=divv∗=0,

(5.39)
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and v̄ already exists on the whole space R
2×(τ,∞), we only need to extend (φ,v∗)

globally in time so that the extended (φ,v∗) solves (5.39) weakly on R2×(τ,∞).
In light of the global energy estimate (1.5), we can use similar arguments as the

proofs of Theorems 1.1-1.2 and [20, Lemma 5.2] to obtain such extension of (φ,v∗).
Details of the proof are omitted for brevity.
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