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Abstract. This article aims to identify the partial topological structures of delayed
complex network. Based on the drive-response concept, a more universal model,
which includes nonlinear couplings, stochastic perturbations and multi-weights, is
considered into drive-response networks. Different from previous methods, we ob-
tain identification criteria by combining graph-theoretic method and adaptive syn-
chronization. After that, the partial topological structures of stochastic multi-weighted
complex networks with or without time delays can be identified successfully. More-
over, response network can reach synchronization with drive network. Ultimately, the
effectiveness of the proposed theoretical results is validated through numerical simu-
lations.
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1 Introduction

Complex networks, including industrial networks, financial networks, transportation
networks and neural networks, are penetrated into almost all aspects of real world [1–7].
Till now, the investigation of complex networks has been extremely extensive. In addi-
tion to synchronization and stability [8–17], the research of topology identification has
attached special attention [18–23].

In the literature, topological structures of many complex networks are assumed to
be known [24–26]. However, the reality is that only a small section of topological struc-
tures are known or even completely unknown. Particularly, topological structures will
constantly change with increasing and decreasing of network vertices or arcs. There-
fore, it is practical to figure out the unknown topological structures of complex networks.
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In [18–23], they identified the whole topological structures of complex network. How-
ever, in many practical networks, only partial topological structures are what we need.
For instance, in a social network, if the message is only linked to work, we only need to
transmit it to colleagues in the list of friends. Similarly, when searching articles in Web
of Science, we may only want to know articles in the same research field. Considering
the circumstances mentioned above, it will result in high control cost if we identify the
whole topological structures. To reduce the control cost, pinning control is a powerful
technique since only a part of vertices can receive the control input directly. Therefore,
it is essential and indispensable to address the problem of partial topology identification
with pinning control.

Existing research recognises the critical role played by partial topology identification.
In [27–30], the authors studied the partial topology identification of complex dynami-
cal networks via a pinning mechanism. However, the above literatures [27–30] focus
on partial topology identification of single weighted complex networks. Nevertheless,
many real world networks can be modelled as coupled systems with multi-weights.
They have different coupling forms among vertices. Examples of this kind of multi-
weighted networks are ubiquitous. For instance, a social network includes the relation-
ship among friends, relatives and colleagues. A traffic network includes the transporta-
tion among cars, planes and bikes. As we all know, in recent years, though some arti-
cles contribute to researching the whole topological structures of multi-weighted com-
plex network [20, 31], there are only few results about partial topology identification of
multi-weighted complex networks [32]. However, in [32], the model is linearly coupled.
Therefore, it is of great significance to research partial topology identification of more
general multi-weighted complex networks. Furthermore, in [27–31], the models consid-
ered have been largely restricted to deterministic ordinary differential equations. In fact,
multi-weighted complex networks are inevitably affected by various types of environ-
mental noise [33–37]. However, it should be noted that there are few papers about partial
topology identification [32] of stochastic multi-weighted complex networks. Hence, to fill
the gap, this paper attempts to identify partial topological structures of multi-weighted
complex networks with stochastic disturbance and nonlinear couplings.

For the previous research of topology identification, researchers usually propose iden-
tification criteria based on Lyapunov method. Although this method is quite classical and
widespread, it is still a challenge to construct an appropriate global Lyapunov function
directly. In recent years, many scholars used graph theory to construct global Lyapunov
function indirectly and further investigated stability and boundedness of complex net-
works [38–44]. This method uses some results about graph theory, so it is always called
graph-theoretic method. It is an effective technique to systematically construct a global
Lyapunov function by using the weighted summation of vertex Lyapunov functions. Till
now, the new graph-theoretic method has rarely been applied on the partial topology
identification of stochastic multi-weighted complex networks with nonlinear couplings.

Motivated by aforementioned discussions, this paper attempts to use graph-theoretic
method to study partial topology identification of stochastic multi-weighted complex
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networks with nonlinear couplings. The main contributions of this paper are summa-
rized as follows:

• By the concept of drive-response, adaptive pinning controllers are considered into
response system, which are cost-effective.

• The network model is much more general, which includes nonlinear couplings,
stochastic perturbations and multi-weights.

• A novel graph-theoretic method is proposed to solve partial topology identification
problem.

• Drive-response networks achieve synchronization under adaptive pinning control.
Furthermore, the partial topological structures can be identified successfully by
LaSalle-type invariance principle for stochastic differential equations.

The reminder of this paper is organized as follows. Some mathematical preliminaries
are introduced in Section 2. Partial topology identification for stochastic multi-weighted
complex networks with nonlinear couplings is provided in Section 3. Moreover, the iden-
tification for networks with time delays is shown in Section 4. In Section 5, numerical
simulations are provided to illustrate the effectiveness of proposed method. Some con-
clusions are drawn in Section 6. Finally, some basic concepts of graph theory are intro-
duced in Appendix.

2 Preliminaries

In order to present our main results, some necessary notations and lemmas are presented.
R+, Rn and Rn×m represent the set of nonnegative real numbers, n-dimensional Eu-
clidean space and n×m-dimensional real matrices, respectively. ‖·‖ is the Euclidean
norm for vectors or the trace norm for matrices. The superscript T denotes the transpose
of a vector or a matrix.

Let (Ω,F ,{Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 sat-
isfying the usual conditions, i.e., it is right continuous and F0 contains all P-null sets.
E(·) is the mathematical expectation. B(·) is a scalar standard Brownian motion defined
on the given probability space (Ω,F ,{Ft}t≥0,P). C1,2(R+×Rn;R+) denotes the family
of all non-negative functions V(t,x) on R+×Rn, in which V(t,x) is continuously once
differentiable in t and twice differentiable in x. Cb

F0
([−τ,0];Rn) is the family of all the

F0-measurable bounded C([−τ,0];Rn)-valued random variables. Lp(R+;R+) denotes
the family of positive random variables ξ with E(‖ξ‖p)<∞.

First, consider a non-autonomous n-dimensional stochastic differential equation

dx(t)=ψ(t,x(t))dt+φ(t,x(t))dB(t), (2.1)
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where t≥ 0 and initial value x(0) = x0 ∈Rn. The measurable functions ψ(t,x) :R+×
Rn→Rn and φ(t,x) :R+×Rn→Rn satisfy local Lipschitz condition and linear growth
condition. For any initial value x0, (2.1) has a unique continuous solution [45], which is
denoted as x(t;x0). Moreover, if ψ(t,0)= 0 and φ(t,0)= 0, (2.1) admits a trivial solution
x(t;0)≡0.

Then for V(t,x)∈C1,2(R+×Rn;R+), the differential operator L associated with equa-
tion (2.1) is

LV(t,x)=Vt(t,x)+Vx(t,x)ψ(t,x)+
1
2

trace
[
φT(t,x)Vxx(t,x)φ(t,x)

]
, (2.2)

in which

Vt(t,x)=
∂V(t,x)

∂t
, Vx(t,x)=

(
∂V(t,x)

∂x1
,
∂V(t,x)

∂x2
,··· , ∂V(t,x)

∂xn

)
,

Vxx(t,x)=
(

∂2V(t,x)
∂xi∂xj

)
n×n

.

Lemma 2.1 ( [46]). Assume that there is a function V∈C1,2(R+×Rn;R+), a function Υ∈
L1(R+;R+) and a continuous function Θ :Rn→R+ such that

lim
‖x‖→∞

inf
0≤t<∞

V(t,x)=∞

and L acting on V along with the trajectories of (2.1) satisfies

LV(t,x)≤Υ(t)−Θ(x), (t,x)∈R+×Rn.

Moreover, φ is bounded. Then, for every x0∈Rn, limt→∞ V(t,x(t;x0)) exists and is finite almost
surely and

lim
t→∞

Θ(x(t;x0))=0 a.s. (2.3)

Next, a non-autonomous n-dimensional stochastic differential equation with time de-
lay is presented by

dx(t)=ψ(t,x(t),x(t−τ))dt+φ(t,x(t),x(t−τ))dB(t), (2.4)

in which t≥0 and initial value ξ∈Cb
F0
([−τ,0];Rn), ψ:R+×Rn×Rn→Rn and φ:R+×Rn×

Rn→Rn are assumed to satisfy local Lipschitz condition and linear growth condition.
For any initial data ξ, (2.4) has a unique solution on t≥−τ, which can be denoted as
x(t;ξ) [47].
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Lemma 2.2 ([47]). Assume that there are functions V∈C1,2(R+×Rn;R+), Υ∈L1(R+;R+),
and Θ1,Θ2∈C(Rn;R+) such that the differential operator L acting on V along with the trajec-
tories of (2.4) satisfies

LV(t,x,y)≤Υ(t)−Θ1(x)+Θ2(y), (t,x,y)∈R+×Rn×Rn,
Θ1(x)>Θ2(x), ∀x 6=0,

lim
‖x‖→∞

inf
0≤t<∞

V(t,x)=∞.

Then, for every initial value ξ∈Cb
F0
([−τ,0];Rn), it holds that

lim
t→∞

x(t;ξ)=0 a.s. (2.5)

Now, an important property about graph theory is described as follow.

Lemma 2.3 ([41]). Assume that q≥2. Then the following identity holds:

q

∑
i,j=1

piaijFij(xi,xj)= ∑
Q∈Q

W(Q) ∑
(s,r)∈E(CQ)

Frs(xr,xs).

Here Fij(xi,xj), (i, j= 1,2,··· ,q) are arbitrary functions. Q is the set of all spanning unicyclic
graphs of (G,A). W(Q) is the weight of Q and CQ denotes the directed cycle of Q. pi is the
cofactor of the i-th diagonal element of the Laplacian matrix of (G,A). Particularly, if (G,A) is
strongly connected, then pi >0 for i=1,2,··· ,q.

3 Partial topology identification of stochastic multi-weighted
complex networks

In this section, a general model of stochastic multi-weighted complex network with N
vertices and m kinds of weights is characterized by

dxi(t)=
[

fi(t,xi(t))+
m

∑
k=1

N

∑
j=1

a(k)ij hk(xj(t))
]

dt+gi(t,xi(t))dB(t), i=1,2,··· ,N, (3.1)

where xi = (xi1,xi2,··· ,xin)
T ∈Rn is the state vector of the i-th vertex. fi(t,xi(t)) :R+×

Rn→Rn is a smooth nonlinear function determining the dynamics of i-th vertex. A(k)=

(a(k)ij )N×N is the unknown or uncertain k-th weighted configuration matrix. If there is

a connection from vertex j to vertex i (j 6= i) in the k-th weight, then a(k)ij > 0 presents

the weight, and 0 otherwise. A(k) is not necessary symmetric, but the boundedness of the
network should be ensured. hk(·):Rn→Rn is the k-th inner coupling function. gi(t,xi(t)):
R+×Rn→Rn is the noise intensity function of the i-th vertex.
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Remark 3.1. It is well known that a number of existing networks are more accurately
represented by multi-weighted complex networks. The feature of such complex network
is that the coupling forms among vertices are multiple. Moreover, it is more practical to
take nonlinear couplings among vertices. In addition, multi-weighted complex networks
are inevitably affected by stochastic disturbance. Therefore, our model is much more
general, which includes nonlinear couplings, stochastic perturbations and multi-weights.
Here, we use stochastic differential equations driven by Brownian motion to describe the
considered networks. In fact, multi-weighted complex network model is generally used
and can model many real networks such as transportation network and communication
network. For example, according to different modes of transportation, the transportation
network can be regarded as a multi-weighted complex network, which is the coupling
of bus network, bike network and taxi network. In this case, multi-weighted complex
network can better describe the dynamics of transportation network.

Without loss of generality, suppose that the first q, (q = 2,3,··· ,N) vertices are con-
trolled (if it is not the case, it can be done by reordering the vertices [27]). Next, we take
(3.1) as the drive network, one can construct the corresponding response network, which
is described by

dyi(t)=
[

fi(t,yi(t))+
m

∑
k=1

q

∑
j=1

b(k)ij hk(yj(t))+
m

∑
k=1

N

∑
j=q+1

b(k)ij hk(xj(t))+ui(t)
]

dt

+gi(t,yi(t))dB(t), i=1,2,··· ,q, (3.2)

where yi =(yi1,yi2,··· ,yin)
T∈Rn is the response state vector of the i-th vertex. b(k)ij is the

estimation of the weight a(k)ij . Then(
G,A(k)

q×N
)
=
(
G,
(
a(k)ij

)
q×N

)
are the partial topological structures needing to be identified by(

G,B(k)
q×N

)
=
(
G,
(
b(k)ij

)
q×N

)
.

ui(t) is the controller to be designed.
Assume that all coefficients of drive system (3.1) and response system (3.2) satisfy

the linear growth condition and local Lipschitz condition. Hence, given arbitrary initial
values x0∈RNn and y0∈Rqn, the solution of Eqs. (3.1) and (3.2) are existent and unique
through [45]. They can be represented by

x(t)=(xT
1 (t),x

T
2 (t),··· ,xT

N(t))
T and y(t)=(yT

1 (t),y
T
2 (t),··· ,yT

q (t))
T,

respectively. Define

ei(t)=yi(t)−xi(t), c(k)ij =b(k)ij −a(k)ij , i=1,2,··· ,q, j=1,2,··· ,N, k=1,2,··· ,m.
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Then the error network can be described as

dei(t)=
[

fi(t,yi(t))− fi(t,xi(t))+
m

∑
k=1

q

∑
j=1

a(k)ij

(
hk(yj(t))−hk(xj(t))

)
+

m

∑
k=1

q

∑
j=1

c(k)ij hk(yj(t))+
m

∑
k=1

N

∑
j=q+1

c(k)ij hk(xj(t))+ui(t)
]

dt

+

[
gi(t,yi(t))−gi(t,xi(t))

]
dB(t), i=1,2,··· ,q. (3.3)

In order to obtain main results, two definitions and some hypotheses are introduced.

Definition 3.1 ( [45]). The zero solution of a system (3.3), or simply, system (3.3) is said to be
asymptotically stable with probability one if for all e0∈Rqn

lim
t→∞

e(t;e0)=0 a.s.

The zero solution of error equation (3.3) is asymptotically stable, which means that
the response system (3.2) reaches synchronization with the drive system (3.1).

Definition 3.2. The uncertain partial topological structures
(
G,A(k)

q×N
)
, (k=1,2,··· ,m) can be

identified by
(
G,B(k)

q×N
)
, (k=1,2,··· ,m) with probability one if

lim
t→∞

b(k)ij (t)= a(k)ij , i=1,2,··· ,q, j=1,2,··· ,N, k=1,2,··· ,m.

Hypothesis 3.1. Suppose that there exist nonnegative constants αi, (i = 1,2,··· ,q) such
that ∥∥ fi(t,yi)− fi(t,xi)

∥∥≤αi
∥∥yi−xi

∥∥, xi,yi∈Rn, i=1,2,··· ,q.

Hypothesis 3.2. Suppose that for each k=1,2,··· ,m, {hk(xi(t))}N
i=1 are linearly indepen-

dent on the orbit {xi(t)}N
i=1 of the outer synchronization manifold {xi(t)=yi(t)}

q
i=1, and

there exists a positive constant βk such that∥∥hk(yi)−hk(xi)
∥∥≤βk

∥∥yi−xi
∥∥, xi,yi∈Rn, i=1,2,··· ,N.

Hypothesis 3.3. For every i=1,2,··· ,q, there exists a nonnegative constant σi such that∥∥gi(t,yi)−gi(t,xi)
∥∥≤σi

∥∥yi−xi
∥∥.

Denote
Dij = max

1≤k≤m

{
βka(k)ij

}
, i, j=1,2,··· ,q.
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Built the following adaptive pinning controllers and updating laws

ui(t)=−di(t)ei(t), ḋi(t)= rieT
i (t)ei(t), i=1,2,··· ,q, (3.4a)

ḃ(k)ij =

{
−eT

i (t)hk(yj(t)), i, j=1,2,··· ,q, k=1,2,··· ,m,
−eT

i (t)hk(xj(t)), i=1,2,··· ,q, j=q+1,··· ,N, k=1,2,··· ,m,
(3.4b)

where ri is an arbitrary positive number for i=1,2,··· ,q.

Theorem 3.1. Assume that Hypotheses 3.1-3.3 hold and weighted digraph
(
G,(Dij)q×q

)
is

strongly connected, adaptive pinning controllers and updating laws are designed in (3.4a) and
(3.4b), respectively. Then: (i) drive network (3.1) and response network (3.2) can reach synchro-
nization and (ii) for each k=1,2,··· ,m, the unknown partial topological structures

(
G,A(k)

q×N
)

of

drive network (3.1) can be estimated by
(
G,B(k)

q×N
)

with probability one.

Proof. Three steps make up this proof. First, a suitable vertex Lyapunov function is con-
structed. Then, by using graph theory, the global Lyapunov function is established in-
directly. Finally, the partial topology identification can be obtained from Lemma 2.1 and
LaSalle’s invariance principle.

First, choose a vertex Lyapunov function as

Vi(t,ei)=
1
2

eT
i ei+

1
2

N

∑
j=1

m

∑
k=1

(
c(k)ij

)2
+

1
2ri

(
di−d∗i

)2, i=1,2,··· ,q,

where d∗i is a large positive constant to be determined. Through (3.3)-(3.4b), it yields that

LVi(t,ei(t))=eT
i (t)

[
fi(t,yi(t))− fi(t,xi(t))+

m

∑
k=1

q

∑
j=1

c(k)ij hk(yj(t))+ui(t)

+
m

∑
k=1

N

∑
j=q+1

c(k)ij hk(xj(t))+
m

∑
k=1

q

∑
j=1

a(k)ij

(
hk(yj(t))−hk(xj(t))

)]

+
m

∑
k=1

q

∑
j=1

c(k)ij ċ(k)ij +
m

∑
k=1

N

∑
j=q+1

c(k)ij ċ(k)ij +
1
ri
(di(t)−d∗i )ḋi(t)

+
1
2

trace

{[
gi(t,yi(t))−gi(t,xi(t))

]T[
gi(t,yi(t))−gi(t,xi(t))

]}
,

which implies that

LVi(t,ei(t))≤αieT
i (t)ei(t)+

m

∑
k=1

q

∑
j=1

a(k)ij eT
i (t)

(
hk(yj(t))−hk(xj(t))

)
+

m

∑
k=1

q

∑
j=1

c(k)ij eT
i (t)hk(yj(t))

+
m

∑
k=1

N

∑
j=q+1

c(k)ij eT
i (t)hk(xj(t))−

m

∑
k=1

N

∑
j=q+1

c(k)ij eT
i (t)hk(xj(t))−

m

∑
k=1

q

∑
j=1

c(k)ij eT
i (t)hk(yj(t))

−di(t)eT
i (t)ei(t)+(di(t)−d∗i )e

T
i (t)ei(t)+

1
2

σ2
i eT

i (t)ei(t)



1436 H. Chen, C. Zhang, Y. Feng and Q. Xu / Adv. Appl. Math. Mech., 15 (2023), pp. 1428-1455

=αieT
i (t)ei(t)−d∗i eT

i (t)ei(t)+
1
2

σ2
i eT

i (t)ei(t)+
m

∑
k=1

q

∑
j=1

a(k)ij eT
i (t)

(
hk(yj(t))−hk(xj(t))

)

≤
(

αi−d∗i +
1
2

σ2
i

)∥∥ei(t)
∥∥2

+
m

∑
k=1

q

∑
j=1

a(k)ij βk

(∥∥ei(t)
∥∥2

2
+

∥∥ej(t)
∥∥2

2

)

=

(
αi−d∗i +

1
2

σ2
i

)∥∥ei(t)
∥∥2

+
m

∑
k=1

q

∑
j=1

a(k)ij βk

(∥∥ei(t)
∥∥2

2
+

∥∥ej(t)
∥∥2

2
−
∥∥ei(t)

∥∥2

2
+

∥∥ei(t)
∥∥2

2

)

=

(
αi+

q

∑
j=1

mDij−d∗i +
1
2

σ2
i

)∥∥ei(t)
∥∥2

+
q

∑
j=1

mDij

(∥∥ej(t)
∥∥2

2
−
∥∥ei(t)

∥∥2

2

)
. (3.5)

Second, by using graph theory, one can define global Lyapunov function as

V(t,e)=
q

∑
i=1

piVi(t,ei),

in which pi is the cofactor of the i-th diagonal element of the Laplacian matrix of
(G,(Dij)q×q). Then, it is easy to obtain that

LV(t,e(t))=
q

∑
i=1

piLVi(t,ei(t))

≤
q

∑
i=1

pi

(
αi+

q

∑
j=1

mDij−d∗i +
1
2

σ2
i

)∥∥ei(t)
∥∥2

+m
q

∑
i=1

q

∑
j=1

piDij

(∥∥ej(t)
∥∥2

2
−
∥∥ei(t)

∥∥2

2

)
,I1+I2. (3.6)

Define

ηi =d∗i −αi−
σ2

i
2
−

q

∑
j=1

mDij,

where d∗i is large enough to ensure ηi >0, i=1,2,··· ,q. Therefore, we can get that

I1=
q

∑
i=1

pi

(
αi+

q

∑
j=1

mDij−d∗i +
1
2

σ2
i

)∥∥ei(t)
∥∥2

=−
q

∑
i=1

piηi
∥∥ei(t)

∥∥2.

By applying Lemma 2.3, it follows that

I2=
q

∑
i=1

q

∑
j=1

piDij

(
m
∥∥ej(t)

∥∥2

2
−

m
∥∥ei(t)

∥∥2

2

)

= ∑
Q∈Q

W(Q) ∑
(s,r)∈E(CQ)

(
m
∥∥es(t)

∥∥2

2
−

m
∥∥er(t)

∥∥2

2

)
=0,
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in which Q is the set of all spanning unicyclic graphsQ of (G,(Dij)q×q), CQ is the cycle of
Q, W(Q) is the weight of Q. It implies that

LV(t,e(t))≤−
q

∑
i=1

piηi
∥∥ei(t)

∥∥2≤−η̄eT(t)e(t),−Θ(e(t)).

Here η̄>0, which is determined by pi and ηi, i=1,2,··· ,q.
Third, the partial topology identification can be obtained from Lemma 2.1 and

LaSalle’s invariance principle.
By the definition of V, it indicates that

lim
‖e‖→∞

inf
0≤t≤∞

V(t,e)=∞.

Since
‖gi(t,yi(t))−gi(t,xi(t))‖≤σi‖yi(t)−xi(t)‖

and the solution xi(t) and yi(t) to drive-response networks (3.1) and (3.2) are bounded,
gi(t,yi(t))−gi(t,xi(t)) is bounded for each i=1,2,··· ,q. According to Lemma 2.1, it yields
that limt→∞ V(t;ei;ck

ij;di) exists and is finite almost surely, and limt→∞ Θ(e(t))=0 a.s. Ob-
viously, limt→∞ e(t)=0 a.s. By virtue of LaSalle’s invariance principle, Hypothesis 3.2 and
coupled systems (3.3), one can get

M′={e=0, c(k)ij =0, di =d∗i , i=1,2,··· ,q, j=1,2,··· ,N, k=1,2,··· ,m}

is the largest invariant set of M={e=0}. It yields that the solutions regarding equations
(3.3)-(3.4b) starting from Ω=Rq(n+N+1) will asymptotically stabilize at M′ with probabil-
ity one. This means that under the adapted pinning controllers (3.4a) and updating laws
(3.4b), the uncertain topological structures (G,A(k)

q×N) can be identified by (G,B(k)
q×N) with

probability one. Meanwhile, for arbitrary initial values, the solution of error network
(3.3) is asymptotically stable. That is, the response network (3.2) is synchronized with the
drive network (3.1). This completes the proof.

Remark 3.2. From Theorem 3.1, a global Lyapunov function V of error system (3.3) are
successfully constructed through combining vertex-Lyapunov functions Vi together in
the way of

V(t,e)=
q

∑
i=1

piVi(t,ei),

in which pi is the cofactor of the i-th diagonal element of Laplacian matrix (G,(Dij)q×q).
The strong connectedness of graph (G,(Dij)q×q) is sufficient to guarantee the synchro-
nization and partial topology identification successfully. We do not need the strong con-
nectedness of all subgraphs (G,(a(k)ij )q×q), k=1,2,··· ,m.
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When q= 1, the following corollary emerges naturally. Suppose that the first vertex
to be controlled without loss of generality. The corresponding response network can be
built as

dy1(t)=
[

f1(t,y1(t))+
m

∑
k=1

b(k)11 hk(y1(t))+
m

∑
k=1

N

∑
j=2

b(k)1j hk(xj(t))+u1(t)
]

dt

+g1(t,y1(t))dB(t). (3.7)

Define the following controller and updating laws

u1(t)=−d1(t)e1(t), ḋ1(t)= r1eT
1 (t)e1(t), (3.8a)

ḃ(k)1j =

{
−eT

1 (t)hk(y1(t)), k=1,2,··· ,m,

−eT
1 (t)hk(xj(t)), j=2,··· ,N, k=1,2,··· ,m,

(3.8b)

where r1 is an arbitrary positive number.

Corollary 3.1. Assume that Hypotheses 3.1-3.3 hold. Then the partial topological structure
(G,A(k)

1×N), (k=1,2,··· ,m) of drive network (3.1) can be identified by (G,B(k)
1×N), (k=1,2,··· ,m)

with probability one under the pinning controller (3.8a) and updating laws (3.8b).

Similar with the deducting process from (3.5) to (3.6), it yields that

LV=LV1≤
(

α1+
1
2

σ2
1−d∗i +mD11

)∥∥e1
∥∥2.

Therefore, we have the identification result if

d∗i >α1+
1
2

σ2
1 +mD11.

Remark 3.3. Corollary 3.1 indicates that a(k)1j , (j= 1,2,··· ,N, k= 1,2,··· ,m) can be identi-
fied successfully through response network (3.7). Because of the arbitrariness of vertex’
selection, one can add controller to any vertex (l-th vertex, l=1,2,··· ,N). Therefore, a(k)l j ,
(j = 1,2,··· ,N, k = 1,2,··· ,m) can be identified successfully through pinning one vertex.
Furthermore, for each k=1,2,··· ,m, (G,A(k)

q×N) can be identified successfully by using this

pinning control strategy q times. If q=N, the whole topological structures (G,A(k)
N×N) can

be identified by (G,B(k)
N×N) with probability one.

Remark 3.4. As is well known, a multi-weighted complex network is composed with a
great amount of vertices and different weights. It is extremely difficult and expensive
to add controllers to all vertices. Pinning control, as we all know, is a technical strategy.
This paper combines pinning control and adaptive control, which reduces control cost to
a large degree. Therefore, our control mechanism is more universal and cost-effective.
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Remark 3.5. The problem of topology identification of complex networks has received
considerable interest in recent years. The detailed descriptions are given in [18, 27–31].
Three important features emerge from the aforementioned studies. First, they usually
discuss the topology identification of whole topological structures [18, 31]. Second, the
models are usually single weight [27–30]. Third, most of these articles construct global
Lyapunov function directly [18,27–31]. In comparing with above work, the model in this
paper is stochastic multi-weighted complex network, which is more suitable for practical
applications. Furthermore, a novel graph-theoretic method is used to obtain theoretical
results about partial topology identification, where global Lyapunov function can be ob-
tained indirectly. Up to now, there are few papers about partial topology identification
of stochastic multi-weighted complex networks based on graph-theoretic method and
adaptive synchronization.

4 Partial topology identification of stochastic multi-weighted
complex networks with time delays

Time delays are general and indispensable in control system. Moderate time delays can
improve stability and dynamic performance of system. Therefore, it is necessary to iden-
tify the topological structures of stochastic multi-weighted complex networks with time
delays. In what follows, partial topology identification of complex networks with time
delays is further studied.

A general model for stochastic multi-weighted dynamical network with time delays
is described by

dxi(t)=
[

fi(t,xi(t))+
m

∑
k=1

N

∑
j=1

a(k)ij hk(xj(t−τk))

]
dt

+
m

∑
k=1

g(k)i

(
t,xi(t),xi(t−τk)

)
dB(t), i=1,2,··· ,N, (4.1)

in which τk > 0, k= 1,2,··· ,m are time delays. The denotation g(k)i

(
t,xi(t),xi(t−τk)

)
rep-

resents the vector-form noise intensity function. Here the intensity of stochastic pertur-
bations is related with time delay in each weight, which is different with (3.1). Other
parameters are the same with (3.1). Let Eq. (4.1) be the drive network. One can construct
the corresponding response network as follow

dyi(t)=
[

fi(t,yi(t))+
m

∑
k=1

q

∑
j=1

b(k)ij hk(yj(t−τk))+
m

∑
k=1

N

∑
j=q+1

b(k)ij hk(xj(t−τk))+ui(t)
]

dt

+
m

∑
k=1

g(k)i

(
t,yi(t),yi(t−τk)

)
dB(t), i=1,2,··· ,q. (4.2)
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Here b(k)ij is the estimation of a(k)ij , ui(t) is the controller to be determined. Similarly,

(G,A(k)
q×N)=(G,

(
a(k)ij

)
q×N

)

are the partial topological structures needing to be identified by

(G,B(k)
q×N

)
=(G,(b(k)ij )

q×N
).

For brevity, let ei(t) = yi(t)−xi(t), ei(t−τk) = yi(t−τk)−xi(t−τk), c(k)ij = b(k)ij −a(k)ij , i =
1,2,··· ,q, j = 1,2,··· ,N, k = 1,2,··· ,m. Then the error dynamics between (4.1) and (4.2)
can be described as

dei(t)=
[

fi(t,yi(t))− fi(t,xi(t))+
m

∑
k=1

N

∑
j=q+1

c(k)ij hk(xj(t−τk))+ui(t)

+
m

∑
k=1

q

∑
j=1

a(k)ij

(
hk(yj(t−τk))−hk(xj(t−τk))

)
+

m

∑
k=1

q

∑
j=1

c(k)ij hk(yj(t−τk))

]
dt

+
m

∑
k=1

[
g(k)i

(
t,yi(t),yi(t−τk)

)
−g(k)i

(
t,xi(t),xi(t−τk)

)]
dB(t), i=1,2,··· ,q. (4.3)

In this section, the drive-response systems (4.1) and (4.2) are said to be synchronized,
if the zero solution of error system (4.3) is asymptotically stable. That is, limt→∞ e(t;e0)=
0 a.s. for all e0∈Cb

F0
([−τ,0];Rqn).

In order to obtain the main result, the following hypothesis is necessary.

Hypothesis 4.1. Assume that there exist some nonnegative constants u(k)
i , v(k)i such that

∥∥g(k)i (t, x̂i,ŷi)−g(k)i (t,xi,yi)
∥∥≤u(k)

i

∥∥x̂i−xi
∥∥+v(k)i

∥∥ŷi−yi
∥∥.

Meanwhile, g(k)i (t, x̂i,ŷi) and g(k)i (t,xi,yi) are bounded for any (t, x̂i,ŷi), (t,xi,yi)∈R+×
Rn×Rn, i=1,2,··· ,q.

Consider the following controllers and updating laws

ui(t)=−di(t)ei(t), ḋi(t)= rieT
i (t)ei(t), i=1,2,··· ,q, (4.4a)

ḃ(k)ij =

{
−eT

i (t)hk(yj(t−τk)), i, j=1,2,··· ,q, k=1,2,··· ,m,

−eT
i (t)hk(xj(t−τk)), i=1,2,··· ,q, j=q+1,··· ,N, k=1,2,··· ,m,

(4.4b)

where ri is an arbitrary positive number for i=1,2,··· ,q.
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Theorem 4.1. Assume that Hypotheses 3.1, 3.2, 4.1 hold and weighted digraph (G,(Dij)q×q) is
strongly connected, adaptive pinning controllers and updating laws are designed in (4.4a) and
(4.4b), respectively. Then: (i) response network (4.2) reaches synchronization with drive network
(4.1) and (ii) for each k=1,2,··· ,m, the unknown partial topological structures (G,A(k)

q×N) of drive

network (4.1) can be estimated by (G,B(k)
q×N) with probability one.

Proof. The main proof process is also divided into three steps. First, consider the follow-
ing vertex Lyapunov function

Vi(t,ei)=
1
2

eT
i ei+

1
2

N

∑
j=1

m

∑
k=1

(
c(k)ij

)2
+

1
2ri

(
di(t)−d∗i

)2, i=1,2,··· ,q,

where d∗i is a large positive constant to be determined. From (4.3)-(4.4b), we can derive
that

LVi(t,ei(t))=eT
i (t)

[
fi(t,yi(t))− fi(t,xi(t))+

m

∑
k=1

N

∑
j=q+1

c(k)ij hk(xj(t−τk))+ui(t)

+
m

∑
k=1

q

∑
j=1

a(k)ij

(
hk(yj(t−τk))−hk(xj(t−τk))

)
+

m

∑
k=1

q

∑
j=1

c(k)ij hk(yj(t−τk))

]

+
m

∑
k=1

q

∑
j=1

c(k)ij ċ(k)ij +
m

∑
k=1

N

∑
j=q+1

c(k)ij ċ(k)ij +
1
ri
(di(t)−d∗i )ḋi(t)

+
1
2

trace


[

m

∑
k=1

(
g(k)i

(
t,yi(t),yi(t−τk)

)
−g(k)i

(
t,xi(t),xi(t−τk)

))]T

×
[

m

∑
k=1

(
g(k)i

(
t,yi(t),yi(t−τk)

)
−g(k)i

(
t,xi(t),xi(t−τk)

))]}
.

By using the inequality

(a1+a2+···+am)
2≤m((a1)

2+(a2)
2+···+(am)

2),

it yields that

LVi(t,ei(t))≤αieT
i (t)ei(t)+

m

∑
k=1

q

∑
j=1

c(k)ij eT
i (t)hk(yj(t−τk))−d∗i (t)e

T
i (t)ei(t)

+
m

∑
k=1

q

∑
j=1

a(k)ij eT
i (t)

(
hk(yj(t−τk))−hk(xj(t−τk))

)
+

m

∑
k=1

N

∑
j=q+1

c(k)ij eT
i (t)hk(xj(t−τk))−

m

∑
k=1

q

∑
j=1

c(k)ij eT
i (t)hk(yj(t−τk))
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−
m

∑
k=1

N

∑
j=q+1

c(k)ij eT
i (t)hk(xj(t−τk))+m

m

∑
k=1

(u(k)
i )2eT

i (t)ei(t)

+m
m

∑
k=1

(
v(k)i

)2
eT

i (t−τk)ei(t−τk)

≤
(

αi+m2u2
i −d∗i

)∥∥ei(t)
∥∥2

+m
m

∑
k=1

(
v(k)i

)2∥∥ei(t−τk)
∥∥2

+
m

∑
k=1

q

∑
j=1

Dij

(∥∥ei(t)
∥∥2

2
+

∥∥ej(t−τk)
∥∥2

2

)
, (4.5)

where
ui = max

1≤k≤m

{
u(k)

i

}
.

Second, define

V(t,e)=
q

∑
i=1

piVi,

where pi is the same as Theorem 3.1. Then it can drive that

LV(t,e(t))≤
q

∑
i=1

pi

(
αi+m2u2

i −d∗i

)∥∥ei(t)
∥∥2

+m
m

∑
k=1

q

∑
i=1

pi

(
v(k)i

)2∥∥ei(t−τk)
∥∥2

+
m

∑
k=1

q

∑
i=1

q

∑
j=1

piDij

(∥∥ei(t)
∥∥2

2
+

∥∥ej(t−τk)
∥∥2

2
+

∥∥ei(t−τk)
∥∥2

2
−
∥∥ei(t−τk)

∥∥2

2

)

≤−
q

∑
i=1

pi

(
d∗i −αi−m2ū2− 1

2

q

∑
j=1

mDij

)∥∥ei(t)
∥∥2

+
q

∑
i=1

mpi

(
mv̄2+

1
2

q

∑
j=1

Dij

)∥∥ei(t−τ)
∥∥2

+
m

∑
k=1

q

∑
i=1

q

∑
j=1

piDij

(∥∥ej(t−τk)
∥∥2

2
−
∥∥ei(t−τk)

∥∥2

2

)
,I1+I2+I3, (4.6)

where

‖ei(t−τ)‖2=max
{
‖ei(t−τ1)‖2,‖ei(t−τ2)‖2,··· ,‖ei(t−τm)‖2},

ū= max
1≤i≤N

{
ui
}

, v̄= max
1≤k≤m, 1≤i≤N

{
v(k)i

}
.
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By applying Lemma 2.3, it yields that

I3=
m

∑
k=1

q

∑
i=1

q

∑
j=1

piDij

(∥∥ej(t−τk)
∥∥2

2
−
∥∥ei(t−τk)

∥∥2

2

)

=
m

∑
k=1

∑
Q∈Q

W(Q) ∑
(u,v)∈E(CQ)

(∥∥eu(t−τk)
∥∥2

2
−
∥∥ev(t−τk)

∥∥2

2

)
=0.

Third, the partial topology identification of stochastic multi-weighted complex network
with time delay can be obtained from Lemma 2 and LaSalle’s invariance principle.

Apparently, one can obtained that

LV(t,e(t))≤ I1+I2,−Θ1(e(t))+Θ2(e(t−τ)),

in which

Θ1
(
e(t)

)
,

q

∑
i=1

pi

(
d∗i −αi−m2ū2− 1

2

q

∑
j=1

mDij

)∥∥ei(t)
∥∥2,

Θ2
(
e(t−τ)

)
,

q

∑
i=1

mpi

(
mv̄2+

1
2

q

∑
j=1

Dij

)∥∥ei(t−τ)
∥∥2.

It is obvious that Θ1(e)>Θ2(e) for sufficient large positive constant

d∗i >αi+m2(ū2+ v̄2)+
q

∑
j=1

mDij

with e 6=0. Moreover,
lim
‖e‖→∞

inf
0≤t<∞

V=∞.

By Lemma 2.2, it can obtain that limt→∞ V(t;ei;c
(k)
ij ;di) exists and is finite almost surely

and limt→∞ e(t) = 0, a.s. Under Hypothesis 3.2 and error equation (4.3), one gets M′ =
{e = 0, c(k)ij = 0, di = d∗i , i = 1,2,··· ,q, j = 1,2,··· ,N, k = 1,2,··· ,m} is the largest invariant
set of M = {e = 0}. Similarly, the solutions regarding Eqs. (4.3)-(4.4b) starting from Ω
will asymptotically stabilize at M′ with probability one. Therefore, the zero solution of
network (4.3) is asymptotically stable under pinning controllers (4.4a) and updating laws
(4.4b), namely the drive network and the response network reach outer synchronization.
In addition, the uncertain topological structures (G,A(k)

q×N) can be successfully identified

by (G,B(k)
q×N) with probability one, which completes the proof.

Remark 4.1. In contrast to [20, 32], a graph-theoretic method is used to overcome the
difficulty of constructing global Lyapunov function directly. However, there are many
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differences between this article and [20, 32]. First, the drive network in [20] is deter-
ministic, while drive network and response network are stochastic in this paper. Second,
in [32], the connection among vertex is linear, while nonlinear coupling is included in this
paper. Third, time delays in this paper are associated with each weight. But in [20, 32],
time delay is fixed, which are special cases of this paper.

Remark 4.2. In this paper, Hypothesis 3.2 is linearly independent condition, which can
usually be satisfied with stochastic perturbations. Hypothesis 3.2 is used to get

lim
t→∞

c(k)ij (t)=0, i=1,2,··· ,q, j=1,2,··· ,N, k=1,2,··· ,m.

That is,
lim
t→∞

b(k)ij (t)= a(k)ij , i=1,2,··· ,q, j=1,2,··· ,N, k=1,2,··· ,m.

Therefore, Hypothesis 3.2 is the key for guaranteeing successful topology identification.
In general, Lipschitz continuity hypotheses are conditions to ensure existence and

uniqueness of solutions of the considered model. In our manuscript, these hypotheses
are also used to obtained inequalities (3.5) and (4.5). In addition, Lipschitz continuity
hypotheses are generally employed to study synchronization [9–17], topology identifica-
tion [18–23] and partial topology identification [27–30]. In fact, Lipschitz condition can be
weakened to semi-Lipschitz condition [10] and the synchronization and partial topology
identification can also be obtained under the semi-Lipschitz continuity hypotheses

• Semi-Lipschitz condition: For the vector-valued function f (t,x), suppose the semi-
Lipschitz condition with respect to t holds, i.e., for any x, y∈Rn, there exists positive
constant α such that

(y−x)T( f (t,y)− f (t,x))≤α(y−x)T(y−x).

5 Numerical simulations

In what follows, numerical simulations are used to illustrate the effectiveness and correct-
ness of the theoretical results in Sections 3 and 4. The classical chaotic Lorenz system [48]
is taken as the vertex’s dynamical system, which is described by

ẋ=

−a a 0
c −1 0
0 0 −b

x1
x2
x3

+

 0
−x1x3
x1x2

,Dx+G(x),

where a=10, b=8/3, c=28. It can be verified that Lorenz system satisfies Hypothesis 1
because it has bounded attractors [48].

Next, consider a stochastic multi-weighted network with 10 vertices and two kinds
of weights. Without loss of generality, we can assume the first three vertices are what we
needed (If it is the other three vertices, one can renumber them so that they can still be
the first three vertices).
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5.1 Partial topology identification of stochastic multi-weighted complex
networks

Example 5.1. The drive network is described by

dxi(t)=
[

fi(t,xi(t))+
10

∑
j=1

a(1)ij h1
(
xj(t)

)
+

10

∑
j=1

a(2)ij h2
(
xj(t)

)]
dt

+gi(t,xi(t))dB(t), i=1,2,··· ,10, (5.1)

where xi∈R3, fi(t,xi(t))=Dxi(t)+G(xi(t)), h1(xj(t))=H1xj(t), (j=1,2,··· ,10), h2(xj(t))=

H2xj(t), (j = 1,2,··· ,10). H1 = (h(1)ij )3×3 and H2 = (h(2)ij )3×3 are inner coupling matrices.

gi(t,xi(t))= 0.01sinxi(t). A(1)=(a(1)ij )10×10 and A(2)=(a(2)ij )10×10 are two weighted con-
figuration matrices. We select the elements of inner coupling matrices and weighted
configuration matrices as follows and other elements not mentioned are set as zero.

• h(1)1,1 =0.2, h(1)1,2 =0.2, h(1)1,3 =0.3, h(1)2,2 =0.25, h(1)3,1 =0.1, h(1)3,2 =0.1,

• h(2)1,2 =0.2, h(2)1,3 =0.2, h(2)2,1 =0.11, h(2)2,2 =0.2, h(2)2,3 =0.1, h(2)3,1 =0.15, h(2)3,2 =0.1;

• a(1)1,2 = a(1)2,1 = a(1)3,2 = a(1)4,3 = a(1)6,4 = a(1)6,5 = a(1)8,6 = a(1)10,1=1,

• a(1)2,4 = a(1)2,10= a(1)5,4 = a(1)5,6 = a(1)6,7 = a(1)7,6 = a(1)7,8 = a(1)8,9 = a(1)9,8 = a(1)10,2= a(1)10,8=0.5;

• a(2)1,2 = a(2)2,1 = a(2)2,6 = a(2)3,2 = a(2)4,8 = a(2)5,4 = a(2)8,2 = a(2)8,9 = a(2)10,1= a(2)10,9=1,

• a(2)2,3=a(2)2,8=a(2)4,3=a(2)4,10=a(2)6,2=a(2)6,7=a(2)6,10=a(2)7,6=a(2)7,8=a(2)8,4=a(2)9,8=a(2)9,10=a(2)10,4=a(2)10,6=0.5.

Accordingly, the response network with adaptive controllers which just controlling the
first three vertices is established as follow:

dyi(t)=
[

fi(t,yi(t))+
3

∑
j=1

b(1)ij H1yj(t)+
10

∑
j=4

b(1)ij H1xj(t)+
3

∑
j=1

b(2)ij H2yj(t)

+
10

∑
j=4

b(2)ij H2xj(t)+ui(t)
]

dt+gi(t,yi(t))dB(t), i=1,2,3. (5.2)

By some manipulation, one can get∥∥h1(yj(t))−h1(xj(t))
∥∥=∥∥H1yj(t)−H1xj(t)

∥∥≤∥∥H1
∥∥

∞

∥∥yj(t)−xj(t)
∥∥,∥∥h2(yj(t))−h2(xj(t))

∥∥=∥∥H2yj(t)−H2xj(t)
∥∥≤∥∥H2

∥∥
∞

∥∥yj(t)−xj(t)
∥∥, (j=1,2,3).

Here,

Hk =(h(k)rs )3×3, (k=1,2),
∥∥Hk

∥∥
∞ = max

1≤r≤3

3

∑
s=1
|h(k)rs |, (k=1,2).
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Let β1=
∥∥H1

∥∥
∞, β2=

∥∥H2
∥∥

∞, it indicates that∥∥hk(yj)−hk(xj)
∥∥≤βk

∥∥yj−xj
∥∥

is satisfied. Moreover,∥∥gi(t,yi)−gi(t,xi)
∥∥=∥∥0.02cos((yi+xi)/2)sin((yi−xi)/2)

∥∥≤0.01
∥∥yi−xi

∥∥.

Obviously they satisfy Hypothesis 3.3. Therefore, fi and gi satisfy the Hypotheses of
Theorem 3.1, that is to say, response network (5.2) can reach synchronization with drive
network (5.1) under adaptive pinning controllers (5.3a) and updating laws (5.3b)

ui(t)=−di(t)ei(t), ḋi(t)= rieT
i (t)ei(t), i=1,2,3, (5.3a)

ḃ(k)ij =

{
−eT

i (t)Hkyj(t), i, j=1,2,3, k=1,2,

−eT
i (t)Hkxj(t), i=1,2,3, j=4,··· ,10, k=1,2.

(5.3b)

Moreover, the unknown partial topological structures (G,A(1)
3×10) and (G,A(2)

3×10) can be

identified successfully by (G,B(1)
3×10) and (G,B(2)

3×10), respectively. The initial values are
arbitrary given as follows:

• x1=(5,5,5)T, x2=(5,5,5)T, x3=(6,6,6)T, x4=(2,2,6)T, x5=(2,6,6)T,

• x6=(7,7,1)T, x7=(7,7,7)T, x8=(0,8,2)T, x9=(8,0,8)T, x10=(9,9,9)T,

• y1=(0,0,0)T, y2=(−2.5,−2.5,−2.5)T, y3=(1,1,1)T,

• b(1)ij (0)=b(2)ij (0)=4.5, d1(0)=d2(0)=d3(0)=2, r1= r2= r3=1.

The validity of Theorem 3.1 is illustrated in Figs. 1-3. The sample path (yi,xi, i=1,2,3)
are shown in Fig. 1, from which we can clearly see that yi1, yi2, yi3 (i = 1,2,3) and xi1,
xi2, xi3, (i=1,2,3) coincide perfectly with time t. This means that the drive network and
response network reach outer synchronization. The estimations of the uncertain topolog-
ical structures (G,A(1)

3×10) and (G,A(2)
3×10) are displayed in Figs. 2(a) and (b), respectively.

For a clearer understanding, we arbitrarily select some curves for separate presentation.
In subgraph (a), it is easily viewed that the curves regarding b(1)32 , b(1)21 get stabilized at 1,
the curves regarding b(1)24 , b(1)210 get stabilized at 0.5 and curves regarding b(1)13 , b(1)14 , b(1)31 tend

to 0. In subgraph (b), one can clearly obtained that the curves regarding b(2)21 , b(2)26 get sta-
bilized at 1, the curves regarding b(2)23 , b(2)28 get stabilized at 0.5 and curves regarding b(2)13 ,

b(2)14 , b(2)36 tend to 0. All of the curves in response system (5.2) tend to real values in drive
system (5.1) perfectly. It indicates that the estimation of unknown topological structures
are identified successfully by using pinning control strategies. In Fig. 3, the subgraph (a)
demonstrates the feedback gains di(t) in network (5.2), where di(t) has an upper bound
and tends to some constants for i=1,2,3.
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Figure 1: The sample path of drive system (5.1) and response system (5.2).
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Figure 2: Partial topology identification of (5.1). It can clearly view that every curve converges to the real
value.

5.2 Partial topology identification of stochastic multi-weighted complex
networks with time delays
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Figure 3: The subgraph (a) is feedback gains di in network (5.2) and (b) represents di in network (5.5).

Example 5.2. The drive network with time delays is characterized by

dxi(t)=
[

fi(t,xi(t))+
10

∑
j=1

a(1)ij H1xj(t−τ1)+
10

∑
j=1

a(2)ij H2xj(t−τ2)

]
dt

+

(
g(1)i

(
t,xi(t),xi(t−τ1)

)
+g(2)i

(
t,xi(t),xi(t−τ2)

))
dB(t), i=1,2,··· ,10, (5.4)

in which the parameters of fi(t,xi(t)), A(1), A(2), H1 and H2 are the same as Example 5.1,
τ1 = 0.15, τ2 = 0.11, g(k)i (t,xi(t),xi(t−τk)) = 0.005sinxi(t)+0.01sinxi(t−τk), k = 1,2. Ac-
cordingly, the response network with different time delays and stochastic perturbations
is depicted as follow:

dyi(t)=
[

fi(t,yi(t))+
3

∑
j=1

b(1)ij H1yj(t−τ1)+
10

∑
j=4

b(1)ij H1xj(t−τ1)+
3

∑
j=1

b(2)ij H2yj(t−τ2)

+ui(t)+
10

∑
j=4

b(2)ij H2xj(t−τ2)

]
dt+

(
g(1)i

(
t,yi(t),yi(t−τ1)

)
+g(2)i

(
t,yi(t),yi(t−τ2)

))
dB(t), i=1,2,3. (5.5)

By a simple calculation, one can have∥∥g(k)i (t,yi(t),yi(t−τk))−g(k)i (t,xi(t),xi(t−τk))
∥∥

=
∥∥0.005(sin(yi(t))−sin(xi(t)))+0.01(sin(yi(t−τk))−sin(xi(t−τk)))

∥∥
≤0.005

∥∥yi(t)−xi(t)
∥∥+0.01

∥∥yi(t−τk)−xi(t−τk)
∥∥.

It is apparent that they satisfy Hypothesis 4.1. According to Theorem 4.1, drive-response
networks (5.4) and (5.5) are synchronized under the adaptive pinning controllers and
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updating laws (5.6a)-(5.6b)

ui(t)=−di(t)ei(t), ḋi(t)= rieT
i (t)ei(t), i=1,2,3, (5.6a)

ḃ(k)ij =

{
−eT

i (t)hk(yj(t−τk)), i, j=1,2,3, k=1,2,

−eT
i (t)hk(xj(t−τk)), i=1,2,3, j=4,··· ,10, k=1,2.

(5.6b)

Furthermore, the unknown partial topological structures (G,A(1)
3×10) and (G,A(2)

3×10) can

be identified successfully by (G,B(1)
3×10) and (G,B(2)

3×10), respectively. In this subsection, all
the parameters are the same as Example 5.1. Next, the initial values in this subsection are
taken as

x1=(1+0.5k2,1+0.5k2,1+0.5k2)
T, x2=(1+0.5k2,1+0.5k2,1+0.5k2)

T,

x3=(2+0.5k2,2+0.5k2,2+0.5k2)
T, x4=(−2+0.5k2,−2+0.5k2,2+0.5k2)

T,

x5=(−2+0.5k2,2+0.5k2,2+0.5k2)
T, x6=(3+0.5k2,3+0.5k2,−3+0.5k2)

T,

x7=(3+0.5k2,3+0.5k2,3+0.5k2)
T, x8(−4+0.5k2,4+0.5k2,−2+0.5k2)

T,

x9=(4+0.5k2,−4+0.5k2,4+0.5k2)
T, x10=(5+0.5k2,5+0.5k2,5+0.5k2)

T,

y1=(1+0.5k3,1+0.5k3,1+0.5k3)
T, y2=(−1.5+0.5k3,−1.5+0.5k3,−1.5+0.5k3)

T,

y3=(2+0.5k3,2+0.5k3,2+0.5k3)
T, d1(0)=d2(0)=d3(0)=2, r1= r2= r3=1,

where k2= k3=cost.
The validity of Theorem 4.1 is illustrated in Figs. 3-5. Fig. 3(b) displays the feed-

back gains di(t) in network (5.5), which tends to stabilize with time t. The outer syn-
chronization of drive network (5.4) and response network (5.5) can be clearly verified in
Fig. 4. Additionally, Fig. 5 demonstrates the unknown topological structures (G,A(1)

3×10)

and (G,A(2)
3×10) can be identified successfully when τ1=0.15, τ2=0.11. For a clearer view,

we arbitrarily select some curves for separate presentation. In subgraph (a), it is easily
viewed that the curves regarding b(1)21 , b(1)32 get stabilized at 1, the curves regarding b(1)24 ,
b(1)210 get stabilized at 0.5 and curves regarding b(1)14 , b(1)15 , b(1)36 tend to 0. In subgraph (b), it

obvious that the curves regarding b(2)12 , b(2)21 , b(2)26 get stabilized at 1, the curves regarding
b(2)23 , b(2)28 get stabilized at 0.5 and curves regarding b(2)14 , b(2)31 , b(2)35 tend to 0. From Fig. 5,
one can see that the estimation of unknown topological structures with time delays is
successfully obtained by using pinning control strategies.

Remark 5.1. Comparing with Example 5.1, Example 5.2 has shorter time of topology
identification and synchronization. A possible explanation for this case is that the drive
system and response system in Example 5.2 have time delays. In Fig. 2, the uncertain
topological structures are successfully identified at t = 250, while t = 100 in Fig. 5. In
order to obtain a clear view of synchronization, we arbitrarily display some sample path
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Figure 4: The sample path of drive system (5.4) and response system (5.5).
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Figure 5: Partial topology identification of (5.4). It clearly shows that these couplings converge to the real
values.

of drive system (5.1) and response system (5.2) in Fig. 6. One can find that sample path
in Fig. 6 do not reach synchronization at t∈ [4.5,5.2]. However, in Fig. 4, the sample path
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Figure 6: Some sample path of drive system (5.1) and response system (5.2).

reaches synchronization at t∈ [4.5,5]. The results of the above two examples show that
time delays may lead to shorter time of identification and synchronization.

6 Conclusions

In this paper, the network model is described for stochastic multi-weighted complex
networks, both time delays and adaptive pinning controllers are considered. Based on
Lyapunov method and graph theory, partial topology identification of stochastic multi-
weighted complex networks has been intensively investigated. Different from most ex-
isting results, our scheme can control not only all vertices, but also a part of the whole
vertices. Thus, this scheme can be designed to control the target cost-effectively. It is
concluded that under proper adaptive pinning controllers, the corresponding q vertices
in drive network and response network can achieve synchronization. In particular, the
uncertain partial topological structures can be identified successfully. Moreover, numer-
ical simulations have been provided to show the effectiveness of theoretical results. In
addition, the issue of topology identification about stochastic multi-weighted complex
networks with color noise is an intriguing one which could be usefully explored in fur-
ther research.

Appendix

The following basic concepts on graph theory can be found in [41,42]. A directed digraph
G = (V ,E) contains a vertex set V = {1,2,··· ,q} and a set E of edges (u,v) leading from
initial vertex u to terminal vertex v. A subgraph H of G is said to be spanning if H and
G have the same vertex set. A digraph G is weighted if every edge (v,u) is assigned a
positive weight auv, in which auv > 0 if and only if there exists an edge from vertex v to
vertex u in G, A=(auv)q×q is called the weighted matrix. The weight W(G) of G is the
product of the weights on all edges.
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A directed path P in G is a subgraph with distinct vertices {i1,i2,··· ,ir} such that its
set of edges is {(is,is+1) :s=1,2,··· ,r−1}. We call P a directed cycle if i1= ir. A connected
subgraph T is a tree if it contains no cycles. A tree T is rooted at vertex s, called the root,
if s is not a terminal vertex of any edges, and each of the remaining vertices is a terminal
vertex of exactly one edge. A subgraph Q is unicyclic if it is a disjoint union of rooted
tree and these roots form a directed cycle. For any pair of distinct vertices in digraph G,
if there exists a directed path from one to the other, this digraph is strongly connected.
Denote the digraph G with weighted matrix A as (G,A), the Laplacian matrix of (G,A) is
defined as follow:

L=



∑
k 6=1

a1k −a12 ··· −a1q

−a21 ∑
k 6=2

a2k ··· −a2q

...
...

. . .
...

−aq1 −aq2 ··· ∑
k 6=q

aqk


.
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