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Abstract. In this paper spectral Galerkin approximation of optimal control problem
governed by fractional elliptic equation is investigated. To deal with the nonlocality
of fractional Laplacian operator the Caffarelli-Silvestre extension is utilized. The first
order optimality condition of the extended optimal control problem is derived. A spec-
tral Galerkin discrete scheme for the extended problem based on weighted Laguerre
polynomials is developed. A priori error estimates for the spectral Galerkin discrete
scheme is proved. Numerical experiments are presented to show the effectiveness of
our methods and to verify the theoretical findings.
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1 Introduction

The goal of this paper is to investigate spectral Galerkin approximation of optimal con-
trol problem governed by fractional elliptic equation with fractional Laplacian operator
defined by spectral expansion. Let Ω be an open, bounded and connected domain in

∗Corresponding author.
Emails: zjqss1992@163.com (J. Zhang), yangyinxtu@xtu.edu.cn (Y. Yang), zhouzhaojie@sdnu.edu.cn
(Z. Zhou)

http://www.global-sci.org/aamm 1631 c©2023 Global Science Press



1632 J. Zhang, Y. Yang and Z. Zhou / Adv. Appl. Math. Mech., 15 (2023), pp. 1631-1654

Rn, with Lipschitz boundary ∂Ω. We consider the following fractional optimal control
problem:

min
z∈Zad

J(u,z) :=
1
2
‖u−ud‖2

L2(Ω)+
µ

2
‖z‖2

L2(Ω) (1.1)

subject to {
(−∆)su(x)= f +z, x∈Ω,
u(x)=0, x∈∂Ω.

(1.2)

Here the constraint set of control variable z is defined by

Zad =

{
z∈L2(Ω) :

∫
Ω

z(x)dx≥0
}

.

µ > 0 is the regularization parameter, and ud is the desired state. The operator (−∆)s,
(s∈ (0,1)) is the fractional power of Laplacian operator, which will be defined later.

In recent years, optimal control problem [15,28,32,34] has developed into a hot subject
across computational mathematics, applied mathematics and systems science. It has a
very wide range of applications in engineering control, medical imaging, aerospace and
many other fields. The solution of the optimal control problem is to find a way to achieve
the optimal performance index of the control system under the constraint conditions.
In various fields of human activities, many problems can be described by the optimal
control problem with a partial differential equation as the state equation.

Compared with integer order equations, fractional order differential equations can
more accurately describe materials and physical processes with memory and heredity,
such as viscoelastic materials, diffusion and heat conduction in porous media, etc. There-
fore, more and more scholars pay attention to the discussion and analysis of fractional
order problems [16, 23, 25–27, 29, 33]. Although optimal control theory has been devel-
oped for many years, fractional optimal control theory is a new field in mathematics.
In recent years, many numerical methods and algorithms have been developed to solve
fractional order optimal control problems. In [30], Ye and Xu proposed a space-time
spectral method to solve the time fractional optimal control problems. In [31], they used
the space-time spectral method to solve the optimal control problem of time fractional
diffusion equation with integral constraints on state variable. In [15], Li and Zhou use
spectral collocation method to solve the optimal control problem of space fractional dif-
fusion equation. In [28], Yang, Zhang, Liu, et al proposed the Jacobi spectral collocation
method to solve the time fractional optimal control problem. In [24, 32], the authors
discussed the spectral Galerkin approximation of optimal control problem governed by
fractional differential equation with control integral constraint. Unlike aforementioned
works the weighted Jacobi polynomials are used to approximate the state equation. In
finite element method aspects the authors discussed finite element approximation [35] of
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time fractional optimal control problem with pointwise control constraint. A priori error
estimate for the semi-discrete scheme is derived. Regularity of time fractional optimal
control problem and a fully discrete error estimate for L1 and backward euler convolu-
tion quadrature scheme were presented in [14]. In [12], Gunzburger and Wang propose
a time discrete fully discrete finite element method based on convolution quadrature to
solve the time fractional optimal control problem. In [36], Zhou and Tan proposed a fast
Primal-dual Active set algorithm for optimal control problem governed by space frac-
tional diffusion equation with control constraints based on finite element approximation.

To our best knowledge the numerical methods or algorithms developed for optimal
control problems with fractional Laplacian are not much, and mainly focus on the fi-
nite element method. In [8], D’Elia, Glusa and Otárola proposed semi-discrete and fully
discrete methods to solve a linear quadratic optimal control problem including integral
fractional Laplace operator. For optimal control problems with fractional Laplacian in
spectral definition a serial of works, for examples, see [1, 19, 20], are developed in recent
years based on Caffarelli-Silvestre extension and finite element discretization. Since the
finite element method is local, a truncated problem is introduced and the approximate
properties of its solution are obtained. The Caffarelli-Silvestre extension can overcome
the nonlocality. However, the solution of the extended equation is weakly singular at
y=0 due to the degenerate/ singular weight yα. Therefore, the accuracy of the finite ele-
ment method is limited. In [3], Chen and Shen developed a spectral method to solve the
extended problem and achieved high-order convergence rate in the extended y-direction
despite the weak singularity at y = 0. In [13], Gu et al. expressed the d-dimensional
spectral fractional equation as a d+1-dimensional regular partial differential equation by
using the Caffarelli-Silvestre extension, and estimates on the error made by the deep Ritz
method.

Inspired by the above work, in this paper we use the spectral method in the extended
y-direction to solve the optimal control problem with fractional Laplacian in spectral defi-
nition. Due to the low regularity in y-direction seriously deteriorates the convergence rate
of the usual numerical method. To overcome this, we use the enriched spectral method
to improve the numerical method and enhance its convergence rate. The first order opti-
mality condition of the extended optimal control problem is derived. A spectral Galerkin
discrete scheme for the extended problem based on weighted Laguerre polynomials is
developed. Due to the global nature of the spectral method, we do not need to intro-
duce the truncated problem in the extended y-direction. A priori error estimates for the
spectral discrete scheme is proved. Numerical experiments are carried out to verify the
theoretical findings.

The rest of the paper is organized as follows. In Section 2, we will introduce fractional
operator, Caffarelli-Silvestre extension and generalized Laguerre function. In Section 3,
the first-order optimality conditions for the extended problem and the original optimal
control problem are given. In Section 4, we use the spectral Galerkin method to discretize
the optimal control problem and derive the error estimates. In Section 5, the enriched
spectral Galerkin discrete scheme is presented and the error estimates are derived.
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2 Preliminaries

2.1 Properties of the fractional operators

In this section the definition of fractional Laplacian is based on spectral theory [5]. Let
{λn,ϕn} be the eigenvalues and orthonormal eigenfunctions of the Laplacian with homo-
geneous Direchlet boundary condition, i.e.,

−∆ϕn =λn ϕn in Ω, ϕn =0 on ∂Ω, (ϕn,ϕn)=1.

It is well-known that 0<λ1≤λ2≤···≤λn→+∞ and {ϕn} forms an orthonormal basis of
L2(Ω) [9]. Then the fractional Laplacian in spectral form is defined by

(−∆)sv :=
∞

∑
n=1

λs
nv̂n ϕn, v∈C∞

0 (Ω), s∈ (0,1),

where v̂n =
∫

Ω vϕndx. We also define the Hilbert space associated with the spectrum of
the Laplacian

Hr(Ω)=

{
v=

∞

∑
n=1

v̂n ϕn∈L2(Ω) : |v|2Hr(Ω)=
∞

∑
n=1

(λn)
r|v̂n|2<∞

}
.

For any s< r, there exists by Sobolev imbedding theorem

|v|Hs(Ω)≤ c|v|Hr(Ω).

2.2 The Caffarelli-Silvestre extension

Set Λ := (0,∞). We define the semi-infinite cylinder in Rn+1 and its lateral boundary,
respectively, by

C :=Ω×Λ, ∂LC=∂Ω×Λ̄.

Thus, we can use the Caffarelli-Silvestre extension [4] to rewrite the state equation (1.2)
as the following mixed boundary value problem

−div
(
yα∇U (x,y)

)
=0 in C=Ω×Λ,

NU :=− lim
y→0

yαUy =ds( f +z) on Ω×{0},

U=0 on ∂LC=Ω×Λ̄.

(2.1)

Here α=1−2s∈ (−1,1), ds =21−2s Γ(1−s)
Γ(s) . We call y the extended variable.

Let Z be either Ω, Λ or C, and w be a positive weight function. We denote

(p,q)w,Z :=
∫
Z

p(t)q(t)w(t)dt, ‖p‖2
w,Z=(p,p)w,Z ,

H1
w(Z) :=

{
v∈L2

w(Z) :∇v∈L2
w(Z)

}
,
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equipped with norm

‖v‖2
w,Z :=(v,v)w,Z , ‖v‖1,w,Z :=

(
‖v‖2

w,Z+‖∇v‖2
w,Z
) 1

2 .

We will omit the weight from the notation when ω≡ 1. In order to study the extended
problem (2.1) we define

H1
yα(C) :=

{
∇v∈L2

yα(C) : lim
y→∞

v(x,y)=0, v(x,y)|∂LC=0
}

equipped with norm

‖v‖H1
yα (C)=‖∇v‖yα,C . (2.2)

Moreover, we define the trace of function v∈H1
yα(C) by

trtrtr{v}(x) :=v(x,0). (2.3)

Lemma 2.1 ([17]). Let Ω⊂Rn be a bounded Lipschitz domain and α=1−2s. The trace operator
trtrtr satisfies trtrtrH1

yα(C)=Hs(Ω) and

‖trtrtr{v}‖Hs(Ω)≤ c‖v‖H1
yα (C), ∀v∈H1

yα(C). (2.4)

Then for given f+z∈H−s(Ω) the weak formulation of (2.1) is to find U∈H1
yα(C) such

that

(yα∇U ,∇V)C=ds( f +z,trtrtr{V})Ω, ∀V∈H1
yα(C). (2.5)

Here

(yα∇U ,∇V)C :=
1
ds

∫
C

yα∇U (x,y)·∇V(x,y).

The wellposedness of the above weak formulation is a direct consequence of Lax-Milagram
lemma and Lemma 2.1.

2.3 Generalized Laguerre functions

Since (2.5) involves a singular weight function yα, it is natural to use the generalized
Laguerre functions {L̂ α

n (y)}, which are orthogonal with respect to weight yα. We start
by reviewing some basic properties of the generalized Laguerre functions

L̂ α
n (y) := e−

y
2 L α

n (y),
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where L α
n (y) is the generalized Laguerre polynomial [22]. It is clear that {L̂ α

n (y)} forms
a complete basis in L2

yα(Λ) [11], and they are mutually orthogonal with respect to the
weight yα: ∫ ∞

0
L̂ α

n (y)L̂
α

m(y)y
αdy=γα

nδmn,

where δmn is Dirac Delta function, and γα
n =

Γ(n+α+1)
Γ(n+1) .

The generalized Laguerre functions can be efficiently and stably computed by the
three-term recurrence formula

L̂ α
−1(y)≡0, L̂ α

0 (y)= e−
y
2 ,

L̂ α
n+1(y)=

2n+α+1−y
n+1

L̂ α
n (y)−

n+α

n+1
L̂ α

n−1(y).

Denote P̂y
N = span{L̂ α

n (y), 0≤n≤N}. For any u∈L2
yα(Λ), we define

(π
y
Nu−u,v)yα =0, ∀v∈P̂y

N . (2.6)

Next, we define a generalized derivative by ∂̂y=∂y+
1
2 and the corresponding non-uniformly

weighted Sobolev space

B̂m
α (Λ) :=

{
v : ∂̂l

yv∈L2
yα+l (Λ), 0≤ l≤m

}
, α>−1, m∈N.

According to [22] we have the following result.

Lemma 2.2. For any u∈ B̂m
α (Λ) and 0≤m≤N+1, the following estimate holds

∥∥∥∂̂l
y(u−π

y
Nu)

∥∥∥
yα+l ,Λ

≤

√
(N−m+1)!
(N−l+1)!

‖∂̂m
y u‖yα+m,Λ, 0≤ l≤m. (2.7)

3 First order necessary conditions for the extended control
problem

Using the Caffarelli-Silvestre extension we can define the extended optimal control prob-
lem as follows

min
z∈Zad

J(trtrtr{U},z) (3.1)

subject to

1
ds
(yα∇U ,∇V)C=( f +z,trtrtr{V})Ω, ∀V∈H1

yα(C). (3.2)
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Theorem 3.1. Suppose (U ,z) is the solution of the extended control problems (3.1)-(3.2), then
the following first order optimal conditions hold

1
ds
(yα∇U ,∇V)C=( f +z,trtrtrV)Ω, ∀V∈H1

yα(C),

1
ds
(yα∇Q,∇P)C=

(
tr{U}−ud,trtrtr{P}

)
Ω, ∀P∈H1

yα(C),∫
Ω
(µz+trtrtr{Q})(v−z)≥0, ∀v∈Zad.

(3.3)

Proof. Let Ĵ(z) := J(trtrtr{U (z)},z). Then we can rewrite the optimal control problem as the
following reduced optimization problem

min
z∈Zad

Ĵ(z).

Then the first order necessary optimality condition takes the form

Ĵ′(z)(v−z)≥0, ∀v∈Zad.

By simple calculation we obtain

Ĵ′(z)(v−z)= lim
h→0+

Ĵ
(
z+h(v−z)

)
− Ĵ(z)

h

=
∫

Ω
(trtrtr{U}−ud)[trtrtr{U ′(z)(v−z)}]dx+µ

∫
Ω

z(v−z)dx.

By (3.2) we have

1
ds

(
yα∇

(
trtrtr{U ′(z)(v−z)}

)
,∇V

)
C
=
(

v−z,trtrtr{V}
)

Ω
.

To simplify above optimality condition we introduce the adjoint state equation

1
ds
(yα∇Q,∇P)C=(trtrtr{U}−ud,trtrtr{P})Ω.

Then we have (
v−z,trtrtr{Q}

)
Ω
=

1
ds

(
yα∇

(
trtrtr{U ′(z)(v−z)}

)
,∇Q

)
C

=
1
ds
(yα∇Q,∇

(
trtrtr{U ′(z)(v−z)}

)
)C

=
(
trtrtr{U}−ud,trtrtr{U ′(z)(v−z)}

)
Ω.

This leads to

Ĵ′(z)(v−z)=
∫

Ω
(µz+trtrtr{Q})(v−z)dx≥0, ∀v∈Zad.

Thus, we complete the proof.
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Finally we present the first order necessary condition of the original control problem
according to [1].

Theorem 3.2. Suppose (u,z) is the solution of the optimal control problems (1.1)-(1.2), then the
following first order optimal conditions hold

(−∆)su= f +z in Ω, u(x)=0 in ∂Ω,
(−∆)sq=u−ud in Ω, q(x)=0 in ∂Ω,∫

Ω
(µz+q)(v−z)≥0, ∀v∈Zad.

(3.4)

4 Galerkin approximation

4.1 Galerkin discrete scheme

Since the domain C is a tensor-product domain, it is natural to use a tensor-product ap-
proximation. Let Xh be a suitable approximation space in the x-direction,

Xh = span{φx
m(x) : 1≤m≤M},

YN ={φy
n(y)=L̂ α

n−2(y)−L̂ α
n−1(y) : 1≤n≤N}.

Then, the Galerkin method for (2.5) is to find U h
N(z)∈Xh×YN such that

1
ds
(yα∇U h

N(z),∇Vh
N)C=( f +z,trtrtr{Vh

N})Ω, ∀Vh
N∈Xh×YN . (4.1)

The corresponding discrete scheme of problem (1.1)-(1.2) can be expressed as

min
zN∈Zad

J(U h
N ,zN) :=

1
2
‖trtrtr{U h

N}−ud‖2
L2(Ω)+

µ

2
‖zN‖2

L2(Ω), (4.2)

such that

1
ds
(yα∇U h

N ,∇Vh
N)C=( f +zN ,trtrtr{Vh

N})Ω, ∀Vh
N∈Xh×YN . (4.3)

Similar to the continuous case we can derive the discrete first order optimality conditions

1
ds
(yα∇U h

N ,∇Vh
N)C=( f +zN ,trtrtr{Vh

N})Ω, ∀Vh
N∈Xh×YN ,

1
ds
(yα∇Qh

N ,∇Ph
N)C=(trtrtr{U h

N}−ud,trtrtr{Ph
N})Ω, ∀Ph

N∈Xh×YN ,∫
Ω
(µzN+trtrtr{Qh

N})(v−zN)≥0, ∀v∈Zad.

(4.4)
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To derive a priori error analysis we need to introduce the following auxiliary problems

1
ds
(yα∇U h

N(z),∇Vh
N)C=( f +z,trtrtr{Vh

N})Ω, ∀Vh
N∈Xh×YN ,

1
ds
(yα∇Qh

N(z),∇Ph
N)C=(trtrtr{U h

N(z)}−ud,trtrtr{Ph
N})Ω, ∀Ph

N∈Xh×YN ,

1
ds
(yα∇Qh

N(u),∇Ph
N)C=(trtrtr{U}−ud,trtrtr{Ph

N})Ω, ∀Ph
N∈Xh×YN .

(4.5)

Combining (4.4) and (4.5) we obtain

1
ds

(
yα(∇U h

N(z)−∇U h
N)),∇Vh

N
)
C=
(
z−zN ,trtrtr{Vh

N}
)

Ω,

1
ds

(
yα(∇Qh

N(z)−∇Qh
N),∇Ph

N
)
C=
(
trtrtr{U h

N(z)−U h
N},trtrtr{Ph

N}
)

Ω,

1
ds

(
yα(∇Qh

N(u)−∇Qh
N(z)),∇Ph

N
)
C=
(
trtrtr{U−U h

N(z)},trtrtr{Ph
N}
)

Ω,

1
ds

(
yα(∇Qh

N−∇Qh
N(z)),∇Ph

N
)
C=
(
trtrtr{U h

N−U h
N(z)},trtrtr{Ph

N}
)

Ω.

(4.6)

4.2 Error estimate

4.2.1 Error estimate of the extended control problem

To better describe the error, we introduce the weighted Hilbert space

H1
yα(Λ)=

{
v∈L2

yα(Λ) : ∂yv∈L2
yα(Λ)

}
, α>−1.

The projection errors in the H1
yα(Λ) norm are given below.

Lemma 4.1 ([3]). For any u∈H1
yα(Λ)∩ B̂m

α (Λ) and ∂yu∈H1
yα(Λ)∩ B̂m−1

α (Λ), m≥2, we have

‖∂y(u−π
y
Nu)‖yα,Λ≤CN

2−m
2 ‖∂̂m

y u‖yα+m−1,Λ. (4.7)

Lemma 4.2 ( [3]). For any u∈H1
yα(Λ)∩ B̂m

α (Λ) and ∂yu∈H1
yα(Λ)∩ B̂m−1

α (Λ), 2≤m≤N+1,
we have

‖πy
Nu−u‖1,yα,Λ≤CN−

m
2
(
‖∂̂m

y u‖yα+m,Λ+N‖∂̂m
y u‖yα+m−1,Λ

)
. (4.8)

To be clear for reader, we define

Û=‖∇x(π
x
h−I)U‖yα,C+‖(πx

h−I)∂̂2
yU‖yα+1,C

+N−
m
2 (‖(∇x(∂̂

m
y U )‖yα+m,C+N‖∂̂m

y U‖yα+m−1,C),

Q̂=‖∇x(π
x
h−I)Q‖yα,C+‖(πx

h−I)∂̂2
yQ‖yα+1,C

+N−
m
2 (‖(∇x(∂̂

m
y Q)‖yα+m,C+N‖∂̂m

y Q‖yα+m−1,C).
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Here πx
h denotes a projection operator satisfying

‖u−πx
h u‖H1(Ω). inf

uh∈Xh
‖u−uh‖H1(Ω).

For example, we can choose πx
h to be the Ritz projection if Xh is a finite element space.

Theorem 4.1 ( [3]). Let U and U h
N(z) be the solutions to problem (2.5) and (4.1), respectively.

Assume that U (x,·)∈H1
yα(Λ)∩B̂m

α (Λ) and ∂yU (x,·)∈H1
yα(Λ)∩B̂m−1

α (Λ), 2≤m≤N+1. Then
the following estimate holds

‖U−U h
N(z)‖H1

yα (C)≤CÛ. (4.9)

Theorem 4.2. Let Q and Qh
N(u) be the solutions to problem (3.3) and (4.4), respectively. Sup-

pose that Q(x,·)∈H1
yα(Λ)∩ B̂m

α (Λ) and ∂yQ(x,·)∈H1
yα(Λ)∩ B̂m−1

α (Λ), 2≤m≤N+1. Then
we have

‖Q−Qh
N(u)‖H1

yα (C)≤CQ̂. (4.10)

Proof. The main idea follows [3]. Here we just sketch the poof. From (3.3) and (4.4), we
find (

yα∇
(
Q−Qh

N(u)
)
,∇Ph

N

)
C
=0,

which implies that∥∥Q−Qh
N(u)

∥∥2
H1

yα (C)
=
(

yα∇
(
Q−Qh

N(u)
)
,∇(Q−Ph

N)
)
C

≤
∥∥Q−Qh

N(u)
∥∥
H1

yα (C)
∥∥Q−Ph

N
∥∥
H1

yα (C)
,

namely, ∥∥Q−Qh
N(u)

∥∥
H1

yα (C)
≤ inf

Ph
N∈Xh×YN

∥∥Q−Ph
N
∥∥
H1

yα (C)
. (4.11)

Substituting Ph
N =π

y
Nπx

hQ in (4.11) results in∥∥Q−Ph
N
∥∥
H1

yα (C)
≤
∥∥∇(πy

Nπx
hQ−Q)

∥∥
yα,C .

Let I be the identity operator, then we further have∥∥∇(πy
N◦πx

hQ−Q)
∥∥

yα,C≤
∥∥∇(πx

h−I)◦π
y
NQ)

∥∥
yα,C+

∥∥∇(πy
N−I)◦Q

∥∥
yα,C .

By Lemmas 2.2 and 4.1 we derive∥∥∇(πx
h−I)◦π

y
NQ)

∥∥
yα,C≤

∥∥∇x(π
x
h−I)◦π

y
NQ)

∥∥
yα,C+

∥∥∂y(π
x
h−I)◦π

y
NQ)

∥∥
yα,C

≤C
∥∥∇x(π

x
h−I)Q

∥∥
yα,C+C

∥∥(πx
h−I)∂̂2

yQ)
∥∥

yα+1,C
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and ∥∥∇(πy
N−I)Q

∥∥
yα,C≤

∥∥∇x(π
y
N−I)Q

∥∥
yα,C+

∥∥∂y(π
y
N−I)Q

∥∥
yα,C

≤CN−
m
2

(∥∥∇x(∂̂
m
y Q)

∥∥
yα+m,C+N

∥∥∂̂m
y Q
∥∥

yα+m−1,C

)
.

Combining above estimates yields the theorem result.

Theorem 4.3. Let (U ,Q,z) and (U h
N ,Qh

N ,zN) be the solutions of (3.3) and (4.4). Suppose that
U (x,·),Q(x,·)∈H1

yα(Λ)∩B̂m
α (Λ) and ∂yU (x,·),∂yQ(x,·)∈H1

yα(Λ)∩B̂m−1
α (Λ), 2≤m≤N+1.

Then we have ∥∥U−U h
N
∥∥
H1

yα (C)
+
∥∥Q−Qh

N
∥∥
H1

yα (C)
+‖z−zN‖L2(Ω)≤C(Û+Q̂). (4.12)

Proof. We decompose U−U h
N and Q−Qh

N into

U−U h
N =U−U h

N(z)+U h
N(z)−U h

N ,

Q−Qh
N =Q−Qh

N(u)+Qh
N(u)−Qh

N .

Then we obtain∥∥U−U h
N
∥∥
H1

yα (C)
≤
∥∥U−U h

N(z)
∥∥
H1

yα (C)
+
∥∥U h

N(z)−U h
N
∥∥
H1

yα (C)
,∥∥Q−Qh

N
∥∥
H1

yα (C)
≤
∥∥Q−Qh

N(u)
∥∥
H1

yα (C)
,+
∥∥Qh

N(u)−Qh
N
∥∥
H1

yα (C)
.

Setting

Vh
N =U h

N(z)−U h
N , Ph

N =Qh
N−Qh

N(z),

Ph
N =Qh

N(u)−Qh
N(z), Ph

N =Qh
N(z)−Qh

N ,

in (4.6), respectively, we derive

(
yα∇

(
U h

N(z)−U h
N
)
,∇
(
U h

N(z)−U h
N
))
C
=ds

(
z−zN ,tr{U h

N(z)−U h
N}
)

Ω
,(

yα∇
(
Qh

N(u)−Qh
N(z)

)
,∇
(
Qh

N(u)−Qh
N(z)

))
C
=ds

(
trtrtr{U−U h

N(z)},trtrtr{Qh
N(u)−Qh

N(z)}
)

Ω
,(

yα∇
(
Qh

N(z)−∇Qh
N
)
,∇
(
Qh

N(z)−Qh
N
))
C
=ds

(
trtrtr{U h

N−U h
N(z)},trtrtr{Qh

N(z)−Qh
N}
)

Ω
.

By (2.4) we have
∥∥U h

N(z)−U h
N

∥∥
H1

yα (C)
≤C‖z−zN‖L2(Ω),∥∥Qh

N(u)−Qh
N(z)

∥∥
H1

yα (C)
≤C

∥∥U−U h
N(z)

∥∥
H1

yα (C)
≤CÛ,∥∥Qh

N(z)−Qh
N

∥∥
H1

yα (C)
≤C

∥∥U h
N(z)−U h

N

∥∥
H1

yα (C)
≤C‖z−zN‖L2(Ω).

(4.13)
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Choosing v= zN in (3.3) and v= z in (4.4) leads to

µ‖z−zN‖2
L2(Ω)≤

(
trtrtr{Q−Qh

N},zN−z
)

. (4.14)

Setting
Vh

N =Qh
N(z)−Qh

N and Ph
N =U h

N(z)−U h
N

in (4.6) gives(
yα∇

(
U h

N(z)−U h
N
)
,∇
(
Qh

N(z)−Qh
N
))
C
=−ds

(
trtrtr{Qh

N(z)−Qh
N},zN−z

)
Ω

,(
yα∇

(
Qh

N(z)−Qh
N
)
,∇
(
U h

N(z)−U h
N
))
C
=ds

(
trtrtr{U h

N(z)−U h
N},trtrtr{U h

N(z)−U h
N}
)

Ω
.

Then we have (
trtrtr{Qh

N(z)−Qh
N},zN−z

)
Ω
=−

∥∥trtrtr{U h
N(z)−U h

N}
∥∥2

L2(Ω)
≤0.

Using above estimate we further obtain

µ‖z−zN‖2
L2(Ω)≤

(
trtrtr{Q−Qh

N(z)},zN−z
)

≤
∥∥trtrtr{Q−Qh

N(z)}
∥∥

Hs(Ω)
‖zN−z‖L2(Ω).

By Theorem 4.1, Theorem 4.2 and (4.13), we derive

‖z−zN‖L2(Ω)≤C
∥∥trtrtr{Q−Qh

N(z)}
∥∥

Hs(Ω)
≤C(Û+Q̂). (4.15)

Combining (4.13) and (4.15), we arrive at∥∥U−U h
N
∥∥
H1

yα (C)
+
∥∥Q−Qh

N
∥∥
H1

yα (C)
+‖z−zN‖L2(Ω)≤C(Û+Q̂).

Thus, we complete the proof.

4.2.2 Error estimate of the original optimal control problem

Theorem 4.4. Let (u,q,z) and (uN ,qN ,zN) be the solutions of (3.4) and (4.4). If U (x,·),Q(x,·)∈
H1

yα(Λ)∩ B̂m
α (Λ) and ∂yU (x,·),∂yQ(x,·)∈H1

yα(Λ)∩ B̂m−1
α (Λ), 2≤m≤N+1, then we have

‖u−uN‖Hs +‖q−qN‖Hs +‖z−zN‖L2(Ω)≤C(Û+Q̂).

Proof. According to the definition of trace, i.e., (2.3), we can get

‖u−uN‖Hs(Ω)=‖trtrtr{U−U h
N}‖Hs(Ω)≤

∥∥U−U h
N
∥∥
H1

yα (C)
≤C(Û+Q̂),

‖q−qN‖Hs(Ω)=‖trtrtr{Q−Qh
N}‖Hs(Ω)≤

∥∥Q−Qh
N
∥∥
H1

yα (C)
≤C(Û+Q̂).

This completes the proof.
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4.3 Numerical example

In this section we present a numerical example to support the theoretical result.

Example 4.1. We consider the following one-dimension fractional optimal control prob-
lem

min
z∈Zad

J(u,z) :=
1
2
‖u−ud‖2

L2(Ω)+
1
2
‖z‖2

L2(Ω)

subject to {
(−∆)su(x)= f +z, x∈Ω=(−1,1),
u(−1)=u(1)=0.

For given

f (x)=π2s sin(πx)+
1
2

sin(πx) and ud(x)=
(

1− 1
2

π2s
)

sin(πx)

the exact solutions are defined by

z(x)=−1
2

sin(πx), q(x)=
1
2

sin(πx), u(x)=sin(πx).

In this example we choose the generalized Jacobi polynomials [10]

φx
m(x)=Q−1,−1

m+1 (x) :=−1
4

P−1,−1
m+1 =−1

4
(1−x2)J1,1

m−1,

and

φ
y
n(y)=L̂ α

n−2(y)−L̂ α
n−1(y),

as the basis in x and y direction to derive the corresponding stiffness matrix and mass
matrix.

In the following figures we show the Hs error of state variable and adjoint variable
and the L2 error of control variable for s=0.3, s=0.5 and s=0.7. Note that the solutions
are smooth. From Figs. 1-3, we can observe the high accuracy and high efficiency (expo-
nential decay) of the spectral scheme for s=0.5, while for s 6=0.5, the convergence rate is
very low. According to [3] we know that the solution of the extended state equation has
low regularity in y direction, which would seriously deteriorate the convergence rate of
the usual numerical method. To overcome this, we will use the enriched spectral method
(see [3]) to improve the numerical method and enhance its convergence rate.
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(a) (b)

Figure 1: The Hs errors of state u(x): (a) N=70, (b) M=30.

(a) (b)

Figure 2: The L2 errors of control z(x): (a) N=70, (b) M=30.

(a) (b)

Figure 3: The Hs errors of adjoint q(x): (a) N=70, (b) M=30.
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5 Galerkin approximation with enriched space in extended
direction

5.1 Enriched spectral discrete scheme

The solution of the problem (1.2) can be derived from the Caffarelli-Silvestre extension
(3.1)-(3.2), i.e., u(x)=U (x,0). Indeed, owe to [2, Lemma 2.2] and [6, Proposition 2.1],

U (x,y)=
∞

∑
n=1

ũnφn(x)ψn(y),

where ψn(y), n=1,2,··· , solves
−ψ′′(y)− α

y
−ψ′(y)+λψ(y)=0, y∈Λ,

ψ(0)=1, lim
y→∞

ψ(y)=0.

Here λ>0, α=1−2s, s∈ (0,1). Thanks to [6, Proposition 2.1], we have

ψn(y)=


e−
√

λny, s=
1
2

,

21−s

Γ(s)
(
√

λny)sKs(
√

λny), s∈ (0,1)\
{1

2

}
,

where Ks is the modified Bessel function of second kind. That implies that there exists
singularity in y direction for s∈ (0,1)\{ 1

2}, which affects the convergence rate. Therefore
we need to apply enriched spectral method in y-axis to improve the accuracy of numeri-
cal approximation.

According to [3] we introduce

Yk
N :=YN⊕span

{
Si
}k

i=1, Si(y) :=yi−αe−
y
2 .

The enriched spectral approximation for (3.2) is to find U h
N,k(z)∈Xh×Yk

N such that(
yα∇U h

N,k(z),∇Vh
N,k
)
C=ds( f +z,trtrtr{Vh

N,k})Ω, ∀Vh
N,k∈Xh×Yk

N . (5.1)

Then the enriched spectral discrete scheme for problems (3.1)-(3.2) can be expressed as

min
zN,k∈Zad

J(U h
N,k,zN,k) :=

1
2
‖trtrtr{U h

N,k}−ud‖2
L2(Ω)+

µ

2
‖zN,k‖2

L2(Ω), (5.2)

such that

1
ds

(
yα∇U h

N,k,∇Vh
N,k
)
C=( f +zN,k,trtrtr{Vh

N,k})Ω, ∀Vh
N,k∈Xh×Yk

N . (5.3)
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In an analogous way to Section 4, we can obtain the following first order necessary con-
ditions

1
ds

(
yα∇U h

N,k,∇Vh
N,k

)
C=
(

f +zN,k,trtrtr{Vh
N,k}

)
Ω, ∀Vh

N,k∈Xh×Yk
N ,

1
ds

(
yα∇Qh

N,k,∇Ph
N,k

)
C=
(
trtrtr{U h

N,k}−ud,trtrtr{Ph
N,k}

)
Ω, ∀Ph

N,k∈Xh×Yk
N ,∫

Ω

(
µzN,k+trtrtr{Qh

N,k}
)
(v−zN,k)≥0, ∀v∈Zad.

(5.4)

To derive error estimate we introduce the corresponding auxiliary problems

1
ds

(
yα∇U h

N,k(z),∇Vh
N,k

)
C=
(

f +z,trtrtr{Vh
N,k}

)
Ω, ∀Vh

N,k∈Xh×Yk
N ,

1
ds

(
yα∇Qh

N,k(z),∇Ph
N,k

)
C=
(
trtrtr{U h

N,k(z)}−ud,trtrtr{Ph
N,k}

)
Ω, ∀Ph

N,k∈Xh×Yk
N ,

1
ds

(
yα∇Qh

N,k(u),∇Ph
N,k

)
C=
(
trtrtr{U}−ud,trtrtr{Ph

N,k}
)

Ω, ∀Ph
N,k∈Xh×Yk

N .

(5.5)

Combining (5.4) and (5.5), we can obtain

1
ds

(
yα(∇U h

N,k(z)−∇U h
N,k),∇Vh

N,k

)
C=
(
z−zN,k,trtrtr{Vh

N,k}
)

Ω,

1
ds

(
yα(∇Qh

N,k(z)−∇Qh
N,k),∇Ph

N,k

)
C=
(
trtrtr{U h

N,k(z)−U h
N,k},trtrtr{Ph

N,k}
)

Ω,

1
ds

(
yα(∇Qh

N,k(u)−∇Qh
N,k(z)),∇Ph

N,k

)
C=
(
trtrtr{U−U h

N,k(z)},trtrtr{Ph
N,k}

)
Ω.

(5.6)

5.2 Error estimate

5.2.1 Error estimate of the extended optimal control problem

The error analysis for the enriched spectral approximation of the extended control prob-
lem is analogous to the standard spectral discretization presented in previous section.
Therefore we just sketch the main results for the sake of brevity.

For convenience, we define

F̃=N−
m
2 | f +z|

H
m
2 −s(Ω)

+N1−m
2 | f +z|

H
m−1

2 −s(Ω)

+hr| f +z|
H

r+ 1
2−s(Ω)

+hr−1| f +z|Hr−1−s(Ω),

Ũ=N−
m
2 |u−ud|H m

2 −s(Ω)
+N1−m

2 |u−ud|
H

m−1
2 −s(Ω)

+hr|u−ud|
H

r+ 1
2−s(Ω)

+hr−1|u−ud|Hr−1−s(Ω).

Note that U h
N,k(z) can be viewed as the enriched spectral approximation of U . Then we

have the following error estimate from [3].
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Theorem 5.1 ( [3]). Let U and U h
N,k(z) be the solutions to problem (2.5) and (5.1), respectively.

If f +z∈Hl−s(Ω), l=max{m
2 ,r+ 1

2}, then it holds

‖U−U h
N,k(z)‖H1

yα (C)≤ F̃, (5.7)

where m=2k+1+[2s].

Combing variational formulation (3.3) and numerical scheme (5.5) leads to(
yα∇

(
Q−Qh

N,k(u)
)
,∇Ph

N,k

)
C
=0, ∀Ph

N,k∈Xh×Yk
N .

Then, by Cauchy-Schwarz inequality, we have that for any Φ∈Xh×Yk
N∥∥Q−Qh

N,k(u)
∥∥2
H1

yα (C)
=
(

yα∇
(
Q−Qh

N,k(u)
)
,∇
(
Q−Φ

))
C

≤
∥∥Q−Qh

N,k(u)
∥∥
H1

yα (C)
∥∥Q−Φ

∥∥
H1

yα (C)
,

namely, ∥∥Q−Qh
N,k(u)

∥∥
H1

yα (C)
≤ inf

Φ∈Xh×Yk
N

∥∥Q−Φ
∥∥
H1

yα (C)
. (5.8)

Similar to the state equation we have the following estimate according to [3].

Theorem 5.2. Let Q and Qh
N,k(u) be the solutions to problem (3.3) and (5.4), respectively. If

u−ud∈Hl−s(Ω), l=max{m
2 ,r+ 1

2}, then it holds

‖Q−Qh
N,k(u)‖H1

yα (C)≤CŨ, (5.9)

where m=2k+1+[2s].

Theorem 5.3. Let (U ,Q,z) and (U h
N,k,Qh,k

N ,zN) be the solution of (3.3) and (5.4), respectively.
Suppose that f +z,u−ud∈Hl−s(Ω), l=max{m

2 ,r+ 1
2}, m=2k+1+[2s]. Then we have∥∥U−U h

N,k
∥∥
H1

yα (C)
+
∥∥Q−Qh

N,k
∥∥
H1

yα (C)
+‖z−zN,k‖L2(Ω)≤C(F̃+Ũ). (5.10)

Proof. First we can decompose U−U h
N,k and Q−Qh

N,k into

U−U h
N,k =U−U h

N,k(z)+U h
N,k(z)−U h

N,k,

Q−Qh
N,k =Q−Qh

N,k(u)+Qh
N,k(u)−Qh

N,k.

Then we have∥∥U−U h
N,k
∥∥
H1

yα (C)
≤
∥∥U−U h

N,k(z)
∥∥
H1

yα (C)
+
∥∥U h

N,k(z)−U h
N,k
∥∥
H1

yα (C)
,∥∥Q−Qh

N,k
∥∥
H1

yα (C)
≤
∥∥Q−Qh

N,k(u)
∥∥
H1

yα (C)
+
∥∥Qh

N,k(u)−Qh
N,k
∥∥
H1

yα (C)
.
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Next, setting

Vh
N,k =U h

N,k(z)−U h
N,k, Ph

N,k =Qh
N,k−Qh

N,k(z),

Ph
N,k =Qh

N,k(u)−Qh
N,k(z), Ph

N,k =Qh
N,k(z)−Qh

N,k,

in (5.6), and using (2.4) we obtain∥∥U h
N,k(z)−U h

N,k
∥∥
H1

yα (C)
≤C‖z−zN,k‖L2(Ω), (5.11a)∥∥Qh

N,k(u)−Qh
N,k(z)

∥∥
H1

yα (C)
≤C

∥∥U−U h
N,k(z)

∥∥
H1

yα (C)
≤CF̃, (5.11b)∥∥Qh

N,k(z)−Qh
N,k
∥∥
H1

yα (C)
≤C

∥∥U h
N,k(z)−U h

N
∥∥
H1

yα (C)
. (5.11c)

Then, choosing

Vh
N,k =Qh

N,k(z)−Qh
N,k and Ph

N,k =U h
N,k(z)−U h

N,k

in (5.6) yields(
trtrtr{Qh

N,k(z)−Qh
N,k},zN,k−z

)
Ω
=−

∥∥trtrtr{U h
N,k(z)−U h

N,k}
∥∥2

L2(Ω)
≤0.

Setting v= zN,k in (3.3), and v= z in (5.4), we can obtain

µ‖z−zN,k‖2
L2(Ω)≤

(
trtrtr{Q−Qh

N,k(z)},zN,k−z
)

≤
∥∥trtrtr{Q−Qh

N,k(z)}
∥∥

Hs(Ω)
‖zN,k−z‖L2(Ω).

By Theorem 5.1 and Theorem 5.2, we have

‖z−zN,k‖L2(Ω)≤C
∥∥Q−Qh

N,k(z)
∥∥
H1

yα (C)
≤C(F̃+Ũ). (5.12)

Combining (5.11a)-(5.11c) and (5.12), we obtain∥∥U−U h
N,k
∥∥
H1

yα (C)
+
∥∥Q−Qh

N,k
∥∥
H1

yα (C)
+‖z−zN,k‖L2(Ω)≤C(F̃+Ũ).

So, we complete the proof of the theorem.

5.2.2 Error estimate of original optimal control problems

Theorem 5.4. Let (u,q,z) and (uN,k,qN,k,zN,k) be the solution of (3.4) and (5.4), respectively.
Assume that f +z,u−ud∈Hl−s(Ω),l=max{m

2 ,r+ 1
2}, m=2k+1+[2s]. Then we have

‖u−uN,k‖Hs +‖q−qh
N,k‖Hs +‖z−zN‖L2(Ω)≤C(F̃+Ũ). (5.13)

Proof. According to the definition of trace, i.e., (2.3), we can get

‖u−uN,k‖Hs =
∥∥trtrtr{U}−trtrtr{U h

N,k}
∥∥

Hs≤
∥∥U−U h

N,k
∥∥
H1

yα (C)
≤C(F̃+Ũ),

‖q−qN,k‖Hs =
∥∥trtrtr{Q}−trtrtr{Qh

N,k}
∥∥

Hs≤
∥∥Q−Qh

N,k
∥∥
H1

yα (C)
≤C(F̃+Ũ).

This complete the proof.
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5.3 Numerical example

In this section we choose the same numerical example of Section 4, and calculate the Hs

error of u(x) and q(x) as well as the L2 error of z(x) for s 6=0.5 and k=2. We also compare
the numerical results with the method in Section 4.

The convergence rates for Hs error of u(x) and q(x) as well as L2 error of z(x) for
s = 0.3 and 0.7 are displayed in Figs. 4-6, where we fix M = 30, k = 2 and N = 70, k = 2
respectively. We can observe that the enriched spectral scheme have a high accuracy and
high efficiency (exponential decay), which verify our theoretical findings.

Moreover, we also compare the convergence rates for different k and s=0.3 and s=0.7.
From Figs. 7-12, we can see that the usual spectral method (k = 0) hardly converges.
However, the enriched spectral method significantly improves the convergence rates and
numerical accuracy.

(a) (b)

Figure 4: The Hs errors of state u(x): (a) N=70, k=2, (b) M=30, k=2.

(a) (b)

Figure 5: The L2 errors of control z(x): (a) N=70, k=2, (b) M=30, k=2.
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(a) (b)

Figure 6: The Hs errors of adjoint q(x): (a) N=70, k=2, (b) M=30, k=2.

(a) (b)

Figure 7: The Hs errors of state u(x): (a) N=70, s=0.3, (b) M=30, s=0.3.

(a) (b)

Figure 8: The L2 errors of control z(x): (a) N=70, s=0.3, (b) M=30, s=0.3.
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(a) (b)

Figure 9: The Hs errors of adjoint q(x): (a) N=70, s=0.3, (b) M=30, s=0.3.

(a) (b)

Figure 10: The Hs errors of state u(x): (a) N=70, s=0.7, (b) M=30, s=0.7.

(a) (b)

Figure 11: The L2 errors of control z(x): (a) N=70, s=0.7, (b) M=30, s=0.7.



1652 J. Zhang, Y. Yang and Z. Zhou / Adv. Appl. Math. Mech., 15 (2023), pp. 1631-1654

(a) (b)

Figure 12: The Hs errors of adjoint q(x): (a) N=70, s=0.7, (b) M=30, s=0.7.
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[20] E. OTÁROLA, AND A. J. SALGADO, Sparse optimal control for fractional diffusion, Comput.
Meth. Appl. Mat., 18(1) (2018), pp. 95–110.

[21] J. SHEN, Efficient spectral-Galerkin method I. direct solvers of second-and fourth-order equations
using Legendre polynomials, SIAM J. Sci. Comput., 15(6) (1994), pp. 1489–1505.

[22] J. SHEN, T. TANG, AND L. WANG, Spectral Methods: Algorithms, Analysis and Applica-
tions, Springer, Berlin, 2011.

[23] J. SHEN, AND C. T. SHENG, An efficient space-time method for time fractional diffusion equation,
J. Sci. Comput., 81(2) (2019), pp. 1088–1110.

[24] F. WANG, Z. ZHANG, AND Z. ZHOU, A spectral Galerkin approximation of optimal control prob-
lem governed by fractional advection diffusion reaction equations, J. Comput. Appl. Math., 386
(2021), p. 113233.

[25] Y. YANG, Y. CHEN, Y. HUANG, AND H. WEI, Spectral collocation method for the time-fractional
diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73(6) (2017), pp. 1218–
1232.

[26] Y. YANG, Y. HUANG, AND Y. ZHOU, Numerical solutions for solving time fractional Fokker-
Planck equations based on spectral collocation methods, J. Comput. Appl. Math., 339 (2018), pp.
389–404.

[27] Y. YANG, Y. HUANG, AND Y. ZHOU, Numerical simulation of time fractional Cable equations and
convergence analysis, Numer. Meth. Partial Differential Equations, 34 (2018), pp. 1556–1576.

[28] Y. YANG, J. ZHANG, AND H. LIU, ET AL., An indirect convergent Jacobi spectral collocation
method for fractional optimal control problems, Math. Method. Appl. Sci., 44(4) (2021), pp. 2806–
2824.

[29] Y. YANG, J. WANG, Y. CHEN, AND H. LIAO, Compatible L2 norm convergence of variable-step
L1 scheme for the time-fractional MBE model with slope selection, J. Comput. Phys., 467 (2022), p.
111467.

[30] X. YE, AND C. XU, Spectral optimization methods for the time fractional diffusion inverse problem,
Numer. Math. Theor. Methods Appl., 6 (2013), pp. 499–519.



1654 J. Zhang, Y. Yang and Z. Zhou / Adv. Appl. Math. Mech., 15 (2023), pp. 1631-1654

[31] X. YE, AND C. XU, A spectral method for optimal control problem governed by the abnormal diffu-
sion equation with integral constraint on the state, Sci. Sin. Math., 46 (2016), pp. 1053–1070.

[32] L. ZHANG, AND Z. ZHOU, Spectral Galerkin approximation of optimal control problem governed
by Riesz fractional differential equation, Appl. Numer. Math., 143 (2019), pp. 247–262.

[33] J. ZHANG, T. S. ALEROEV, Y. TANG, AND J. HUANG, Numerical schemes for time-space frac-
tional Vibration equations, Adv. Appl. Math. Mech., 13 (2021), pp. 806–826.

[34] J. ZHANG, Y. CHEN, Y. HUANG, AND F. HUANG, A posteriori error estimates for hp spectral
element approximation of elliptic control problems with integral control and state constraints, Adv.
Appl. Math. Mech., 14 (2022), pp. 469–493.

[35] Z. ZHOU AND W. GONG, Finite element approximation of optimal control problems governed by
time fractional diffusion equation, Comput. Math. Appl., 71 (2016), pp. 301–318.

[36] Z. ZHOU, AND Z. TAN, Finite element approximation of optimal control problem governed by space
fractional equation, J. Sci. Comput., 78 (2019), pp. 1840–1861.


