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Abstract

The Peaceman-Rachford splitting method is efficient for minimizing a convex opti-

mization problem with a separable objective function and linear constraints. However, its

convergence was not guaranteed without extra requirements. He et al. (SIAM J. Optim.

24: 1011 - 1040, 2014) proved the convergence of a strictly contractive Peaceman-Rachford

splitting method by employing a suitable underdetermined relaxation factor. In this paper,

we further extend the so-called strictly contractive Peaceman-Rachford splitting method

by using two different relaxation factors. Besides, motivated by the recent advances on the

ADMM type method with indefinite proximal terms, we employ the indefinite proximal

term in the strictly contractive Peaceman-Rachford splitting method. We show that the

proposed indefinite-proximal strictly contractive Peaceman-Rachford splitting method is

convergent and also prove the o(1/t) convergence rate in the nonergodic sense. The nu-

merical tests on the l1 regularized least square problem demonstrate the efficiency of the

proposed method.
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1. Introduction

We consider the convex minimization problem with linear constraints and a separable ob-

jective function:

min θ1(x) + θ2(y), s.t. Ax+By = b, x ∈ X , y ∈ Y, (1.1)
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where A ∈ R
m×n1 and B ∈ R

m×n2 , b ∈ R
m, X := R

n1 , Y := R
n2 . The functions θ1(x) := p(x)+

f(x) and θ2(y) := h(y) + g(y), where p : X → (−∞,+∞] and h : Y → (−∞,+∞] are proper

closed convex (could be nonsmooth) functions; f : X → (−∞,+∞) and g : Y → (−∞,+∞)

are two convex functions with Lipschitz continuous gradients on X and Y. Throughout, the

solution set of (1.1) is assumed to be nonempty. Note that one can also consider X and Y as

general real finite dimensional Euclidean or Hilbert spaces, see [3,15,35] for instances. For ease

of presentation, we adopt the X and Y as the ordinary R
n1 and R

n2 in this paper.

Let Lβ(x, y, λ) be the augmented Lagrangian function for (1.1) that defined by

Lβ(x, y, λ) := θ1(x) + θ2(y)− 〈λ,Ax +By − b〉+ β

2
‖Ax+By − b‖2, (1.2)

in which λ ∈ R
m is the multiplier associated to the linear constraint and β > 0 is a penalty

parameter.

A well-known method called alternating direction method of multipliers (ADMM) is efficient

to minimize such problems. It was observed in Gabay and Mercier [11], Glowinski and Marrocco

[13] that ADMM can be derived from applying the Douglas-Rachford operator splitting method

[8] to the dual of the problem (1.1). The iterative sequence is given as the following recursion:





xk+1 = argmin
x∈X

Lβ(x, y
k, λk), (1.3a)

yk+1 = argmin
y∈Y

Lβ(x
k+1, y, λk), (1.3b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (1.3c)

Based on another classical operator splitting method, i.e., the Peaceman-Rachford operator

splitting method [30], one can derive the following similar method for (1.1):





xk+1 = argmin
x∈X

Lβ(x, y
k, λk), (1.4a)

λk+ 1
2 = λk − β(Axk+1 +Byk − b), (1.4b)

yk+1 = argmin
y∈Y

Lβ(x
k+1, y, λk+ 1

2 ), (1.4c)

λk+1 = λk+ 1
2 − β(Axk+1 +Byk+1 − b). (1.4d)

While the global convergence of the alternating direction method of multipliers (1.3a)-(1.3c) can

be established under very mild conditions [2], the convergence of the Peaceman-Rachford-based

method (1.4a)-(1.4d) can not be guaranteed without further conditions [5].

He et al. [17] proposed a modification of (1.4a)-(1.4d) by introducing a parameter α to the

update scheme of the dual variable λ in (1.4b) and (1.4d). Note that when α = 1, it is the

same as (1.4a)-(1.4d). They explained the non-convergence behavior of (1.4a)-(1.4d) from the

contractive perspective, i.e., the distance from the iterative point to the solution set is merely

nonexpansive, but not contractive. Under the condition that α ∈ (0, 1), they proved the same

sublinear convergence rate as that for ADMM [20]. Particularly, they showed that it achieves

an approximate solution of (1.1) with the accuracy of O(1/t) after t iterations1) , both in the

ergodic and nonergodic sense. Besides, Gu [14] and He et al. [18] took two different constants

α and γ to different step sizes in (1.4b) and (1.4d). The convergence results, including global

1) A worst-case O(1/t) convergence rate means the accuracy to a solution under certain criteria is of the order

O(1/t) after t iterations of an iterative scheme; or equivalently, it requires at most O(1/ǫ) iterations to achieve

an approximate solution with an accuracy of ǫ. See, e.g., [27, 28].
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convergence, the worst-case O(1/t) convergence rate in the ergodic sense, have been established

in it but without the worst-caseO(1/t) convergence rate in the nonergodic sense. Chen et al. [4]

proposed a variant Peaceman-Rachford splitting method in a prediction-correction framework.

For some recent advances of the Peaceman-Rachford splitting method, one can refer to [1, 12,

21, 23, 24, 33], to name a few.

Considering that in many cases the subproblem in (1.3a)-(1.3c) and (1.4a)-(1.4d) might

be difficult to solve and that in some applications θ1 or θ2 is a convex quadratic function,

Eckstein [9] and He et al. [16] considered to add proximal terms to the subproblems for different

purpose. Fazel et al. [10] proposed the following semi-proximal ADMM scheme:





xk+1 = argmin
x∈X

Lβ(x, y
k, λk) +

1

2
‖x− xk‖2S, (1.5a)

yk+1 = argmin
y∈Y

Lβ(x
k+1, y, λk) +

1

2
‖y − yk‖2T , (1.5b)

λk+1 = λk − γβ(Axk+1 +Byk+1 − b), (1.5c)

where γ ∈ (0, (1 +
√
5)/2). They allowed S and T to be positive semidefinite which makes the

algorithmmore flexible. We refer the reader to [7,10,20,34] for a brief history of the development

of the semi-proximal ADMM and the corresponding convergence results. To further relax the

requirements of the proximal terms, Li et al. [25] considered majorized ADMM with indefinite

proximal S and T . They established the convergence and the sublinear convergence rate under

some mild assumptions. The numerical results in [25] showed that the (majorized) ADMM with

indefinite proximal term always performs better than that with semidefinite proximal terms.

Very recently, He et al. [19] obtained a linearized ADMM with an optimal indefinite proximal

term. In their method, S = 0 and T in (1.5b) is chosen by

T = τrIn2 − βBTB with r > β‖BTB‖, τ ∈ (0.75, 1), (1.6)

where ‖BTB‖ means the spectral norm of BTB. Note that they require that the dual stepsize

γ = 1 in (1.5). The small value τ ∈ (0.75, 1) can ensure the proximal term has less weight

for the y-subproblem (1.5b), and thus allows for a larger step. Solving a general problem, i.e.,

finding zeros of a maximal operator, using a proximal point algorithm with indefinite proximal

term, was recently developed in [22].

It is natural to extend the proximal ADMM to the proximal Peaceman-Rachford splitting

method. For convenience, we first introduce the whole update scheme of the indefinite-proximal-

based strictly contractive Peaceman-Rachford splitting method (iPSPR)





xk+1 = argmin
x∈X

Lβ(x, y
k, λk) +

1

2
‖x− xk‖2S , (1.7a)

λk+ 1
2 = λk − αβ(Axk+1 +Byk − b), (1.7b)

yk+1 = argmin
y∈Y

Lβ(x
k+1, y, λk+ 1

2 ) +
1

2
‖y − yk‖2T , (1.7c)

λk+1 = λk+ 1
2 − γβ(Axk+1 +Byk+1 − b), (1.7d)

where S and T are symmetric and possibly indefinite. Gao et al. [12] considered the generalized

ADMM with indefinite proximal term, which corresponds to (1.7) with S = 0 and γ = 1. The

proximal term T takes a similar formulation as (1.6) but with τ ∈ [ α2−α+4
α2−2α+5 , 1). Jiang et al. [23]

considered the same generalized ADMM as in [12], but they give an optimal bound of τ as

τ ∈ (3+α
4 , 1). For other related works one can refer to [26, 32].
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In this paper, we focus on (1.7) with indefinite S and T . Our main contributions are two-

fold. Firstly, motivated by the nice analysis techniques in [17] and [34], we prove the global

convergence of iPSPR under some assumptions on S and T , see (3.32) and (3.33), in which the

stepsizes α and γ are in the range

(α, γ) ∈ D :=

{
(α, γ) : 0 ≤ α < 1, 0 ≤ γ <

1− α+
√
(1 + α)2 + 4(1− α2)

2
, α+ γ > 0

}
. (1.8)

With some additional mild requirements, see (4.6), we prove that the iPSPR is o(1/t) sublin-

early convergent in the nonergodic sense. Secondly, our proposed requirements on the proximal

T can cover some existing results, such as the special linearized choice (1.6) in [19, 23]. More

importantly, our proposed requirements on the proximal T employs both the Hessian informa-

tion of the objective function and the information of βBTB for the first time. Note that He

et al. [19] only uses the information of βBTB, while Li et al. [25] only considers the Hessian

information of the objective function.

The rest of this paper is organized as follows. In Section 2, we give the optimality condition

of (1.1) by using the variational inequality and also list some assertions which will be used in

later analysis. In Section 3, we first give the contraction analysis of iPSPR (1.7), and then

establish the global convergence. We will discuss how to choose T in the end of Section 3. The

detailed formulae will be given for the different ranges of the parameters α and γ. We discuss

the nonergodic sublinear convergence rate in Section 4. In Section 5, we test the l1 regularized

least square problem to show the efficiency of the proposed iPSPR (1.7). Finally, we make some

conclusions in Section 6.

2. Preliminaries

In this section, we give the optimality condition of (1.1) and some notations or relations

which will be frequently used in our analysis. Denote Ω = X × Y × R
m. Let U be the feasible

set of (1.1), namely, U = {(x, y) : Ax + By = b, x ∈ X , y ∈ Y} and denote D = U × R
m.

Throughout this paper, we make the following assumption.

Assumption 2.1. Let Ω∗ ⊂ D be the set whose elements are the optimal solutions of (1.1) and

the associating dual solutions of (1.1). Throughout the paper, we assume that Ω∗ is non-empty.

2.1. Optimality condition of (1.1)

Owing to the convexity of θ1(·) and θ2(·), there exist two positive semidefinite matrices Σ1

and Σ2 such that for all x, x′ ∈ R
n1 and ξx ∈ ∂θ1(x), ξ

′
x ∈ ∂θ1(x

′),

〈x− x′, ξx − ξ′x〉 ≥ ‖x− x′‖2Σ1
, (2.1)

and for all y, y′ ∈ R
n2 , ξy ∈ ∂θ2(y), ξ

′
y ∈ ∂θ2(y

′),

〈y − y′, ξy − ξ′y〉 ≥ ‖y − y′‖2Σ2
. (2.2)

Denote u =

(
x

y

)
, v =

(
y

λ

)
and w =



x

y

λ


. For given w, and some specific subgradients

ξx ∈ ∂θ1(x) and ξy ∈ ∂θ2(x), we define F (w, ξx, ξy) =




ξx −ATλ

ξy −BTλ

Ax+By − b


 . Due to the convexity



An Indefinite-Proximal-Based Peaceman-Rachford Splitting Method 1021

of θ1(·) and θ2(·), it is easy to show that the operator F (·) is monotone. Specifically, for any

w,w′ ∈ D, we have

〈w − w′, F (w, ξx, ξy)− F (w′, ξ′x, ξ
′
y)〉 =

〈(
x− x′

y − y′

)
,

(
ξx − ξ′x
ξy − ξ′y

)〉
≥ ‖u− u′‖2Σ, (2.3)

where Σ =

(
Σ1 0

0 Σ2

)
and the inequality is due to (2.1) and (2.2).

Following Theorem 3.1.24 in [29], we say that w∗ ∈ Ω∗ if and only if there exists ξ∗x ∈ ∂θ1(x
∗)

and ξ∗y ∈ ∂θ2(y
∗) such that 〈x − x∗, ξ∗x〉+ 〈y − y∗, ξ∗y〉 ≥ 0, which is further equivalent to

〈
w − w∗, F (w∗, ξ∗x, ξ

∗
y)
〉
≥ 0, ∀w ∈ D, (2.4)

because 〈
w − w∗, F (w∗, ξ∗x, ξ

∗
y)
〉
= 〈x− x∗, ξ∗x〉+ 〈y − y∗, ξ∗y〉 ≥ 0, ∀w ∈ D.

2.2. Some notations

We use the symbol 0 to denote a zero matrix, whose size can be always easily identified form

the context. We use ‖ · ‖ to denote the 2-norm of a vector. We denote ‖z‖2G = zTGz for z ∈ R
n

and G ∈ R
n×n. For a real symmetric matrix Z, we mark Z � 0 (resp. Z ≻ 0) if Z is positive

semidefinite (resp. positive definite). For any given symmetric matrix T , we decompose it as

T = T+ − T− with T+ � 0 and T− � 0.

To make the analysis more elegantly, we use rk = Axk + Byk − b for short. Similarly, for

any w ∈ Ω, we denote r(w) = Ax+By−b. Obviously, there holds that r(w) = 0 for any w ∈ D.

For ease of the analysis, we define

H =
1

α+ γ

(
(α+ γ − αγ)βBTB −αBT

−αB 1
β Im

)
, (2.5)

Ĥ :=

(
T +Σ2 0

0 0

)
+H =



T +Σ2 +

α+ γ − αγ

α+ γ
βBTB − α

α+ γ
BT

− α

α+ γ
B

1

(α+ γ)β
Im


 . (2.6)

Denote P =

(
S 0

0 T

)
and define

G :=

(
P 0

0 0

)
+

(
0 0

0 H

)
=




S 0 0

0 T +
α+ γ − αγ

α+ γ
βBTB − α

α+ γ
BT

0 − α

α+ γ
B

1

(α+ γ)β
Im


 , (2.7)

and

Ĝ :=

(
Σ 0

0 0

)
+G =




S +Σ1 0 0

0 T +Σ2 +
α+ γ − αγ

α+ γ
βBTB − α

α+ γ
BT

0 − α

α+ γ
B 1

(α+γ)β Im




=

(
S +Σ1 0

0 Ĥ

)
. (2.8)



1022 Y. GU, B. JIANG AND D.R. HAN

It follows from (2.7) and (2.8) that for any w,w′ ∈ Ω,

‖w − w′‖2G = ‖u− u′‖2P + ‖v − v′‖2H , (2.9)

‖w − w′‖2
Ĝ
= ‖u− u′‖2Σ + ‖w − w′‖2G = ‖x− x′‖2S+Σ1

+ ‖v − v′‖2
Ĥ
. (2.10)

With the update scheme (1.7b) and (1.7d), it is easy to have

λk = λk+1 + (α+ γ)βrk+1 + αβB(yk − yk+1). (2.11)

With (2.5) and (2.11), we thus have

‖vk − vk+1‖2H = (1 − α)β‖B(yk − yk+1)‖2 + (α+ γ)β‖rk+1‖2. (2.12)

Finally, it is easy to have the following proposition.

Proposition 2.1. If 0 ≤ α ≤ 1 and γ > 0, then H � 0. If T + Σ2 + (1 − α)βBTB ≻ 0, then

Ĥ ≻ 0. If T +Σ2 + (1− α)βBTB ≻ 0 and S +Σ1 � 0, then Ĝ � 0.

3. Convergence of iPSPR

In this section, we first show that a sequence related to {wk} generated by iPSPR (1.7)

is strictly contractive in section 3.1 and then establish the global convergence of the method

in Section 3.2, and discuss the choices of the proximal terms in section 3.3. Note that the

contraction property is also helpful to establish the convergence rate in the nonergodic sense.

3.1. Contraction analysis

To establish the strictly contractive property of the sequence {Φk
α,γ(w

∗)} (see (3.21) for

the definition), we first give a rough estimation of ‖wk − w∗‖2
Ĝ
− ‖wk+1 − w∗‖2

Ĝ
based on the

optimality conditions of (1.7a) and (1.7c).

Lemma 3.1. Let the sequence {wk} be generated by iPSPR (1.7). If we choose (α, γ) ∈ D,

then there holds that

‖wk − w∗‖2
Ĝ
− ‖wk+1 − w∗‖2

Ĝ

≥ ‖xk − xk+1‖2S+ 1
2Σ1

+ ‖yk − yk+1‖2T+ 1
2Σ2

+ (1 − α)β‖B(yk − yk+1)‖2

+ (2− α− γ)β‖rk+1‖2 + 2(1− α)β
〈
rk+1, B(yk − yk+1)

〉
, (3.1)

and

‖wk − w∗‖2
Ĝ
− ‖wk+1 − w∗‖2

Ĝ

≥ ‖xk − xk+1‖2S+ 1
2Σ1

+ ‖yk − yk+1‖2T+ 1
2Σ2

+
α2(1− γ) + γ2(1− α)

(α + γ)2
β‖B(yk − yk+1)‖2 + 2− α− γ

(α + γ)2β

∥∥λk − λk+1
∥∥2

+
2(γ − α)

(α+ γ)2
〈
B(yk − yk+1), λk − λk+1

〉
. (3.2)
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Proof. The proof of (3.1) consists of three steps.

I). We give a rough lower bound estimation of the term ‖wk−w‖2
Ĝ
−‖wk+1−w‖2

Ĝ
. Following

from the first equality of (2.10), we have

‖wk − w‖2
Ĝ
− ‖wk+1 − w‖2

Ĝ

=‖wk − w‖2G − ‖wk+1 − w‖2G + ‖uk − u‖2Σ − ‖uk+1 − u‖2Σ. (3.3)

The Cauchy-Schwartz inequality ensures ‖uk − u‖2Σ+ ‖uk+1− u‖2Σ ≥ 1
2‖uk − uk+1‖2Σ. Thus, we

have

‖uk − u‖2Σ − ‖uk+1 − u‖2Σ ≥ 1

2
‖uk − uk+1‖2Σ − 2‖uk+1 − u‖2Σ. (3.4)

Using the identity ‖a‖2G − ‖b‖2G = ‖a− b‖2G + 2bTG(a− b) with a = w −wk and b = w−wk+1,

we have

‖wk − w‖2G − ‖wk+1 − w‖2G = ‖wk − wk+1‖2G + 2(w − wk+1)TG(wk+1 − wk). (3.5)

Substituting (3.4) and (3.5) into (3.3), and using (2.9) and (2.12), we have that for any w ∈ Ω

‖wk − w‖2
Ĝ
− ‖wk+1 − w‖2

Ĝ

≥ ‖xk − xk+1‖2S+ 1
2Σ1

+ ‖yk − yk+1‖2T+ 1
2Σ2

+ (1− α)β‖B(yk − yk+1)‖2

+ (α+ γ)β‖rk+1‖2 + 2(w − wk+1)TG(wk+1 − wk)− 2‖uk+1 − u‖2Σ. (3.6)

II). We focus on the estimation of (w−wk+1)TG(wk+1−wk). From the optimality conditions

of (1.7a) and (1.7c), we know that there exist ξk+1
x ∈ ∂θ1(x

k+1) and ξk+1
y ∈ ∂θ2(y

k+1) such

that

〈
x− xk+1, S(xk+1 − xk) + ξk+1

x −ATλk + βAT(Axk+1 +Byk − b)
〉
≥ 0, ∀x ∈ X ,

〈
y − yk+1, T (yk+1 − yk) + ξk+1

y −BTλk+ 1
2 + βBTrk+1

〉
≥ 0, ∀y ∈ Y. (3.7)

Substituting (2.11) into (3.7) and noting rk+1 = Axk+1 +Byk+1 − b, we have

〈x− xk+1, S(xk+1 − xk) + ξk+1
x −ATλk+1 + (1 − α− γ)βATrk+1

+ (1− α)βATB(yk − yk+1)〉 ≥ 0, ∀x ∈ X . (3.8)

Substituting λk+ 1
2 = λk+1 + γβrk+1 into (3.7), we have

〈
y − yk+1, T (yk+1 − yk) + ξk+1

y −BTλk+1 + (1− γ)βBTrk+1
〉
≥ 0, ∀y ∈ Y. (3.9)

Rewrite (2.11) to

rk+1 − α

α+ γ
B(yk+1 − yk) +

1

(α+ γ)β
(λk+1 − λk) = 0. (3.10)

Combing (3.8)–(3.10) in a suitable way, and recalling the definitions of w and F (·), for any

w ∈ Ω there holds that

〈
w − wk+1,



S(xk+1 − xk)

T (yk+1 − yk)

0


+




0

αβBTrk+1 + (1− α)βBTB(yk+1 − yk)

− α

α+ γ
B(yk+1 − yk) +

1

(α+ γ)β
(λk+1 − λk)




〉
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≥
〈
wk+1 − w,



AT

BT

0


[(1 − α− γ)βrk+1 + (1− α)βB(yk − yk+1)

]
〉

+
〈
wk+1 − w,F (wk+1, ξk+1

x , ξk+1
y )

〉
. (3.11)

With the assertion (3.10), we have

αβBTrk+1 + (1− α)βBTB(yk+1 − yk)

=
α+ γ − αγ

α+ γ
βBTB(yk+1 − yk)− α

α+ γ
BT(λk+1 − λk).

Using the definition (2.5) of H , the definition (2.7) of G and the definition of rk+1 and r(w),

we can rewrite (3.11) as

(w − wk+1)TG(wk+1 − wk)

≥
〈
rk+1 − r(w), (1 − α− γ)βrk+1 + (1− α)βB(yk − yk+1)

〉

+
〈
wk+1 − w,F (wk+1 , ξk+1

x , ξk+1
y )

〉
. (3.12)

Noting that r(w) = 0 for any w ∈ D, we have from (3.12) that for any w ∈ D

(w − wk+1)TG(wk+1 − wk)

≥ (1− α− γ)β‖rk+1‖2 + (1− α)β
〈
rk+1, B(yk − yk+1)

〉

+
〈
wk+1 − w,F (wk+1, ξk+1

x , ξk+1
y )

〉
. (3.13)

III). Plugging (3.13) into (3.6), we have for any w ∈ D

‖wk − w‖2
Ĝ
− ‖wk+1 − w‖2

Ĝ

≥ ‖xk − xk+1‖2S+ 1
2Σ1

+ ‖yk − yk+1‖2T+ 1
2Σ2

+ (1− α)β‖B(yk − yk+1)‖2

+ (2− α− γ)β‖rk+1‖2 + 2(1− α)β
〈
rk+1, B(yk − yk+1)

〉
+∆(wk+1, w), (3.14)

where

∆(wk+1, w) := 2
〈
wk+1 − w,F (wk+1 , ξk+1

x , ξk+1
y )

〉
− 2‖uk+1 − u‖2Σ.

Taking w = wk+1 and w′ = w∗ in (2.3), we have from (2.3) that

〈
wk+1−w∗, F (wk+1, ξk+1

x , ξk+1
y )

〉

≥
〈
wk+1−w∗, F (w∗, ξ∗x, ξ

∗
y)
〉
+ ‖uk+1−u∗‖2Σ ≥ ‖uk+1 − u∗‖2Σ,

where ξ∗x ∈ ∂θ1(x
∗), ξ∗y ∈ ∂θ2(y

∗) and the second inequality is due to the optimality condition

(2.4) of w∗. This further means that ∆(wk+1, w∗) ≥ 0. Setting w = w∗ in (3.14), we have (3.1).

The proof of (3.2) follows directly from (3.1) and

rk+1 =
α

α+ γ
B(yk+1 − yk)− 1

(α+ γ)β
(λk+1 − λk)

which comes from (3.10). The proof is complete. �

We now need to give a careful estimation of the crossing term
〈
rk+1, B(yk − yk+1)

〉
, which

is useful to establish the strictly contractive property of {Φk
α,γ(w

∗)} when (α, γ) ∈ D1 ∪D2 (see

(3.20) for the definition).
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Lemma 3.2. Let the sequence {wk} be generated by iPSPR (1.7). If α ≥ 0 and γ > 0, then

there holds that

〈
rk+1, B(yk − yk+1)

〉

≥ 1− γ

1 + α

〈
rk, B(yk − yk+1)

〉
− α

1 + α
‖B(yk − yk+1)‖2+ 1

1 + α
· 1
β
‖yk − yk+1‖2−2T

−
+Σ2

+
1

2(1 + α)
· 1
β

(
‖yk − yk+1‖2T++T

−

− ‖yk−1 − yk‖2T++T
−

)
. (3.15)

Proof. From the optimality conditions of (1.7c) with k := k − 1, we know that there exist

ξky ∈ ∂θ2(y
k) such that

〈
y − yk, T (yk − yk−1) + ξky −BTλk + (1 − γ)βBTrk

〉
≥ 0, ∀y ∈ Y. (3.16)

Setting y to be yk and yk+1 in (3.9) respectively, and (3.16) and then rearranging the obtained

inequalities suitably, we have that

〈
B(yk − yk+1),−λk+1 + (1 − γ)βrk+1

〉
≥ ‖yk − yk+1‖2T −

〈
yk − yk+1, ξk+1

y

〉
, (3.17)

〈
B(yk − yk+1), λk − (1− γ)βrk

〉
≥ −

〈
yk − yk+1, T (yk−1 − yk)

〉
+
〈
yk − yk+1, ξky

〉
. (3.18)

Summing (3.17) and (3.18) over the both sides yields

〈
B(yk − yk+1), λk − λk+1

〉
+ (1− γ)β

〈
B(yk − yk+1), rk+1

〉

− (1− γ)β
〈
B(yk − yk+1), rk

〉

≥ ‖yk − yk+1‖2T −
〈
yk − yk+1, T (yk−1 − yk)

〉
+
〈
yk − yk+1, ξky − ξk+1

y

〉
. (3.19)

Recalling that T = T+ − T−, we know from the Cauchy-Schwarz inequality that

−
〈
yk − yk+1, T (yk−1 − yk)

〉

= −
〈
yk − yk+1, T+(y

k−1 − yk)
〉
+
〈
yk − yk+1, T−(y

k−1 − yk)
〉

≥ − 1

2
‖yk − yk+1‖2T++T

−

− 1

2
‖yk−1 − yk‖2T++T

−

,

which with (2.2) implies that

RHS of (3.19) ≥ 1

2

(
‖yk − yk+1‖2T++T

−

− ‖yk−1 − yk‖2T++T
−

)
+ ‖yk − yk+1‖2−2T

−
+Σ2

.

This with relations (2.11) and (3.19) implies that (3.15). The proof is complete. �

We now decompose the domain D (see (1.8) for its definition) as D = D1∪D2∪D3∪D4 with

D1 =

{
(α, γ) : 0 ≤ α < 1 < γ <

1− α+
√
(1 + α)2 + 4(1− α2)

2

}
,

D2 = {(α, γ) : 0 ≤ α < 1, γ = 1}, (3.20)

D3 = {(α, γ) : 0 ≤ α < 1, 0 ≤ γ < 1, α+ γ > 0, α 6= γ},
D4 = {(α, γ) : 0 < α = γ < 1}.

For a given w ∈ D, we define Φk
α,γ(w) as

Φk
α,γ(w) := ‖wk − w‖2

Ĝ
+ ρα,γ1 ‖yk−1 − yk‖2T++T

−

+ ρα,γ2 β‖rk‖2, (3.21)
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where the constants

ρα,γ1 =





1− α

1 + α
, (α, γ) ∈ D1,

1− α

2(1 + α)
, (α, γ) ∈ D2,

0, (α, γ) ∈ D3 ∪D4,

ρα,γ2 =





(γ − 1)2

(1− cα,γ)(1 + α)
, (α, γ) ∈ D1,

0, (α, γ) ∈ D2 ∪D3 ∪ D4,

(3.22)

in which the constant cα,γ is defined as

cα,γ ∈





(
0,

1− α2 + α− (α− 1)γ − γ2

(2− α− γ)(1 + α)

)
, (α, γ) ∈ D1,

(0, 1), (α, γ) ∈ D2 ∪ D3.

We are now ready to have the following theorem.

Theorem 3.1. Given w∗ ∈ Ω∗, let the sequence {wk} be generated by iPSPR (1.7). If we

choose (α, γ) ∈ D, then there holds that

Φk
α,γ(w

∗)− Φk+1
α,γ (w∗)

≥ ‖xk − xk+1‖2S+ 1
2Σ1

+ ‖yk − yk+1‖2T+ 1
2Σ2+κα,γ

1 (−2T
−
+Σ2)+κα,γ

2 βBTB

+
κα,γ
3

β
‖λk − λk+1‖2 + κα,γ

4 ‖rk+1‖2, (3.23)

where the constants

κα,γ
1 =





2(1− α)

1 + α
, (α, γ) ∈ D1,

1− α

1 + α
, (α, γ) ∈ D2,

0, (α, γ) ∈ D3 ∪ D4,

κα,γ
2 =





cα,γ(1− α)2

1 + α
, (α, γ) ∈ D1,

cα,γ(1− α)(3 − α)

4(1 + α)
, (α, γ) ∈ D2,

cα,γ(1− α)(1 − γ)

(2 − γ − α)
, (α, γ) ∈ D3,

1− α

2
, (α, γ) ∈ D4,

(3.24)

κα,γ
3 =





0, (α, γ) ∈ D1 ∪ D2,
(1 − cα,γ)(1 − α)(1 − γ)(2− α− γ)

(γ − α)2 + (1− cα,γ)(1− α)(1 − γ)(α+ γ)2
, (α, γ) ∈ D3,

1− α

2α2
, (α, γ) ∈ D4,

(3.25)

κα,γ
4 =





2− α− γ − (γ − 1)2

(1 − cα,γ)(1 + α)
, (α, γ) ∈ D1,

(1− cα,γ)(1− α)(3 − α)

(1 + α) + (1− cα,γ)(3− α)
, (α, γ) ∈ D2,

0, (α, γ) ∈ D3 ∪ D4.

(3.26)

Proof. We consider four cases.

I). (α, γ) ∈ D1. By combining (3.15) and (3.1), we derive

(
‖wk − w∗‖2

Ĝ
+

1− α

1 + α
‖yk−1 − yk‖2T++T

−

)
−
(
‖wk+1 − w∗‖2

Ĝ
+

1− α

1 + α
‖yk − yk+1‖2T++T

−

)
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≥ ‖xk − xk+1‖2S+ 1
2Σ1

+ ‖yk − yk+1‖2T+ 1
2Σ2

+
2(1− α)

1 + α
‖yk − yk+1‖2−2T

−
+Σ2

+
(1− α)2

1 + α
β‖B(yk − yk+1)‖2 + (2 − α− γ)β‖rk+1‖2

−2(γ − 1)
1− α

1 + α
β
〈
rk, B(yk − yk+1)

〉
. (3.27)

Note that in this case 0 < cα,γ < 1−α2+α−(α−1)γ−γ2

(2−α−γ)(1+α) < 1, with the Cauchy-Schwarz inequality,

we have

−2
〈
rk, B(yk − yk+1)

〉
≥ − γ − 1

(1− α)(1 − cα,γ)
· ‖rk‖2 − (1− α)(1 − cα,γ)

γ − 1
· ‖B(yk − yk+1)‖2.

Plugging the above inequality into (3.27), we obtain (3.23) in this case.

II). (α, γ) ∈ D2. For this case, (3.15) reduces to

〈
rk+1, B(yk − yk+1)

〉
≥ − α

1 + α
‖B(yk − yk+1)‖2+ 1

(1 + α)β
‖yk − yk+1‖2−2T

−
+Σ2

+
1

2(1 + α)β

(
‖yk − yk+1‖2T++T

−

− ‖yk−1 − yk‖2T++T
−

)
. (3.28)

On the other hand, by the Cauchy-Schwartz inequality, we have

〈
rk+1, B(yk − yk+1)

〉
≥ −δ‖B(yk − yk+1)‖2 − 1

4δ
‖rk+1‖2, (3.29)

where

δ =
(1 + α) + (1− cα,γ)(3 − α)

4(1 + α)
.

Combing (3.28) and (3.29), and using (3.1), we have

(
‖wk − w∗‖2

Ĝ
+

1− α

2(1 + α)
‖yk−1 − yk‖2T++T

−

)

−
(
‖wk+1 − w∗‖2

Ĝ
+

1− α

2(1 + α)
‖yk − yk+1‖2T++T

−

)

≥ ‖xk − xk+1‖2S+ 1
2Σ1

+ ‖yk − yk+1‖2T+ 1
2Σ2

+
1− α

1 + α
‖yk − yk+1‖2−2T

−
+Σ2

+
cα,γ(1− α)(3 − α)

4(1 + α)
β‖B(yk − yk+1)‖2 + (1− cα,γ)(1− α)(3 − α)

(1 + α) + (1− cα,γ)(3− α)
‖rk+1‖2. (3.30)

This means (3.23) holds in this case.

III). (α, γ) ∈ D3. Noting that cα,γ ∈ (0, 1) and letting

c̃ =
(γ − α)2

(γ − α)2 + (1− cα,γ)(1 − α)(1 − γ)(α+ γ)2
,

we have from the Cauchy-Schwarz inequality that

2(γ−α)
〈
B(yk−yk+1), λk − λk+1

〉

≥ − (α− γ)2β

c̃(2−γ−α)
‖B(yk − yk+1)‖2 − c̃(2−γ−α)

β
‖λk − λk+1‖2,
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which with (3.2) and the equality

[
α2(1 − γ) + γ2(1− α)

]
(2− α− γ) = (γ − α)2 + (1− α)(1 − γ)(α+ γ)2

implies that (3.23) holds in this case.

IV). (α, γ) ∈ D4. Note that α = γ in this case. It is easy to see from (3.2) that

‖wk − w∗‖2
Ĝ
− ‖wk+1 − w∗‖2

Ĝ

≥ ‖xk − xk+1‖2S+ 1
2Σ1

+ ‖yk − yk+1‖2T+ 1
2Σ2

+
1− α

2
β‖B(yk − yk+1)‖2 + 1− α

2α2β

∥∥λk − λk+1
∥∥2 , (3.31)

which means that (3.23) holds in this case. The proof is complete. �

3.2. Global convergence

We are now ready to state the global convergence results formally.

Theorem 3.2. Let the sequence {wk} be generated by iPSPR (1.7). If the stepsizes (α, γ) ∈ D

and the proximal terms S, T are chosen such that

S +
1

2
Σ1 � 0, S +

1

2
Σ1 + βATA ≻ 0, (3.32)

T +Σ2 + (1− α)βBTB ≻ 0, T +
1

2
Σ2 + κα,γ

1 (−2T− +Σ2) + κα,γ
2 βBTB ≻ 0, (3.33)

then {wk} converges to an optimal solution of (1.1).

Proof. The first conditions in (3.32) and (3.33) guarantee Ĝ � 0 and Ĥ ≻ 0, see Proposi-

tion 2.1. We divide the proof into three steps.

I) We show that the sequences {wk} is bounded. It is straightforward to see from (3.23),

(3.32) and (3.33) that Φk
α,γ(w

∗) is monotone decreasing. This with T+, T− � 0 and the definition

(3.21) means that ‖wk −w∗‖2
Ĝ
is bounded. With the second equality of (2.10), we have ‖wk −

w∗‖2
Ĝ
= ‖xk − x∗‖2S+Σ1

+ ‖vk − v∗‖2
Ĥ
, which means that ‖xk − x∗‖S+Σ1 and ‖vk − v∗‖Ĥ are all

bounded. Besides, with the positiveness of Ĥ , we know that the sequences {λk} and {yk} are

bounded. Following from (3.23), (3.32) and (3.33), we also have

lim
k→∞

κα,γ
3

β
‖λk − λk+1‖2 + κα,γ

4 ‖rk+1‖2 = 0. (3.34)

Noting that κα,γ
3 + κα,γ

4 > 0, with (2.11) and (3.34) and the boundness of yk, we can see that

{rk} is bounded. With the definition of rk, we know that ‖Axk −Ax∗‖ = ‖rk −B(yk − y∗)‖ ≤
‖rk‖ + ‖B(yk − y∗)‖, which with the boundness of rk and yk implies that ‖xk − x∗‖βATA is

bounded. Recalling that S + 1
2Σ1 + βATA ≻ 0 and ‖xk − x∗‖S+Σ1 is bounded, it is safe to say

that {xk} is also bounded.

II) We argue that any cluster point of the sequence {wk} is an optimal solution of (1.1). Let

{wki} be a subsequence of the sequence {wk} and limki→∞ wki = w∞. Following from (3.23),

(3.32) and (3.33), we have

lim
k→∞

‖xk − xk+1‖S+ 1
2Σ1

= lim
k→∞

‖yk − yk+1‖T+ 1
2Σ2+κα,γ

1 (−2T
−
+Σ2)+κα,γ

2 βBTB = 0. (3.35)
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With the second condition on T in (3.33), we know from the second equality in (3.35) that

lim
k→∞

‖yk − yk+1‖ = 0. (3.36)

Again using κα,γ
3 + κα,γ

4 > 0, with (2.11) and (3.34), it is easy to see that

lim
k→∞

‖rk‖ = lim
k→∞

‖λk − λk+1‖ = 0. (3.37)

On the other hand, with the definition of rk, we have

A(xk − xk+1) = rk − rk+1 −B(yk − yk+1).

Therefore, we know from (3.36) and (3.37) that limk→∞ ‖A(xk − xk+1)‖ = 0, which with the

first equality in (3.35) implies

lim
k→∞

‖xk − xk+1‖S+ 1
2Σ1+βATA = 0.

This with the second condition on S in (3.32) implies

lim
k→∞

‖xk − xk+1‖ = 0. (3.38)

Since the graphs of ∂θ1(·) and ∂θ2(·) are both closed, taking the limit with respect ki → ∞
on both sides of (3.11) and by using (3.36)–(3.38), we know that there exists ξ∞x and ξ∞y such

that

(w − w∞)TF (w∞, ξ∞x , ξ∞y ) ≥ 0, ∀w ∈ D,

which means that w∞ is an optimal solution of (1.1).

III) We finally prove that the sequence {wk} has only one cluster point. We first replace

w∗ with w∞ in the analysis of Steps I) and II). It follows from limki→∞ wki = w∞ and (3.36),

(3.37) that limki→∞ Φki
α,γ(w

∞) = 0. Owing to the decreasing monotonicity of the sequence

Φk
α,γ(w

∞), we can see that

lim
k→∞

Φk
α,γ(w

∞) = 0.

This together with T+, T− � 0 and

‖wk − w∞‖2
Ĝ
= ‖xk − x∞‖2S+Σ1

+ ‖vk − v∞‖2
Ĥ

and Ĥ ≻ 0 shows that

lim
k→∞

‖xk − x∞‖S+Σ1 = lim
k→∞

‖yk − y∞‖ = lim
k→∞

‖λk − λ∞‖. (3.39)

With (2.12), we further have limk→∞ ‖rk‖ = 0. Using again the inequality

‖Axk −Ax∞‖ = ‖rk −B(yk − y∞)‖ ≤ ‖rk‖+ ‖B(yk − y∞)‖,

which with (3.39) and (3.37) implies

lim
k→∞

‖A(xk − x∞)‖ = 0. (3.40)

Combing (3.39) and (3.40), and using that S + 1
2Σ1 + βATA ≻ 0, we immediately have

lim
k→∞

wk = w∞.

The proof is complete. �
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Remark 3.1. If the condition (3.32) is replaced by S � 0, we can have from limk→∞ ‖xk −
xk+1‖S+ 1

2Σ1
= 0 that limk→∞ S(xk − xk+1) = 0. Using similar analysis to the above proof,

we can show that {vk} converges to some v∗ = (y∗, λ∗)τ , where w∗ = (x∗, v∗)τ is an optimal

solution of problem (1.1).

3.3. Choices of proximal terms

When the proximal terms S and T satisfy conditions (3.32) and (3.33), it is easy to see

that the objective functions of subproblems (1.7a) and (1.7c) are strongly convex, which make

the corresponding problems more easier to solve. Note that by allowing S or T indefinite, we

can always take a larger step on updating the variable x or y. Besides, we next show that for

some special cases, with particularly chosen proximal term T , the subproblem (1.7c) is easy to

solve or even takes a closed form solution. Note that the discussion for the proximal term S is

omitted since it is similar.

We consider to choose T as

T = rI −
(
Σ2 + βBTB

)
with r = λmax

(
1

2
Σ2 + τβBTB

)
, (3.41)

where τ ∈ (0, 1]. We decompose T = T+ − T− with

T+ = rI −
(
1

2
Σ2 + τβBTB

)
,

T− =
1

2
Σ2 + (1− τ)βBTB.

Note that T+, T− � 0. By some direct calculations, we have

T +Σ2 + (1− α)βBTB = rI − αβBTB (3.42)

and

T +
1

2
Σ2 + κα,γ

1 (−2T− +Σ2) + κα,γ
2 βBTB

=rI −
(
1

2
Σ2 + (1 + 2κα,γ

1 (1− τ)− κα,γ
2 )βBTB

)
. (3.43)

For given (α, γ) ∈ D and a fixed cα,γ , by (3.42) and (3.43), we know that if we choose τ > α

and τ > 1 − κα,γ
2

1+2κα,γ
1

, then (3.33) must hold. Note that the number 1 − κα,γ
2

1+2κα,γ
1

is decreasing

with respect to cα,γ which is defined over an open interval. Hence, we can argue that if

1 ≥ τ > max

{
α, inf

cα,γ

{
1− κα,γ

2

1 + 2κα,γ
1

}}
,

namely,

1 ≥ τ > τα,γ :=





1− (1− α)2
1− α2 − (γ − 1)(α+ γ)

(2− α− γ)(1 + α)(5 − 3α)
, (α, γ) ∈ D1,

3 + α

4
, (α, γ) ∈ D2,

1− αγ

2− α− γ
, (α, γ) ∈ D3,

1 + α

2
, (α, γ) ∈ D4,

(3.44)

then (3.33) must hold.
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Consider the case when θ2(y) =
1
2y

TMy+h(y), where M is symmetric positive semidefinite

and the nonsmooth convex function h(y) is simple in the sense that miny∈Y h(y) + 1
2‖y − d‖2

is easy to compute. Here d ∈ R
n2 is a given vector. In this case, we have Σ2 = M and the

subproblem (1.7b) with T chosen according to (3.41) and (3.44) takes the following form:

yk+1 = argmin
y∈Y

h(y) +
1

2
‖y − dk‖2

where

dk = Tyk +BT

(
λk+ 1

2 − β(Axk+1 − b)
)
.

To end this subsection, some comments are listed in order. Firstly, if α = 0, γ = 1 and

Σ2 = 0, (3.44) becomes 0.75 < τ ≤ 1, which recovers the optimal bound of τ for the linearized

ADMM in [19]; if α ∈ (0, 1), γ = 1 and Σ2 = 0, (3.44) becomes (3 + α)/4 < τ ≤ 1, which

partially recovers the optimal bound of τ for the linearized version of the generalized ADMM

in [23]. Note that in [23], they allowed α ∈ (−1, 1). Secondly, if (α, γ) ∈ D2 ∪ D3, it is easy

to see that 1−αγ
2−α−γ ≥ 2+α+γ

4 and the equality holds if and only if α = γ, namely, (α, γ) ∈ D4.

Thirdly, when the subproblem (1.7c) does not take a closed form solution, as done in [10,25,35],

we can consider the majorized version of iPSPR. The techniques for constructing the indefinite

proximal T in [3, 25] can be explored to construct T . We leave this for future investigation.

4. Sublinear Convergence of iPSPR

The rate of convergence of an algorithm can help us have a deeper understanding of the

algorithm. In this section, motivated by [3, 6, 15, 25, 35], we establish the o(1/t) sublinear rate

of convergence of iPSPR in the nonergodic sense.

We first give a new optimality condition of (1.1) as follows.

Lemma 4.1. Let the sequence {wk} be generated by iPSPR (1.7). We choose (α, γ) ∈ D and

the proximal terms S, T are chosen such that (3.32) and (3.33) hold. Then wk+1 ∈ Ω∗, namely,

wk+1 is one optimal solution of (1.1), if

‖wk − wk+1‖Ĝ = 0.

Proof. The proof is similar to the second part of the proof of Theorem 3.2, we omit the

details here. �

Following from (2.6), (2.10) and (2.12), we have

‖wk − wk+1‖2
Ĝ
= ‖xk − xk+1‖2S+Σ1

+ ‖yk − yk+1‖2T+Σ2+(1−α)βBTB + (α+ γ)β‖rk+1‖2.

Hence, Lemma 4.1 provides a practical stopping condition for iPSPR (1.7), which is shown as

max
{
‖xk − xk+1‖S+Σ1 , ‖yk − yk+1‖2T+Σ2+(1−α)βBTB, β‖rk+1‖2

}
≤ tol, (4.1)

where tol is some tolerance.

Theorem 4.1. Let the sequence {wk} be generated by iPSPR (1.7) with (α, γ) ∈ D. Suppose

that the proximal terms S, T are chosen such that (3.32), (3.33) and

S +
1

2
Σ1 � 1

2
cΣ1 (4.2)
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hold, where c is a positive constant. We have that

min
1≤i≤t

‖wi − wi+1‖2
Ĝ
= o(1/t). (4.3)

Proof. With conditions (4.2) on S, we know that S + Σ1 � (1 + c−1)(S + 1
2Σ1). With the

condition (3.33) on T , we know that there exists a positive constant c1 such that

Ĥ � c1

(
T + 1

2Σ2 + κα,γ
1 (−2T− +Σ2) + κα,γ

2 βBTB 0

0
κ̄α,γ
3

β I

)
,

which with (2.8) implies that

Ĝ � max{1 + c−1, c1}



S + 1

2Σ1 0 0

0 T + 1
2Σ2 + κα,γ

1 (−2T− +Σ2) + κα,γ
2 βBTB 0

0 0
κ̄α,γ
3

β I


 .

This with (3.23) implies that

Φk
α,γ(w

∗)− Φk+1
α,γ (w∗) ≥ 1

max{c, c1}
‖wk − wk+1‖2

Ĝ
. (4.4)

Summing (4.4) over k = 1, . . . ,+∞ leads to

1

c
·
+∞∑

k=1

‖wk+1 − wk‖2
Ĝ
≤ Φ1

α,γ(w
∗). (4.5)

Using Lemma 3 in [25], we have (4.3). �

Now we show that if (α, γ) ∈ D2 ∪D3 ∪D4 and some additional requirement is made on T ,

we can have a stronger result than (4.3). We first show that the sequence {‖wk − wk+1‖2
Ĝ
} is

non-increasing.

Lemma 4.2. Let the sequence {wk} be generated by iPSPR (1.7). If (α, γ) ∈ D2∪D3∪D4 and

the proximal terms S, T are chosen such that (3.32), (3.33) and

T +
1

2
Σ2 +

(1 − α)(1− γ)

2− α− γ
βBTB � 0 (4.6)

hold, then there holds that

‖wk − wk+1‖2
Ĝ
≥ ‖wk+1 − wk+2‖2

Ĝ
. (4.7)

Proof. Note that (3.12) also holds with k := k + 1, then we have

(w − wk+2)TG(wk+2 − wk+1)

≥
〈
rk+2 − r(w), (1 − α− γ)βrk+2 + (1− α)βB(yk+1 − yk+2)

〉

+
〈
wk+2 − w,F (wk+2 , ξk+2

x , ξk+2
y )

〉
, (4.8)

where ξk+2
x ∈ ∂θ1(x

k+2) and ξk+2
y ∈ ∂θ2(y

k+2). Choosing w to be wk+2 and wk+1, respectively,

in (3.12) and (4.8) leads to

(wk+2 − wk+1)TG(wk+1 − wk)

≥
〈
rk+1 − rk+2, (1− α− γ)βrk+1 + (1− α)βB(yk − yk+1)

〉

+
〈
wk+1 − wk+2, F (wk+1, ξk+1

x , ξk+1
y )

〉
. (4.9)
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and

(wk+1 − wk+2)TG(wk+2 − wk+1)

≥
〈
rk+2 − rk+1, (1− α− γ)βrk+2 + (1− α)βB(yk+1 − yk+2)

〉

+
〈
wk+2 − wk+1, F (wk+2, ξk+2

x , ξk+2
y )

〉
. (4.10)

Adding (4.9) and (4.10) and noting

〈wk+2 − wk+1, F (wk+2, ξk+2
x , ξk+2

y )− F (wk+1, ξk+1
x , ξk+1

y )〉 ≥ ‖uk+2 − uk+1‖2Σ,

which follows from (2.3), we obtain that

(wk+2 − wk+1)TG
[
(wk+1 − wk)− (wk+2 − wk+1)

]

≥ (1 − α− γ)β‖rk+1 − rk+2‖2 + (1 − α)β
〈
B
[
(yk − yk+1)− (yk+1 − yk+2)

]
, rk+1 − rk+2

〉
.

+ ‖uk+2 − uk+1‖2Σ. (4.11)

Following the deriving process of (2.9) and (2.12), we have

‖(wk − wk+1)− (wk+1 − wk+2)‖2G
= ‖(uk − uk+1)− (uk+1 − uk+2)‖2P + (1− α)β

∥∥B[(yk − yk+1)− (yk+1 − yk+2)]
∥∥2

+ (α+ γ)β‖rk+1 − rk+2‖2. (4.12)

Thus we conclude that

‖wk − wk+1‖2
Ĝ
− ‖wk+1 − wk+2‖2

Ĝ

=
(
‖wk − wk+1‖2G + ‖uk − uk+1‖2Σ

)
−
(
‖wk+1 − wk+2‖2G + ‖uk+1 − uk+2‖2Σ

)

= 2(wk+2 − wk+1)TG
[
(wk+1 − wk)− (wk+2 − wk+1)

]
+ ‖(wk+1 − wk)− (wk+2 − wk+1)‖2G

+ ‖uk − uk+1‖2Σ − ‖uk+1 − uk+2‖2Σ
≥ (2− α− γ)β‖rk+1 − rk+2‖2 + 2(1− α)β

〈
B
[
(yk − yk+1)− (yk+1 − yk+2)

]
, rk+1 − rk+2

〉

+ (1− α)β
∥∥B[(yk − yk+1)− (yk+1 − yk+2)]

∥∥2 + ‖(uk − uk+1)− (uk+1 − uk+2)‖2P
+ ‖uk − uk+1‖2Σ + ‖uk+1 − uk+2‖2Σ

≥ (1− α)(1 − γ)

2− α− γ
β
∥∥B[(yk − yk+1)− (yk+1 − yk+2)]

∥∥2 + ‖(uk − uk+1)− (uk+1 − uk+2)‖2P

+
1

2
‖(uk − uk+1)− (uk+1 − uk+2)‖2Σ

= ‖(xk − xk+1)− (xk+1 − xk+2)‖2S+ 1
2Σ1

+ ‖(yk − yk+1)− (yk+1−yk+2)‖2
T+ 1

2Σ2+
(1−α)(1−γ)

2−α−γ
βBTB

≥ 0, (4.13)

where the first inequality is due to (4.11) and (4.12), the second inequality follows from the

Cauchy-Schwarz inequality and the last inequality is due to P =

(
S 0

0 T

)
, S + 1

2Σ1 � 0 and

(4.6). The proof is complete. �

Theorem 4.2. Let the sequence {wk} be generated by iPSPR (1.7) with (α, γ) ∈ D2 ∪D3 ∪D4.

Suppose that the proximal term S is chosen according to (3.32) and (4.2) and the proximal term

T is chosen according to (3.33) and (4.6). We have

‖wt − wt+1‖2
Ĝ
= o(1/t). (4.14)
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Proof. It follows from Theorem 4.1 that min1≤i≤t ‖wi − wi+1‖2
Ĝ
= o(1/t), which with (4.7)

implies (4.14). The proof is complete. �

Define the KKT mapping R : Ω → Ω as

R(w) =




x− Prp[x− (∇f(x)−ATλ)]

y − Prh[y − (∇g(y)−BTλ)]

Ax+By − b


 , ∀w ∈ Ω, (4.15)

where Prp(·) denotes the Moreau-Yosida proximal mapping [31] defined as

Prp(z) := argmin
x∈X

{
p(x) +

1

2
‖x− z‖2

}
,

and Prh(·) is defined accordingly. It is well known that (see [3, 15, 35] for instance)

∀w ∈ Ω, R(w) = 0 ⇐⇒ w ∈ Ω∗. (4.16)

Inspired by [15, Lemma 1] and [35, Lemma 3.1], we now characterize the relations between

‖R(wk+1)‖2 and ‖wk+1 − wk‖2
Ĝ
.

Lemma 4.3. Let the sequence {wk} be generated by iPSPR (1.7). Then there exists a positive

constant ̺ such that for any k ≥ 0,

‖R(wk+1)‖2 ≤ ̺‖wk+1 − wk‖2
Ĝ
. (4.17)

Proof. From the optimality condition for (1.7) and λk+ 1
2 = λk+1 + γβrk+1, we have

xk+1 = Prp
[
xk+1 −

(
∇f(xk+1)−ATλk + βATrk+1 + βATB(yk − yk+1) + S(xk+1 − xk)

)]
,

(4.18)

yk+1 = Prh
[
yk+1 −

(
∇g(yk+1)−BTλk+1 + (1− γ)βBTrk+1 + T (yk+1 − yk)

)]
. (4.19)

Substituting the Eqs. (4.18) and (4.19) into R(wk+1) and noting that the Moreau-Yosida prox-

imal mapping is globally Lipschitz continuous with modulus one, we get

‖R(wk+1)‖ ≤
∥∥AT(λk+1 − λk) + βATrk+1 + βATB(yk − yk+1) + S(xk+1 − xk)

∥∥

+
∥∥(1− γ)βBTrk+1 + T (yk+1 − yk)

∥∥+ ‖rk+1‖
≤ ‖A‖‖λk+1 − λk‖+ ((‖A‖+ |1− γ|‖B‖)β + 1) ‖rk+1‖+ β‖ATB‖‖yk − yk+1‖

+ ‖S(xk+1 − xk)‖+ ‖T (yk − yk+1)‖.

Notice that

‖S(xk+1 − xk)‖2 ≤ ‖S‖‖xk+1 − xk‖2S+Σ1
,

by using (3.10), we thus have

‖R(wk+1)‖ ≤ ι1‖xk+1 − xk‖S+Σ1 + ι2‖yk+1 − yk‖+ ι3‖λk+1 − λk‖, (4.20)

where

ι1 =
√
‖S‖,

ι2 =
(
(‖A‖+ |1− γ|‖B‖)β + 1

)α‖B‖
α+ γ

+ β‖ATB‖+ ‖T ‖,

ι3 = ‖A‖+ (‖A‖+ |1− γ|‖B‖)β + 1

(α + γ)β
.
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On the other hand, we know from (2.10) that

‖wk+1 − wk‖Ĝ = ‖xk+1 − xk‖2S+Σ1
+ ‖vk+1 − vk‖2

Ĥ
. (4.21)

Since Ĥ ≻ 0 (see Proposition 2.1), combining (4.20) and (4.21) together, we know that there

must exist a positive constant such that (4.17) holds. The proof is complete. �

With Theorems 4.1-4.2 and Lemma 4.3, we can immediately arrive at the sublinear convergence

rate results based on the KKT residual ‖R(wk)‖.

Theorem 4.3. Let the sequence {wk} be generated by iPSPR (1.7) with (α, γ) ∈ D. Suppose

that the proximal term S is chosen according to (3.32) and (4.2) and the proximal term T is

chosen according to (3.33) hold, we have

min
1≤i≤t

‖R(wi+1)‖2 = o(1/t).

If we restrict (α, γ) ∈ D2 ∪ D3 ∪ D4 and suppose that the proximal term S is chosen according

to (3.32) and (4.2) and the proximal term T is chosen according to (3.33) and (4.6), we have

‖R(wt+1)‖2 = o(1/t).

5. Numerical Results

In this section, we demonstrate the potential efficiency of our method iPSPR (1.7) by solving

the following ℓ1 regularized least square problem

min
1

2
‖Qy − c‖2 + ρ‖y‖1, s.t. By ≤ b, (5.1)

where y ∈ R
n, c ∈ R

p, Q ∈ R
p×n and B ∈ R

m×n. Problem (5.1) is a constrained extension of

the ordinary unconstrained ℓ1 regularized least square problem and it was considered in [25].

By introducing an auxiliary variable x ∈ R
m, we rewrite (5.1) as

min
1

2
‖Qy − c‖2 + ρ‖y‖1, s.t. x+By = b, x ≥ 0, (5.2)

which is a special instance of (1.1).

For our method iPSPR (1.7), we set S = 0 and choose T according to (3.41), namely,

T = rI − (QTQ+ βBTB) with r = λmax

(
1

2
QTQ+ τβBTB

)
(5.3)

with τ = 1.001τα,γ , where τα,γ is defined in (3.44). Our method iPSPR (1.7) for solving (5.2)

is then given as





xk+1 = P+

[
b−Byk + λk/β

]
,

λk+ 1
2 = λk − αβ(xk+1 +Byk − b),

yk+1 = Sρ/r

[
yk +

1

r

(
BT

(
λk+ 1

2 − β(xk+1 +Byk − b)
)
+QT(c−Qyk)

)]
,

λk+1 = λk+ 1
2 − γβ(xk+1 +Byk+1 − b),

(5.4)
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where the projection operator P+(z) = max(z, 0) and the shrinkage operator Sν(z) := sgn(z)⊙
max{|z| − ν, 0}. Note that for problem (5.2), the majorized indefinite proximal ADMM in [25]

coincides with our iPSPR (5.4) with α = 0 and (α, γ) ∈ D1 since the smooth part of the objective

function is quadratic with respect to y. If the proximal parameter r = 1.001λmax(Q
TQ+βBTB),

iPSPR becomes the semidefinite proximal-based strictly contractive Peaceman-Rachford split-

ting method (sPSPR). To make a fair comparison, as done in (85) of [25], we stop iPSPR or

sPSPR when the KKT residual is less than 10−6.

All the experiments were preformed in Ubuntu 16.04 LTS a Dell workstation with a 3.5-

GHz Intel Xeon E3-1240 v5 processor with access to 32 GB of RAM. All the methods were

implemented in MATLAB (R2016b). Given m and n, as done in [25], we set p = 0.1n, ρ = 5
√
n

and generate the data as

B = sprandn(m, n, 0.2); yy = randn(n, 1); b = B * yy + max(randn(m,1), 0);

Q = sprandn(p, n, 0.1); c = Q * yy;

In our tests, we set m = 2000 and n = 1000, 2000, 4000, 8000. For each m and n, we

use the above scheme to generate 50 groups of instances and will always report the average

performance for methods iPSPR and sPSPR. For each instance, we fix the sum α + γ to be

{1.9, 1.8, 1.618, 1} and always choose the special cases with α = γ, α = 0 or γ = 1. In total, we

have nine groups of choices of α and γ. In our tests, the penalty parameter β is fixed during

the iterations. Generally, choosing the best penalty parameter β is not easy and it might be

problem dependent [17]. We spent some efforts to choose the penalty parameter β from a large

number of candidates. For each given m,n and α, γ, we report the performance of iPSPR or

sPSPR with four choices of β. Note that in our tests, the second choice is the best choice in the

candidates for α+γ = 1.9 and almost the best choice in the candidates for α+γ ∈ {1.618, 1.8};
the third choice of β is the best choice in the candidates for α+ γ = 1.

The numerical results are presented in Tables 5.1-5.4. In the tables, “iter” means the

averaged iteration numbers, “r” denotes the proximal parameter in (5.4), and “t” means the

CPU time in seconds. From the tables, we can make the following observations. First, iPSPR

always perform better than the sPSPR. In particular, for n = 4000, β = 0.15 and n = 8000, β =

0.07, iPSPR can bring about 40% - 50% reduction in the number of iterations and the CPU

time over the sPSPR. For n = 1000 and 2000, iPSPR with large sum α + γ performs only

slightly better than sPSPR with the same α and γ. This might be due to that βBTB takes

a major part in computing r and the parameter τ of iPSPR is near to 1 in this case. Second,

iPSPR (resp. sPSPR) with α = γ performs slightly better among the choices of α and γ with

fixed sum. Third, a large α + γ sum (near to 2) always performs better than a small sum for

a relatively small β, while a small sum works better than a large sum for a relatively large β.

However, if we choose the best β (the corresponding results are marked in bold in each table)

for each α and γ, we can see that iPSPR (resp. sPSPR) a large α + γ sum always performs

better than iPSPR (resp. sPSPR) with a small sum.

6. Conclusions

In this paper, we proposed a modification of the Peaceman-Rachford splitting method by

introducing two different parameters α and γ in updating the dual variable, and by introducing

indefinite proximal terms to the subproblems in updating the primal variables. We established

the relationship between the two parameters α and γ and proved the global convergence of
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Table 5.1: The results for m = 2000, n = 1000 over 50 runs. The CPU time is in seconds.

β = 0.50 β = 1.50 β = 3.00 β = 5.00

(α, γ) method iter r t iter r t iter r t iter r t

(0.950, 0.950) iPSPR 8769.0 5.23e2 4.9 4750.1 1.56e3 2.7 5876.0 3.11e3 3.3 8576.2 5.18e3 4.8

(0.950, 0.950) sPSPR 8877.3 5.47e2 5.0 4815.4 1.60e3 2.7 6000.3 3.19e3 3.4 8810.7 5.31e3 5.0

(0.900, 1.000) iPSPR 8769.8 5.23e2 5.0 4752.9 1.56e3 2.7 5878.7 3.11e3 3.4 8579.8 5.18e3 4.9

(0.900, 1.000) sPSPR 8878.4 5.47e2 5.0 4817.9 1.60e3 2.8 6001.5 3.19e3 3.4 8811.9 5.31e3 5.0

(0.900, 0.900) iPSPR 9090.5 5.10e2 5.1 4884.2 1.52e3 2.8 5815.1 3.03e3 3.3 8375.5 5.04e3 4.7

(0.900, 0.900) sPSPR 9252.9 5.47e2 5.2 4982.8 1.60e3 2.8 6075.2 3.19e3 3.4 8880.5 5.31e3 5.0

(0.800, 1.000) iPSPR 9094.7 5.10e2 5.2 4887.6 1.52e3 2.8 5823.3 3.03e3 3.3 8405.3 5.04e3 4.8

(0.800, 1.000) sPSPR 9256.5 5.47e2 5.2 4985.6 1.60e3 2.8 6079.5 3.19e3 3.5 8894.2 5.31e3 5.0

(0.809, 0.809) iPSPR 9706.1 4.86e2 5.5 5250.0 1.44e3 3.0 5667.2 2.88e3 3.2 8094.9 4.80e3 4.6

(0.809, 0.809) sPSPR 10058.7 5.47e2 5.7 5388.7 1.60e3 3.1 6240.7 3.19e3 3.6 8960.9 5.31e3 5.1

(0.618, 1.000) iPSPR 9722.5 4.86e2 5.5 5245.5 1.44e3 3.0 5694.4 2.88e3 3.2 8124.6 4.80e3 4.6

(0.618, 1.000) sPSPR 10074.1 5.47e2 5.7 5392.1 1.60e3 3.1 6261.2 3.19e3 3.6 9007.0 5.31e3 5.1

(0.000, 1.618) iPSPR 10216.2 5.37e2 5.8 5511.2 1.60e3 3.1 6602.8 3.19e3 3.8 9583.0 5.31e3 5.4

(0.000, 1.618) sPSPR 10264.2 5.47e2 5.8 5517.4 1.60e3 3.1 6605.5 3.19e3 3.8 9583.1 5.31e3 5.4

(0.000, 1.000) iPSPR 13521.7 4.05e2 7.6 7761.5 1.20e3 4.4 5967.7 2.39e3 3.4 7667.3 3.98e3 4.3

(0.000, 1.000) sPSPR 14513.1 5.47e2 8.2 8041.4 1.60e3 4.6 7311.9 3.19e3 4.2 9930.7 5.31e3 5.6

(0.500, 0.500) iPSPR 13308.9 4.05e2 7.5 7724.5 1.20e3 4.4 5728.7 2.39e3 3.3 7265.2 3.98e3 4.1

(0.500, 0.500) sPSPR 14336.6 5.47e2 8.1 7964.6 1.60e3 4.5 7097.4 3.19e3 4.0 9540.8 5.31e3 5.4

Table 5.2: The results for m = 2000, n = 2000 over 50 runs. The CPU time is in seconds.

β = 0.10 β = 0.30 β = 0.50 β = 1.00

(α, γ) method iter r t iter r t iter r t iter r t

(0.950, 0.950) iPSPR 2192.4 2.18e2 3.2 1012.0 4.43e2 1.5 1240.6 7.22e2 1.8 2328.8 1.43e3 3.4

(0.950, 0.950) sPSPR 2357.0 3.83e2 3.4 1121.2 5.22e2 1.7 1309.0 7.66e2 1.9 2417.4 1.48e3 3.5

(0.900, 1.000) iPSPR 2192.8 2.18e2 3.2 1012.2 4.43e2 1.5 1240.9 7.22e2 1.9 2329.3 1.43e3 3.4

(0.900, 1.000) sPSPR 2357.3 3.83e2 3.4 1121.4 5.22e2 1.7 1309.2 7.66e2 2.0 2417.9 1.48e3 3.5

(0.900, 0.900) iPSPR 2294.6 2.17e2 3.3 1028.0 4.32e2 1.5 1226.5 7.04e2 1.8 2274.1 1.39e3 3.3

(0.900, 0.900) sPSPR 2474.9 3.83e2 3.6 1146.1 5.22e2 1.7 1324.5 7.66e2 2.0 2423.7 1.48e3 3.5

(0.800, 1.000) iPSPR 2295.3 2.17e2 3.4 1028.4 4.32e2 1.6 1227.1 7.04e2 1.8 2276.1 1.39e3 3.3

(0.800, 1.000) sPSPR 2475.5 3.83e2 3.6 1146.8 5.22e2 1.7 1325.2 7.66e2 2.0 2425.9 1.48e3 3.5

(0.809, 0.809) iPSPR 2509.4 2.14e2 3.6 1074.5 4.13e2 1.6 1201.1 6.71e2 1.8 2170.0 1.33e3 3.2

(0.809, 0.809) sPSPR 2722.4 3.83e2 3.9 1201.1 5.22e2 1.8 1351.8 7.66e2 2.0 2437.7 1.48e3 3.5

(0.618, 1.000) iPSPR 2511.7 2.14e2 3.6 1075.4 4.13e2 1.6 1204.1 6.71e2 1.8 2177.7 1.33e3 3.2

(0.618, 1.000) sPSPR 2724.1 3.83e2 3.9 1202.5 5.22e2 1.8 1354.7 7.66e2 2.0 2445.8 1.48e3 3.6

(0.000, 1.618) iPSPR 2541.2 2.20e2 3.7 1138.7 4.53e2 1.7 1366.0 7.40e2 2.0 2547.4 1.47e3 3.7

(0.000, 1.618) sPSPR 2733.0 3.83e2 3.9 1228.7 5.22e2 1.8 1406.8 7.66e2 2.1 2571.5 1.48e3 3.7

(0.000, 1.000) iPSPR 3737.8 2.05e2 5.4 1551.7 3.50e2 2.3 1242.2 5.60e2 1.8 1910.1 1.10e3 2.8

(0.000, 1.000) sPSPR 4152.4 3.83e2 5.9 1649.0 5.22e2 2.4 1542.5 7.66e2 2.3 2559.0 1.48e3 3.7

(0.500, 0.500) iPSPR 3716.2 2.05e2 5.3 1546.0 3.50e2 2.3 1213.4 5.60e2 1.8 1831.6 1.10e3 2.7

(0.500, 0.500) sPSPR 4137.3 3.83e2 5.9 1637.5 5.22e2 2.4 1509.1 7.66e2 2.2 2481.4 1.48e3 3.6
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Table 5.3: The results for m = 2000, n = 4000 over 50 runs. The CPU time is in seconds.

β = 0.08 β = 0.15 β = 0.25 β = 0.50

(α, γ) method iter r t iter r t iter r t iter r t

(0.950, 0.950) iPSPR 905.6 3.71e2 3.0 672.0 4.24e2 2.3 831.3 5.65e2 2.8 1657.8 1.06e3 5.4

(0.950, 0.950) sPSPR 1207.2 7.03e2 4.0 1103.8 7.39e2 3.7 1233.3 8.09e2 4.1 1813.6 1.15e3 5.9

(0.900, 1.000) iPSPR 905.7 3.71e2 3.0 672.0 4.24e2 2.3 831.4 5.65e2 2.8 1657.9 1.06e3 5.4

(0.900, 1.000) sPSPR 1207.2 7.03e2 4.0 1103.9 7.39e2 3.7 1233.3 8.09e2 4.1 1813.7 1.15e3 5.9

(0.900, 0.900) iPSPR 943.5 3.70e2 3.2 681.6 4.21e2 2.3 812.2 5.54e2 2.8 1615.6 1.03e3 5.3

(0.900, 0.900) sPSPR 1234.3 7.03e2 4.1 1103.9 7.39e2 3.7 1231.0 8.09e2 4.1 1815.3 1.15e3 6.0

(0.800, 1.000) iPSPR 943.7 3.70e2 3.2 681.7 4.21e2 2.3 812.3 5.54e2 2.8 1616.2 1.03e3 5.3

(0.800, 1.000) sPSPR 1234.5 7.03e2 4.1 1104.4 7.39e2 3.7 1231.3 8.09e2 4.1 1816.0 1.15e3 6.0

(0.809, 0.809) iPSPR 1029.0 3.68e2 3.4 706.1 4.14e2 2.4 779.1 5.34e2 2.7 1537.7 9.86e2 5.1

(0.809, 0.809) sPSPR 1294.0 7.03e2 4.3 1108.9 7.39e2 3.7 1226.0 8.09e2 4.1 1817.5 1.15e3 6.0

(0.618, 1.000) iPSPR 1029.6 3.68e2 3.4 706.8 4.14e2 2.4 780.9 5.34e2 2.7 1540.7 9.86e2 5.1

(0.618, 1.000) sPSPR 1294.5 7.03e2 4.3 1109.9 7.39e2 3.7 1227.7 8.09e2 4.1 1820.4 1.15e3 6.0

(0.000, 1.618) iPSPR 1035.6 3.73e2 3.5 731.1 4.28e2 2.5 876.7 5.77e2 3.0 1764.3 1.09e3 5.8

(0.000, 1.618) sPSPR 1300.3 7.03e2 4.3 1125.7 7.39e2 3.7 1256.0 8.09e2 4.2 1876.5 1.15e3 6.2

(0.000, 1.000) iPSPR 1594.1 3.61e2 5.2 927.6 3.95e2 3.1 759.7 4.74e2 2.6 1300.8 8.25e2 4.3

(0.000, 1.000) sPSPR 1727.8 7.03e2 5.7 1232.1 7.39e2 4.1 1223.3 8.09e2 4.1 1847.1 1.15e3 6.1

(0.500, 0.500) iPSPR 1589.2 3.61e2 5.2 922.7 3.95e2 3.1 747.5 4.74e2 2.6 1264.4 8.25e2 4.2

(0.500, 0.500) sPSPR 1724.1 7.03e2 5.7 1224.8 7.39e2 4.1 1205.5 8.09e2 4.0 1810.6 1.15e3 6.0

Table 5.4: The results for m = 2000, n = 8000 over 50 runs. The CPU time is in seconds.

β = 0.04 β = 0.07 β = 0.15 β = 0.30

(α, γ) method iter r t iter r t iter r t iter r t

(0.950, 0.950) iPSPR 889.6 6.80e2 6.6 759.9 6.95e2 5.7 861.4 7.55e2 6.4 1236.9 1.05e3 9.1

(0.950, 0.950) sPSPR 1487.6 1.34e3 10.7 1556.1 1.36e3 11.2 1658.1 1.40e3 11.9 1819.2 1.52e3 13.1

(0.900, 1.000) iPSPR 889.7 6.80e2 6.6 760.0 6.95e2 5.7 861.5 7.55e2 6.4 1236.9 1.05e3 9.1

(0.900, 1.000) sPSPR 1487.6 1.34e3 10.7 1556.2 1.36e3 11.2 1658.1 1.40e3 11.9 1819.2 1.52e3 13.1

(0.900, 0.900) iPSPR 913.9 6.80e2 6.8 761.9 6.94e2 5.7 854.8 7.51e2 6.4 1210.7 1.03e3 8.9

(0.900, 0.900) sPSPR 1488.1 1.34e3 10.7 1550.8 1.36e3 11.2 1655.9 1.40e3 11.9 1819.2 1.52e3 13.1

(0.800, 1.000) iPSPR 913.9 6.80e2 6.8 762.0 6.94e2 5.8 854.9 7.51e2 6.4 1211.0 1.03e3 9.0

(0.800, 1.000) sPSPR 1488.3 1.34e3 10.7 1550.9 1.36e3 11.3 1656.0 1.40e3 12.0 1819.6 1.52e3 13.2

(0.809, 0.809) iPSPR 968.8 6.79e2 7.1 770.7 6.93e2 5.8 842.1 7.44e2 6.3 1164.0 9.89e2 8.7

(0.809, 0.809) sPSPR 1497.5 1.34e3 10.8 1539.4 1.36e3 11.2 1650.8 1.40e3 12.0 1819.0 1.52e3 13.2

(0.618, 1.000) iPSPR 969.2 6.79e2 7.1 771.2 6.93e2 5.8 842.9 7.44e2 6.3 1165.4 9.89e2 8.6

(0.618, 1.000) sPSPR 1497.7 1.34e3 10.8 1539.8 1.36e3 11.2 1651.7 1.40e3 12.0 1820.6 1.52e3 13.2

(0.000, 1.618) iPSPR 972.6 6.81e2 7.1 779.9 6.96e2 5.9 873.9 7.59e2 6.6 1289.3 1.07e3 9.5

(0.000, 1.618) sPSPR 1501.2 1.34e3 10.8 1546.2 1.36e3 11.2 1664.1 1.40e3 12.0 1845.1 1.52e3 13.4

(0.000, 1.000) iPSPR 1406.3 6.76e2 10.2 922.8 6.87e2 6.9 799.3 7.25e2 6.1 1030.0 8.76e2 7.7

(0.000, 1.000) sPSPR 1732.8 1.34e3 12.4 1500.3 1.36e3 11.0 1625.9 1.40e3 11.8 1825.7 1.52e3 13.3

(0.500, 0.500) iPSPR 1403.0 6.76e2 10.1 919.9 6.87e2 6.9 790.6 7.25e2 6.0 1014.0 8.76e2 7.6

(0.500, 0.500) sPSPR 1730.7 1.34e3 12.4 1496.1 1.36e3 10.9 1617.5 1.40e3 11.8 1809.7 1.52e3 13.1
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the algorithm under some mild requirements on the proximal matrices S and T . Moreover, we

provided a specific construction of the proximal matrix T and discussed the detailed perfor-

mance for the variants parameters α and γ which can unify several existing results. We also

analyzed the o(1/t) sublinear rate convergence in the nonergodic sense. Finally, we reported

some preliminary numerical results, indicating the efficiency of the proposed algorithm.

Note that the parameters α and γ are essential to the efficiency of the algorithm, which

should be variable along with the iteration. Allowing the parameter α and γ varying with the

process of the iterate may give us the freedom of choosing them in a self-adaptive manner. Such

suitable updating rules are among our future research tasks. Besides, an approximate version

of the proposed iPSPR with practical accuracy criteria is also our future research topic.
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