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Abstract. We study the hyperbolic version of the Prandtl system derived from
the hyperbolic Navier-Stokes system with no-slip boundary condition. Com-
pared to the classical Prandtl system, the quasi-linear terms in the hyperbolic
Prandtl equation leads to an additional instability mechanism. To overcome
the loss of derivatives in all directions in the quasi-linear term, we introduce
a new auxiliary function for the well-posedness of the system in an anisotropic
Gevrey space which is Gevrey class 3/2 in the tangential variable and is ana-
lytic in the normal variable.
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1 Introduction

We investigate the well-podedness of the following quasi-linear hyperbolic

Prandtl system in the half-space R
d
+

def
= {(x,y); x∈R

d−1,y>0} with d=2 or 3:
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





















η∂2
t u+∂tu+(u·∂x)u+v∂yu+η∂t

(

(u·∂x)u+v∂yu
)

−∂2
yu+∂x p=0,

∂xu+∂yv=0,

u|y=0=v|y=0=0, u|y→+∞=U,

u|t=0=u0, ∂tu|t=0=u1,

(1.1)

where 0< η < 1 is a small parameter. The unknown u represents the tangential
velocity which is scalar in the two-dimensional (2D) case and vector-valued in 3D.
And the functions p=p(t,x) and U=U(t,x) in (1.1) are the traces of the tangential
velocity field and pressure of the outer flow on the boundary satisfying that

η∂2
t U+∂tU+U ·∂xU+η∂t(U ·∂xU)+∂x p=0.

This degenerate hyperbolic system (1.1) can be derived from the hyperbolic Na-
vier-Stokes equations with the no-slip boundary condition. It is well-known that
the classical Navier-Stokes system can be obtained from the Newtonian law. And
its parabolic structure leads to the property of infinite speed of propagation which
seems to be a paradox from the physical point of view. To have finite propagation,
Cattaneo [4,5] proposed to replace the Fourier law by the so-called Cattaneo law,
where a small time delay η is introduced in stress tensors. And this yields the
following hyperbolic version of Navier-Stokes equations:

η∂2
t uNS+∂tu

NS+(uNS ·∇)uNS+η∂t

(

(uNS ·∇)uNS
)

−ε∆uNS+∇pNS=0, (1.2)

where the gradient operator ∇ is taken with respect to all spatial variables, and
similarly for the Laplace operator ∆. In the whole space, the system (1.2) with
fixed viscosity ε>0 was studied by Coulaud et al. [7] in almost optimal function
spaces (see also [2,30]). On the other hand, it is natural to study the inviscid limit
of (1.2) as ε→0, in particular in the situation when the fluid domain has a physical
boundary. In fact, when we analyze the asymptotic expansion with respect to the
viscosity ε of (1.2) with the no-slip boundary condition, a Prandtl type boundary
layer is expected to take care of the mismatched tangential velocities. In fact, the
governing equation of the boundary layer is the system (1.1) by following the
Prandtl’s ansatz.

When η=0, the system (1.1) is the classical Prandtl equations. The mathemat-
ical study of the classical Prandtl boundary layer has a long history with fruitful
results and developed approaches in analysis. It has been well studied in various
function spaces, see, e.g. [3,6,8–10,12,14–16,18,20,23,25–28,32–35] and the refer-
ences therein. Due to the loss of tangential derivatives in the nonlocal term v∂yu,
the Prandtl system is usually ill-posed in Sobolev spaces. It is now well under-
stood that, for initial data without any structural assumption, the Prandtl system



390 W.-X. Li, T. Yang and P. Zhang / Commun. Math. Anal. Appl., 2 (2023), pp. 388-420

is well-posed in Gevrey class with optimal Gevrey index 2 by the instability anal-
ysis of Gérard-Varet and Dormy [10] and the work on well-posedness of Dietert-
Gérard-Varet [8] and Li et al. [17]. The key observation in [8, 17] is about some
kind of intrinsic structure that is similar to hyperbolic feature for one order loss
of tangential derivatives. Recently, inspired by the stabilizing effect of the intrin-
sic hyperbolic type structure, Li et al. [22] showed the global well-posedness of
a Prandtl Model from MHD in the Gevrey 2 setting.

The hyperbolic Prandtl system (1.1) is more complicated in terms of loss of
derivatives due to the quasi-linear term η∂t(u·∂xu+v∂yu). In fact, as to be seen
below, the loss of derivatives occurs not only for the tangential variable but also
for the normal variable. Inspired by the abstract Cauchy-Kowalewski theory, one
can expect the well-posedness of (1.1) in the full analytic spaces (i.e. space of
functions that are analytic in all variables). However, it is hard to relax the an-
alyticity to Gevrey class because the nonlinearity and non-locality in the term
∂t((u·∂x)u+v∂yu) that prevent us to apply the techniques developed for the clas-
sical Prandtl equation directly. An attempt is to consider the following semi-
linear model:

η∂2
t u+∂tu+(u·∂x)u+v∂yu−∂2

yu+∂x p=0 (1.3)

by removing the quasi-linear term η∂t((u·∂x)u+v∂yu) in (1.1). For this, the local
well-posedness of (1.3) in Gevrey 2 space is obtained by [21] which is the same
Gevrey space for the classical Prandtl equation. However, the Gevrey index 2
may not be optimal for the well-posedness of (1.3). Hence, it is interesting to find
out whether there is a larger Gevrey index for well-posedness by exploring the
stabilizing effect of the hyperbolic perturbation η∂2

t therein.
Similar problems occur when investigating the following hyperbolic hydro-

static Navier-Stokes equations:






































η∂2
t ũ+∂tũ+(ũ·∂x)ũ+ ṽ∂yũ

+η∂t

(

(ũ·∂x)ũ+ ṽ∂yũ
)

−∂2
yũ+∂x p̃=0, (x,y)∈R × ]0,1[,

∂y p̃=0, (x,y)∈R × ]0,1[,

∂xũ+∂yṽ=0, (x,y)∈R × ]0,1[,

ũ|y=0,1= ṽ|y=0,1=0, x∈R,

ũ|t=0= ũ0, ∂tũ|t=0= ũ1, (x,y)∈R × ]0,1[.

(1.4)

The hydrostatic Navier-Stokes system (1.4) has a similar degeneracy feature as
the Prandtl equation. This system that can be used to describe the large scale mo-
tion of geophysical flow plays an important role in the atmospheric and oceanic
sciences. It is a limit of the hyperbolic Navier-Stokes equations (1.2) in a thin
domain where the vertical scale is significantly smaller than the horizontal one.
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Compared to the classical Prandtl equation, much less is known for the hydro-
static Navier-Stokes equations (1.4). In fact, the well-posedness of the hydro-
static Navier-Stokes equations in Sobolev space is still unclear. Under the convex
assumption, the Gevrey well-posedness has been established by Gérard-Varet
et al. [13], and later improved by Wang-Wang [31] and Gérard-Varet et al. [11]
with the optimal Gevrey index 3/2. The aforementioned works mainly focus
on the hydrostatic equations of the parabolic type. To the best of our knowl-
edge, there is no mathematical theory on the well-posedness of the hyperbolic
hydrostatic Navier-Stokes equations. Here, we just mention some recent works
attempting to explore the hyperbolic feature of some simplified semi-linear mod-
els (cf. [1, 24, 29]) in order to investigate the wave type property that lead to
some kind of stability effect compared to the parabolic counterparts. In addition,
a quasi-linear model was recently studied by [19]. However, the well-posedness
property for the full quasi-linear system (1.4) remains as a challenging problem.

This paper aims to investigate the hyperbolic Prandtl system (1.1) in an aniso-
tropic Gevrey space (see Definition 1.1 below). To simplify the argument, we
assume without loss of generality that η=1 and ∂x p=U≡0. Then we consider






















∂2
t u+∂tu+(u·∂x)u+v∂yu+∂t

(

(u·∂x)u+v∂yu
)

−∂2
yu=0, (x,y)∈R

d
+ ,

∂xu+∂yv=0,

u|y=0=v|y=0=0, u|y→+∞=0,

u|t=0=u0, ∂tu|t=0=u1.

(1.5)

Notations. In the half-space R
d
+ with d= 2 or 3, we will use ‖·‖L2 and (·,·)L2 to

denote the norm and inner product of L2 = L2(Rd
+) and use the notation ‖·‖L2

x

and (·,·)L2
x

when the variable x is specified. Similar notations will be used for L∞.

And L
p
x L

q
y=Lp(Rd−1;Lq(R+)).

Definition 1.1. The anisotropic Gevrey space G3/2,1
ρ,ℓ consists of all smooth functions

h(x,y) that are analytic in y and of Gevrey class 3/2 in x satisfying

‖h‖
G3/2,1

ρ,ℓ
<+∞

with

‖h‖2
G3/2,1

ρ,ℓ

def
=

+∞

∑
m=0

(

Nρ,m

∥

∥〈y〉ℓ−1∂m
x h
∥

∥

L2

)2

+
+∞

∑
m=0

+∞

∑
k=0

(

(m+1)Hρ,m+1,k

∥

∥〈y〉ℓ∂m
x ∂k

y∂yh
∥

∥

L2

)2
,
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where 〈y〉
def
= (1+|y|2)1/2, the number ℓ≥2 is given, and

Hρ,m,k=
ρm+k+1(m+k+1)9

(m+k)!(m!)
1
2

, Nρ,m =Hρ,m,0=
ρm+1(m+1)9

(m!)
3
2

. (1.6)

The main result of the paper is stated as follows.

Theorem 1.1. If the initial data of the hyperbolic Prandtl system (1.5) satisfy u0∈G3/2,1
2ρ0 ,ℓ ,

u1∈G3/2,1
2ρ0 ,ℓ+1 for some ρ0>0 and are compatible to the boundary conditions in (1.5). Then

problem (1.5) admits a unique local solution u∈ L∞([0,T]; G3/2,1
ρ,ℓ ) for some T > 0 and

0<ρ≤ρ0.

The key part in the proof of Theorem 1.1 is to derive the a priori estimate
for (1.5) so that the existence and uniqueness follow from a standard argument.
Hence, for brevity, we only present the proof of the a priori estimate.

The paper is organized as follows. Sections 2-5 are for proving the a priori
estimate in 2D. The proof in 3D we present in Section 6.

2 An a priori estimate in 2D

In this section, we state an a priori estimate for the hyperbolic Prandtl system
(1.5) when d=2 and its proof we give in Sections 3-5.

In the following argument we assume the initial data in (1.5) satisfy that u0 ∈

G3/2,1
2ρ0,ℓ and u1 ∈ G3/2,1

2ρ0,ℓ+1 for some ρ0 > 0, and suppose that u ∈ L∞([0,T]; G3/2,1
ρ,ℓ )

solves (1.5), where

ρ=ρ(t)
def
= ρ0e−µt, 0≤ t≤T (2.1)

with µ > 1 begin a given large constant to be determined later. By using the
notation that

ϕ=∂tu+u∂xu+v∂yu with v(t,x,y)=−
∫ y

0
∂xu(t,x,ỹ)dỹ, (2.2)

we can reformulate system (1.5) in 2D as



















∂tu+u∂xu+v∂yu= ϕ, (2.3a)

∂t ϕ+ϕ−∂2
yu=0, (2.3b)

u|y=0= ϕ|y=0=0, (2.3c)

u|t=0=u0, ϕ|t=0= ϕ0, (2.3d)
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where

ϕ0=u1+u0∂xu0−(∂yu0)
∫ y

0
∂xu0(x,ỹ)dỹ. (2.4)

As for the classical Prandtl equation, the loss of one order tangential derivatives
occurs in the Eq. (2.3a). To overcome this difficulty, inspired by [17] we introduce
two auxiliary functions U and λ. Precisely, let U be a solution to the Cauchy
problem







(∂t+u∂x+v∂y)
∫ y

0
Udỹ=−∂xv,

U|t=0=0.
(2.5)

The existence of U follows from the standard theory of transport equations. In
fact, one can first apply the existence theory for linear transport equations to con-
struct a solution f to the Cauchy problem











(∂t+u∂x+v∂y) f =−∂xv,

f |y=0=0,

f |t=0=0,

and then set

f =
∫ y

0
U (t,x,ỹ)dỹ.

By virtue of U and

λ
def
= ∂xu−(∂yu)

∫ y

0
U (t,x,ỹ)dỹ, (2.6)

we can cancel the term involving v with the highest tangential derivative as
shown in the following equation (2.8). The two auxiliary functions have the rela-
tion

(∂t+u∂x+v∂y)U=∂xλ+(∂x∂yu)
∫ y

0
U (t,x,ỹ)dỹ+(∂xu)U . (2.7)

In addition, we apply ∂x to the Eq. (2.3a) and multiply (2.5) by ∂yu. Then the
subtraction of these two equations yields the following equation for λ:

(∂t+u∂x+v∂y)λ=∂x ϕ−(∂xu)∂xu−(∂y ϕ)
∫ y

0
Udỹ. (2.8)

Definition 2.1. Let ℓ≥2 be the number given in Definition 1.1, and let ϕ,U ,λ be given

in (2.2), (2.5) and (2.6), respectively. By denoting

~a=(u,U ,λ,ϕ),
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we define |~a|Xρ and |~a|Yρ
by

|~a|2Xρ
=

∞

∑
m=0

N2
ρ,m+1

∥

∥∂m
x U
∥

∥

2

L2+
∞

∑
m=0

(m+1)N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2 (2.9)

+ ∑
m,k≥0

(m+1)2H2
ρ,m+1,k

(

∥

∥〈y〉ℓ∂m
x ∂k

y ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂k

y∂yu
∥

∥

2

L2

)

,

|~a|2Yρ
=

∞

∑
m=0

(m+1)N2
ρ,m+1

∥

∥∂m
x U
∥

∥

2

L2+
∞

∑
m=0

(m+1)2N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2 (2.10)

+ ∑
m,k≥0

(m+k+1)(m+1)2H2
ρ,m+1,k

(

∥

∥〈y〉ℓ∂m
x ∂k

y ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂k

y∂yu
∥

∥

2

L2

)

.

Recall that Nρ,m and Hρ,m,k are given in (1.6) with ρ defined in (2.1).

Remark 2.1. From (2.9) and (2.10), it follows directly that

|~a|Xρ ≤|~a|Yρ
. (2.11)

Moreover, as shown in Lemma 3.1 below,

‖u‖
G3/2,1

ρ,ℓ
≤C|~a|Xρ ,

where C is a constant depending only on ρ0,ℓ and the Sobolev embedding con-

stants. Denote~a(0)=~a|t=0. Then there exists a constant C0>0 such that

|~a(0)|Xρ0
≤C0

(

‖u0‖G3/2,1
2ρ0,ℓ

+‖u1‖G3/2,1
2ρ0,ℓ+1

)

. (2.12)

For clear presentation, the proof of (2.12) we give in Appendix A.

We can now state an a priori estimate.

Theorem 2.1 (A Priori Estimate). Under the assumption of Theorem 1.1, there exists

a constant µ≥1 depending only on ℓ,ρ0, the Sobolev embedding constants and the initial

data such that if

sup
0≤t≤T

|~a(t)|Xρ
+

(

∫ T

0
|~a(t)|2Yρ

dt

)
1
2

≤2C0

(

‖u0‖G3/2,1
2ρ0,ℓ

+‖u1‖G3/2,1
2ρ0,ℓ+1

)

(2.13)

with ρ defined by (2.1) and T=µ−1, then

sup
0≤t≤T

|~a(t)|Xρ
+

(

∫ T

0
|~a(t)|2Yρ

dt

)
1
2

≤C0

(

‖u0‖G3/2,1
2ρ0,ℓ

+‖u1‖G3/2,1
2ρ0,ℓ+1

)

. (2.14)
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The proof of Theorem 2.1 we give in Sections 3-5. We first list some facts for
later use. In view of (1.6) and (2.1), we have

d

dt
Nρ,m =−µ(m+1)Nρ,m,

d

dt
Hρ,m,k=−µ(m+k+1)Hρ,m,k, ∀m,k≥0, (2.15)

and
e−1ρ0≤ρ(t)≤ρ0, ∀0≤ t≤T=µ−1. (2.16)

Similarly, if we denote

Lρ,k
def
= Hρ,1,k=

ρk+2(k+2)9

(k+1)!
, (2.17)

then
d

dt
Lρ,k =−µ(k+2)Lρ,k , ∀k≥0. (2.18)

We will use the following Young’s inequality for discrete convolution:





∞

∑
m=0

(

m

∑
j=0

pjqm−j

)2




1
2

≤

(

∞

∑
m=0

q2
m

)
1
2 ∞

∑
j=0

pj, (2.19)

where {pj}j≥0 and {qj}j≥0 are positive sequences.

3 Tangential derivatives of u

To simplify the notations, we will use C in Sections 3-5 to denote a generic con-
stant which may vary from line to line and depend only on ℓ,ρ0 and the Sobolev
embedding constants, but is independent of µ in (2.1) and the order of deriva-
tives.

Compared with Definition 1.1, the tangential derivatives of u are not specified
in the definitions (2.9) and (2.10) of |~a|Xρ and |~a|Yρ

. As a preliminary step to prove
Theorem 2.1, we first use (2.6) to control the tangential derivatives of u in terms
of |~a|Xρ and |~a|Yρ .

Lemma 3.1. Under the assumptions of Theorem 2.1, we have

∞

∑
m=0

N2
ρ,m

∥

∥〈y〉ℓ−1∂m
x u
∥

∥

2

L2 ≤C
(

1+|~a|2Xρ

)

|~a|2Xρ
,

∞

∑
m=0

(m+1)N2
ρ,m

∥

∥〈y〉ℓ−1∂m
x u
∥

∥

2

L2 ≤C
(

1+|~a|2Xρ

)

|~a|2Yρ
.

Recall that Nρ,m is defined by (1.6).
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Proof. We first prove the first statement. In view of (2.6), we have

∂m+1
x u=∂m

x λ+
m

∑
j=0

(

m

j

)

(

∂
j
x∂yu

)

∫ y

0
∂

m−j
x U (t,x,ỹ)dỹ.

Thus, we first multiply both sides of the above equation by 〈y〉ℓ−1 and then take

the L2-product with 〈y〉ℓ−1∂m+1
x u. Then this with the fact that

∣

∣

∣

∣

∫ y

0
∂

m−j
x U (t,x,ỹ)dỹ

∣

∣

∣

∣

≤〈y〉
1
2

∥

∥

∥
∂

m−j
x U (x,·)

∥

∥

∥

L2
y

, ∀(x,y)∈R
2
+

implies
∞

∑
m=0

N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m+1
x u

∥

∥

2

L2 ≤ I1+ I2, (3.1)

where

I1=
+∞

∑
m=0

N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2 ≤|~a|2Xρ
(3.2)

due to (2.9), and

I2=2
+∞

∑
m=0

[

[m/2]

∑
j=0

(

m

j

)

Nρ,m+1

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L∞
x L2

y

∥

∥∂
m−j
x U

∥

∥

L2

]2

+2
+∞

∑
m=0





m

∑
j=[m/2]+1

(

m

j

)

Nρ,m+1

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L2

∥

∥∂
m−j
x U

∥

∥

L∞
x L2

y





2

. (3.3)

As usual [m/2] represents the largest integer less than or equal to m/2. To esti-

mate I2, we first write

[m/2]

∑
j=0

(

m

j

)

Nρ,m+1

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L∞
x L2

y

∥

∥∂
m−j
x U

∥

∥

L2

=
[m/2]

∑
j=0

m!

j!(m− j)!

Nρ,m+1

Nρ,j+3Nρ,m−j+1

(

Nρ,j+3

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L∞
x L2

y

)(

Nρ,m−j+1

∥

∥∂
m−j
x U

∥

∥

L2

)

.

By using the estimate (see Appendix A)

m!

j!(m− j)!

Nρ,m+1

Nρ,j+3Nρ,m−j+1
≤

C

j+1
, j≤ [m/2] (3.4)
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and the Young’s inequality (2.19), we obtain

m

∑
j=0

[

[m/2]

∑
j=0

(

m

j

)

Nρ,m+1

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L∞
x L2

y

∥

∥∂
m−j
x U

∥

∥

L2

]2

≤C
m

∑
j=0





[m/2]

∑
j=0

Nρ,j+3

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L∞
x L2

y

j+1

(

Nρ,m−j+1

∥

∥∂
m−j
x U

∥

∥

L2

)





2

≤C





+∞

∑
j=0

Nρ,j+3

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L∞
x L2

y

j+1





2
+∞

∑
j=0

N2
ρ,j+1

∥

∥∂
j
xU
∥

∥

2

L2

≤C

(

+∞

∑
j=1

j−2

)(

+∞

∑
j=0

N2
ρ,j+3

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

2

L∞
x L2

y

)

|~a|2Xρ
≤C|~a|4Xρ

, (3.5)

where in the last inequality we have used the Sobolev embedding and (2.9).

Similarly, by using the estimate (see Appendix A)

m!

j!(m− j)!

Nρ,m+1

Nρ,j+1Nρ,m−j+3
≤

C

m− j+1
, [m/2]+1≤ j≤m, (3.6)

we have

+∞

∑
m=0





m

∑
j=[m/2]+1

(

m

j

)

Nρ,m+1

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L2

∥

∥∂
m−j
x U

∥

∥

L∞
x L2

y





2

≤
+∞

∑
m=0





m

∑
j>[m/2]

(

Nρ,j+1

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L2

)Nρ,m−j+3

∥

∥∂
m−j
x U

∥

∥

L∞
x L2

y

m− j+1





2

≤C|~a|4Xρ
.

This together with (3.5) and (3.3) yields

I2≤C|~a|4Xρ
. (3.7)

Substituting the above estimate and (3.2) into (3.1), we get

+∞

∑
m=0

N2
ρ,m

∥

∥〈y〉ℓ−1∂m
x u
∥

∥

2

L2 =N2
ρ,0

∥

∥〈y〉ℓ−1u
∥

∥

2

L2+
+∞

∑
m=0

N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m+1
x u

∥

∥

2

L2

≤N2
ρ,0

∥

∥〈y〉ℓ−1u
∥

∥

2

L2+C
(

|~a|2Xρ
+|~a|4Xρ

)

.
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On the other hand, by Hardy’s inequality and (2.16), we have

Nρ,0

∥

∥〈y〉ℓ−1u
∥

∥

L2 ≤C
Nρ,0

Nρ,1
Nρ,1

∥

∥〈y〉ℓ∂yu
∥

∥

L2

≤
C

ρ
Nρ,1

∥

∥〈y〉ℓ∂yu
∥

∥

L2 ≤C|~a|Xρ .

Thus, the first statement in the lemma follows.

The second statement can be proved similarly. In fact, firstly we have

+∞

∑
m=0

(m+1)N2
ρ,m

∥

∥〈y〉ℓ−1∂m
x u
∥

∥

2

L2

≤C|~a|2Xρ
+

+∞

∑
m=1

(m+1)N2
ρ,m

∥

∥〈y〉ℓ−1∂m
x u
∥

∥

2

L2 .

Similar to the estimates (3.1) and (3.2), by using the fact that m+1≤C(m− j) for

j≤ [m/2] and m+1≤Cj for [m/2]+1≤ j≤m, we have by following the argument

for (3.7) that

+∞

∑
m=1

(m+1)N2
ρ,m

∥

∥〈y〉ℓ−1∂m
x u
∥

∥

2

L2

≤C
+∞

∑
m=0

(m+1)N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m+1
x u

∥

∥

2

L2

≤C
+∞

∑
m=0

[

[m/2]

∑
j=0

(

m

j

)

Nρ,m+1

∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L∞
x L2

y
(m− j+1)

1
2
∥

∥∂
m−j
x U

∥

∥

L2

]2

+C
+∞

∑
m=0

[

m

∑
j=[m/2]+1

(

m

j

)

Nρ,m+1(j+1)
1
2
∥

∥〈y〉ℓ∂
j
x∂yu

∥

∥

L2

∥

∥∂
m−j
x U

∥

∥

L∞
x L2

y

]2

≤C|~a|2Xρ
|~a|2Yρ

.

Combining the above estimates gives

+∞

∑
m=0

(m+1)N2
ρ,m

∥

∥〈y〉ℓ−1∂m
x u
∥

∥

2

L2 ≤C
(

1+|~a|2Xρ

)

|~a|2Yρ
.

Then the proof of the lemma is complete.
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As a direct consequence of the above lemma, we have the following corollary
by using

∥

∥∂m
x v
∥

∥

L2
xL∞

y
≤C

∥

∥〈y〉ℓ−1∂m+1
x u

∥

∥

L2 .

Corollary 3.1. Under the assumptions of Theorem 2.1, we have
∞

∑
m=0

N2
ρ,m+1

∥

∥∂m
x v
∥

∥

2

L2
xL∞

y
≤C

(

1+|~a|2Xρ

)

|~a|2Xρ
,

∞

∑
m=0

(m+1)N2
ρ,m+1

∥

∥∂m
x v
∥

∥

2

L2
xL∞

y
≤C

(

1+|~a|2Xρ

)

|~a|2Yρ
.

4 Gevrey norm of ϕ and ∂yu

In this section, we will study the last term in definition (2.9) of |~a|Xρ involving the
mixed derivatives of ϕ and ∂yu. The estimate is stated in the following proposi-
tion.

Proposition 4.1. Under the assumptions of Theorem 2.1, we have

1

2

d

dt

+∞

∑
m=0

+∞

∑
k=0

(m+1)2H2
ρ,m+1,k

(

∥

∥〈y〉ℓ∂m
x ∂k

y ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂k

y∂yu
∥

∥

2

L2

)

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
−µ ∑

m,k≥0

(m+k+1)(m+1)2H2
ρ,m+1,k

×
(

∥

∥〈y〉ℓ∂m
x ∂k

yϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂k

y∂yu
∥

∥

2

L2

)

.

To have a clear presentation, we first deal with the normal and tangential
derivatives in Sections 4.1 and 4.2, respectively. The estimate on the mixed deriva-
tives will then be presented in the last subsection.

4.1 Normal derivatives

We first prove the following estimate on the normal derivatives of ϕ and ∂yu.

Lemma 4.1. Under the assumptions of Theorem 2.1, we have

1

2

d

dt

+∞

∑
k=0

L2
ρ,k

(

∥

∥〈y〉ℓ∂k
y ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂k
y∂yu

∥

∥

2

L2

)

≤C
(

1+|~a|2Xρ

)

|~a|2Yρ
−µ

+∞

∑
k=0

(k+1)L2
ρ,k

(

∥

∥〈y〉ℓ∂k
y ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂k
y∂yu

∥

∥

2

L2

)

,

where Lρ,k is defined by (2.17).
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Proof. We apply 〈y〉ℓ∂k+1
y and 〈y〉ℓ∂k

y to the Eqs. (2.3a) and (2.3b), respectively to

have that
(

∂t+u∂x+v∂y

)

〈y〉ℓ∂k+1
y u= 〈y〉ℓ∂k+1

y ϕ+Rk, (4.1a)

(∂t+1)〈y〉ℓ∂k
yϕ= 〈y〉ℓ∂k+2

y u, (4.1b)

where

Rk =v
(

∂y〈y〉
ℓ
)

∂k+1
y u−

k+1

∑
i=1

(

k+1

i

)

〈y〉ℓ
[

(

∂i
yu
)

∂x∂k+1−i
y u+

(

∂i
yv
)

∂k+2−i
y u

]

. (4.2)

Then we take the L2-product with 〈y〉ℓ∂k+1
y u for the Eq. (4.1a), and with 〈y〉ℓ∂k

yϕ

for the Eq. (4.1b). By using
(

〈y〉ℓ∂k+2
y u, 〈y〉ℓ∂k

yϕ
)

L2
=−

(

〈y〉ℓ∂k+1
y u, 〈y〉ℓ∂k+1

y ϕ
)

L2
−
(

(

∂y〈y〉
2ℓ)∂k+1

y u,∂k
y ϕ
)

L2

−
∫

R

[(

∂k+1
y u

)

∂k
yϕ
]∣

∣

y=0
dx,

we obtain

1

2

d

dt

(

∥

∥〈y〉ℓ∂k
yϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂k+1
y u

∥

∥

2

L2

)

+
∥

∥〈y〉ℓ∂k
yϕ
∥

∥

2

L2

=
(

Rk,〈y〉ℓ∂k+1
y u

)

L2−
(

(

∂y〈y〉
2ℓ)∂k+1

y u,∂k
y ϕ
)

L2
−
∫

R

[

(

∂k+1
y u

)

∂k
yϕ
]

∣

∣

y=0
dx. (4.3)

In view of definitions (2.9)-(2.10) of |~a|Xρ and |~a|Yρ
and (2.11), we have

−
+∞

∑
k=0

L2
ρ,k

(

(

∂y〈y〉
2ℓ)∂k+1

y u,∂k
y ϕ
)

L2
≤C|~a|2Xρ

≤C|~a|2Yρ
.

This together with the Sobolev inequality

‖ f‖2
L∞

y
≤2‖ f‖L2

y
‖∂y f‖L2

y

implies

−
+∞

∑
k=0

L2
ρ,k

∫

R

[

(

∂k+1
y u

)

∂k
yϕ
]∣

∣

∣

y=0
dx

≤C
+∞

∑
k=0

(k+1)Lρ,k Lρ,k+1

(

∥

∥∂k
yϕ
∥

∥

L2

∥

∥∂k+1
y ϕ

∥

∥

L2+
∥

∥∂k+1
y u

∥

∥

L2

∥

∥∂k+2
y u

∥

∥

L2

)

≤C
+∞

∑
k=0

(k+1)L2
ρ,k

(

∥

∥∂k
yϕ
∥

∥

2

L2+
∥

∥∂k
y∂yu

∥

∥

2

L2

)

≤C|~a|2Yρ
,
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where in the first inequality we have used the fact that

Lρ,k

Lρ,k+1
=

k+2

ρ
≤C(k+1)

due to (2.16). As a result, by the above estimates and (2.18), we multiply Eq. (4.3)

by L2
ρ,k and then take the summation over k≥0 to obtain

1

2

d

dt

+∞

∑
k=0

L2
ρ,k

(

∥

∥〈y〉ℓ∂k
yϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂k
y∂yu

∥

∥

2

L2

)

≤−µ
+∞

∑
k=0

(k+1)L2
ρ,k

(

∥

∥〈y〉ℓ∂k
yϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂k
y∂yu

∥

∥

2

L2

)

+
+∞

∑
k=0

L2
ρ,k

(

Rk, 〈y〉ℓ∂k+1
y u

)

L2
+C|~a|2Yρ

, (4.4)

where Rm is given by (4.2). For the term in the last inequality, we claim that

+∞

∑
k=0

L2
ρ,k

(

Rk, 〈y〉ℓ∂k+1
y u

)

L2
≤C

(

1+|~a|2Xρ

)

|~a|2Yρ
. (4.5)

The proof of (4.5) is postponed after the proof of the lemma. Now with the claim

and the above two estimates, we complete the proof of lemma.

Proof of assertion (4.5). We use the estimate
(

Rk,〈y〉ℓ∂k+1
y u

)

L2
≤ (k+1)

∥

∥〈y〉ℓ∂k+1
y u

∥

∥

2

L2+
[

(k+1)−
1
2‖Rk‖L2

]2

and definition (2.10) of |~a|Yρ to obtain

+∞

∑
k=0

L2
ρ,k

(

Rk, 〈y〉ℓ∂k+1
y u

)

L2
≤|~a|2Yρ

+
+∞

∑
k=0

[

(k+1)−
1
2 Lρ,k‖Rk‖L2

]2
. (4.6)

Moreover, in view of (4.2), it follows that

+∞

∑
k=0

[

(k+1)−
1
2 Lρ,k‖Rk‖L2

]2

≤C|~a|3Xρ
+

+∞

∑
k=0

[

(k+1)−
1
2 Lρ,k

k+1

∑
i=1

(

k+1

i

)

∥

∥〈y〉ℓ(∂i
yu)∂x∂k+1−i

y u
∥

∥

L2

]2

+
+∞

∑
k=0

[

(k+1)−
1
2 Lρ,k

k+1

∑
i=1

(

k+1

i

)

∥

∥〈y〉ℓ
(

∂i
yv
)

∂k+2−i
y u

∥

∥

L2

]2

. (4.7)
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For the last term the right-hand side, we use the decomposition

k+1

∑
i=1

=
[(k+1)/2]

∑
i=1

+
k+1

∑
i=[(k+1)/2]+1

,

to write

(k+1)−
1
2 Lρ,k

k+1

∑
i=1

(

k+1

i

)

∥

∥〈y〉ℓ(∂i
yv)∂k+2−i

y u
∥

∥

L2 ≤ pk+qk (4.8)

with

pk =
[(k+1)/2]

∑
i=1

(k+1)!

i!(k+1−i)!

(k+1)−
1
2 Lρ,k

Hρ,4,i−1Lρ,k+1−i

×
(

Hρ,4,i−1

∥

∥∂i
yv
∥

∥

L∞

)(

Lρ,k+1−i

∥

∥〈y〉ℓ∂k+2−i
y u

∥

∥

L2

)

,

qk =
k+1

∑
i=[(k+1)/2]+1

(k+1)!

i!(k+1−i)!

(k+1)−
1
2 Lρ,k

Hρ,2,i−2Hρ,3,k+2−i

×
(

Hρ,2,i−2

∥

∥∂i
yv
∥

∥

L2

)(

Hρ,3,k+2−i

∥

∥〈y〉ℓ∂k+2−i
y u

∥

∥

L∞

)

.

For the term pk, we first note the following estimate (see Appendix A for its proof)

that

(k+1)!

i!(k+1−i)!

(k+1)−
1
2 Lρ,k

Hρ,4,i−1Lρ,k+1−i
≤C

(k+2−i)
1
2

i+1
, ∀1≤ i≤ [(k+1)/2]. (4.9)

Following an argument similar to (3.5), we have

+∞

∑
k=0

p2
k ≤C

+∞

∑
k=0

[

k+1

∑
i=1

Hρ,4,i−1

∥

∥∂i
yv
∥

∥

L∞

i+1
(k+2−i)

1
2 Lρ,k+1−i

∥

∥〈y〉ℓ∂k+2−i
y u

∥

∥

L2

]2

≤C

(

+∞

∑
i=1

Hρ,4,i−1

∥

∥∂i
yv
∥

∥

L∞

i+1

)2+∞

∑
i=0

(i+1)L2
ρ,i

∥

∥〈y〉ℓ∂i+1
y u

∥

∥

2

L2

≤C|~a|2Yρ

+∞

∑
i=1

H2
ρ,4,i−1

∥

∥∂i
yv
∥

∥

2

L∞ ,

where we have used (2.19) in the second inequality. Moreover, using the Sobolev

embedding inequality and Hardy’s inequality, we obtain

+∞

∑
i=1

H2
ρ,4,i−1

∥

∥∂i
yv
∥

∥

2

L∞ ≤H2
ρ,4,0‖∂xu‖2

L∞+
+∞

∑
i=2

H2
ρ,4,i−1

∥

∥∂x∂i−1
y u

∥

∥

2

L∞
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≤C
∥

∥〈y〉ℓ∂x∂yu
∥

∥

2

L∞
x L2

y
+C|~a|2Xρ

≤C|~a|2Xρ
.

Combining the above estimates gives

+∞

∑
k=0

p2
k ≤C|~a|2Xρ

|~a|2Yρ
. (4.10)

Similarly, by using the estimate (see Appendix A)

(k+1)!

i!(k+1−i)!

(k+1)−
1
2 Lρ,k

Hρ,2,i−2Hρ,3,k+2−i
≤

C

k+3−i
, [(k+1)/2]< i≤ k+1, (4.11)

and observing |~a|Xρ ≤|~a|Yρ , we have

+∞

∑
k=0

q2
k ≤C

(

+∞

∑
i=0

Hρ,3,i

∥

∥∂i
yu
∥

∥

L∞

i+1

)2+∞

∑
i=0

H2
ρ,2,i

∥

∥∂x∂i+1
y u

∥

∥

2

L2 ≤C|~a|2Xρ
|~a|2Yρ

.

This together with (4.10) and (4.8) yields

+∞

∑
k=0

[

(k+1)−
1
2 Lρ,k

k+1

∑
i=1

(

k+1

i

)

∥

∥〈y〉ℓ
(

∂i
yv
)

∂k+2−i
y u

∥

∥

L2

]2

≤C|~a|2Xρ
|~a|2Yρ

.

Similarly,

+∞

∑
k=0

[

(k+1)−
1
2 Lρ,k

k+1

∑
i=1

(

k+1

i

)

∥

∥〈y〉ℓ
(

∂i
yu
)

∂x∂k+1−i
y u

∥

∥

L2

]2

≤C|~a|2Xρ
|~a|2Yρ

.

Finally, by substituting the above two estimates into (4.7) and using (2.11), we

obtain
+∞

∑
k=0

[

(k+1)−
1
2 Lρ,k‖Rk‖L2

]2
≤C

(

1+|~a|2Xρ

)

|~a|2Yρ
.

This with (4.6) yields the desired assertion (4.5). The proof of the claim (4.5) is

complete.

4.2 Tangential derivatives

In this subsection, we consider the tangential derivatives of ϕ and ∂yu.
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Lemma 4.2. Under the assumptions of Theorem 2.1, we have

1

2

d

dt

+∞

∑
m=0

(m+1)2N2
ρ,m+1

(

∥

∥〈y〉ℓ∂m
x ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂yu

∥

∥

2

L2

)

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
−µ

+∞

∑
m=0

(m+1)3N2
ρ,m+1

(

∥

∥〈y〉ℓ∂m
x ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂yu

∥

∥

2

L2

)

.

Recall Nρ,m is defined by (1.6).

Proof. We apply 〈y〉ℓ∂m
x ∂y and 〈y〉ℓ∂m

x to the Eqs. (2.3a) and (2.3b), respectively, to

have
{

(∂t+u∂x+v∂y)〈y〉
ℓ∂m

x ∂yu= 〈y〉ℓ∂m
x ∂y ϕ+Pm,

(∂t+1)〈y〉ℓ∂m
x ϕ= 〈y〉ℓ∂m

x ∂2
yu,

where

Pm =v(∂y 〈y〉
ℓ)∂m

x ∂yu−
m

∑
j=1

(

m

j

)

〈y〉ℓ
[

(

∂
j
xu
)

∂
m−j+1
x ∂yu+

(

∂
j
xv
)

∂
m−j
x ∂2

yu
]

. (4.12)

Following a similar argument as the proof of Lemma 4.1, by observing that

(

〈y〉ℓ∂m
x ∂2

yu, 〈y〉ℓ∂m
x ϕ
)

L2
=−

(

〈y〉ℓ∂m
x ∂yu, 〈y〉ℓ∂m

x ∂yϕ
)

L2

−
(

(

∂y〈y〉
2ℓ)∂m

x ∂yu, ∂m
x ϕ
)

L2
,

we get

1

2

d

dt

(

∥

∥〈y〉ℓ∂m
x ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂yu

∥

∥

2

L2

)

+
∥

∥〈y〉ℓ∂m
x ϕ
∥

∥

2

L2

=−
(

(

∂y〈y〉
2ℓ)∂m

x ∂yu,∂m
x ϕ
)

L2
+
(

Pm, 〈y〉ℓ∂m
x ∂yu

)

L2
.

Thus, by using (2.15) and the fact that −µ(m+2)≤−µ(m+1), we have

1

2

d

dt

+∞

∑
m=0

(m+1)2N2
ρ,m+1

(

∥

∥〈y〉ℓ∂m
x ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂yu

∥

∥

2

L2

)

≤−µ
+∞

∑
m=0

(m+1)3N2
ρ,m+1

(

∥

∥〈y〉ℓ∂m
x ϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂yu

∥

∥

2

L2

)

+C|~a|2Xρ
+

+∞

∑
m=0

(m+1)2N2
ρ,m+1

(

Pm, 〈y〉ℓ∂m
x ∂yu

)

L2 .
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It remains to estimate the last term on the right-hand side. Similar to (4.6), it holds

that

+∞

∑
m=0

(m+1)2N2
ρ,m+1

(

Pm, 〈y〉ℓ∂m
x ∂yu

)

L2

≤|~a|2Yρ
+

+∞

∑
m=0

[

(m+1)
1
2 Nρ,m+1‖Pm‖L2

]2
. (4.13)

Then Lemma 4.2 holds by the above inequalities if

+∞

∑
m=0

[

(m+1)
1
2 Nρ,m+1‖Pm‖L2

]2
≤C

(

1+|~a|4Xρ

)

|~a|2Yρ
. (4.14)

We now turn to prove (4.14). In view of (4.12), we use the fact that ‖v‖L∞
y
≤

C‖〈y〉ℓ∂x∂yu‖L2
y

by Hardy’s inequality to obtain

+∞

∑
m=0

[

(m+1)
1
2 Nρ,m+1‖Pm‖L2

]2

≤C|~a|3Xρ
+

+∞

∑
m=0

[

(m+1)
1
2 Nρ,m+1

m

∑
j=1

(

m

j

)

∥

∥〈y〉ℓ
(

∂
j
xu
)

∂
m−j+1
x ∂yu

∥

∥

L2

]2

+
+∞

∑
m=0

[

(m+1)
1
2 Nρ,m+1

m

∑
j=1

(

m

j

)

∥

∥〈y〉ℓ
(

∂
j
xv
)

∂
m−j
x ∂2

yu
∥

∥

L2

]2

. (4.15)

For the last term above inequality as (4.8), we write

(m+1)
1
2 Nρ,m+1

m

∑
j=1

(

m

j

)

∥

∥〈y〉ℓ
(

∂
j
xv
)

∂
m−j
x ∂2

yu
∥

∥

L2 =Am+Bm (4.16)

with

Am =
[m/2]

∑
j=1

m!

j!(m− j)!

(m+1)
1
2 Nρ,m+1

Nρ,j+3Hρ,m−j+1,1

×
(

Nρ,j+3

∥

∥∂
j
xv
∥

∥

L∞

)(

Hρ,m−j+1,1

∥

∥〈y〉ℓ∂
m−j
x ∂2

yu
∥

∥

L2

)

,

Bm=
m

∑
j=[m/2]+1

m!

j!(m− j)!

(m+1)
1
2 Nρ,m+1

Nρ,j+1Hρ,m−j+3,1

×
(

Nρ,j+1

∥

∥∂
j
xv
∥

∥

L2
xL∞

y

)(

Hρ,m−j+3,1

∥

∥〈y〉ℓ∂
m−j
x ∂2

yu
∥

∥

L∞
x L2

y

)

.
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Moreover, by using the estimate (see Appendix A)

m!

j!(m− j)!

(m+1)
1
2 Nρ,m+1

Nρ,j+3Hρ,m−j+1,1
≤

C(m− j+1)
3
2

j+1
, 1≤ j≤ [m/2], (4.17)

we follow a similar argument as that after (4.8) to conclude that

+∞

∑
m=0

A2
m≤C

(

+∞

∑
j=0

Nρ,j+3

∥

∥∂
j
xv
∥

∥

L∞

j+1

)2
+∞

∑
j=0

(j+1)3H2
ρ,j+1,1

∥

∥〈y〉ℓ∂
j
x∂2

yu
∥

∥

2

L2

≤C
(

1+|~a|2Xρ

)

|~a|2Xρ
|~a|2Yρ

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
,

where we have used Corollary 3.1 in the second inequality. On the other hand,

we note that

m!

j!(m− j)!

(m+1)
1
2 Nρ,m+1

Nρ,j+1Hρ,m−j+3,1
≤C

(j+1)
1
2

m− j+1
, ∀[m/2]+1≤ j≤m, (4.18)

where its proof is given in Appendix A. Thus, following a similar argument as

that after (4.8) and using Corollary 3.1, we conclude

+∞

∑
m=0

B2
m≤C





+∞

∑
j=0

Hρ,j+3,1

∥

∥〈y〉ℓ∂
j
x∂2

yu
∥

∥

L∞
x L2

y

j+1





2
+∞

∑
j=0

(j+1)N2
ρ,j+1

∥

∥∂
j
xv
∥

∥

2

L2
xL∞

y

≤C|~a|2Xρ

(

1+|~a|2Xρ

)

|~a|2Yρ
≤C

(

1+|~a|4Xρ

)

|~a|2Yρ
.

As a result, we combine the above estimates with (4.16) to obtain

+∞

∑
m=0

[

(m+1)
1
2 Nρ,m+1

m

∑
j=1

(

m

j

)

∥

∥〈y〉ℓ(∂
j
xv)∂

m−j
x ∂2

yu
∥

∥

L2

]2

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
. (4.19)

Similar argument also yields

+∞

∑
m=0

[

(m+1)
1
2 Nρ,m+1

m

∑
j=1

(

m

j

)

∥

∥〈y〉ℓ(∂
j
xu)∂

m−j+1
x ∂yu

∥

∥

L2

]2

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
.

Then substituting the above two inequalities into (4.15), the estimate (4.14) fol-

lows. The proof of the lemma is complete.
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4.3 Proof of Proposition 4.1

Proof. We will follow the argument used in the Sections 4.1 and 4.2 to derive the

estimate on the mixed derivatives. For this, we apply 〈y〉ℓ∂m
x ∂k+1

y and 〈y〉ℓ∂m
x ∂k

y to

the Eqs. (2.3a) and (2.3b) to obtain
{
(

∂t+u∂x+v∂y

)

〈y〉ℓ∂m
x ∂k+1

y u= 〈y〉ℓ∂m
x ∂k+1

y ϕ+Qm,k,
(

∂t+1
)

〈y〉ℓ∂m
x ∂k

y ϕ= 〈y〉ℓ∂m
x ∂k

y∂2
yu,

where

Qm,k =v
(

∂y〈y〉
ℓ
)

∂m
x ∂k+1

y u− ∑
i+j≥1

(

m

j

)(

k+1

i

)

〈y〉ℓ
(

∂
j
x∂i

yu
)

∂
m−j+1
x ∂k+1−i

y u

− ∑
i+j≥1

j≤m,i≤k+1

(

m

j

)(

k+1

i

)

〈y〉ℓ
(

∂
j
x∂i

yv
)

∂
m−j
x ∂k+2−i

y u. (4.20)

Thus, we follow a similar argument as in the proof of (4.4) and observe the fact

that
1

2

d

dt

(

H2
ρ,m+1,k

)

=−µ(m+k+2)H2
ρ,m+1,k ≤−µ(m+k+1)H2

ρ,m+1,k,

to obtain

1

2

d

dt

+∞

∑
m=0

+∞

∑
k=0

(m+1)2H2
ρ,m+1,k

(

∥

∥〈y〉ℓ∂m
x ∂k

yϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂k+1

y u
∥

∥

2

L2

)

≤C|~a|2Yρ
+

+∞

∑
m=0

+∞

∑
k=0

(m+1)2H2
ρ,m+1,k

(

Qm,k, 〈y〉ℓ∂m
x ∂k+1

y u
)

L2

−µ∑
m,k

(m+k+1)(m+1)2H2
ρ,m+1,k

(

∥

∥〈y〉ℓ∂m
x ∂k

yϕ
∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂k+1

y u
∥

∥

2

L2

)

. (4.21)

Similar to (4.6) and (4.13), by recalling Qm,k is given by (4.20), we have

∑
m,k≥0

(m+1)2H2
ρ,m+1,k

(

Qm,k, 〈y〉ℓ∂m
x ∂k+1

y u
)

L2 ≤C|~a|3Xρ
+|~a|2Yρ

+S1+S2 (4.22)

with

S1= ∑
m,k≥0

[

(m+k+1)−
1
2 (m+1)Hρ,m+1,k

× ∑
i+j≥1

j≤m,i≤k+1

(

m

j

)(

k+1

i

)

∥

∥〈y〉ℓ
(

∂
j
x∂i

yu
)

∂
m−j+1
x ∂k+1−i

y u
∥

∥

L2

]2

,
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S2= ∑
m,k≥0

[

(m+k+1)−
1
2 (m+1)Hρ,m+1,k

× ∑
i+j≥1

j≤m,i≤k+1

(

m

j

)(

k+1

i

)

∥

∥〈y〉ℓ
(

∂
j
x∂i

yv
)

∂
m−j
x ∂k+2−i

y u
∥

∥

L2

]2

.

To estimate S2, we write

(m+k+1)−
1
2 (m+1)Hρ,m+1,k

× ∑
i+j≥1

j≤m,i≤k+1

(

m

j

)(

k+1

i

)

∥

∥〈y〉ℓ
(

∂
j
x∂i

yv
)

∂
m−j
x ∂k+2−i

y u
∥

∥

L2

≤ rm,k+pm,k+qm,k

with

rm,k=(m+k+1)−
1
2 (m+1)Hρ,m+1,k

m

∑
j=1

(

m

j

)

∥

∥〈y〉ℓ
(

∂
j
xv
)

∂
m−j
x ∂k+2

y u
∥

∥

L2

+(m+k+1)−
1
2 (m+1)(k+1)Hρ,m+1,k

m

∑
j=0

(

m

j

)

∥

∥〈y〉ℓ
(

∂
j
x∂yv

)

∂
m−j
x ∂k+1

y u
∥

∥

L2 ,

pm,k = ∑
i+j≤[(m+k+1)/2]

j≤m,2≤i≤k+1

(

m

j

)(

k+1

i

)

(m+k+1)−
1
2 (m+1)Hρ,m+1,k

Hρ,j+4,i−1Hρ,m−j+1,k+1−i

×
(

Hρ,j+4,i−1

∥

∥∂
j
x∂i

yv
∥

∥

L∞

)(

Hρ,m−j+1,k+1−i

∥

∥〈y〉ℓ∂
m−j
x ∂k+2−i

y u
∥

∥

L2

)

,

qm,k = ∑
i+j≥[(m+k+1)/2]+1

j≤m,2≤i≤k+1

(

m

j

)(

k+1

i

)

(m+k+1)−
1
2 (m+1)Hρ,m+1,k

Hρ,j+2,i−2Hρ,m−j+3,k+2−i

×
(

Hρ,j+2,i−2

∥

∥∂
j
x∂i

yv
∥

∥

L2

)(

Hρ,m−j+3,k+2−i

∥

∥〈y〉ℓ∂
m−j
x ∂k+2−i

y u
∥

∥

L∞

)

.

Like the proof of (4.19), we can obtain

∑
m,k≥0

r2
m,k≤C

(

1+|~a|4Xρ

)

|~a|2Yρ
.
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Moreover, if 1≤ i+ j≤ [(m+k+1)/2], then

(

m

j

)(

k+1

i

)

(m+k+1)−
1
2 (m+1)Hρ,m+1,k

Hρ,j+4,i−1Hρ,m−j+1,k+1−i

≤ (j+4)(m− j+1)
1

(i+ j+1)2
(m+k−i− j+2)

1
2 , (4.23)

where its proof is given in Appendix A. Then following the argument after (4.8)

and (4.16), we obtain

∑
m,k≥0

p2
m,k ≤

(

∑
j≥0,i≥2

(j+4)Hρ,j+4,i−1

∥

∥∂
j
x∂i

yv
∥

∥

L∞

(i+ j+1)2

)2

× ∑
i,j≥0

(i+ j+1)(j+1)2 Hρ,j+1,i

∥

∥〈y〉ℓ∂
j
x∂i

y∂yu
∥

∥

2

L2

≤C
(

1+|~a|2Xρ

)

|~a|2Yρ
.

Similarly, by using

(

m

j

)(

k+1

i

)

(m+k+1)−
1
2 (m+1)Hρ,m+1,k

Hρ,j+2,i−2Hρ,m−j+3,k+2−i
≤C

j+1

(m+k−i− j+2)2
(4.24)

for any pair (i, j) with [(m+k+1)/2]≤ i+ j≤m+k+1 (see Appendix A), we have

∑
m,k≥0

q2
m,k≤C

(

1+|~a|2Xρ

)

|~a|2Yρ
.

Thus, combining the above estimates gives

S2≤C ∑
m,k≥0

(

r2
m,k+p2

m,k+q2
m,k

)

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
.

Similarly,

S1≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
.

This with (4.22) and (4.21) yields the statement in Proposition 4.1. The proof is

complete.
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5 Proof of the a priori estimate

We now study the Gevrey estimate on the auxiliary functions U and λ defined in
(2.5) and (2.6) to complete the proof of Theorem 2.1.

Proposition 5.1. Under the assumptions of Theorem 2.1, we have

1

2

d

dt

+∞

∑
m=0

(

N2
ρ,m+1

∥

∥∂m
x U
∥

∥

2

L2+(m+1)N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2

)

≤−µ
+∞

∑
m=0

[

(m+1)N2
ρ,m+1

∥

∥∂m
x U
∥

∥

2

L2+(m+1)2N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2

]

+C
(

1+|~a|4Xρ

)

|~a|2Yρ
.

Proof. It follows from (2.7) that

(

∂t+u∂x+v∂y

)

∂m
x U=∂m+1

x λ+∂m
x

[

(∂x∂yu)
∫ y

0
U (t,x,ỹ)dỹ+(∂xu)U

]

.

This, with the fact that

1

2

d

dt
N2

ρ,m+1≤−µ(m+1)N2
ρ,m+1,

+∞

∑
m=0

(m+1)N2
ρ,m+1‖∂m

x U‖
2
L2 ≤|~a|2Yρ

,

yields that

1

2

d

dt

+∞

∑
m=0

N2
ρ,m+1

∥

∥∂m
x U
∥

∥

2

L2

≤−µ
+∞

∑
m=0

(m+1)N2
ρ,m+1

∥

∥∂m
x U
∥

∥

2

L2+|~a|2Yρ
+

+∞

∑
m=0

(m+1)−1N2
ρ,m+1

∥

∥∂m+1
x λ

∥

∥

2

L2

+
+∞

∑
m=0

(m+1)−1N2
ρ,m+1

∥

∥

∥

∥

∂m
x

[

(∂x∂yu)
∫ y

0
U (t,x,ỹ)dỹ+(∂xu)U

]∥

∥

∥

∥

2

L2

.

By definition (2.10) of |~a|Yρ and the fact that Nρ,m+1/Nρ,m+2≤C(m+1)3/2 , we have

+∞

∑
m=0

(m+1)−1N2
ρ,m+1

∥

∥∂m+1
x λ

∥

∥

2

L2
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≤C
+∞

∑
m=0

(m+1)2N2
ρ,m+2

∥

∥∂m+1
x λ

∥

∥

2

L2

≤C
+∞

∑
m=0

(m+1)2N2
ρ,m+1

∥

∥∂m
x λ
∥

∥

2

L2 ≤C|~a|2Yρ
.

Following a similar argument as in the proof of Lemmas 3.1 and 4.2, we conclude

+∞

∑
m=0

(m+1)−1N2
ρ,m+1

∥

∥

∥

∥

∂m
x

[

(∂x∂yu)
∫ y

0
U (t,x,ỹ)dỹ+(∂xu)U

]∥

∥

∥

∥

2

L2

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
.

As a result, combining the above estimates yields

1

2

d

dt

+∞

∑
m=0

N2
ρ,m+1

∥

∥∂m
x U
∥

∥

2

L2

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
−µ

+∞

∑
m=0

(m+1)N2
ρ,m+1

∥

∥∂m
x U
∥

∥

2

L2 . (5.1)

It remains to estimate λ, and it follows from (2.8) that
(

∂t+u∂x+v∂y

)

〈y〉ℓ−1∂m
x λ

=v
(

∂y〈y〉
ℓ−1)∂m

x λ+〈y〉ℓ−1∂m+1
x ϕ

−〈y〉ℓ−1∂m
x

[

(∂xu)∂xu+(∂y ϕ)
∫ y

0
Udỹ

]

.

This with the fact that
+∞

∑
m=0

(m+1)2N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2 ≤|~a|2Yρ
,

yields

1

2

d

dt

+∞

∑
m=0

(m+1)N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2

≤−µ
+∞

∑
m=0

(m+1)2N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2+C|~a|3Xρ
+|~a|2Yρ

+
+∞

∑
m=0

N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m+1
x ϕ

∥

∥

2

L2

+
+∞

∑
m=0

N2
ρ,m+1

∥

∥

∥

∥

〈y〉ℓ−1∂m
x

[

(∂xu)∂xu+(∂y ϕ)
∫ y

0
Udỹ

]∥

∥

∥

∥

2

L2

.
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Note that

+∞

∑
m=0

N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m+1
x ϕ

∥

∥

2

L2

≤C
+∞

∑
m=0

(m+2)3N2
ρ,m+2

∥

∥〈y〉ℓ∂m+1
x ϕ

∥

∥

2

L2 ≤C|~a|2Yρ
.

By a similar argument as the proof of Lemma 3.1, we have

+∞

∑
m=0

N2
ρ,m+1

∥

∥

∥

∥

〈y〉ℓ−1∂m
x

[

(∂xu)∂xu+(∂y ϕ)
∫ y

0
Udỹ

]∥

∥

∥

∥

2

L2

≤C
(

1+|~a|4Xρ

)

|~a|2Yρ
.

Consequently, combining the above inequalities yields

1

2

d

dt

+∞

∑
m=0

(m+1)N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2

≤−µ
+∞

∑
m=0

(m+1)2N2
ρ,m+1

∥

∥〈y〉ℓ−1∂m
x λ
∥

∥

2

L2+C
(

1+|~a|4Xρ

)

|~a|2Yρ
.

This and (5.1) yields the statement in Proposition 5.1, so that the proof of Propo-

sition 5.1 is complete.

Proof of Theorem 2.1. With the two estimates in Propositions 4.1 and 5.1 and by

noting the definitions (2.9) and (2.10) of |~a|Xρ and |~a|Yρ
, we have

1

2

d

dt
|~a|2Xρ

≤
(

−µ+C+C|~a|4Xρ

)

|~a|2Yρ
. (5.2)

Now we choose µ large enough such that

µ≥
1

2
+C+C(2C0)

4
(

‖u0‖G3/2,1
2ρ0,ℓ

+‖u1‖G3/2,1
2ρ0,ℓ+1

)4
, (5.3)

where C0 is the constant in (2.12). Then, under assumption (2.13), (5.2) and (5.3),

yield
1

2

d

dt
|~a(t)|2Xρ

≤−
1

2
|~a(t)|2Yρ

, ∀t∈ [0,T].

By (2.12), we have

sup
0≤t≤T

|~a(t)|Xρ
+

(

∫ T

0
|~a(t)|2Yρ

dt

)
1
2

≤|~a(0)|Xρ
≤C0

(

‖u0‖G3/2,1
2ρ0,ℓ

+‖u1‖G3/2,1
2ρ0,ℓ+1

)

.

This is (2.14), so that the proof of Theorem 2.1 is complete.
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6 The 3D hyperbolic Prandtl equation

The discussion on the 3D hyperbolic Prandtl model is similar to that of the 2D
case with slight modifications on auxiliary functions. Precisely, we will use vec-
tor-valued auxiliary functions instead of the scalar ones used in the previous sec-
tions. We denote by ~u = (u1,u2) and v the tangential and normal velocities re-
spectively, and by (x,y) the spatial variables in R

2×R+ with x=(x1,x2). As the
counterparts of the auxiliary functions defined in Section 2, we set

~ϕ=∂t~u+(~u·∂x)~u+v∂y~u with v(t,x,y)=−
∫ y

0
∂x ·~u(t,x,ỹ)dỹ.

Moreover, we define ~U=(U1,U2) and~λ=(λ1,λ2,λ3,λ4) as follows. Let Uj, j=1,2,
solve the Cauchy problem







(∂t+~u·∂x+v∂y)
∫ y

0
Uj(t,x,ỹ)dỹ=−∂xj

v,

Uj|t=0=0.

Accordingly, set














































λ1=∂x1
u1−(∂yu1)

∫ y

0
U1(t,x,ỹ)dỹ,

λ2=∂x2 u1−(∂yu1)
∫ y

0
U2(t,x,ỹ)dỹ,

λ3=∂x1
u2−(∂yu2)

∫ y

0
U1(t,x,ỹ)dỹ,

λ4=∂x2 u2−(∂yu2)
∫ y

0
U2(t,x,ỹ)dỹ.

We also denote that
~b=

(

~u,~U ,~λ,~ϕ
)

,

and define |~b|Xρ and |~b|Yρ
as in Definition 2.1. Then the a priori estimate in Theo-

rem 2.1 also holds with~a replaced by~b. This can be derived in the same way for
the 2D case. For brevity, we omit the details.

Appendix A. Proof of some estimates

Finally, we present the proof of some estimates used in the previous sections.
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Proof of (3.4). For any 0≤ j≤ [m/2], we have that m− j≈m so that

m!

j!(m− j)!
×

Nρ,m+1

Nρ,j+3Nm−j+1,ρ

=
m!

j!(m− j)!
×

ρm+2(m+2)9

[(m+1)!]
3
2

×
[(j+3)!]

3
2

ρj+4(j+4)9
×

[(m− j+1)!]
3
2

ρm−j+2(m− j+2)9

. (j!)
1
2 [(m− j)!]

1
2 ×

j
9
2 (m− j+1)

3
2

ρ4(m!)
1
2 (m+1)

3
2 (j+4)9

.
1

j+1
,

where we have used the fact that p!q!≤ (p+q)! and (2.16) in the last inequality.

This gives estimate (3.4).

Proof of (3.6). For any j with [m/2]+1≤ j≤m, we have

m!

j!(m− j)!
×

Nρ,m+1

Nρ,j+1Nρ,m−j+3

=
m!

j!(m− j)!
×

ρm+2(m+2)9

[(m+1)!]
3
2

×
[(j+1)!]

3
2

ρj+2(j+2)9
×

[(m− j+3)!]
3
2

ρm−j+4(m− j+4)9

. (j!)
1
2 [(m− j)!]

1
2 ×

j
3
2 (m− j+1)

9
2

ρ4(m!)
1
2 (m+1)

3
2 (m− j+4)9

.
1

m− j+1
.

This gives (3.6).

Proof of (4.9). For 1≤ i≤ [(k+1)/2] we have k−i≈ k so that

(k+1)!

i!(k+1−i)!
×

(k+1)−
1
2 Lρ,k

Hρ,4,i−1Lρ,k+1−i

.
(k+1)!

i!(k+1−i)!
(k+1)−

1
2 ×

ρk+2(k+2)9

(k+1)!
×

(i+3)!

ρi+4(i+4)9
×

(k+2−i)!

ρk+3−i(k+3−i)9

.
(k+1)−

1
2 (k+2−i)

(i+1)6
.
(k+2−i)

1
2

i+1
.

Hence, (4.9) holds.

Proof of (4.11). We use the fact that [(k+1)/2]+1≤ i≤ k+1 to have

(k+1)!

i!(k+1−i)!
×

(k+1)−
1
2 Lρ,k

Hρ,2,i−2Hρ,3,k+2−i

.
(k+1)!

i!(k+1−i)!
(k+1)−

1
2 ×

ρk+2(k+2)9

(k+1)!
×

i!

ρi+1(i+1)9
×

(k+5−i)!

ρk+6−i(k+6−i)9
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.
1

(k+5−i)5
.

1

k+3−i
,

which is (4.11).

Proof of (4.17). For any 1≤ j≤ [m/2] so that m− j≈m, and thus,

m!

j!(m− j)!
×

(m+1)
1
2 Nρ,m+1

Nρ,j+3Hρ,m−j+1,1

=
m!(m+1)

1
2

j!(m− j)!
×

ρm+2(m+2)9

[(m+1)!]
3
2

×
[(j+3)!]

3
2

ρj+4(j+4)9
×
(m− j+2)![(m− j+1)!]

1
2

ρm−j+3(m− j+3)9

. (j!)
1
2 [(m− j)!]

1
2 (m+1)

1
2 ×

j
9
2 (m− j+1)

5
2

(m!)
1
2 (m+1)

3
2 (j+4)9

.
(m− j+1)

3
2

j+1
.

The proof is thus complete.

Proof of (4.18). For [m/2]+1≤ j≤m, we have

m!

j!(m− j)!
×

(m+1)
1
2 Nρ,m+1

Nρ,j+1Hρ,m−j+3,1

=
m!(m+1)

1
2

j!(m− j)!
×

ρm+2(m+2)9

[(m+1)!]
3
2

×
[(j+1)!]

3
2

ρj+2(j+2)9
×
(m− j+4)![(m− j+3)!]

1
2

ρm−j+5(m− j+5)9

. (j!)
1
2 [(m− j)!]

1
2 (m+1)

1
2 ×

j
3
2 (m− j+1)

11
2

(m!)
1
2 (m+1)

3
2 (m− j+5)9

.
(j+1)

1
2

m− j+1
.

This gives (4.18).

Proof of (4.23). For 1≤ i+ j≤ [(m+k+1)/2], we have m+k−i− j≈m+k so that
(

m

j

)(

k+1

i

)

(m+k+1)−
1
2 (m+1)×

Hρm+1,k

Hρ,j+4,i−1Hρ,m−j+1,k+1−i

=
m!

j!(m− j)!

(k+1)!

i!(k+1−i)!
(m+k+1)−

1
2 (m+1)×

ρm+k+2(m+k+2)9

(m+k+1)![(m+1)!]
1
2

×
(i+ j+3)![(j+4)!]

1
2

ρi+j+4(i+ j+4)9
×
(m+k−i− j+2)![(m− j+1)!]

1
2

ρm+k−i−j+3(m+k−i− j+3)9

.
(m!)

1
2

(j!)
1
2 [(m− j)!]

1
2

(k+1)!

i!(k+1−i)!
×
(i+ j+3)!(m+k−i− j+2)!

(m+k+1)!
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×(m+k+1)−
1
2 (m+1)

1
2 ×

(j+1)2(m− j+1)
1
2

(i+ j+4)9
.

Moreover, by using

(

α

β

)

≤

(

|α|

|β|

)

, ∀α, β∈Z
2
+ with β≤α,

we have

(m!)
1
2

(j!)
1
2 [(m− j)!]

1
2

×
(k+1)!

i!(k+1−i)!

≤
m!

j!(m− j)!
×

(k+1)!

i!(k+1−i)!
≤

(m+k+1)!

(i+ j)!(m+k+1−i− j)!
.

We then combine the above estimates and observe that m+k−i− j ≈ m+k for

1≤ i+ j≤ [(m+k+1)/2] to have

(

m

j

)(

k+1

i

)

(m+k+1)−
1
2 (m+1)×

Hρ,m+1,k

Hρ,j+4,i−1Hρ,m−j+1,k+1−i

. (m+k+1)−
1
2 (m+1)

1
2 ×

(j+1)2(m− j+1)
1
2 (i+ j+1)3(m+k−i− j+2)

(i+ j+4)9

. (m+1)
1
2 (m− j+1)

1
2

1

(i+ j+3)4
(m+k−i− j+2)

1
2

. (j+4)(m− j+1)
1

(i+ j+1)2
(m+k−i− j+2)

1
2 .

The proof of (4.23) is complete.

Proof of (4.24). For any [(m+k+1)/2]≤ i+ j≤m+k+1, following a similar argu-

ment as above, we have

(

m

j

)(

k+1

i

)

(m+k+1)−
1
2 (m+1)Hρ,m+1,k

Hρ,j+2,i−2Hρ,m−j+3,k+2−i

=
m!

j!(m− j)!

(k+1)!

i!(k+1−i)!
(m+k+1)−

1
2 (m+1)×

ρm+k+2(m+k+2)9

(m+k+1)![(m+1)!]
1
2

×
(i+ j)![(j+2)!]

1
2

ρi+j+1(i+ j+1)9
×
(m+k−i− j+5)![(m− j+3)!]

1
2

ρm+k−i−j+6(m+k−i− j+6)9
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.
(m!)

1
2

(j!)
1
2 [(m− j)!]

1
2

×
(k+1)!

i!(k+1−i)!
×
(i+ j)!(m+k−i− j+5)!

(m+k+1)!

×(m+k+1)−
1
2 (m+1)

1
2 ×

(j+1)(m− j+1)
3
2

(m+k−i− j+6)9

. (m+k+1)−
1
2 (m+1)

1
2 ×

(j+1)(m− j+1)
3
2

(m+k−i− j+6)5
.

(j+1)

(m+k−i− j+2)2
.

Hence, (4.24) follows.

Proof of (2.12). By (2.9), (2.5) and (2.6), we have

|~a(0)|2Xρ0
=

∞

∑
m=0

(m+1)N2
ρ0 ,m+1

∥

∥〈y〉ℓ−1∂m+1
x u0

∥

∥

2

L2

+ ∑
m,k≥0

(m+1)2H2
ρ0,m+1,k

(

∥

∥〈y〉ℓ∂m
x ∂k

yϕ0

∥

∥

2

L2+
∥

∥〈y〉ℓ∂m
x ∂k

y∂yu0

∥

∥

2

L2

)

.

This together with

∑
m,k≥0

(m+1)2H2
ρ0,m+1,k

∥

∥〈y〉ℓ∂m
x ∂k

y∂yu0

∥

∥

2

L2 ≤‖u0‖
2
G3/2,1

2ρ0,ℓ

,

and

∞

∑
m=0

(m+1)N2
ρ0 ,m+1

∥

∥〈y〉ℓ−1∂m+1
x u0

∥

∥

2

L2

=
∞

∑
m=0

(m+1)

(

1

2

)m+2

N2
2ρ0 ,m+1

∥

∥〈y〉ℓ−1∂m+1
x u0

∥

∥

2

L2 ≤2‖u0‖
2
G3/2,1

2ρ0,ℓ

,

yields

|~a(0)|2Xρ0
≤3‖u0‖

2
G3/2,1

2ρ0,ℓ

+ ∑
m,k≥0

(m+1)2H2
ρ0,m+1,k

∥

∥〈y〉ℓ∂m
x ∂k

y ϕ0

∥

∥

2

L2 . (A.1)

It follows from (2.4) and ℓ≥2 that

∥

∥〈y〉ℓ∂m
x ∂k

yϕ0

∥

∥

L2 ≤
∥

∥〈y〉ℓ∂m
x ∂k

yu1

∥

∥

L2+C ∑
j≤m,i≤k

(

m

j

)(

k

i

)

∥

∥〈y〉ℓ−1∂
m+1−j
x ∂k−i

y u0

∥

∥

L2

×
(

∥

∥〈y〉ℓ−1∂
j
x∂i

yu0

∥

∥

L∞+
∥

∥〈y〉ℓ∂
j
x∂i

y∂yu0

∥

∥

L∞
x L2

y

)

.
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Hence, by using Young’s inequality (2.19) for discrete convolution and the fact

that krk ≤ (1−r)−1 for any pair (r,k)∈ [0,1/2]×Z+ , we conclude that

∑
m,k≥0

(m+1)2H2
ρ0,m+1,k

∥

∥〈y〉ℓ∂m
x ∂k

yϕ0

∥

∥

2

L2 ≤C
(

‖u1‖
2
G3/2,1

2ρ0,ℓ+1

+‖u0‖
2
G3/2,1

2ρ0,ℓ

)

.

This and (A.1) imply (2.12).
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lyticity or monotonicity, Ann. Sci. de lÉcole Norm. Superieure 48(6) (2015), 1273–1325.

[13] D. Gérard-Varet, N. Masmoudi, and V. Vicol, Well-posedness of the hydrostatic Navier-

Stokes equations, Anal. PDE 13(5) (2020), 1417–1455.

[14] Y. Guo and T. Nguyen, A note on Prandtl boundary layers, Comm. Pure Appl. Math.

64(10) (2011), 1416–1438.

[15] M. Ignatova and V. Vicol, Almost global existence for the Prandtl boundary layer equa-

tions, Arch. Ration. Mech. Anal. 220(2) (2016), 809–848.

[16] I. Kukavica, N. Masmoudi, V. Vicol, and T. K. Wong, On the local well-posedness of

the Prandtl and hydrostatic Euler equations with multiple monotonicity regions, SIAM

J. Math. Anal. 46(6) (2014), 3865–3890.

[17] W.-X. Li, N. Masmoudi, and T. Yang, Well-posedness in Gevrey function space for 3D

Prandtl equations without structural assumption, Comm. Pure Appl. Math. 75(8) (2022),

1755–1797.

[18] W.-X. Li, V.-S. Ngo, and C.-J. Xu, Boundary layer analysis for the fast horizontal rotating

fluids, Commun. Math. Sci. 17(2) (2019), 299–338.

[19] W.-X. Li, M. Paicu, and P. Zhang, Gevrey solutions of quasi-linear hyperbolic hydrostatic

Navier-Stokes system, SIAM J. Math. Anal. (2023). To appear.

[20] W.-X. Li, D. Wu, and C.-J. Xu, Gevrey class smoothing effect for the Prandtl equation,

SIAM J. Math. Anal. 48(3) (2016), 1672–1726.

[21] W.-X. Li and R. Xu, Gevrey well-posedness of the hyperbolic Prandtl equations, Commun.

Math. Res. 38(4) (2022), 605–624.

[22] W.-X. Li, R. Xu, and T. Yang, Global well-posedness of a Prandtl model from MHD in

Gevrey function spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 42(6) (2022), 2343–2366.

[23] W.-X. Li and T. Yang, Well-posedness in Gevrey function spaces for the Prandtl equations

with non-degenerate critical points, J. Eur. Math. Soc. (JEMS) 22(3) (2020), 717–775.

[24] W.-X. Li and T. Yang, 3D hyperbolic Navier-Stokes equations in a thin strip: Global

well-posedness and hydrostatic limit in Gevrey space, Commun. Math. Anal. Appl. 1(4)

(2022), 471–502.

[25] C.-J. Liu, Y.-G. Wang, and T. Yang, On the ill-posedness of the Prandtl equations in three-

dimensional space, Arch. Ration. Mech. Anal. 220(1) (2016), 83–108.

[26] C.-J. Liu, Y.-G. Wang, and T. Yang, A well-posedness theory for the Prandtl equations in

three space variables, Adv. Math. 308 (2017), 1074–1126.



420 W.-X. Li, T. Yang and P. Zhang / Commun. Math. Anal. Appl., 2 (2023), pp. 388-420

[27] C.-J. Liu and T. Yang, Ill-posedness of the Prandtl equations in Sobolev spaces around

a shear flow with general decay, J. Math. Pures Appl. (9), 108(2) (2017), 150–162.

[28] M. Paicu and P. Zhang, Global existence and the decay of solutions to the Prandtl system

with small analytic data, Arch. Ration. Mech. Anal. 241(1) (2021), 403–446.

[29] M. Paicu and P. Zhang, Global hydrostatic approximation of the hyperbolic Navier-Stokes

system with small Gevrey class 2 data, Sci. China Math. 65(6) (2022), 1109–1146.

[30] R. Racke and J. Saal, Hyperbolic Navier-Stokes equations II: Global existence of small

solutions, Evol. Equ. Control Theory 1(1) (2012), 217–234.

[31] C. Wang and Y. Wang, Optimal Gevrey stability of hydrostatic approximation for the

Navier-Stokes equations in a thin domain, arXiv:2206.03873, 2022.

[32] C. Wang, Y. Wang, and P. Zhang, On the global small solution of 2-D Prandtl system

with initial data in the optimal Gevrey class, arXiv:2103.00681, 2021.

[33] Z. Xin and L. Zhang, On the global existence of solutions to the Prandtl’s system, Adv.

Math. 181(1) (2004), 88–133.

[34] T. Yang, Vector fields of cancellation for the Prandtl operators, Commun. Math. Anal.

Appl. 1(2) (2022), 345–354.

[35] P. Zhang and Z. Zhang, Long time well-posedness of Prandtl system with small and ana-

lytic initial data, J. Funct. Anal. 270(7) (2016), 2591–2615.


