
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 5, Number 1-2, Pages 97–112

ROBINIA: SCALABLE FRAMEWORK FOR DATA-INTENSIVE

SCIENTIFIC COMPUTING ON WIDE AREA NETWORK

YANG GU, GUOQING LI, QUAN ZOU, AND ZHENCHUN HUANG

Abstract. With the continuously growing data from scientific devices and models, data explo-

ration becomes one of four kinds of scientific research paradigms. It leads to faster, larger-scale
and more complex processing requirements, and parallelism is being more and more important for

scientific data analyzing applications. But, because of troubles such as unstable wide-area network

and heterogeneity among computing platforms, it is difficult to create scalable parallel scientific
applications, especially wide-area parallel applications which have to process big data from ge-

ographically distributed research institutes to enable complex data analysis for ”great challenge

problems”. In this paper, a data intensive computing framework named Robinia is proposed for
exploiting parallelism among processing nodes over wide area network for data-intensive analysis

on scientific big data. Robinia integrates distributed resources such as scientific data, processing

algorithms, and storage services by a platform-independent framework; provides a unified execu-
tion environment for wide-area network based distributed spatial applications; and helps them

exploit parallelism by a well-defined web-based programming interface. Experiments on proto-

type system and demo applications show that scientific analysis applications based on Robinia
can achieve higher performance and better scalability by analyzing distributive stored big data

over wide-area network such as Internet simultaneously.

Key words. parallel processing, wide area network, scientific computing, big data.

1. Introduction

In the last decades, more scientific devices are built and more scientific data are
captured and stored. For example, devices such as the Square Kilometre Array
of radio telescopes project, CERNs Large Hadron Collider, and astronomys Pan-
STARRS array of celestial telescopes are capable of generating several petabytes
(PB) of data per day, but present plans limit them to more manageable data col-
lection rates. To enable the fourth paradigm for science based on data-intensive
computing, tremendous capability and scalability are required for scientific data
processing and visualization infrastructure to store, process, analyze and visual-
ize the data so that information, knowledge and theories in the big data can be
discovered and mined. In order to make the data processing faster, simpler and
more scalable, parallelism is enabled for the scientific data analyzing applications,
and one of the best ways to achieve scalable performance is exploiting parallelism
of applications. It decomposes a data processing job on mass data into a lot of
subtasks on distributed nodes, which will deal with a piece of data independently.

There are many ways for scientific applications to achieve parallelism. For exam-
ple, High Performance Fortran (HPF) [1] and OpenMP [2] exploits parallelism by
employing many processors or processor cores to process different parts of a single
array, MPMD programming with MPI [3] extends the same idea to a distributed
setting such as cluster, and a data-intensive distributed application may achieve
it by running coarse-grain subtasks on geographically distributed computing nodes
concurrently.

Received by the editors January 11, 2014 and, in revised form, March 21, 2014.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.

97

98 Y. GU, G. LI, Q. ZOU, AND Z. HUANG

Otherwise, scientific big data are often massive and geographically distributed
among research institutes around the world. To analyze these data for some scien-
tific results, applications must execute on heterogeneous computing nodes provided
and managed by different agents. For example, a spatial application will query
and analyze remote sensing data from several space agencies such as NASA, ESA
and JAXA so that knowledge hidden in the big data set can be discovered. In this
scenario, a coarse-grain parallel application can minimize the data transfer cost by
scheduling subtasks to process data closer to where it is stored, and achieve better
performance by allocating subtasks on more geographically distributed computing
nodes. It is one of the best ways to achieve parallelism, especially on wide area
networks (WAN) such as Internet.

But, it is challenging to create a scalable and efficient wide-area parallel appli-
cation for scientific data processing, especially for beginners who have not much
knowledge and experiment in parallelization for distributed context. Codes must
be written carefully to decompose the processing job into subtasks, distribute data
among nodes, transfer commands and messages through WAN, schedule subtasks
for load balancing, monitor computing nodes, etc. So, programming models and
frameworks which can help data-intensive application development and execution
will be very valuable for scientific data processing.

Due to the lack of wide-area parallel processing framework for scientific data-
intensive applications, we propose such a framework named Robinia, in order to
enable parallel processing on wide area network for scientific data-intensive comput-
ing. First of all, distributed execution environment of Robinia exchanges commands
and messages by standard protocols such as HTTP, so that firewalls can be passed
through. Then, toolkits provided by Robinia such as dynamical node discovery,
smart data distribution, description-based algorithm migration, and adaptive task
scheduling, integrates increasing processing and storage resources all over the WAN
together for distributed spatial applications. Furthermore, existing codes and algo-
rithms for scientific data processing can be reused easily and deployed dynamically,
and new codes and models can be developed simply by many programming lan-
guages and script languages. (e.g. Java, Beanshell, Groovy and Scala) As the
result, much higher amount of scientific data can be processed by more computing
nodes around the world without much performance loss and extra work when the
problem size increases.

The paper is organized as follows. After the discussion about related work in
section 2, section 3 proposes the architecture overview of Robinia, and designs
components such as Executor, Engine, Node Discovery, Global Weather Focus and
Web-based User Interaction for Robinia. Section 4 studies how to store mass data
on a number of nodes by storage cluster, the atomic element for data storage in
Robinia. Section 5 describes parallel processing implementation based on master-
worker executors, and implements MapReduce model on Robinia as an example.
Section 6 details the implementation such as event loop, distributed node discov-
ery, and existing codes integration, and end-user interaction. Finally, section 7
discusses experiences about typical scientific data processing applications such as
remote sensing parallel processing and distributed biological sequence comparing;
and conclusions are summarized in section 8.

SCALABLE FRAMEWORK FOR DATA-INTENSIVE SCI. COMPUTING ON WAN 99

2. Related Work

There has already been a lot of work for exploiting data parallelism. Condor,
which is renamed as HTCondor in [4], was one of the early examples of such dis-
tributed systems. When users submit their serial or parallel jobs to HTCondor, it
places them into job queue, schedules them on computing nodes in a ”Beowulf”
cluster, monitors their progress and ultimately informs the user while completion.

Grid computing has been used to build operational infrastructures for data-
parallel processing when it is proposed. Grid infrastructures are built to enable
users the ability to access, modify and transfer extremely large amounts of ge-
ographically distributed data for research purposes by middleware and services,
such as data transport, data access, data replication, task scheduling, and resource
allocation. For example, projects such as G-POD from ESA [5] and GEO Grid
based on Gfarm [6] are proposed for users to store and process earth observation
data more on-demand and extensible based on grid infrastructures. In the recent
years, more models and frameworks are proposed to exploit massive parallelism for
scientific applications, such as MapReduce [7] and Dryad [8].

Googles MapReduce provides a good abstraction of group-by-aggregation oper-
ations over a cluster of machines. By a map function for grouping and a reduce
function for aggregation provided by programmers, run-time system achieves par-
allelism by partitioning the data and processing different partitions on multiple
machines concurrently. Apache Hadoop [9], an open-source Java implementation
for MapReduce, is widely used for delivering highly-available services on top of a
cluster of computers. However, this model has its own set of limitations. Users
are forced to map their applications to the map-reduce model in order to achieve
parallelism. This mapping is very unnatural for some scientific data processing
applications. Furthermore, existing codes cant be deployed and re-used easily in
MapReduce.

Microsofts Dryad is more general and flexible. It can execute arbitrary compu-
tation which is expressed as directed acyclic graph (DAG). A Dryad application
combines simple computational vertices provided by users with communication
channels to form a data flow graph, and runs by executing the vertices of this
graph on a set of available computers, communicating through files, TCP pipes,
and shared-memory FIFOs. But, Dryad is not appropriate for applications such
as iterative jobs, nested parallelism, and irregular parallelism, which are frequently
used in scientific computing. And, developing a new application by Dryad is still a
hard job, especially for beginners.

Besides above productions, there are a lot of exploration projects on data-parallel
processing models, services and infrastructures, such as Yahoo!s PigLatin [10], Mi-
crosofts SCOPE [11], Googles GFS [12], Big Table [13], Dremel [14], and Spanner
[15]. Furthermore, much more achievements are proposed for data-parallel program-
ming in some application domain, e.g. data parallel Haskell [16], Hyracks software
platform [17], and GridBatch cloud computing system [18]. For example, to process
remote sensing data parallel, the Matsu Project provide a cloud-based on-demand
disaster assessment capability through satellite image comparisons [19], and Guan,
et al. proposed a parallel framework for processing massive spatial data with a
Split-and-Merge paradigm. [20] The Global Earth Observation System of Systems
(GEOSS), which is managed by the Group on Earth Observations (GEO), an in-
ternational collaboration of many organizations that produce and consume Earth
observation data, deploys an international, federated infrastructure for sharing of
Earth observation data products worldwide.

100 Y. GU, G. LI, Q. ZOU, AND Z. HUANG

But, most of these productions, such as Hadoop, suppose that big data are
stored and processed on local area network with high bandwidth and low latency.
This questionable assumption makes data distribution and task scheduling much
simpler. For example, transmission time for data distribution is predicable so that
scheduler can optimize tasks better; processing elements can transfer commands and
data by customized protocols for higher performance, etc. When these productions
are migrated to WAN, the complex and unstable network environment invalids
the assumption and brings much more troubles, especially to parallel processing
across research organizations. For instance, transferring data from storage node to
processing server may cost too long so that the benefit from parallel processing is
spoilt; some services may be blocked by firewalls on the network border of institutes;
processing nodes and storage nodes which are running a part of parallel job may
crash or go off-line without any notification; and so on.

3. Architecture Overview

As a parallel processing framework for applications on the wide-area network,
Robinia tries to exploit parallelism for processing scientific data distributed in in-
stitutes around the world with better performance, scalability and robustness. A
center-less symmetric architecture is employed, in which nodes are independent
and coequal for cooperation, no matter what they are desktop computers, high-
performance clusters, or even super computers. On these nodes, a distributed
platform-independent runtime environment middleware is installed so that nodes
can discover each other for collaboration, and support the execution of wide-area
data-intensive applications. The overview architecture is shown in figure 1.

Figure 1. Architecture overview

Runtime environment employs an event-based asynchronous execution model for
Robinia Kernel. Based on an event queue and a pack of event processor threads,
Robinia kernel can provide functions such as event handling and timing for other
modules in the runtime environment.

Since almost all firewalls on Internet allow clients inside to initiate HTTP or
FTP connection to outside servers, it is logical to use these protocols to transfer
commands, messages and data through the firewalls. A servlet based interface mod-
ule receives and analyzes these encoded commands and messages, and dispatches
them to the appropriate modules for further processing. Furthermore, a method
named service reverse or active service is purchased to allow Robinia nodes inside
to serve other Robinia nodes outside without any firewall reconfiguration.

SCALABLE FRAMEWORK FOR DATA-INTENSIVE SCI. COMPUTING ON WAN 101

In Robinia, all kinds of executable codes, including applications, are deployed and
managed as Executors which described by XML-based configuration file shown in
figure 2. Executors are hierarchical. An executor can invoke other executors locally
or remotely. When an executor is usually invoked by user directly, it can be regarded
as an application. Robinia Engine runs executors written in different languages,
such as java, script language, native codes, workflow description languages, etc.
Users can deploy their algorithms and methods simply by creating a configuration
file. When required, executor engine will create a new instance by reference to
the executor, start the instance, monitor its state transition, and collect its results
for the invoker when instance accomplish. Furthermore, engine indexes deployed
executors by their universal names and key-value properties for search.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<executor>
<name>echo</name>
<type>java</ type>
<d e s c r i p t i o n>System executor f o r echo .</ d e s c r i p t i o n>
<f e a t u r e name=” c l a s s ”>System . System</ f e a t u r e>
<parameter name=” c l a s s ”>

org . thg r id . r o b i n i a . system . SystemExecutors
</ parameter>
<parameter name=”method”>echo</ parameter>
<auth name=” .∗ ”>a l low</auth>

</ executor>

Figure 2. Configuration file for executors

To achieve parallel data processing on WAN, Robinia stores and manages the
data to be processed by its Distributed Data Storage. By a well-defined pro-
gramming interface, applications can store, search, and access distributed data with
a hierarchic data model all over Robinia system. With different executor imple-
mentations, data can be stored temporarily in main memory, or permanently in
SQL-based relational databases like mySQL [21] and no-SQL databases such as
MongoDB [22].

Besides above, there are more modules in Robinia, such as Distributed Node Dis-
covery, Global Weather Focus, and User Interaction Support, which provide more
powerful services for applications based on Robinia. For example, Node Discov-
ery tries to help center-less nodes discover each other via a set of boot-up servers;
Global Weather Focus collects system information such as load of hosts and net-
work weather regularly for better schedule, User Interaction Support provides
a universal web-based user interaction framework for Robinia executors, and so on.
Based on Java Development Kit and Servlet Container such as Apache Tomcat
[23], Robinia runtime environment made up by these modules supplies capabilities
to distribute, store, and process big data concurrently for high-performance and
high-throughput data intensive applications.

4. Distributed Storage for Scientific Data

Robinia abstracts a data item as document with three possible parts: Meta data,
values, and attachments. The meta data in a document is defined as the information
about one or more aspects of the document, including global ID, usage, update

102 Y. GU, G. LI, Q. ZOU, AND Z. HUANG

time, keywords about the data item, and so on. It can be regarded as the head of
a data item. Values are located by storage reference in meta-data and stores the
main part of the data item in nested key-value pairs as the body of a data item.
(Shown in figure 3) It is the structured part of scientific data. Optional attachments
referenced by attachment references in values are regarded as some attached data
with huge amounts and usually stored as files and accessed as data streams without
pre-defined structure. Applications can search data items by their meta-data, and
access their values and attachment via its storage references in meta-data.

Record = {key : value , . . . }
Key = s t r i n g
Value = number | s t r i n g | Boolean | l i s t | record
L i s t = {value , . . . }

Figure 3. Schema of meta data and values

In Robinia, scientific data are stored in Storage Clusters which are the atomic
elements for data storage. Storage cluster, shortly SC, is made up by two parts:
one header node with fault-tolerant backups, and a pack of data nodes. It is shown
in figure 4. Header node is the main entrance of a storage cluster; it stores and
indexes meta data for all data items in the storage cluster. While an application
requires scientific data, it should search and get meta data from header node first,
and then accesses the values and attachments on data nodes under the guidance of
storage reference in meta data. A data item may has more than one copy of values
and attachments referenced by storage reference in meta data, so that the storage
cluster can access it free when some nodes are down or off-line.

Figure 4. Storage Cluster

Based on mongoDB, a no-SQL database, two executors named SCHeader and
SCData are designed and implemented for header nodes and data nodes in storage
cluster. They receive XML based encoded requests for data query or data access,
and send XML based responses while the requests are processed. Supported by a
client library, applications can invoke these executors to search meta data, access
data values, and stream attachments locally or remotely.

SCALABLE FRAMEWORK FOR DATA-INTENSIVE SCI. COMPUTING ON WAN 103

5. Implementation of Parallel Processing

To process scientific data parallel, distributed application should deploy a master
executor and a series of worker executors in Robinia. In these executors, master
plays the role of controller and scheduler, which schedules workers with same or
different algorithms and implementations on different platforms to process the input
and immediate data set.

Figure 5. Execution of distributed applications

As shown in figure 5, data-intensive distributed applications process scientific
data by following sequence of actions.

(1) Master splits the processing task into pieces by partitioning input data
set first. When the application initializes, input data set may be already
distributed in Robinia SC, or still stored out of Robinia. Master just splits
input data set into pieces logically without any data transfer.

(2) Master finds available computation nodes for workers, and schedules work-
ers to process partitioned data sets on them. Worker executors are created
as close as possible to where data stored, so that it will cost less time for
workers to transfer input or immediate data.

(3) Workers are monitored so that master can collect their result data set when
process complete, if it is necessary. Furthermore, when some workers are
off-line because of accidents such as software fault or network failure, master
will schedule other workers to take their place for continuous execution of
distributed application.

Based on well-defined master and worker executors, MapReduce can be imple-
mented, too. In Robinia, a MapReduce application will be launched by starting
a MapReduceMaster executor which commands three different kinds of workers:
mapper, shuffler, and reducer. It is shown in figure 6.

When MapReduceMaster is started, it splits input dataset into pieces and finds
available processing nodes to schedule mappers provided by application developer
for map function on these pieces of data. When all mappers are accomplished, a

104 Y. GU, G. LI, Q. ZOU, AND Z. HUANG

Figure 6. MapReduce based on Robinia

shuffler executor will be started to shuffle results of mappers for reducers. Then,
reducers run reduce functions for pieces of result dataset which will be collected by
MapReduceMaster for the final result. Different from mapper and reducer which
should be provided by applications developer, shuffler can be chosen from those
provided by Robinia, as well as implemented for customized data shuffling or better
performance.

6. Implementation Details

For its performance and platform-independence, Robinia adopts Java language
to implement its runtime environment. And the run time environment is released
as a WAR package which can easily deployed in Java Servlet container such as
Apache Tomcat 6.0.x or higher.

In its kernel, Robinia runtime environment employs an event-based asynchronous
execution model. Requests such as create an instance by given executor or run a
benchmark are posted into event queue as an event for an event loop thread to
peek them. When a new event is found in queue, event loop thread selects an event
processor thread from thread pool, and dispatch the event to it for handling the
event. Event is also used for timing by timing event which can be posted on a given
time.

As a distributed system, it is very important for Robinia to support its nodes
discover each other without single point of failure. In Robinia, each node must send
a set of registry servers heart-beat data to keep alive and refresh the current avail-
able node list regularly. If heat-beat is not heard from some nodes for a period of
time (time-out), registry server will remove these nodes from its node list. To avoid
single point failure, nodes in Robinia vote multiple registry servers automatically,
so that distributed node discovery can keep work when some of the registry server
nodes crash. Robinia node can make node list as complete as possible by merge
lists got from different registry servers.

SCALABLE FRAMEWORK FOR DATA-INTENSIVE SCI. COMPUTING ON WAN 105

Figure 7. distributed node discovery

As shown in figure 7, a Robinia node must register itself by sending a boot-up
heart beat to some manually configured boot-up servers first when it initializes.
While node list and voted server list responded by boot-up servers is received, the
new node will start to send heart-beat to voted registry servers regularly to keep it
from being removed. In most scenes, boot-up servers are usually voted as registry
servers for better performance.

Figure 8. states of an instance in a life-cycle

In Robinia, executors can be programmed by java class, beanshell script, groovy
script, scala script and native codes on processing nodes, and they are described by
a XML based description file for their interfaces and implementations. Benefit from
the plug-in based executor running environment, more programming languages and
script languages will be supported to develop executor in Robinia soon. At the same
time, existing codes and algorithms can also be deployed as executors by writing a
description file easily, so that accumulated codes and algorithms will go on serving
with less modification. All running executors are called instances which can be
created when needed. If it is an instance of on-demand executor which algorithm
should migrate from other nodes, Robinia must initialize the instance by migrating

106 Y. GU, G. LI, Q. ZOU, AND Z. HUANG

proven algorithm from its provider first. Then, the instance can be started to
process or query data. When it is running, Robinia will keep monitoring its states,
until it is accomplished and destroyed. Figure 8 shows the states of instances in a
life cycle.

Figure 9. Example of web based user interface

Applications often need interact with users when running, so that users can
control the execution of applications, such as view the immediate or final result,
input parameters, select target data set, etc. Some pre-defined executors with
feature class=WebUI.* can be invoked for applications to interact with users via
web pages. For example, an executor with name WebInput can be invoked to
show some messages to user and get a response string from user by an embedded
JSP page. Application developers can implement new interaction executors by
embedding some standardized JSP page fragments. Figure 9 is an example of web
based user interaction page with google map embedded.

7. Experiences and Discussion

Based on Robinia, we build a distributed data-intensive scientific processing
prototype, and deploy sample applications for remote sensing data analysis and
biological sequence comparing. The applications are benchmarked for their per-
formance and scalability on the prototype assembled by four PC nodes with Intel
Core i3 @ 2.93GHz CPU, 4GB memory, 1 TB 7200rpm hard disk and windows 7
64-bit system connected with Giga-bits Ethernet.

7.1. Experiences about Remote Sensing Data Analysis. To make the appli-
cation development easier, frequently-used tools such as the MODIS Reprojection
Tool [24] are adapted as executors in the prototype for some basic functions such as
resampling and image format conversion. As an example, we develop an application
for global drought detection by Normal Differential Water Index (NDWI) brought
up by Gao in 1996 [25]. It can be calculated by:

SCALABLE FRAMEWORK FOR DATA-INTENSIVE SCI. COMPUTING ON WAN 107

NDWI = (ρ2 − ρ6)/(ρ2 + ρ6)

avgNDWI =

n∑
i=1

NDWIi/n

AWIi = NDWIi − avgNDWI

Here, NDWI is the difference between two bands in MODIS data, green(ρ2, 0.86-
μm) and nearinfrared (NIR, ρ5, 1.24μm). avgNDWI is the average value of NDWI
in given time scope. AWI is short for Anomaly Water Index, which points out how
drought the vegetation canopies are in a given time.

We implement the application based on the Java HDF Interface (JHI) [26] from
the HDF Group. To benchmark performance and scalability of the prototype, we
run the application on 4 test data sets with different sizes for evaluation. They are
shown in table 1.

Table 1. Data sets for global drought detection tests

Test No. Data size Descriptions
1 23GB A small MODIS data set for test
2 180GB MODIS data on the same day in eleven years
3 361GB MODIS data on the same two days in spring and

autumn of eleven years
4 722GB MODIS data on the same four days in all seasons

of eleven years

In the global drought detection application, all NDWI indexes for the same area
will be averaged for AWI indexes calculation. If image data set for the same area is
distributed on multiple storage nodes, additional time cost is necessary for collecting
NDWI index data items for AWI index calculation. To reduce the time cost of data
transfer, MODIS image data sets which cover the same area are stored in the same
data storage node in advance. It is an example for Smart data partition. Figure 10
shows the result of AWI indexes on March 5th, 2002 as an example. It is a part of
test 4. All processing results from parallel application are the same as them from
the original serial application.

Figure 10. AWI indexes on March 5th, 2002 as result of the test application

108 Y. GU, G. LI, Q. ZOU, AND Z. HUANG

To study the performance and scalability of Robinia, we benchmark the parallel
application and the serial application on test cases shown in table 1. First of all,
we run the application on 1, 2, and 4 computation nodes to process test data set 4
which is already partitioned and stored on the processing nodes. At the same time,
we run the serial application on a PC with the same configuration for reference.
The time cost and speed-up are shown in figure 11.

(a) Result for test 1 (b) Result for test 4

Figure 11. Time costs and speed-ups of Remote Sensing Data
Analysis Benchmark

Figure 11 shows that the speed-up factors on 4 nodes are 4.58 (for test 1) or
3.76 (for test 4), and their efficiencies are 4.58/4=115% or 3.76/4=94%. The
quasi-linear to super-linear speed-up results show that Robinia is high perfor-
mance, and scalable on node size. Furthermore, we run benchmarks on all the
test data sets for the data size scalability of Robinia, and the results are shown
in figure 12. In the result, average time costs for processing 1 GB input data are
5.22/23=0.227minutes, 54.69/180.5=0.303minutes, 132.3/361=0.366minutes, and
250.07/722=0.346minutes. It suggests that the time cost is almost linear with the
size of data set, except test data set No. 1, which is so small that memory cache
for disk I/O plays a very important role and accelerates the processing much more.

Figure 12. time
costs on different
data sets

Figure 13. time
costs and speed-
ups on low-
bandwidth net-
work

In order to evaluate the performance of the prototype on WAN, we migrate the
prototype to a low-speed network on which all computation nodes share 10Mbps
bandwidth. Benchmark result on test case 4 is shown in figure 13. Unsurprisingly,
the parallel processing efficiency is reduced for about 18% because it costs more
time for transferring commands and messages on WAN. But, speed-up over 3 on

SCALABLE FRAMEWORK FOR DATA-INTENSIVE SCI. COMPUTING ON WAN 109

four nodes prototype indicates that Robinia is still scalable and extensible on low-
bandwidth network such as WAN.

7.2. Experiences about Biological Sequence Comparing. When a DNA or
protein sequence is found, comparing it with a database of known sequences to find
similarities is one of the most important ways to study functions and features of this
new sequence. BLAST (Basic Local Alignment Search Tool) [27], provided by NCBI
for aligning query sequences against those present in a selected target database, is
one of the most important tools in biological research. Based on Robinia, we deploy
a parallel BLAST on wide-area network and schedule multiply computing nodes to
compare sequences simultaneously for better performance.

There are several approaches for the parallelization of BLAST, such as partition
the database and split the query. In this paper, we partition the database by com-
mand line tool makeblastdb to parallel BALST, and run distributed applications
which adapt blastx and blastp command line tools on our 4-nodes prototype. The
nr database which is the most popular protein database in NCBI was chosen as the
testing database, and two difference sequence sets are used as query sets for test.
(table 2)

Table 2. Test case for Biological Sequence Comparing

Database nr (32052081 sequences and almost 11.12GB until
2013.08.26

Query set 1 One DNA sequence of 14000 byte length from before re-
search

Query set 2 20 protein queries selected from Arabidopsis thaliana, with
size from 129bp to 2214bp

The parallel BLAST application returns the sample result as the serial one, and
runs much faster than the serial one. On our 4-nodes prototype, the speed-ups of
parallel BLAST for query sets above are 3.52 (for query set 1) and 4.18 (for query
set 2), and the efficiencies are 3.52/4=88% and 104.5% (Figure 14). They are
also quasi-linear or super-linear, and show that Robinia is also high performance,
scalable and extensible for Biological Sequence Comparing applications.

Figure 14. time costs and speed-ups of Biological Sequence Com-
paring benchmark

From the experience above, we find that Robinia can exploit data parallelism for
scientific data processing on wide area network such as Internet, and endows data
parallel applications scalable performance. It is very valuable for those scenes that

110 Y. GU, G. LI, Q. ZOU, AND Z. HUANG

scientists need applications to process big data stored in different research institutes.
With more tool executors, data prefetching, processing algorithm migration, and
adaptive scheduling methods, applications based on Robinia can achieve higher
performance, better scalability and fault-tolerance for more application domains.

8. Conclusion

In this paper, we try to exploit parallelism for scientific data processing on
wide area network such as Internet based on Robinia, a light-weight, platform-
independent and high performance data-intensive scientific computing framework.
First, standard protocols such as HTTP are adopted to transfer commands and
messages through firewalls all over the Internet, and service reverse enables nodes
inside to serve clients outside without re-configuration of firewalls. Based on them,
nodes with Robinia runtime environment can discover each other for collaboration
simply and dynamically.

Second, storage cluster which is the basic element for scientific data storage is
proposed. It stores data in three parts: meta data, values, and attachments. Users
can query meta data stored on the header node by pre-defined properties such as
sensor name, acquirement time, area covered, and band type for remote sensing
data as a sample. Referenced by the meta data, values and attachments stored on
data nodes can be accessed via their storage references and attachment references.

Furthermore, parallel processing on remote sensing data is supported based on
Robinia executors which play roles of master and worker. Under the control of
master, workers complete the decomposed process jobs on partitioned data si-
multaneously for better performance and scalability. Based on executors named
MapReduceMaster and shuffler provided by Robinia, developers can implement
and deploy MapReduce applications on Robinia easily by develop a map function
and a reduce function. At the same time, existing codes and algorithms can also
be deployed as executors by writing a description file easily, so that accumulated
codes and algorithms will go on serving with less modification.

Finally, a distributed data-intensive processing prototype for scientific data is
implemented and applications for global drought detection by NDWI and Biological
Sequence Comparing by BLAST are developed and deployed. Tests with different
input data sets and network conditions are launched for performance evaluation.
The results with quasi-linear to super-linear speed-up factors shows that distributed
applications for scientific data processing supported by Robinia can achieve high
performance simply, elastically, fault-tolerant and platform-independent.

Acknowledgments

The author thanks the anonymous authors whose work largely constitutes this
sample file. The research is supported in part by National High-Tech Research and
Development Program of China (863 Program) under Grant No. 2011AA120306,
and by National Natural Science Foundation of China (NSFC) under Grant No.
60703054.

References

[1] Loveman D B.: High performance fortran. Parallel & Distributed Technology: Systems &
Applications, IEEE, 1993, 1(1): 25-42.

[2] Dagum L, Menon R.: OpenMP: an industry standard API for shared-memory programming.
Computational Science & Engineering, IEEE, 1998, 5(1): 46-55.

[3] Message Passing Interface, http://www.mcs.anl.gov/research/projects/mpi/

SCALABLE FRAMEWORK FOR DATA-INTENSIVE SCI. COMPUTING ON WAN 111

[4] Douglas Thain, Todd Tannenbaum, and Miron Livny.: Distributed computing in practice:

The Condor experience. Concurrency and Computation: Practice and Experience, 17(2-

4):323C356, 2005
[5] Cossu, Roberto, et al. ESA Grid Processing on Demand for fast access to Earth Observation

data and rapid mapping of flood events. European Geosciences Union General Assembly

(2008).
[6] Sekiguchi S, Tanaka Y, Kojima I, et al. Design principles and IT overviews of the GEO Grid.

Systems Journal, IEEE, 2008, 2(3): 374-389.

[7] Jeff Dean and Sanjay Ghemawat.: MapReduce: Simplified data processing on large clusters.
In Proceedings of the 6th Symposium on Operating Systems Design and Implementation

(OSDI), pages 137C150, December 2004

[8] Isard M, Budiu M, Yu Y, et al.: Dryad: distributed data-parallel programs from sequential
building blocks. ACM SIGOPS Operating Systems Review, 2007, 41(3): 59-72.

[9] Welcome to Apache Hadoop!, http://hadoop.apache.org/
[10] Olston C, Reed B, Srivastava U, et al.: Pig latin: a not-so-foreign language for data processing.

In: Proceedings of the 2008 ACM SIGMOD international conference on Management of data.

ACM, 2008: 1099-1110.
[11] Chaiken R, Jenkins B, Larson P Å, et al.: SCOPE: easy and efficient parallel processing of

massive data sets. Proceedings of the VLDB Endowment, 2008, 1(2): 1265-1276.

[12] Ghemawat S, Gobioff H, Leung S T.: The Google file system. In: ACM SIGOPS Operating
Systems Review. ACM, 2003, 37(5): 29-43.

[13] Chang, F., Dean, J., Ghemawat, S., et al:, Bigtable: a distributed storage system for struc-

tured data, OSDI 2006, 205-218.
[14] Melnik S, Gubarev A, Long J J, et al.: Dremel: interactive analysis of web-scale datasets.

Proceedings of the VLDB Endowment, 2010, 3(1-2): 330-339.

[15] Corbett, J. C., Dean, J., Epstein, M., et al.:, Spanner: Googleś Globally-Distributed Data-
base. In: Proceedings of the 10th USENIX Symposium on Operating System Design and

Implementation (OSDI 1́2), 2012: 251-264.
[16] P.W. Trinder, H-W. Loidl, and R.F. Pointon: Parallel and distributed Haskells. Journal of

Functional Programming, 12(4&5):469C510, 2002

[17] Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: A flexible and extensible
foundation for data-intensive computing. In: Data Engineering (ICDE), 2011 IEEE 27th

International Conference on, pp. 1151-1162

[18] Liu, H., Orban, D.: Gridbatch: Cloud computing for large-scale data-intensive batch ap-

plications. In: Cluster Computing and the Grid, 2008. CCGRID0́8. 8th IEEE International

Symposium on, pp. 295-305
[19] D. Mandl, Matsu: An elastic cloud connected to a sensor web for disaster response, in Ground

System Architectures Workshop (GSAW), Workshop on Cloud Computing for Spacecraft

Operations, Mar. 2, 2011
[20] Guan X, Wu H, Li L. A Parallel Framework for Processing Massive Spatial Data with a

SplitCandCMerge Paradigm. Transactions in GIS, 2012, 16(6): 829-843.

[21] MySQL :: The world’s most popular open source database, http://www.mysql.com/
[22] MongoDB, http://www.mongodb.org/

[23] Apache Tomcat, http://tomcat.apache.org/
[24] MODIS Reprojection Tool LP DAAC — LP DAAC :: ASTER and MODIS Land Data

Products and Services, https://lpdaac.usgs.gov/tools/modis reprojection tool

[25] Gao B C.: NDWIa normalized difference water index for remote sensing of vegetation liquid
water from space. Remote sensing of environment, 1996, 58(3): 257-266

[26] McGrath, Robert E., Xinjian Lu, and Michael Folk. Java (TM) applications using NCSA
HDF files. Concurrency Practice and Experience 9.11 (1997): 1113-1125

[27] Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. Journal of molecular
biology, 1990, 215(3): 403-410

112 Y. GU, G. LI, Q. ZOU, AND Z. HUANG

Department of Computer Science and Technology, Tsinghua University, Beijing, China

E-mail : guyang3532@qq.com

Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
E-mail : gqli@radi.ac.cn

Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
E-mail : qzou@radi.ac.cn

Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
E-mail : huangzc@tsinghua.edu.cn

