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Group-Invariant Solutions and Conservation Laws
of One-Dimensional Nonlinear Wave Equation
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Abstract Based on classical Lie symmetry method, the one-dimensional non-
linear wave equation is investigated. By using four-dimensional subalgebras of
the equation, the invariant groups and commutator table are constructed. Fur-
thermore, optimal system of the equation is obtained, and the exact solutions
can be gained by solving reduced equations. Finally, a complete derivation of
the conservation law is given by using conservation multipliers.
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1. Introduction

Wave equations describe various wave phenomena and have a wide range of applica-
tions in the fields of physics [19], biology and engineering [22,25], making the solution
of wave equations indispensable. The methods of solving partial differential equa-
tions (PDEs) mainly include (G′/G) expansion method [6, 14, 35], extended hyper-
bolic method [26], inverse scattering method [7], exponential function method [32],
generalized exp-function method [13], Bäcklund transformation method [33], Jacobi
elliptic method [2, 4, 15], hyperbolic tangent method [1], F -expansion method [11],
homogeneous equilibrium method [24], Lie symmetry analysis method [12,20,21,29]
and so on [3, 9, 10,34].

The Lie symmetry method can solve PDEs efficiently. In this article, we consider
a one-dimensional nonlinear wave equation

utt =
(

(1 + u)
2a
ux

)
x
, (1.1)

where u is a function of x, t and a > 0 is a constant. In [5], Ames, Lohner and
Adams proposed a general nonlinear fluctuation equation

utt = [B(u)ux]x, (1.2)

where B is expressed as a function of u. Then, they discussed equation (1.2) with Lie
symmetric analysis, and derived explicit invariant solutions to wave propagation and
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transonic equation in gases. Furthermore, Sophocleous and Kingston [27] attempted
the following three special cases

utt = F (ux)uxx, utt = F (uxx) , uxt = F (u). (1.3)

Equation (1.3) exists in the discrete symmetries groups which form finite order
cyclic groups. In [16], Hu studied the degenerate initial-boundary value problem
of equation (1.1), and obtained the global existence of the solution by using the
eigendecomposition method under relaxed conditions. The global existence of the
solution to a more general 2 × 2 conservation system of equation (1.1) was proven
in [18, 30]. In [8, 31], the conservation system of equation (1.1) has been studied.
In [28], Sugiyama introduced the large-time behavior of the solution of the equation
under the Cauchy problem, obtained the sufficient conditions for the degradation
of the equation in finite time and derived a threshold for the global existence and
degradation of the separated solution.

This article mainly includes the following sections. In the second section, the
concepts of Lie symmetry and prolongation method are introduced, followed by a
study on Lie point symmetry and one-dimensional optimal system of the equation.
Investigating the group invariant solutions of the equation by the optimal system, we
obtain the exact solutions through symmetry reduction. The third section discusses
the conservation laws of the equation. Finally, a simple summary is drawn.

2. Lie symmetry analysis and optimal system of e-
quation (1.1)

2.1. Definition introduction

Based on the conclusions of Sophus Lie, some concepts of Lie symmetry [23] have
been set up.

Assume that the s-order partial differential equation system Q with q indepen-
dent variable and m dependent variable is

∆q
(
x, u(n)

)
= 0 , Q = 1, 2, 3, · · · , k, (2.1)

in which x =
(
x1, x2, · · · , xq

)
, u =

(
u1, u2, · · · , um

)
and u(n) represents arbitrary

order derivative of u, and its range of value is from 0 to n. Now, let us discuss the
infinitesimal one-parameter Lie group transformation of the system

x̄k = xk + εξk (x, u) + o
(
ε2
)
, ūp = up + εφp (x, u) + o

(
ε2
)
, (2.2)

where ε is an arbitrary, and ξk, φp represent the infinitesimal transformations of
function independent variables and dependent variables respectively.

Considering the n-order differential equations for u

∆
(
x, u(n)

)
= 0, (2.3)

in which ∆ denotes a smooth mapping from X × U (n) to R :

∆ : X × U (n) → R.
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The following subset can be obtained by equation (2.3)

S′ =
{

(x, un) : ∆
(
x, u(n)

)
= 0
}
⊂ X × U (n).

Assume that S′ is an open subset of X×U (2), and ∆
(
x, u(2)

)
= utt−

(
(1 + u)

2a
ux

)
x

= 0 is the n-order equation defined on S′. Then, the vector v on the open subset
S′ is

v = ξ (x, t, u)
∂

∂x
+ τ (x, t, u)

∂

∂t
+ φ (x, t, u)

∂

∂u
, (2.4)

in which ξ, τ , φ are infinitesimal generators. The second-order prolongation for
equation (1.1) is

Pr(2)v = v + φx
∂

∂ux
+ φxx

∂

∂uxx
+ φtt

∂

∂utt
, (2.5)

where
φx = Dxφ− uxDxξ − utDxτ,

φxx = D2
x (φ− ξux − τut) ,

φtt = D2
t (φ− ξux − τut) ,

(2.6)

where Dx and Dt are fully differentiable operators with respect to x, t.

2.2. Lie symmetry analysis

First, we consider a one-parameter Lie group of point transformation:

x̃ = x+ εξ +O
(
ε2
)
,

t̃ = t+ ετ +O
(
ε2
)
,

ũ = u+ εφ+O
(
ε2
)
,

in which ε is the group parameter, and ξ, τ, φ are infinitesimal variables of x, t, u.
Substituting (2.6) into (2.5) and using Maple software to solve the determining

equations, the infinitesimal can be deduced as follows.

ξ = k1x+ k2, τ = k3t+ k4, φ =
(k1 − k3) (1 + u)

a
, (2.7)

where ki(i = 1, · · · , 4) are constants.
Thus, the Lie algebra of equation (1.1) is generated by four generators

v1 = x
∂

∂x
+

1

a
(1 + u)

∂

∂u
, v2 =

∂

∂x
, v3 = t

∂

∂t
− 1

a
(1 + u)

∂

∂u
, v4 =

∂

∂t
.

(2.8)
Substituting (2.8) into (2.4), we obtain

v = k1

(
x
∂

∂x
+

1

a
(1 + u)

∂

∂u

)
+ k2

∂

∂x
+ k3

(
t
∂

∂t
+

1

a
(−1− u)

∂

∂u

)
+ k4

∂

∂t
.

(2.9)



Solutions and Conservation Laws of Nonlinear Wave Equation 711

Next, in order to get the one-parameter transformation group of equation (1.1),
the system of ODEs with initial values needs to be solved

d

dε

(
x̃, t̃, ũ

)
= ψ

(
x̃, t̃, ũ

)
,
(
x̃, t̃, ũ

)∣∣
ε=0

= (x, t, u) .

The corresponding one-parameter transformation group of the equation is

K1 :
(
eεx, t,

(
−1 + (1 + u) e

ε
a

))
,

K2 : (x+ ε, t, u),

K3 :
(
x, eεt,

(
−1 + (1 + u) e−

ε
a

))
,

K4 : (x, t+ ε, u) .

If u = f(x, t) is the solution of equation (1.1), then the following function is also
the solution of equation (1.1)

u(1) = −1 + (1 + f (xe−ε, t)) e
ε
a ,

u(2) = f (x− ε, t),

u(3) = −1 + (1 + f (x, te−ε)) e−
ε
a ,

u(4) = f (x, t− ε).

2.3. Construction of the optimal system

In the following, we construct the optimal system of equation (1.1) using the com-
mutator table and adjoint representation table. According to the definition of Lie
bracket and adjoint representation,

[vm, vn] = vmvn − vnvm,

Ad (exp (ε) vm) vn = vn − ε [vm, vn] +
1

2
ε2 [vm, [vm, vn]]− · · · .

We can get the following two tables respectively.

Table 1. Commutator table

[vi, vj ] v1 v2 v3 v4

v1 0 −v2 0 0

v2 v2 0 0 0

v3 0 0 0 −v4

v4 0 0 v4 0

Using the adjoint table to give the classification of the subalgebras of the vector
fields (2.8), consider the vector

V = a1v1 + a2v2 + a3v3 + a4v4. (2.10)

First, assume that a1 6= 0, and take a1 = 1,

V = v1 + a2v2 + a3v3 + a4v4.
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Table 2. Adjoint representation table

Ad v1 v2 v3 v4

v1 v1 eεv2 v3 v4

v2 v1 − εv2 v2 v3 v4

v3 v1 v2 v3 eεv4

v4 v1 v2 v3 − εv4 v4

We act Ad(exp(a2v2)) on V,

V (1) = Ad (exp (a2v2)) v = v1 + a3v3 + a4v4.

Then, acting Ad(exp(a4a3 )v4) to V (1),

V (2) = Ad

(
exp

(
a4

a3
v4

))
V (1) = v1 + a3v3. (2.11)

Therefore, if a1 6= 0, every one-dimensional subalgebra generated by V is equal
to v1 + a3v3.

Secondly, assuming that a1 = 0, a3 6= 0, then we assume that a3 = 1. That is,

V = a2v2 + v3 + a4v4.

Then act Ad(exp(a4v4)) to V,

V (3) = Ad (exp (a4v4))V = a2v2 + v3. (2.12)

In the third case, when a1 = 0, a3 = 0, and V = a2v2 +a4v4, there are four cases

v2, v2 ± v4, v4. (2.13)

According to (2.11), (2.12) and (2.13), we obtain that the one-dimensional opti-
mal system of the four subalgebras (2.8) is spanned by: (a) v1 +a3v3, (b) a2v2 +v3,
(c) v2 + v4, (d) v2 − v4, (e) v2, (f) v4.

2.4. Exact solutions for equation (1.1)

In this section, the symmetry reductions and exact solutions are studied for equation
(1.1).

Case 1. For generator

V = v1 + a3v3 = x
∂

∂x
+

1

a
(1 + u)

∂

∂u
+ a3

(
t
∂

∂t
− 1

a
(1 + u)

∂

∂u

)
,

the characteristic equation satisfies

dx

x
=

dt

a3t
=

du
1−a3
a (1 + u)

. (2.14)

The group invariant solution is

u = −1 + t
1−a3
aa3 f (h) , (2.15)
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in which h =
xa3

t
. Assuming that a3 = 1, a = 1 and substituting (2.15) into

equation (1.1), we obtain

−2f(f ′)
2

+ f ′′ξ2 − f2f ′′ + 2f ′ξ = 0. (2.16)

Integrating equation (2.16),

(
f2 − ξ2

)
f ′ = 0, (2.17)

and then we have

f = −ξ, f = ξ, f = c1.

Therefore, equation (1.1) has self-similar solutions as u = −1− x

t
, u = −1 +

x

t
and u = −1 + k1.

Case 2. For generator

V = a2v2 + v3 = a2
∂

∂x
+ t

∂

∂t
− 1

a
(1 + u)

∂

∂u
,

the characteristic equation satisfies

dx

a2
=
dt

t
=

du

− 1
a (1 + u)

.

The group invariant solution is

u = −1 + t−
1
a g (ξ) ,

where the invariant ξ = ce
x
b . Taking it into equation (1.1),

g2g′′ξ2 + 2g(g′)
2
ξ2 + g2g′ξ − g′′ξ2 − 4g′ξ − 2g = 0. (2.18)

Equation (2.18) is a completely nonlinear ordinary differential equation, which
is not easy to solve.
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(a) (b)

(c)

Figure 1. The dynamical structures of u = −1 +
x

t
: (a) singularity profile of u = −1 +

x

t
; (b) density

plot; (c) contour plot

Case 3. When V = v2 + v4 =
∂

∂x
+
∂

∂t
, the characteristic equation is

dx

1
=
dt

1
.

The traveling wave solution is ξ = ξ(x−t), where u can be expressed as u = f(x−t).
Then, taking it into equation (1.1),

f ′ = (1 + f)
2a
f ′ − k1, (2.19)

in which a, k1 are arbitrary constants. Integrating (2.19), we get

(1 + f)
2a+1

2a+ 1
− f =

k1ξ + k2

2a+ 1
, (2.20)

(1 + f)
2a+1 − (2a+ 1) f = k1ξ + k2, (2.21)

where k1 and k2 are arbitrary constants.

Case 4. When V = v2 =
∂

∂x
, the solution of equation (1.1) can be expressed

as u = f(t). For this equation, f ′′ = 0, we can obtain f = k1t + k2, where k1 and
k2 are arbitrary constants.
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Case 5. When V = v4 =
∂

∂t
, the invariant is ξ = x, and then u = f(x). Taking

it into equation (1.1), we obtain

(1 + f)
2a
f ′ = k1, (2.22)

in which k1 is an arbitrary constant. Then, integrating equation (2.22), we get

(1 + f)
2a+1

= (2a+ 1) · k1x.

3. Analysis of conservation laws of equation (1.1)

In this section, we discuss the conservation laws of this one-dimensional nonlinear
wave equation. In [17], some definitions of conservation laws are given.

Definition 3.1 Let x, t be the independent variables, u = u(x, t) be the depen-
dent variable, and ux, ut , uxx, utt, etc, be its partial derivative. Next, we introduce
the conjugate equation and the definition of the multiplier method.

Assume that the s-order partial differential equation with m independent vari-
able can be expressed as

F
(
x, u, u(1), u(2), · · · , u(s)

)
= 0, (3.1)

where x = (x1, x2, · · · , xm), u(i) represents be derivatives of u with respect to
x1, x2, · · · , xn.

The conjugate equation of equation (3.1) is F ∗ = (x, t, u, v, ux, vx, ut, vt, uxx, · · ·),

F ∗
(
x, u, v, u(1), v(1), u(2), v(2), · · · , u(s), v(s)

)
=
δ (ΛF )

δu
. (3.2)

The operator
δ

δu
=

∂

∂u
−Di

∂

∂ui
+Dij

∂

∂uij
−Dijk

∂

∂uijk
+Dijkl

∂

∂uijkl
− · · · is the

Euler-Lagrange operator, and Di represents the total differentiation of xi.
Definition 3.2 Equation (3.1) and equation (3.2) have a Lagrange

L = F = Λ
(
F
(
x, u, u(1), u(2), u(3) · · · , u(s)

))
, (3.3)

where L meets δL
δu = F ∗, δL

δv = F . For equation (3.1), its conservation laws can
be expressed as

M i =ξiL +Wα[
∂L

∂uαi
−Dj

(
∂L

∂uαij

)
+DjDk

(
∂L

∂uαijk

)
−DjDkDm

(
∂L

∂uαijkm

)

+ · · · ] +Dj (Wα)

[
∂L

∂uαij
−Dk

(
∂L

∂uαijk

)
+DkDm

(
∂L

∂uαijkm

)
− · · ·

]

+DjDk (Wα)

[
∂L

∂uαijk
−Dm

(
∂L

∂uαijkm

)
+ · · ·

]

+DjDkDm (Wα)

[
∂L

∂uαijkm
−Dn

(
∂L

∂uαijkmn

)
+ · · ·

]
,

(3.4)
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in which Wα = ηα − ξjuαj .
The formal Lagrangian of equation (1.1) is

L = Λ (x, t, u, ux, ut)
(
utt −

(
(1 + u)

2a
ux

)
x

)
. (3.5)

Assuming that Λ = k1x+ k2t+ k3xt, we obtain the following four cases.

Case 1. For generator v1 = x
∂

∂x
+

1

a
(1 + u)

∂

∂u
, the Lie characteristic function

is W =
1

a
(1 + u)− xux,

Mx =

(
1 + u

a
− xux

)(
−4avux(1 + u)

2a−1
+ vx(1 + u)

2a
+

2avux(1 + u)
2a

1 + u

)
− v(1 + u)

2a
(ux
a
− xuxx − ux

)
,

M t = −vt
(

1 + u

a
− xux

)
+ v

(ut
a
− xuxt

)
.

Case 2. For generator v2 =
∂

∂x
, the Lie characteristic function is W = −ux,

Mx = −ux

(
−2avux(1 + u)

2a

1 + u
+ vx(1 + u)

2a

)
+ uxxv(1 + u)

2a
,

M t = uxvt − vuxt.

Case 3. For generator v3 = t
∂

∂t
+

1

a
(−1− u)

∂

∂u
, the Lie characteristic function

is W = −1

a
(1 + u)− tut,

Mx =

(
−1 + u

a
− tut

)(
−2av(1 + u)

2a
ux

1 + u
+ vx(1 + u)

2a

)
− v(1 + u)

2a
(
−ux
a
− tuxt

)
,

M t = −vt
(
−1 + u

a
− tut

)
+ v

(
−ut
a
− tutt − ut

)
.

Case 4. For generator v4 =
∂

∂t
, the Lie characteristic function is W = −ut,

Mx =
2avuxut(1 + u)

2a

1 + u
+ vuxt(1 + u)

2a,

M t = −vutt.

4. Conclusions

We analyze the symmetry of one-dimensional nonlinear wave equation by classical
Lie symmetry method, and then the optimal system of the symmetry are derived.
By solving the reduced equation, we can calculate the solutions of the equation.
Finally, the conservation laws have been established through the use of conservation
law multiplier.
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