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Abstract. Parametric dynamical systems are widely used to model physical systems,
but their numerical simulation can be computationally demanding due to nonlinearity,
long-time simulation, and multi-query requirements. Model reduction methods aim
to reduce computation complexity and improve simulation efficiency. However, tradi-
tional model reduction methods are inefficient for parametric dynamical systems with
nonlinear structures. To address this challenge, we propose an adaptive method based
on local dynamic mode decomposition (DMD) to construct an efficient and reliable
surrogate model. We propose an improved greedy algorithm to generate the atoms set
Θ based on a sequence of relatively small training sets, which could reduce the effect of
large training set. At each enrichment step, we construct a local sub-surrogate model
using the Taylor expansion and DMD, resulting in the ability to predict the state at any
time without solving the original dynamical system. Moreover, our method provides
the best approximation almost everywhere over the parameter domain with certain
smoothness assumptions, thanks to the gradient information. At last, three concrete
examples are presented to illustrate the effectiveness of the proposed method.

AMS subject classifications: 35R60, 60H35, 65M99, 68W99
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1 Introduction

Parametrized partial differential equations arise in various engineering and applied sci-
ence problems, including heat and mass transfer, acoustics, solid and fluid mechanics,
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electromagnetics, and finance. Due to limited knowledge about physical properties, such
as material properties and geometric features, the model inputs often contain parameters
or uncertainties. Estimating the unknown parameter values and quantifying their ef-
fects usually require a large number of realizations, ranging from thousands to millions.
Consequently, traditional full-order techniques, such as finite element or finite volume
methods, are often too computationally expensive, especially when dealing with non-
linear, multiphysics, and time-dependent phenomena. To overcome these challenges,
many model order reduction (MOR) methods have been developed to construct effi-
cient surrogate models, including generalized Polynomial chaos expansion [1, 2], ten-
sor decomposition-based methods (e.g., the Proper Generalized Decomposition [3, 4]
and the Variable-separation method [5–7]), and projection-based methods (e.g., the Re-
duced Basis method [8–10] and the Proper orthogonal decomposition (POD) Galerkin
method [11, 12]). These MOR methods aim to reduce computational costs while accu-
rately capturing the most important features of the original system.

MOR methods aim to construct an approximate model in a low-dimensional subspace
of the solution space [13–16]. The success of these methods relies on the assumption that
the solution manifold can be embedded in a low-dimensional space. However, the im-
portant class of problems given by parametric dynamical systems usually induce rough
solution manifold with slowly decaying Kolmogorov n-widths. This implies that tradi-
tional MOR methods are generally not effective. In recent years, there has been a grow-
ing interest in the development of MOR techniques for parametric dynamical systems to
overcome the limitations of linear global approximations. A large class of methods con-
sider the dynamical low rank (DLR) approximation (see [17–21]) which allows both the
deterministic and stochastic basis functions to evolve in time. Other strategies based on
deep learning (DL) algorithms were proposed in [22–24] to construct the efficient surro-
gate model for time-dependent parametrized PDEs. In this contribution, we try to com-
bine dynamic mode decomposition with the local Taylor approximation to construct an
efficient and reliable approximation of input-output relationship (i.e. surrogate model)
for parametric dynamical systems.

Data driven methods have received widespread attention. Koopman operator [25]
can be an effective data driven tool. It can transform a nonlinear system in state space
into a linear system in observation function space. Koopman operator is an infinite di-
mensional linear operator acting on the observation function space. The spectral decom-
position of the Koopman can capture linear systems in the observation function space.
For numerical computation, it is necessary to approximate the Koopman operator in
a finite dimensional subspace. Dynamic mode decomposition is used to approximate
Koopman eigenvalues and eigenvectors in the subspace are spanned by a set of obser-
vation functions. DMD [26] describes the dynamical system in an equation-free manner
and can be used for prediction and control. DMD is a spatio-temporal matrix decom-
position method that connects spatial dimensionality-reduction technology and Fourier
transforms in time. In the standard DMD method [26], identity functions are used as a
finite dimensional set of observation functions for approximate the Koopman operator.
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The DMD mode calculated using standard DMD is a projection approximation. Tu et
al. [27] proposed that the exact DMD method can obtain accurate DMD modes. Williams
et al. [28] developed the extended dynamic mode decomposition (EDMD) method by ap-
plying the Koopman operator to a given dictionary of observation functions. When these
dictionary functions are sufficiently rich, the matrix obtained by EDMD converges to the
Koopman operator [29]. Kernel DMD [30] is to reduce the computational complexity
by intelligent choices of the observables. Koopman operator theory can be extended to
nonlinear dynamical systems with inputs and control (KIC). Dynamic mode decomposi-
tion with control (DMDc) [31] is used to perform numerical computation KIC. DMDc is
a modal decomposition method for discovering spatio-temporal modes from measured
data of complex systems with inputs. DMDc utilizes both the measurements of the state
and the external control to construct a dynamical system with inputs. It can be used
to predict and design controllers for complex systems. For parametric dynamical sys-
tems with observation noise, there are many DMD variants based on Koopman operator
theory, such as total least-squares DMD [32], subspace DMD [33] and so on. For dynam-
ical systems with random parameters, combining K-nearest-neighbors regression [34] or
parametric interpolation [35] with DMD can effectively reduce online computing costs.

In this work, we develop an adaptive method based on local dynamic mode decom-
position for parametric dynamical systems. This method is an offline-online mechanism.
In the offline stage, we first generate the set of optimal samples Θ based on a sequence
of relatively small training sets. Then for each atom in Θ, we construct the correspond-
ing local surrogate model using the Taylor linear expansion and DMD (or DMDc). In
the online stage, for any instance of parameters, the local surrogate model is selected by
finding the closest atom with the Euclidean measure, and the output is calculated by the
corresponding local model.

The main contribution of this work is the development of an adaptive local DMD ap-
proximation for solving parametric dynamical systems. We propose an improved Greedy
method to generate the atoms set Θ based on a sequence of relatively small training sets.
The main idea of our improved method is running the greedy algorithm first on a rela-
tively small training set and updating the output over a local denser training set at each
enrichment step. Compared with the classic Greedy technique, our improved method
could mitigate the effect of a large training set on the computation efficiency with the
similar atoms set Θ. Using the Taylor expansion, we construct local DMD approxima-
tions of the parametric dynamical systems for each atom in Θ. Therefore, our method
shares the same merits as DMD for dynamical systems. The important one is that it can
be used to predict the state of the dynamical system at any time without solving the
original dynamical system. Due to the local nature of our proposed method, the online
computational cost does not increase as more atoms are added in the adaptive process.
In addition, with certain smoothness assumptions, the approximation of our proposed
method is guaranteed to converge to the reference solution almost everywhere over the
parameter domain, thanks to the gradient information. To demonstrate the performance
of our proposed method, we apply it to various nonlinear parametric dynamical systems
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and successively obtain the efficient and accurate surrogate models. This also demon-
strates the accuracy of our adaptive local DMD approximation as a predictive tool outside
of the training time region.

The paper is organized as follows. In Section 2, we describe the problem tackled in
this work. In Section 3, the surrogate model based on local Taylor approximation for
parametric dynamical systems is presented. In Section 4, we introduce the Koopman op-
erator, DMD, and DMDc algorithm. In Section 5, we introduce the improved Greeddy
method based on adaptive enriching strategy to generate the optimal atoms set and give
a summary of our full approach. Section 6 provides three numerical examples to illus-
trate the performance of the proposed method. Finally, we make some conclusions and
comments in Section 7.

2 Problem formulation

Let (Ω,B,P) be a probability space, where Ω is the sample space containing the set of
elementary events ω, B is the σ- algebra on Ω, P is the probability measure on B. Let
D be a given bounded physical domain with Lipschitz continuous boundary ∂D. We
consider the following parameter-dependent dynamical systems

ut(x,t;ξ)=L(x,t,u, I;ξ), x∈D, ξ∈Ω, t∈ [0,T], (2.1)

where L is a differential operator and may contain random coefficients and/or stochas-
tic forces, and I is the model inputs, such as the boundary condition x ∈ ∂D and initial
condition t = 0. Let ξ : Ω → Rm be a set of real-valued random variables. We denote
u(x,t;ξ) : D×[0,T]×Ω→R as the solution to this parameter-dependent dynamical sys-
tems.

High-fidelity simulation (also known as full model, e.g., finite element method and
finite difference method) requires a large number of degrees of freedom and a huge num-
ber of time steps and iterations. Therefore, the computational cost is prohibitive when
solving complex problems, especially for many-query problems such as quantifying the
effects of parameters and estimating unknown parameter values. Our goal is to construct
a surrogate model û of u so that the output of the system (2.1) can be evaluated without
solving the full model. Based on the surrogate model û, we can estimate the statistics
of u efficiently. More generally, given a function G(u), the expectation of G(u) can be
approximated using Monte Carlo as follows

E[G(u)]≈E[G(û)]=
∫

Ω
G(û(ξ))P(dξ)≈ 1

N

N

∑
i=1

G(û(ξ i)).

The recently developed dynamic mode decomposition is a powerful new technique for
the discovery of dynamical systems from high-dimensional data and is an innovative tool
for integrating data with dynamical systems theory. In this work, we attempt to combine
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DMD with the local Taylor approximation to build a surrogate model û(x,t;ξ) of the state
u in the system (2.1) such that

û(x,t;ξ)≈
m+1

∑
i=1

Φi(x,t)αi(ξ), (2.2)

where {Φi(x,t)}m+1
i=1 are the spatial bases, and {αi(ξ)}m+1

i=1 are the stochastic bases. In the
next section, we briefly introduce the surrogate model based on local Taylor approxima-
tion.

3 Surrogate model based on local Taylor approximation

Assuming that the random field of PDE solution u possesses enough regularity [36].
Given a set of deterministic samples Θ := {ξk}M

k=1, we construct the surrogate model
based on local Taylor approximation. An offline-online computational decomposition
is achieved to improve efficiency. In the offline stage, we need to determine the set of
optimal samples from the training sets scattered in the parameter space and construct
the corresponding local surrogate model. We attempt to seek an Taylor expansion of the
solution around Θ as follows:

u(ξ)=
M

∑
k=1

Ik

[
u0+∇ξu(ξk)(ξ−ξk)+

1
2
(ξ−ξk)

TH(ξk)(ξ−ξk)+···
]

,

where u0=u(ξk), H is the Hessian matrix of u(ξ), i.e.,

Hij(ξk)=
∂2u

∂ξi∂ξ j
(ξk), Ik =

{
1 if ξ∈Ξk

local,
0 else,

and Ξk
local is the local testing set determined by ξk. To facilitate implementation and sim-

plify notation, for each atom ξk ∈Θ, we consider the linear formulation ûk(ξ) of Taylor
expansion to construct our local surrogate model such as

ûk(ξ)=u(ξk)+∇ξu(ξk)(ξ−ξk), ξ∈Ξk
local. (3.1)

Here ∇ξu(ξk)=[∂1u(ξk),∂2u(ξk),··· ,∂mu(ξk)], and ∂i denotes the partial derivative with
respect to the i-th component of random variables ξ. The surrogate model (3.1) can be
formulated as Eq. (2.2) by taking the spatial bases as

Φi(x,t)=

{
u(ξk), i=1,
∂i−1u(ξk), i=2,··· ,m+1,

and the stochastic bases as

αi(ξ)=

{
1, i=1,
ξ i−1−ξ i−1

k , i=2,··· ,m+1,



Q. Li et al. / Commun. Comput. Phys., 35 (2024), pp. 38-69 43

where ξ i
k and ξ i is the i-th components of ξk and ξ. We note that the calculation cost of

building ûk(ξ) is mainly dominated by the constructions of the spatial bases, that is,

Φk(x,t)= [u(ξk),∂1u(ξk),∂2u(ξk),··· ,∂mu(ξk)].

In this attempt, we employ DMD to build the approximations of Φk(x,t) and improve
the efficiency of our surrogate model. The details of DMD will be introduced in Section
4.

Remark 3.1. For given atoms set Θ, we need to solve M(m+1) deterministic problems
to obtain the states {u(ξk)}M

k=1 and their derivatives {∂iu(ξk)}i=m,k=M
i=1,k=1 . For each atom ξk,

u(ξk) is the solution of the original problem (2.1) with the fixed sample. By taking the
derivative with respect to the i-th component of random variables ξi for Eq. (2.1), we
have ∂iu(ξk) satisfying the following equation

(∂iu)t(x,t;ξk)=Li(x,t,u, I;ξk), x∈D, ξk ∈Ω, t∈ [0,T], (3.2)

where Li denote the derivatives of L with respect to the i-th components, respectively.
The Li is similar to Eq. (2.1), relying on the space x, time t and model inputs I. We
note that u(ξk) can be obtained by solving the original problem and is known in Eq. (3.2).
Under some circumstances [37], u(ξk) and its derivatives {∂iu(ξk)}i=m

i=1 are equipped with
the same equation, just with some different inputs, which could bring convenience to the
calculation of offline stage.

Each atom ξk is associated with a cluster and acts as a good representation of the
other elements of the cluster. In the online stage, the best local surrogate is automatically
recommended by searching the corresponding atom ξk, which is the closest one to the test
sample ξ∈Ω in the parameter space. The local approximation based on Taylor expansion
is accurate only when the distance between the test sample and an atom is “sufficiently
small”. Therefore, selecting an optimal atom set is the key step for our method, which
will be introduced in Section 5.

4 Dynamic mode decomposition

For a fixed sample ξk, u(ξk) or {∂iu(ξk)}i=m
i=1 satisfies the following class of continuous

time dynamical system,

ut(x,t;ξk)=F (x,t,u, I;ξk), x∈D, t∈ [0,T]. (4.1)

Here, F is a differential operator, which depends on the space x, time t, model inputs I,
state u and its spatial partial derivatives. I represents the model inputs, such as source
term, initial and boundary conditions. In this system, u is just an expression symbol. In
Eq. (4.1), if u represents u(ξk), then dynamical system (4.1) represents Eq. (2.1) taking
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a fixed sample ξk. If u represents ∂iu(ξk), then Eq. (4.1) is equivalent to Eq. (3.2). Us-
ing the finite element method or finite difference method to solve Eq. (4.1) produces the
following discrete dynamical system with external inputs

un+1=F(un,zn), u∈M, z∈N , (4.2)

where un = u(t0+n△t), M denotes the state space, and F is a map from M to itself,
zn = z(t0+n△t) represents external input, which can be introduced by the source item
and boundary conditions.

If the dynamical system (4.1) has no external inputs, for example, the source term
equals zero and the boundary conditions are homogeneous, then we can obtain the fol-
lowing discrete dynamical system without external inputs

un+1=F(un), u∈M. (4.3)

F can be a linear mapping or nonlinear mapping, which depends on F in the dynami-
cal system (4.1). When F is a nonlinear mapping, solving nonlinear dynamical system
takes a large amount of computing resources. For different parameters ξ, it is necessary
to solve the nonlinear dynamic system to obtain u(ξ). Therefore, for nonlinear dynami-
cal systems with random parameters, it is very expensive to solve nonlinear dynamical
systems multiple times. In this section, we will present a data-driven method based on
the Koopman operator to solve the nonlinear dynamical system without knowing the
specific form of the system.

Koopman operator is a linear operator acting on the observation function space. It
does not linearize the dynamical system (4.2) or (4.3). Koopman operator can transform
a nonlinear dynamical system into a linear system in the observation function space.
For discrete dynamical systems without external inputs (4.3), the Koopman operator is
defined as follows.

Definition 4.1. (Koopman operator) Let G(M) is an infinite dimensional observation
function space for any scalar-valued observable function g :M→R. The Koopman oper-
ator K : G(M)→G(M) is defined by

Kg(u) := g
(

F(u)
)
, ∀g∈G.

So the nonlinear dynamical system (4.3) can be lifted to the following linear problem,

un+1=F(un) ⇒ g(un+1)=Kg(un).

K is an infinite-dimensional operator. In order to be numerically computable, we re-
strict the infinite-dimensional system to a finite-dimensional invariant subspace G(M)⊆
G(M).

Suppose that there exists an invariant subspace G of K, i.e.,

Kg∈G, ∀g∈G.
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Let a set of observation functions {g1,··· ,gq}(q<∞) span G. We restrict K to G and denote
it by K|G . Let g=[g1,··· ,gq]T be a vector-valued observation. Then K|G has a matrix-form
representation K with respect to {g1,··· ,gq}, i.e.,

g(F(u))=


g1(F(u))
g2(F(u))

...
gq(F(u))

=


Kg1(u)
Kg2(u)

...
Kgq(u)

=Kg(u).

The spectral decomposition theory of the Koopman operator can give an expression for
the observation functions. Therefore, we consider the eigendecomposition of the matrix
K. Let,

Kψj =λjψj, ωT
j K=λjω

T
j ,

where λj is the eigenvalue, ψj is the right eigenvector, ωj is the left eigenvector and
ωT

i ψj = δij. If the matrix K ∈Rq×q has q linearly independent eigenvectors, then any
g∈G can be expressed by a linear combination of the eigenvectors, i.e.,

g(u)=
q

∑
j=1

vj(u)ψj, (4.4)

where vj(u) =ωT
j g(u). For a sequential time series, repeatedly applying the Koopman

operator to Eq. (4.4) gives

g(un)=
q

∑
j=1

λn
j vj(u0)ψj. (4.5)

Therefore, we can use the eigenvalues and eigenvectors of the Koopman operator and
g(u0) to evaluate the observation function g(u) at any time without knowing the specific
expression of F.

Dynamic mode decomposition algorithm only uses the observation data to compute
an approximation to the Koopman eigenvalues and eigenvectors. DMD was introduced
in fluid mechanics by Schmidt [26]. It is an equation-free and data-driven method capable
of providing accurate assessments of the spatio-temporal structures in a given complex
system. Suppose we have a snapshot sequence of data {u0,u1,u2,··· ,ur}, and DMD is
used to extract the features of data. Let g be the given observation function. We define
the data matrices of observables Y0 and Y1 as follows:

Y0=

 | | |
g(u0) g(u1) ··· g(ur−1)
| | |

,

Y1=

 | | |
g(u1) g(u2) ··· g(ur)
| | |

.
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Let the DMD matrix
A :=Y1Y†

0,

where Y†
0 is the Moore-Penrose pseudoinverse of Y0. So,

g(un+1)≈Ag(un).

The eigenvectors and eigenvalues of A are the DMD modes and eigenvalues. DMD ma-
trix A is an approximation of matrix K. It may be very expensive to do eigendecompo-
sition directly on the matrix A. Tu et al. [27] proposed exact DMD, which reconstructs
the nonzero eigenvalues and eigenvectors of A by calculating the eigendecomposition
of a low-dimensional projection of A. The main steps of exact DMD are summarized in
Algorithm 1.

Algorithm 1 Exact DMD [27]
Given snapshots{g(u0),g(u1),··· ,g(ur)}
1: Set Y0=[g(u0),g(u1),··· ,g(ur−1)] and Y1=[g(u1),g(u2),··· ,g(ur)].
2: Compute the reduced SVD of Y0,Y0=UΣV∗, where U∈Rq×r̃,Σ∈Rr̃×r̃,V∈Rr×r̃, r̃ is the
truncated rank.
3: Define Ã :=UTY1VΣ−1.
4: Compute eigenvalues and eigenvectors of ÃW =WΛ.
5: Set Ψ=Y1VΣ−1W .
6: Then gDMD(un)=ΨΛnd, where d=Ψ†g(u0), n=0,1,2,··· ,r,r+1,···
7: Finally, un = g−1(gDMD(un)),n= 0,1,··· ,r+1,···, where the inverse function g−1 is in
the sense of least-squares if g is not invertible.

For the discrete dynamical system that allows for external inputs

un+1=F(un,zn), u∈M, z∈N .

Koopman operator theory is generalized to include exogenous inputs and control [31].
We define a set of scalar-valued observables that are functions of the state and the input
where g : M×N →R. Each observable is an element of an infinite dimensional Hilbert
space H. The following definition is given for the Koopman operator with inputs and
control.

Definition 4.2. (Koopman operator with inputs and control) The KIC K :H→H acts on
the Hilbert space of observables

Kg(un,zn) := g
(

F(un,zn),zn+1
)
.

KIC is related to a method called DMDc [38]. DMD with control utilizes both the
measurements of the system and the applied external control to extract the underlying
dynamics and the input-output characteristics in an equation-free manner. The KIC can
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be connected to DMDc for linear observable measurements. This connection parallels the
link between Koopman operator and DMD.

The observables g(u,z) can be partitioned into those dependent on the state gu, con-
trol gz and both guz. Let

g(un,zn)=

 gu,n
gz,n
guz,n

,

then similar to the Koopman operator in a finite dimensional invariant subspace, for KIC
we have

g(un+1,zn+1)=

 gu,n+1
gz,n+1
guz,n+1

=Kg(un,zn)=

 A B C
D E F
G H I

 gu,n
gz,n
guz,n

.

If we choose the observation function guz =0, we have

gu,n+1=Agu,n+Bgz,n. (4.6)

The DMDc can be established by choosing linear observables for the state and control,
such that gu=u,gz=z,guz=0. With these linear observables, the KIC operator reduces to
DMDc. Based on the linear system (4.6), we present the main steps of DMDc in Algorithm
2.

5 Adaptive enhancement strategies

We propose an adaptive approach to generate the atoms set Θ={ξk}M
k=1 sequentially. The

selection of Θ is determined by the current surrogate solution û(ξ). Given a current set of
atoms, the next atom ξk+1 is identified by the current set of atoms with the largest error
over a given training set.

5.1 Classical greedy method

An effective error estimator ∆N(ξ) is crucial for both the efficiency and the reliability of
our method. People usually utilize a posteriori error estimate to define the error estimator
∆N(ξ) [39–41]. For the reasonable selection of ∆N(ξ), we can refer to Appendix A in [7].
The classical greedy algorithm (CG) presented in Algorithm 3 can be invoked to build
the atoms set Θ. We first define the parameter training set Ξtrain, which is a finite subset
of Ω.

In a greedy method, the next atom is selected by computing the error estimator ∆N(ξ)
and searching for the largest one. An intuitive method is calculating the error estimators
for each sample of the training set Ξtrain. We usually require a significant number of
training samples to provide adequate representation. This will substantially impact on
the computation efficiency. To alleviate the problem, we adopt the following adaptive
strategy [41].
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Algorithm 2 DMDc [38]
Given state snapshots{gu(u0),··· ,gu(ur)} and control snapshots: {gz(z0),··· ,gz(zr−1)}
1: Set Y0=[gu(u0),··· ,gu(ur−1)]∈Rq×r, Y1=[gu(u1),··· ,gu(ur)]∈Rq×r,

and Υ={gz(z0),··· ,gz(zr−1)}∈Rs×r.

2: Set the augmented data matrix Ω=

[
Y0
Υ

]
and the augmented operator matrix

G=[A, B].
3: Compute the reduced SVD of Ω, Ω= ŨΣ̃Ṽ∗, where Ũ ∈R(q+s)×r̃,Σ̃∈Rr̃×r̃,Ṽ ∈Rr×r̃, r̃

is the truncated rank. Let Ũ =

[
Ũ1
Ũ2

]
, where Ũ1∈Rq×r̃,Ũ2∈Rs×r̃.

4: Compute the reduced SVD of Y1, Y1 = ÛΣ̂V̂∗, where Û ∈Rq×r̂,Σ̂∈Rr̂×r̂,V̂ ∈Rr×r̂, r̂ is
the truncated rank.
5: Compute the reduced-order approximation of A and B,

Ã= Û∗Y1Ṽ Σ̃−1Ũ∗
1 Û,

B̃= Û∗Y1Ṽ Σ̃−1Ũ∗
2 .

We can form the ROM

g̃u,n+1= Ãg̃u,n+ B̃gz,n, n=0,1,··· ,r+1,··· .

6: Compute gDMD(un) := gu,n = Û g̃u,n, n=0,1,··· ,r+1,···.
7: Finally, un = g−1(gDMD(un)), n=0,1,··· ,r+1,···, where the inverse function g−1 is in

the sense of least-squares if g is not invertible.

5.2 Adaptive enriching based on dynamic training sets

To mitigate the effect of a large Ξtrain on the computation efficiency and the limitation
that a fixed smaller training set may not provide adequate atoms set, we perform the
greedy algorithm on a relatively small training set and then sequentially update the cur-
rent training set at each enrichment step. Let Ξbkg be a background samples set consist-
ing of a sufficiently large number of Monte Carlo samples in Ω. Meanwhile, we define a
coarse training set Ξtrain uniformly distributed over Ω, and its size is relatively small.

Now we develop an algorithm to obtain the atoms set Θ and our surrogate model
û(ξ). To this end, we initialize the first atom as ξ1=E[ξ], and Θ={E[ξ]}. Then the initial
surrogate model û(ξ) is defined as

û1(ξ)=u(E[ξ])+∂ξu(E[ξ])·(ξ−E[ξ]),

where u(E[ξ]) and ∂ξu(E[ξ]) are approximated by DMD or DMDc. At step k, we choose
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Algorithm 3 Classical Greedy
Initialize
1: The error tolerance εtol, N=1.
2: Select an initial parameter value ξ1∈Ξtrain , set Θ={ξ1}.
3: Adaptive phase

while maxξ∈Ξtrain ∆N(ξ)> εtol do
Choose ξN+1=argmax

ξ∈Ξtrain

∆N(ξ).

Θ=Θ
⋃
{ξN+1}.

N=N+1.
end while

the quasi-optimal sample as

ξk =

E[ξ], ξ∈Ξtrain, k=1,
arg max

ξ∈Ξtrain
∆k−1(ξ), k≥2.

For the reasonable selection of ∆k(ξ), please refer to Appendix A in [7]. Then we define
the current local training set as Ξk

local =
{

ξ j |δ(ξ j,ξk)<ϵk, ξ j ∈Ξbkg
}

with δ(·,·) being the
Euclidean distance between two points. Here ϵk can be seen as the radius of Ξk

local. Based
on the local training set Ξk

local, we update the current atom ξk as follows

ξk =argmax
ξ∈Ξk

local

∆k−1(ξ),

and update atoms set as Θ=Θ∪{ξk}. Then the k-th sub-surrogate model is given by

ûk(ξ)=u(ξk)+∂ξu(ξk)·(ξ−ξk),

with u(E[ξ]) and ∂ξu(E[ξ]) approximated by DMD or DMDc. We define the utilization
rate of the background set Ξbkg at step k as

η=

∣∣∪k
i=1Ξk

local

∣∣
|Ξtrain|

,

where |α| denotes the sample size of α.

Remark 5.1. A training set that is too large can increase offline computation and hin-
der offline speed, while too small can reduce the efficiency of online approximations.
Therefore, finding an appropriate balance between the size of the training set and com-
putational resources is crucial in this method.

To overcome these limitations and obtain an approximate error accuracy that is no
worse than the Classical Greedy method, we select the local training set Ξk

local based on
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all samples from the background set Ξbkg that a maximum neighborhood distance can
cover. This maximum neighborhood distance ϵk is determined by the minimum Eu-
clidean distance between the sample ξk and other sample points in the coarse training
set Ξtrain.

Algorithm 4 describes the procedure for the adaptive construction of Θ and û(ξ). The
whole approach introduced in Sections 3-5 are also summarized in Fig. 1.

Algorithm 4 Adaptive construction of Θ and û(ξ)
Initialize
1: The maximum number of atom Natom, the error tolerance εtol.
2: Form a background set Ξbkg and a coarse training set Ξtrain.
3: Select an initial atom Θ={E[ξ]}.
4: Set N=1, Flag=0 and εmax=+∞.
5: Adaptive phase

while N<Natom and εtol< εmax do
Evaluate the error indicator ∆N(ξ) of û(ξ) at each ξ∈Ξtrain.
Choose ξk =argmax

ξ∈Ξtrain

∆N(ξ), εmax=∆N(ξk).

Set a local training set Ξk
local from Ξbkg relies on ξk.

Compute u(ξ i), ξ i ∈Ξk
local with Algorithm 1 or 2 and update Flag=Flag+1.

Find ξN+1=argmax
ξ∈Ξk

local

∆N(ξ), Θ=Θ∪{ξN+1}.

Update u(ξN+1) and ∇u(ξN+1) with Algorithm 1 or 2.
N=N+1.

end while
7: Store the atoms set Θ and the surrogate model û(ξ) for online calculation.
8: Output η= Flag

|Ξbkg| denotes the utilization rate of Ξbkg.

6 Numerical results

In this section, we present a few numerical examples to demonstrate the performance of
the proposed adaptive local DMD method. In Section 6.1, we apply the proposed method
to linear heat equations with a random variable to verify the accuracy of the adaptive
local DMD method. In Section 6.2, we consider the nonlinear Burgers equation to fur-
ther demonstrate the effectiveness of the proposed method. In Section 6.3, the reaction-
diffusion equation with two parameters is considered to present the performance of the
adaptive local DMD method on high-dimensional parameters.

In this paper, we denote the reference solution as uref, which uses high-fidelity solu-
tions such as Finite Element Method (FEM). The solution obtained using the local Taylor
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Figure 1: Flowchart of our adaptive local DMD method.

surrogate model is denoted as upre. We are assessing the performance of the surrogate
model by comparing the error between the solution of the local Taylor surrogate model
and the reference solution. In Algorithm 4, for a fixed parameter ξ, when it comes to solv-
ing u(ξk) or {∂iu(ξk)}i=m

i=1 , select DMD or DMDc based on the form of the equation. In
Algorithms 1 and 2, the truncated rank r of reduced SVD is chosen by the hard threshold
technique. In numerical examples, Σ is denoted as a singular value matrix, and we take

r=
∣∣∣{σi ∈diag(Σ) |σi >10(−10)

}∣∣∣.
To measure the approximation accuracy, the relative errors between the reference solution
uref and the solution of the surrogate model upre are utilized and defined as follows:

For the given parameter ξ, the relative error (RE) at time tk is defined as:

RE(x,tk;ξ)=

∥∥uref(x,tk;ξ)−upre(x,tk;ξ)
∥∥

L2

∥uref(x,tk;ξ)∥L2

,

the mean relative L2 error (MRE) over the whole time region is defined as:

MRE(ξ)=
1

Nt

Nt

∑
i=1

RE(x,ti;ξ),

where Nt is the number of time steps.
The mean relative L2 error over the parameters set at time tk (MTE) is defined as:

MTE(t)=
1

Nξ

Nξ

∑
j=1

RE
(
x,t;ξ j

)
,
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where Nξ is the size of the parameters set, and the mean relative L2 error over the whole
test parameters set and time region (E) is defined as:

E=
∑

Nξ

j ∑Nt
i RE(x,ti;ξ j)

Nξ Nt
.

6.1 Heat-equation

The heat equation is a simple linear parabolic equation describing heat diffusion over
time. In this context, we use this toy example to verify the effectiveness of the proposed
method. The heat equation is given by

ut = ξuxx, (x,t)∈ [0,1]×[0,0.1],

with the following initial and Dirichlet boundary conditions:

u(x,0)=0,
u(0,t)=0, u(1,t)=1.

Here, the random parameter ξ is uniformly distributed on P=[1,5]. For the convenience
of notation, we denote the solution of the heat equation as u(x,t;ξ), simply as u.

In this example, we randomly select 600 samples from a uniform distribution on P as
the background set (Ξbkg), and then select 60 uniform distribution samples as the coarse
training parameter set Ξtrain={ξ1,ξ2,··· ,ξNtrain}. For each sample ξi, the reference solution
u(x,t;ξi) is obtained through the FEM in spatial discretization and backward Euler in
temporal discretization, where the spatial partition size ∆x=0.01 and the time step ∆t=
10−4. In the proposed adaptive local DMD method, the observable function g(u) = u,
and snapshot data is taken from the time interval [0, 0.04]. In the DMD method, the
approximate solution at any time can be obtained by using steps 6 and 7 in Algorithm 1
or 2 without solving the original equation. Therefore, the proposed adaptive local DMD
method can realize the prediction in time only using snapshot data when the equation is
unknown.

Fig. 2 shows the adaptive local DMD solution and the reference solution in the time
interval [0, 0.1]. The first row represents the adaptive local DMD solutions at ξ=1.5 and
ξ = 4.5, and the second row represents the reference solutions, where {1.5, 4.5}∈Ξtrain.
From this figure, we find that (1) the solution profiles of the equation show significant
changes with respect to time; (2) there is no clear difference between the adaptive local
DMD solution and reference solution; (3) the proposed method can achieve precise es-
timation within the time range of [0, 0.1], indicating that it not only demonstrates good
accuracy in the snapshot data time range of [0, 0.04] but also delivers accurate predictions
outside this range.

To visualize the individual errors of the testing set (Ξtest) with Ntest=105, we plot the
frequency distribution of the mean relative L2 error (MRE) over the whole time region
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Figure 2: The solution of equation over the entire time region at Natom=60. Top left: the predicted solution
(Pre) at ξ=1.5. Top right: the predicted solution at ξ=4.5 Bottom left: the reference solution (Ref) at ξ=1.5.
Bottom right: the reference solution at ξ=4.5.

Figure 3: Distribution of the relative error (MRE) under different size of atoms set.
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Figure 4: The relative error (E) with different size of atoms set.

on Ξtest for different sizes of atoms set, with Natom = 60,20 and 6. From this figure, we
can see that (1) as the number of atoms increases, the mean value of MRE decreases, and
the approximations become more accurate. That is to say, the more categories offline,
the more accurate of online approximation; (2) the frequency histogram of MRE becomes
more compact as the number of offline atoms increases; (3) MRE represents the mean rel-
ative error within the whole time region, when Natom=40, the value of MRE is relatively
small, it indicates that the relative error at each moment in the whole time region is small.
This reflects the stability of the proposed method.

In Fig. 4, we present the mean relative error over the whole test parameters set and
time region (E) with different sizes of atoms. As we can see from this figure, the relative
error E decreases substantially at the beginning as the size of atoms increases. When the
size of atoms exceeds a certain number, the error E decreases very slowly. So we can
get good accuracy by using only a few atoms. In this example, Natom = 20 can achieve
reasonable accuracy.

Fig. 5 presents the mean relative error (MTE) of the entire testing parameter set during
the temporal range of [0, 0.1]. We find that (1) the MTE becomes smaller when the size of
atoms increased; (2) the MTE of Natom =60 remains consistently below that of Natom =6;
(3) the value of MTE is small in the snapshot data time interval [0, 0.04]. When t>0.04,
outside the snapshot data time interval, the value of MTE increased relative to t< 0.04,
but it was below 10−3. This implies the potential of the proposed method in predicting
the model solutions outside of the snapshot data time interval.

During the testing phase, the adaptive local DMD method relies on two distinct train-
ing parameters sets: a coarse training set (Ξcoarse) and a background training set (Ξbkg).
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Figure 5: The mean relative L2 error over the whole test parameters set (MTE) in the time interval [0, 0.1].

Table 1: The utilization rate η and the comparison of errors between the there methods.

Natom 2 5 10 25 30
η 1.5% 10.8% 26.7% 65.2% 65.8%
E 2.23×10−2 3.60×10−3 7.89×10−4 2.85×10−4 2.77×10−4

Ebkg 2.23×10−2 3.60×10−3 9.46×10−4 2.85×10−4 2.78×10−4

Ecoarse 2.05×10−2 3.77×10−2 1.21×10−3 9.52×10−4 9.49×10−4

Table 1 lists the errors of the considered methods. i.e. the adaptive local DMD method
(E), the Classical Greedy method on Ξbkg (Ebkg) and the CG method on Ξcoarse (Ecoarse).
We also evaluated the utilization of the adaptive local DMD method (η) in Table 1. We
indicate that (1) the η exhibits an upward trend with the increase of Natom but is always
less than 1; (2) the error of the adaptive local DMD algorithm method is not significantly
different from that of the CG method on Ξbkg, and the adaptive local DMD method re-
quires fewer samples; (3) under the same Natom conditions, both the adaptive local DMD
method and the CG method on Ξbkg exhibit superior performance compared to the CG
method on Ξcoarse. This implies that the adaptive local DMD method is a promising al-
ternative to the CG method and requires lower computational cost.

Fig. 6 shows the mean relative errors over the whole parameters set and time region
(E) with three methods during the testing phase. By the figure, We find that (1) the adap-
tive local DMD method outperforms the CG method on Ξcoarse when considering a small
atom set Ξcoarse; (2) the adaptive local DMD method requires fewer computational re-
sources than the CG method on Ξbkg while maintaining similar accuracy. The results
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Figure 6: The mean relative error (E) comparison between the CG method and the adaptive local DMD method.

presented in Fig. 6 support using the adaptive local DMD algorithm for this particular
problem.

6.2 Burgers-equation

The Koopman operator can transform a nonlinear dynamical system into a linear system,
so the proposed method provides remarkable convenience for a parametric nonlinear
dynamical system. In this section, we will show the performance of the proposed method
on the Burgers equation, a popular nonlinear hyperbolic PDE. We consider the following
Burgers equation:

ut+uux =
v

50
uxx, (x,t)∈ [0,1]×[0,0.5], (6.1)

with the boundary and initial conditions defined as:

u(0,t;v)=u(1,t;v)=0,
u(x,0;v)=4x(1−x).

Here, the viscous term v is uniform distribution on P=[1,3]. The reference solutions are
solved using FEM in space with ∆x = 0.01 and a backward Euler scheme in time with
∆t=0.0005.

6.2.1 Original equation

To experiment, we generated a background set of 400 samples uniformly distributed in
the parameter space P , and an initial training set is formed by selecting 40 samples from
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Figure 7: The solution of the equation over the entire time region at Natom= 40. Left: solution at v= 1.1.
Right: solution at v=2.2.

P with uniform distribution. We randomly selected a testing set of 105 samples from
P to evaluate the model’s performance. In the proposed adaptive local DMD method,
the observable function g(u)= [u; u2] and snapshot data is taken from the time interval
[0, 0.3]. It should be noted that the choice of observable function and snapshot data is
crucial for the success of Algorithms 1 and 2.

Fig. 7 displays the reference and predicted solutions corresponding to the parameters
v=1.1 and v=2.1, respectively, for a fixed atoms set Natom=40. From the figure, it can be
seen that (1) at t=0.1,0.3,0.5, the proposed adaptive local DMD method achieves pretty
good agreement with the reference solution; (2) t = 0.5 outside the snapshot data time
interval, indicating that the adaptive local DMD method is effective for future prediction;
(3) even if the parameter v is changed, the proposed adaptive local DMD method can still
achieve good computational accuracy.

We illustrates the frequency distribution of MRE for different sizes of atoms set with
Natom = 40,20, and 6, over the entire testing set of Ntest = 105 in Fig. 8. From this figure,
we can observe that (1) the value of MRE decreases when the number of atoms increases.
This indicates that the more atoms, the more accurate the computation; (2) as the number
of atoms increases, the standard deviation of MRE decreases. This can be seen from figure
that the histogram of the MRE becomes more compact as the number of atoms increases.

In Fig. 9, we depict the variation of error (E) in all samples with the change in the
size of atoms set on the testing set. By the figure, we can see that as the size of the atoms
set increases, the approximation becomes more accurate. However, once the number of
atoms reaches a certain number, the degree of error reduction slows down significantly.
In this example, Natom=10 can achieve desirable accuracy.

Fig. 10 shows the temporal evolution of the mean relative error (MTE) of all samples
in the testing set for different atoms set sizes Natom=6,20,40 over the time interval [0,0.5].
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Figure 8: Distribution of the relative error (MRE) under different size of atoms set.
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Figure 9: The relative error (E) with different sizes of atoms set.

We find that (1) the MTE becomes smaller when the number of atoms increase; (2) the
MTE is very small within the snapshot data time interval [0, 0.3]. When 0.3 < t < 0.5,
outside the snapshot data time interval, although the MTE has increased, it is still be-
low 10−3. This indicates the proposed method can also achieve good prediction results
outside the snapshot data time interval.
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Figure 10: The mean relative L2 error over the time interval [0,0.5] (MTE) in the whole testing set.

Table 2: The utilization rate η of the background set Ξbkg.

Natom 4 6 10 20 30 40
η 12% 21.5% 40.5% 78.75% 87.75% 96.25%

Table 2 presents the utilization rate η for different sizes of atom sets with a fixed
background set size Nbkg = 400. The result shows that (1) the utilization rate becomes
higher when the number of atoms increases; (2) the utilization rate η<1, which indicates
that the background set has not been fully utilized. During the training process, the size
of the training set used can be adjusted as needed to improve the efficiency of offline
computation.

6.2.2 Modifying the viscosity coefficient range

To demonstrate the performance of adaptive local DMD method in solving the Burgers
equation with very small viscosity coefficients, we plot the errors (E) with the number
of atoms (Natom) for the viscosity coefficient being v/50, v/1000, and v/10000 in Fig. 11.
which shows that (1) the errors for each viscosity coefficient becomes smaller when Natom
increase. (2) When Natom reaches a certain threshold, the rate of error reduction dimin-
ishes, eventually stabilizing. (3) In the case of v/1000, the accuracy always outperforms
the others cases, and the accuracy is more sensitive to the Natom.



60 Q. Li et al. / Commun. Comput. Phys., 35 (2024), pp. 38-69

0 5 10 15 20 25 30 35 40

N
atom

10
-5

10
-4

10
-3

10
-2

E

v/50

v/1000

v/10000

Figure 11: Burgers: The error corresponding to a smaller viscosity coefficient.

6.3 Allen-Cahn equation

In this section, we will consider an Allen-Cahn equation to test the proposed method’s
effectiveness for dealing with high-dimensional parameter problems. The Allen-Cahn
equation is a special type of reaction-diffusion equation commonly used to describe phase
separation phenomena in materials. It is described as follows:

ut =vuxx−µ
(
u−u3), (x,t)∈ [0,1]×[0,1], (6.2)

where time-independent diffusion coefficient v and reaction coefficient µ are uniformly
distributed on P1 =P2 ∼U [0.06, 1]. The Dirichlet boundary condition and initial condi-
tions are defined as follows:

u(0,t)=0,u(1,t)=0,
u(x,0)=0.5+0.5sin(πx).

The reference solution is obtained using the FEM in space ∆x=0.01 and a backward Euler
scheme in time with ∆t=10−4.

6.3.1 Original equation

In experiment, the predicted solution is obtained using the adaptive local DMD method,
where the observable function is g =

[
u; u3], and snapshots are taken in the time in-

terval t∈ [0,0.5]. Given the specified parameters, we compare the reference solution to
the predicted solution with Natom = 625, The results are presented in Fig. 12. Fig. 12
shows the predicted solutions using the adaptive local DMD method are compared to
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Figure 12: The solution of equation over the entire time region Natom=625. Top left: the predicted solution
(Pre) at v=0.06 µ=0.8. Top right: the predicted solution at v=0.6 µ=1 Bottom left: the reference solution
(Ref) at v=0.06 µ=0.8. Bottom right: the reference solution at v=0.6 µ=1.

the reference solutions obtained using the FEM at two different parameter sets: (v, µ)=
{(0.06, 0.8), (0.6, 1)}. From Fig. 12, we can observe the following: (1) The solution
changes significantly for different parameters; (2) the time layers of the equation’s solu-
tions change obviously over time; (3) the difference between the reference and predicted
solutions is minimal both inside and outside the snapshot time. This implies that the
solution is highly sensitive to the parameter values and varies significantly with time.

We have plotted the location of the atoms set with Natom=100 in Fig. 13. As depicted
in figure, it is evident that the adaptive local DMD method on A-C equation exhibits
increased atom density in regions with larger parameter values.

Fig. 14 shows the distribution of mean relative errors (MRE) on all test samples Ntest=
105 over the whole time region, with different atom sets Natom = 625,225 and 25. We
find that (1) the mean value of the MRE for the samples decreases as Natom increase;
(2) the maximum frequency corresponding to MRE also becomes smaller when Natom
increase. This indicates that a larger size of atoms size will result in better approximation
performance for the adaptive local DMD method.

Fig. 15 presents the mean relative error for all parameters (E) at different sizes of
Natom. From Fig. 15, we observe that: (1) E decreases as the number of atoms increases;
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Figure 13: The location of the atoms set.

Figure 14: Distribution of the relative error (MRE) under different size of atoms set.

(2) when Natom is at its maximum 700, the downward trend of the curve does not become
smoother. This implies that adding more atomic points can reduce the error even further.

To visualize the error in time, we plot the mean relative error over all test parameters
(MTE) of the atoms set size being Natom=625,225 and 25 in Fig. 16. These results indicate
the performance of the adaptive local DMD method in predicting over the entire time
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Figure 15: The relative error (E) with different size of atoms set.
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Figure 16: The mean relative L2 error over the whole test parameters set (MTE) in the time interval [0,0.5].

domain, which shows that (1) the MTE becomes smaller at any given time when Natom
increases; (2) with a fixed size of atoms set, the MTE within the snapshot data time inter-
val t∈ [0,0.5] is much smaller than that outside the time interval t∈ [0.5,1]. These findings
suggest that the proposed method is reliable in high-dimensional parameter spaces.

In Table 3, we present the utilization (η) of Ξbkg corresponding to different atom set
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Table 3: The utilization rate η of the background set Ξbkg.

Natom 25 100 225 625
η 18.24% 53.64% 76.08% 91.12%

sizes: Natom = 25, 100, 225 625 and Nbkg = 900. Through comparison, we find that (1)
η becomes higher when Natom increases; (2) even when the error is relatively small, the
utilization rate remains below 1, i.e., η<1, indicating that Ξbkg has not been fully utilized.
From this, it can be inferred that the model can dynamically adjust to the desired training
set size in high-dimensional parameter problems to improve offline computing efficiency.

6.3.2 Modifying the initial conditions

Considering the Allen-Cahn equation with rough initial conditions, we have initialized it
with a normal distribution reflect on [0, 1]. The solution of parameter at v=0.06, µ=1 are
presented in Fig. 17. We randomly choose 10000 samples and compute the mean relative
errors with time (MTE). Fig. 18 shows the MTE for the solutions versus different number
of the atoms, with Natom = 625,200 and 50. The temporal snapshots in t ∈ [0, 0.7] were
taken as the training set of DMD or DMDc.

By the Fig. 18, we find that (1) the MTE becomes smaller when the number of atoms
set Natom increases at any time; (2) with the fixed size of atoms sets, the MTE still below
than 1. This implies that under the specified rough conditions, the error decreases with
the increase in Natom. To attain a reduced error, a greater quantity of atoms is required.

Figure 17: The solution of A-C equation.
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Figure 18: The error (E) of A-C equation.

6.3.3 Comparison with traditional methods

To compare the performance of traditional model reduction method (e.g. POD) and adap-
tive local DMD method, we have selected a specific parametric Allen-Cahn equation,
described as follows:

ut =vuxx−µ
(
u−u3), (x,t)∈ [0, 1]×[0, 0.5], (6.3)

the Dirichlet boundary condition and initial conditions are defined as follows:

u(0,t)=0, u(1,t)=0,
u(x,0)= eγx.

where time-independent diffusion coefficient v, reaction coefficient µ, and initial condi-
tions coefficient γ are uniformly distributed on P1 ∼U [0.0001, 1], P2 ∼U [0.06, 1], P3 ∼
U [0, 1]. The truncated rank r of POD method is chosen by the hard threshold technique.
σi is denoted as a singular value.

r=argmin
j

∑i=1
i=1 σi

∑i=n
i=1 σi

>99.999%. (6.4)

We randomly choose 1000 samples and computer the mean relative error with time (MTE)
and parameters (RE). Fig. 19 shows the MTE results for adaptive local DMD method and
POD method. To further consider the accuracy of the adaptive local DMD method, we
respectively compute the RE over the all test parameters for t=0.2 in Fig. 20.

From the figures, we find that (1) the adaptive local DMD method outperform POD
in the entire time region; (2) the MTE increases as time increases; (3) the accuracy of the



66 Q. Li et al. / Commun. Comput. Phys., 35 (2024), pp. 38-69

0 0.1 0.2 0.3 0.4 0.5

T

10
-1

10
0

M
R

E

adptive local DMD

POD

Figure 19: The error (MTE) of two methods.
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Figure 20: The error (RE) of testing set on t=0.2.

adaptive local DMD method is more sensitive to the parameter variation; (4) the adaptive
local DMD accuracy still outperforms of POD for all test parameters when t=0.2.

7 Conclusion

In this work, we have developed an adaptive method based on local dynamic mode
decomposition for parametric dynamical systems. The proposed method is devoted to
achieving an efficient and reliable approximation of input-output relationship. The entire
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computational process follows an offline-online decomposition. In the offline phase, we
propose an improved greedy algorithm to generate an atoms set Θ based on a series of
relatively small training sets. This approach aims to mitigate the influence of large-scale
training sets. Subsequently, for each atom in Θ, we construct the corresponding local
surrogate model by combining Taylor linear expansion and DMD (or DMDc). Therefore,
the proposed method retains the advantages of the DMD approach in deterministic prob-
lems. For instance, it allows for predicting the system’s state at any given time without
solving the original dynamic system. Moreover, due to the gradient information gen-
erated from the Taylor expansion, our method is capable of providing optimal approxi-
mations in nearly any location within the parameter domain, under certain smoothness
assumptions. In the online stage, the surrogate model for any given parameter is deter-
mined by the local surrogate model corresponding to the atom that is the closest point
to the given parameter according to the Euclidean distance criterion. The output is then
calculated by the corresponding local model. Due to the local nature of our proposed
method, the online computational cost does not increase as more atoms are added in the
adaptive process. To demonstrate the performance of our proposed method, we applied
it to various nonlinear parametric dynamical systems and obtained efficient and accurate
surrogate models. This also demonstrates that our adaptive local DMD method gives rise
to a good approximation when predicting the state outside the training time region.

Despite the significant reduction in online computations achieved by our proposed
method, it requires considerable effort during the offline computation phase. In the fu-
ture, we intend to explore new approaches to substantially alleviate the burden of offline
computations.
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[20] Y. Kazashi, F. Nobile and E. Vidlic̆ková, Stability properties of a projector-splitting scheme
for dynamical low rank approximation of random parabolic equations, Numer. Math., 149
(2021), pp. 973–1024.

[21] Y. Zhao, Z. Mao, L. Guo, Y. Tang and G. E. Karniadakis, A spectral method for stochastic frac-
tional PDEs using dynamically-orthogonal/bi-orthogonal decomposition, J. Comput. Phys.,
461(2022), 111213.

[22] K. S. Mohamed, Machine Learning for Model Order Reduction, Springer International Pub-



Q. Li et al. / Commun. Comput. Phys., 35 (2024), pp. 38-69 69

lishing, 2018.
[23] Y. Kim, Y. Choi, D. Widemann and T. Zohdi, A fast and accurate physics-informed neural

network reduced order model with shallow masked autoencoder, J. Comput. Phys., 451
(2022), 110841.

[24] C. Cui, K. Jiang and S. Shu, Solving time-dependent parametric PDEs by multiclass
classification-based reduced order model, CSIAM Trans. Appl. Math., 4(2023), pp. 13–40.

[25] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad.
Sci. U.S.A., 17(1931), pp. 315–318.

[26] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid
Mech., 656(2010), pp. 5–28.

[27] J. H. Tu, C. W. Rowley, D. M. Luchtenberg, S. L. Brunton and J. N. Kutz, On dynamic mode
decomposition: Theory and applications, J. Comput. Dyn., 1(2014), pp. 391–421.

[28] M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the
Koopman operator: Extending dynamic mode decomposition, J. Nonlinear Sci., 25 (2015),
pp. 1307–1346.
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