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Abstract. Images captured under insufficient light conditions often suffer from notice-
able degradation of visibility, brightness and contrast. Existing methods pose limita-
tions on enhancing low-visibility images, especially for diverse low-light conditions.
In this paper, we first propose a new variational model for estimating the illumination
map based on fractional-order differential. Once the illumination map is obtained,
we directly inject the well-constructed illumination map into a general image restora-
tion model, whose regularization terms can be viewed as an adaptive mapping. Since
the regularization term in the restoration part can be arbitrary, one can model the
regularization term by using different off-the-shelf denoisers and do not need to ex-
plicitly design various priors on the reflectance component. Because of flexibility of
the model, the desired enhanced results can be solved efficiently by techniques like
the plug-and-play inspired algorithm. Numerical experiments based on three public
datasets demonstrate that our proposed method outperforms other competing meth-
ods, including deep learning approaches, under three commonly used metrics in terms
of visual quality and image quality assessment.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07
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1 Introduction

Image enhancement refers to the process of highlighting certain information of an ob-
served low-visibility image, as well as weakening or removing any unnecessary informa-
tion according to specific needs [1]. With the prevalence of webcams and camera phones,
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the problem of image enhancement has become extremely challenging as images cap-
tured by digital devices may influenced by various conditions such as insufficient light,
bad weather, unknown noise and so on. The enhanced image quality directly affects
high-level image analysis and understanding, which is widely used in many scientific,
engineering and medical applications. Thus, developing advanced image enhancement
techniques are of great significance and urgency.

Retinex theory is first introduced to model the perception of human vision and is used
to remove illumination effects [2]. According to the basic assumption of the Retinex the-
ory [3, 4], an observed image can be decomposed into the illumination and reflectance
components. Due to the ill-posedness of the decomposition problem, numerous ap-
proaches [5–7] have been proposed to mitigate the degradation caused by low-light con-
ditions. These methods of low-light enhancement are mainly divided into three cate-
gories. Roughly speaking, the first one is two-step methods, which estimate the illumi-
nation map and then make use of image restoration methods to recover the desired light-
enhanced scene. For example, LIME [8] first estimate the illumination map by using a
structure prior and the enhancement can be achieved by using gamma transformation.
The second method is the joint filtering method [9]. This kind of method aims to trans-
fer the important structural details of the guidance to the target image in the filtering
process. The third method is to estimate illumination map and reflectance component si-
multaneously by solving a joint minimization problem with image priors on both them.
The image priors include sparsity regularization [10], fractional-order regularization [11],
high-order total variation regularization [12, 13] and low rank prior [14].

Variational interpretations of Retinex are the set of enhancement algorithms [15, 16].
The first variational framework was proposed by Kimmel et al. [17] to estimate the il-
lumination, and its objective function is established based on the smooth illumination
assumption. In [8], the illumination map was first constructed by finding the maximum
intensity of each pixel in all channels (i.e. bright channel). Then, the initial illumination
map is refined by adding the L1 norm on the first order derivative of the illumination.
Afterwards, bright channel prior has been used in other works [18, 19] to eliminate the
black halo and suppress color distortion. However, it always encounters the problems of
dispersion of light in light dominant areas, over enhancement in bright regions and un-
wanted artifacts. Li et al. [20] used L1 norm to constrain the piece-wise smoothness of the
illumination, and adopted a fidelity term between the gradient of the reflectance and an
adjusted version of the gradient of the input image, so that the structural information of
the reflectance can be strengthened. Gu et al. [21] performed the fractional-order gradi-
ent total variation regularization on both the reflectance and illumination components to
control the regularization extent more flexibly. Park et al. [22] proposed a L2 norm min-
imization based a variational Retinex model by using a spatially adaptive weight map,
which is generated by combining the local variance map and bright channel prior [23].
Gu et al. [24] performed L2 norm on the gradient of the illumination and L1 norm on
the reflectance in the image domain along with a fidelity term to estimate the illumina-
tion and the reflectance simultaneously. Ren et al. [25] proposed a reasonable camera
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response model to adjust each pixel to the desired exposure according to the estimated
exposure ratio map. Wang et al. [26] proposed a lightness-order-error measure for the
naturalness preservation to assess enhanced images. They argued that the relative or-
der of illumination in different areas should not be changed drastically. Fu et al. [27]
proposed an illumination estimating algorithm based on morphological closing to de-
compose a low-light image into a reflectance image and an illumination image. They
argued that the enhanced result can be obtained by fusing the derived inputs with cor-
responding weights in a multi-scale fashion. However, different kinds of priors may not
model the real reflectance and the piecewise smoothness of the illumination. This may
impose a limitation in restoring low-light images.

Deep convolutional neural networks (CNNs) have been successful in achieving im-
pressive results on numerous low-level computer vision tasks [28–30]. Various CNNs-
based algorithms have been proposed to improve the subjective and objective quality of
low-light images [31, 32]. For example, Liu et al. [33] first established optimization mod-
els based on the Retinex rule to formulate the latent structures of the illumination map,
and then unrolled the iteration process with deep priors to obtain the holistic structure
of the enhancement network. LightNet [34] worked as an enhancer to refine the illu-
mination map of the low-light image. EnlightenGAN [35] used Generative Adversarial
Networks that regarded the low-light enhancement as a domain transfer learning task by
finding the mapping between low-light and normal-light domains. ZeroDCE [36] formu-
lated light enhancement as a task of image-specific curve estimation with deep networks.
Deep lightening network [37] regarded the low-light enhancement as a residual learning
problem that is to estimate the residual between low-light and normal-light images. He
et al. [38] combined traditional methods and CNNs to achieve image brightness enhance-
ment, color recovery and denoising. LLRNet [39] performed joint contrast enhancement
and denoising of input by exploiting the learning of subband coefficients instead of learn-
ing original images. Xu et al. [40] presented a neural network that leverages an attention
to context encoding module to adaptively select low-frequency information for recover-
ing the low-frequency layer and noise removal in the first stage and select high-frequency
information for detail enhancement in the second stage.

The aforementioned methods show impressive results on enhancing low-light im-
ages. In practice, sensor-specific noise universally appears in low-light images and heav-
ily relies on paired training data for its removal. Also, uneven illumination, incorrect
focus, low contrast and high noise are prevalent in low-illumination images. In the pres-
ence of such adverse conditions, the performance of almost existing enhancing methods
noticeably decreases. Additionally, the parameters of learning-based methods are fixed
after training and can not generalize well to the changeable real-world scenarios. Thus,
how to develop efficient image enhancement algorithms that are robust to both image
noise and various types of illumination has drawn attention in recent years. Most of
these robust image enhancement approaches assume that the desired high-quality im-
age can be reliably identified by designing different kinds of priors. In practice, the
real reflectance can not be reliably identified, e.g. unknown noise. Also, in many sit-
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uations, the illumination map can be estimated by training on few public datasets. This
is mainly because it is extremely challenging to simultaneously take a low-light image
and a normal-light image of the same visual scene. Hence, it limits the practical values
of learning-based methods.

In this paper, we separate the task of low-light image enhancement into two stages.
The first stage is to estimate a smooth illumination map that can facilitate the enhance-
ment, and the second stage is to extract a normal-light image from an observed low-light
image. To find a well-constructed illumination map, instead of considering the integer-
order total variation of latent image, we propose a novel illumination estimation model
with two regularization terms based on fractional-order differential. One regularization
term is designed to constrain spatial smoothness on the refined illumination by the L1-
regularized term. The other regularization term serves the purpose of measuring the
similarity between the fractional derivative of the refined illumination and the fractional
derivative of the input image by L2-regularized term. Once the illumination map is
found, then in the second stage, the enhancement is obtained by directly injecting the
refined illumination component into a general image restoration model. Instead of de-
signing specific priors on the reflectance, we model the regularization term as adaptive
mappings. Since the regularization term can be arbitrary, we directly apply some excel-
lent off-the-shelf denoising methods, hence, our proposed method requires no training
at all, making the solving procedure efficient and flexible. This adaptive regularizer is
shown to have significantly better noise-removal property and restoration performance
than other competing methods. The proposed model is numerically solved based on the
plug-and-play inspired algorithm to accomplish an efficient implementation.

The remainder sections of this paper are organized as follows. In Section 2, our pro-
posed method is described in detail. In Section 3, the effective discretization and numer-
ical scheme are presented. Some numerical experiments are presented and evaluated in
Section 4. Finally, the conclusion is presented in Section 5.

2 Proposed

In Retinex theory [41], an observed image S can be decomposed into two element-wise
multiplied factors which are the reflectance component R and the illumination map I.
The formula can be expressed by

S=R· I, (2.1)

where the operator · means element-wise multiplication. We need to estimate both the
illumination map I and the reflectance component R. Most existing models for low-light
image regularization contains different image priors only on the restored image. This
may be insufficient when considering image formation models. The fractional-order to-
tal variation regularization has been widely used in image restoration because of its abil-
ity in nonlinearly maintaining the low frequency features and simultaneously enhance
details in the area that the intensity does not change obviously [42–44]. We will adopt
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the fractional-order total regularization in the illumination estimation for low-light im-
age enhancement. Besides, expect for the fidelity term of the data, we hope that the
fractional-order derivative of a refined illumination is consistent with that of the original
degraded image. To enrich the variety of image formation models, we propose an illu-
mination estimation method which exploits two regularization terms based on fractional
differential. Our model is shown as follows,

min
I

∥I0− I∥2
2+λ∥∇αSm−∇α I∥2

2+µ∥G◦∇β I∥1, (2.2)

where I0 can be viewed as an initial illumination, λ and µ are positive parameters, ∇α and
∇β represent two fractional-order derivatives, ∥·∥2 and ∥·∥1 designate the L2 norm and L1
norm, respectively. The weights in matrix G are calculated as Gx =1/∇x I0, Gy=1/∇y I0,
where ∇x and ∇y denote first-order derivative along horizontal and vertical dimension,
respectively. Researchers [45] try to initialize a illumination map by using the maximum
intensity of all channels, say R, G, B, at a certain location from input images , i.e.

Î(x)= max
c∈{R,G,B}

Sc(x), (2.3)

where Sc denotes the corresponding channel of the input S. However, the initialization
in (2.3) may have a drawback when applied to a low-light image with uneven illumina-
tion conditions. They often over-enhance the input image, especially on relatively bright
areas. Instead of using the initial illumination in (2.3), we initialize the illumination by

I0=( Î)τ, (2.4)

where τ ∈ (0,1), Î can be simply expressed by (2.3). It is worth noting the properties of
the function in (2.4): small intensity values in dark areas will be large, and large intensity
values in relatively bright areas will be restrained. Additionally, ∇αSm(x) is defined by

∇αSm(x)= max
c∈{R,G,B}

∇αSc(x). (2.5)

The role of each term in objective (2.2) is interpreted below,

• ∥I0− I∥2
2 narrows the error between the initial illumination and a refined one.

• ∥∇αSm−∇α I∥2
2 measures the similarity between the fractional derivative of the re-

fined illumination and the fractional derivative of input images.

• ∥G◦∇β I∥1 constrains spatial smoothness on the refined illumination.

Once I is obtained, we enter into the second stage of our method, where we use a gen-
eral image restoration model to enhance a low-light image with noise-removal. However,
we do not explicitly fix the regularization term in the second stage. Instead, we replace
the steps related to the regularization term by some adaptable mapping. We leave the
implementation to Section 3.
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3 Numerical implementation

3.1 Discrete forms of fractional-order operators

Since the Grünwald-Letnikov (G-L) fractional order derivative [46] can be viewed as an
extension of the discrete form of the finite difference scheme for the integer-order deriva-
tives, we will introduce the G-L definition of the fractional-order derivative ∇α

x and ∇β
y .

For a real function I : Ω→R, where Ω⊆R2 is a bounded open set, the fractional-order
derivative is represented as

∇α I=(∇α
x I,∇α

y I), α∈R+. (3.1)

The G-L discrete form of the fractional-order derivatives ∇α
x and ∇α

y is defined as follows,

∇α
x I(x,y)=

L−1

∑
l=0

(−1)lCl
α I(x−l,y), ∇α

y I(x,y)=
L−1

∑
l=0

(−1)lCl
α I(x,y−l), (3.2)

where Cl
α is the generalized binomial coefficient, that is,

Cl
α =

Γ(α+1)
Γ(l+1)Γ(α−l+1)

(3.3)

and Γ(·) is the gamma function. It is noticing that the fractional-order differential is
related with more pixels than the integer-order one by selecting the parameter L larger
than 3 in the G-L fractional-order derivatives (3.2), the fractional-order derivative is more
favorable to structure preservation in image restoration. In our experiment, we fix the
parameter L in (3.2) equals to 15. Let (∇α

x)
T and (∇α

y)
T be the adjoint operators of ∇α

x and
∇α

y , then they are defined as

(∇α
x)

T I(x,y)=
L−1

∑
l=0

(−1)lCl
α I(x+l,y), (∇α

y)
T I(x,y)=

L−1

∑
l=0

(−1)lCl
α I(x,y+l). (3.4)

3.2 The first stage

Many optimization methods can be applied to solve the minimization problem [47–50].
In this subsection, we employ the alternative direction minimization algorithm [51] for
solving the model (2.2). Let us replace the terms ∇α I and ∇β I with auxiliary variables K
and P, respectively. Then the objective function in (2.2) can be rewritten as follows,

min
I,K,P

∥I0− I∥2
2+λ∥∇αSm−K∥2

2+µ∥G◦P∥1, s.t. ∇α I=K, ∇β I=P. (3.5)

To employ the alternative direction minimization algorithm, we introduce two new La-
grangian multipliers L1 and L2 and reformulate the minimization problem (3.5) as

min
I,K,P

∥I0− I∥2
2+λ∥∇αSm−K∥2

2+µ∥G◦P∥1+ϕ1(L1,∇α I−K)+ϕ2(L2,∇β I−P), (3.6)
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and ϕ1, ϕ2 can be defined by

ϕ1(L1,∇α I−K)=
ω1

2
∥∇α I−K∥2

2+⟨L1,∇α I−K⟩,

ϕ2(L2,∇β I−P)=
ω2

2
∥∇β I−P∥2

2+⟨L2,∇β I−P⟩,

where ⟨·,·⟩ represents matrix inner product, ω1, ω2 are positive penalty scalar, and L1, L2
are Lagrangian multipliers. Our model can be solved through the following iterations.

Computation of I: Dropping the terms unrelated to I, the problem of finding I from
(3.6) is reduced to minimize the following subproblems,

argmin
I

∥I0− I∥2
2+ϕ1(L1,∇α I−K)+ϕ2(L2,∇β I−P),

which can be solved efficiently by the Fast Fourier Transform (FFT) as follows,

Ii+1=F−1
(F (2 Î)+∑dF

(
(∇α

d)
T(ωi

1Ki−Li
1)
)
+∑dF

(
(∇β

d)
T(ωi

2Pi−Li
2)
)

2+ωi
1 ∑dF (∇α

d)F (∇α
d)+ωi

2 ∑d∈{x,y}F (∇β
d)F (∇β

d)

)
, (3.7)

where F (·) and F−1(·) denote the FFT operator and the inverse FFT operator, respec-
tively. F (·) stands for the complex conjugate of F (·). ∇α

d with the parameter d∈{x,y}
denotes the horizontal (vertical) fractional-order differential operators.

Computation of K: By collecting the K involved terms from (3.6), we minimize the energy
(3.6) with respect to the variable K as follows,

argmin
K

λ∥∇αSm−K∥2
2+ϕ1(L1,∇α I−K). (3.8)

It’s easy to show that the energy (3.6) is minimized by K with

Ki+1=
2λ∇αSm+ωi

1∇α Ii+1+Li
1

2λ+ωi
1

. (3.9)

Computation of P: For solving the sub-problem with respect to the variable P, we mini-
mize the energy (3.6) as follows,

argmin
p

µ∥G◦P∥1+ϕ2(L2,∇β I−P). (3.10)

The sub-problem (3.10) can be solved explicitly using a generalized shrinkage formula
[52] as follows,

Pi+1=SµG/ωi
2

[
∇β Ii+1+Li

2/ωi
2

]
, (3.11)

where Sϕ[x]= sign(x)max(|x|−ϕ,0), and all operations are element-wise.
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Computation of L1, L2, ω1, ω2: The Lagrangian multiplier matrixes L1 and L2, penalty
terms ω1 and ω2 can be updated as follows,

Li+1
1 =Li

1+ωi
1(∇α Ii+1−Ki+1),

Li+1
2 =Li

2+ωi
2(∇β Ii+1−Pi+1),

ωi+1
1 =ωi

1δ1, ωi+1
2 =ωi

2δ2,
δ1>0, δ2>0.

(3.12)

To sum up, the numerical implementation for the illumination estimation part can be
summarized as below.

1st stage (illumination map estimation)
Input: low-light image S, fraction-order α and β, regularization
parameters λ and µ, and parameters ω1, ω2, δ1, δ2, and ϵ.
Initialization: I0∈Rm×n, L0

1=L0
2=0∈R2m×n, ω0

1 >0, ω0
2 >0,

Do i = 0,1,···, until ∥Ii+1− Ii∥2
2/∥Ii+1∥2

2<ϵ.
1. Compute Ii+1 by (3.7).
2. Compute Ki+1 by (3.9).
3. Compute Pi+1 by (3.11).
4. Update Li+1

1 , Li+1
2 , ωi+1

1 , and ωi+1
2 by (3.12).

Output: the refined illumination map I.

3.3 The second stage

As mentioned before, our enhancement result is obtained by directly injecting the solu-
tion I of (2.2) into the following restoration model with an adaptable mapping,

min
R

{∥S−R· I∥2
2+ϕ(R)}. (3.13)

Introducing the auxiliary variable Q, problem (3.13) can be reformulated as below by
using the half-quadratic splitting method [53],

min
R,Q

{∥S−R· I∥2
2+ν∥R−Q∥2

2+ϕ(Q)}, (3.14)

where ν is a positive parameter. The problem (3.14) is solved by an alternating scheme,

Ri =argmin
R

{∥S−R· I∥2
2+ν∥R−Qi−1∥2

2}, (3.15)

Qi =argmin
Q

{ν∥Ri−Q∥2
2+ϕ(Q)}. (3.16)

The sub-problem (3.15) can be solved analytically as follows,

Ri =
S· I+νQi−1

I · I+ν1
, (3.17)



Q. Ma, Y. Wang and T. Zeng / Commun. Comput. Phys., 35 (2024), pp. 139-159 147

where 1 denotes the matrix with all ones. Since the regularization term in (3.13) can
be arbitrary, we directly apply some excellent off-the-shelf denoising methods, making
the solving procedure efficient and flexible. In this paper, we choose a non-supervised
method BM3D [54] and a recursive filter (RF) [55] with a pre-trained denoising model to
conduct our ablation study of the selection of denoisers. For BM3D, the denoiser can be
downloaded from (http://www.cs.tut.fi/ foi/GCF-BM3D/). For RF, the denoiser can be
downloaded from (http://inf.ufrgs.br/eslgastal/DomainTransform/). Hence, (3.16) can
be solved as follows,

Qi =Denoiser(Ri,ν). (3.18)

Since different denoising methods can be applied directly, our method requires no train-
ing at all. To sum up, the numerical implementation for the restoration part can be sum-
marized as below.

2nd stage (enhanced result restoration)
Input: illumination map I, low-light image S and ν.
1. Initialize: R0=S.
2. Do i = 0,1,···, until ∥Ri−Ri−1∥2

2/∥Ri∥2
2<ϵ.

(b) Compute Qi by solving (3.18).
(b) Compute Ri by solving (3.17).
Output: enhanced result R.

4 Numerical experiments

4.1 Experiment settings

To evaluate the effectiveness of our method, we compare our method with other com-
peting methods, including LIME [8], NPE [26], MF [27], SR [20], LNet [34], RUAS [33],
EnGAN [35], LCR [25], and DCE [36], on images from various scenes. We make an ob-
jective evaluation of images on three public datasets, including NPE dataset [26], LOL
dataset [7] and GladNet dataset [56], where the LOL dataset contains sensible noises
to hinder the enhancement. We also adopt Peak Signal-to-Noise Ratio (PSNR) [57] and
Structure Similarity (SSIM) [58] which are widely used in image restoration field to mea-
sure the quality of the estimation. As for PSNR, it is most commonly used to measure the
quality of image reconstruction, a higher PSNR generally indicates that the reconstruc-
tion is of higher quality. As for SSIM, it can be used as a evaluation metric that gives
further consideration for structure similarity. The value of SSIM ranges from 0 to 1, and
larger values of SSIM can represent better similarity. In addition, we also use a blind
quality assessment, i.e. autoregressive-based image sharpness metric (ARISM). ARISM
performs well in accordance with object assessment on the inevitable effect of color in-
formation on visual perception to sharpness, lower ARISM values represent that image
contrasts have been better improved.
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The experimental program is developed of MATLAB (R2019a, 64-bit, maci64). All
results are tested on a MacBook Pro platform, macOS with Intel core i7, 2.2GHz, 16GB,
2400 MHz. We set ν=0.2 for all datasets. If not specifically stated, empirical parameters
ω0

1, ω0
2, δ1, and δ2 are set at 0.0001, 0.001, 0.1, 0.3, respectively, and ϵ in the stopping

criterion is 10−3.

4.2 Ablation study

Hyper-parameter Settings: α and β are fractional orders controlling the regularization of
the estimated illumination map. To illustrate the influence of our model with respect to α
and β, we measure how the PSNR values are influenced by fractional-order α and β. For
this purpose, we fix λ=0.001 and µ=0.5, and vary the parameters α and β from 0.5 to 2.9
for a low-light image shown in Fig. 6 collected from the LOL dataset [7]. By observation
in Fig. 1, we can see that PSNR values tend to increase when α,β≥ 0.5. Please note that
higher PSNR values represent better visual quality. The PSNR is one of the basic image
restoration metrics to validate the proposed algorithm. As shown in Fig. 1, we can see
that our proposed method achieves higher PSNR scores when α,β≥2. Specifically, results
with 2≤α,β≤2.5 have higher PSNR values. This argues that regularization terms based
on fractional differential can achieve more promising enhanced results than regulariza-
tion terms based on integer differential. Hence, we use (α,β) = (2.1,2.3) as our default
setting.

The parameter τ in (2.4) is used as a controller for restraining intensity values in rel-
atively bright areas. To evaluate the impact of our initialization scheme with different
τ, we test how the convergence rate is affected by using our initialization scheme with
different choice of τ. For this purpose, we show the convergence curves of the error of
∥Rn+1−Rn∥2

2/∥Rn∥2
2 for different selection of τ. The results show that the convergence

curves can rapidly drop to 10−3 and change slightly as the number of iterations increases.
It argues that our method converges rapidly in only a few steps. Moreover, from the

Figure 1: Ablation study of fractional-order α and β settings.
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Figure 2: From left to right: ablation studies of our initialization scheme with different τ and regularization
parameters λ and µ settings, respectively.

curves shown in Fig. 2, we can see that the convergence rate has been already less than
10−3 in the first two iterations when τ < 1. It argues that our initialization scheme with
τ<1 can accelerate the convergence of our algorithm. However, when τ=1, more itera-
tions are required to achieve the stop tolerance. For simplicity, we fix the exponent τ of
power functions in (2.4) to be 0.5.

Regularization-parameter settings: λ and µ are positive parameters balancing two reg-
ularization terms. In order to test the influence of regularization terms in our model, we
select a low-light image from the LOL dataset [7] shown in Fig. 6 and discuss the PSNR
values obtained by using different λ and µ. As shown in Fig. 2, we can find that the
PSNR values tend to ascend when fixing µ and varying the λ from 0 to 1. It argues that
the fidelity term between the fractional-order gradient of a estimated illumination and
the fractional derivative of input images can somehow assist our model to obtain better
effects on enhancing a low-light image. However, when fixing λ, PSNR values seem to
change slightly as µ increases. It argues that our method is insensitive to the change of
µ. Additionally, as shown in Fig. 2, PSNR values can be higher with carefully selection of
λ, µ>0. It argues that two regularization terms based on the fractional-order gradient of
a refined illumination can somehow improve the performance of our model on lighting
up low-illumination images.

Runtime comparisons: As our method is applicable to incorporate existing off-the-shellf
denoising methods, as illustrated in Section 3.3, we select a non-supervised method
BM3D [54] and a recursive filter (RF) [55] with a pre-trained denoising model to con-
duct our ablation study of selection denoisers. For the 20 low-light images collected from
the LOL dataset [7], the average computational time for our method with two different
denoisers are listed as follows: our method with RF denoiser 0.2252s, our method with
BM3D denoiser 10.6750s. As analyzed, the runtime depends highly on the selection of
denoisers. With better denoisers, our method may achieve better results. In other words,
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the most time-consuming part of our method is restoring a enhanced image by MATLAB.
A faster version can hugely reduce the computational time, which is left as future work.

4.3 Comparisons with state-of-the-arts

Fig. 3 presents several visual comparisons against the aforementioned methods on the
GladNet dataset [56]. Fig. 3(i) is our result with λ = 0.01 and µ = 5 by using the RF
denoiser. According to Fig. 3, we zoom in on some details in the bounding boxes. The
recovered image produced by LIME [8] contains noises that is especially noticeable in the
zoomed area. The results of MF [27] and NPE [26] remain dark to some extent. LNet [34]

(a) Original (b) LIME [8] (c) NPE [26]

(d) MF [27] (e) LNet [34] (f) DCE [36]

(g) LCR [25] (h) SR [20] (i) Ours

Figure 3: Comparisons with state-of-the-art low-light image enhancement methods on the GladNet dataset [56].

Table 1: Quantitative analysis for Fig. 3.

SR [20] LIME [8] NPE [26] MF [27] LNet [34] DCE [36] LCR [25] Ours
PSNR 10.9247 14.9045 14.1484 13.8239 17.2457 12.6109 15.4196 21.4322
SSIM 0.5804 0.7789 0.7957 0.7811 0.7960 0.8339 0.7908 0.8812

ARISM 2.8250 3.3185 3.4559 3.2040 3.5813 3.3304 3.1981 2.7010



Q. Ma, Y. Wang and T. Zeng / Commun. Comput. Phys., 35 (2024), pp. 139-159 151

(a) Original (b) LIME [8] (c) MF [27]

(d) SR [20] (e) LCR [25] (f) LNet [34]

(g) DCE [36] (h) RUAS [33] (i) Ours

Figure 4: Comparisons with state-of-the-art low-light image enhancement methods on the LOL dataset [7].

Table 2: Quantitative analysis for Fig. 4.

SR [20] LIME [8] RUAS [33] MF [27] LNet [34] DCE [36] LCR [25] Ours
PSNR 17.8192 23.7874 20.7995 22.8143 16.0270 20.0621 18.2096 24.1971
SSIM 0.8052 0.8860 0.6698 0.8972 0.7488 0.9090 0.8998 0.9147

ARISM 3.3581 3.6487 3.6432 3.7787 3.7511 3.8952 3.8250 3.3254

can not give a significant enhancement result. DCE [36], LCR [25] and SR [20] can light
up low-light images slightly. In contrast, our proposed method can successfully enhance
the image content while suppressing noise. As shown in Table 1, our method can achieve
higher PSNR and SSIM values and lower ARISM values than that of other competing
methods. It indicates that our method can successfully enhance the overall quality of
images and generate images that are visually more pleasant.

Fig. 4 shows a low-light image with varying illumination and results of various en-
hancement algorithms. Fig. 4(i) is our result with λ= 0.1 and µ= 5 by using the BM3D
denoiser. From the comparison, one can notice that LNet [34] provides limited visibility
improvement in the shaded areas. The image enhanced by SR [20] still has compara-
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(a) Original (b) LIME [8] (c) SR [20]

(d) LNet [34] (e) RUAS [33] (f) DCE [36]

(g) EnGAN [35] (h) LCR [25] (i) Ours

Figure 5: Comparisons with state-of-the-art low-light image enhancement methods on the LOL dataset [7].

Table 3: Quantitative analysis for Fig. 5.

LIME [8] RUAS [33] SR [20] LNet [34] DCE [36] EnGAN [35] LCR [25] Ours
PSNR 22.1084 21.7586 22.1946 16.0049 22.7732 22.3606 20.9650 28.0280
SSIM 0.7536 0.7178 0.9106 0.7133 0.7638 0.8127 0.7136 0.9247

ARISM 3.7719 3.8406 3.2415 4.1449 4.2189 3.1337 4.1728 2.9397

tively low visibility. DCE [36] and LCR [25] give improved visibility but amplify noises
in dark regions. The results of LIME [8], MF [27] and RUAS [33] give much improved
visibility. However, they fail to suppress noise in the enhanced images. Overall, when
processing noisy images, all these algorithms are sensitive to noise more or less. In terms
of PSNR, SSIM and ARISM, our method is the best. It again indicates that our method
can successfully enhance image contents while suppressing noises.

Fig. 5 shows a challenge case in the luminosity enhancement. We can hardly see
anything in the bounding box. Fig. 5(i) is our result with λ = 0.01 and µ = 1 by using
the BM3D denoiser. As can be observed in visual comparisons, all results generated by
different methods can enhance the visibility of low-light images to some extent. From
the comparison, we can clearly see that LNet [34] and LCR [25] can brighten the dark
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(a) Original (b) SR [20] (c) MF [27]

(d) LIME [8] (e) LCR [25] (f) LNet [34]

(g) DCE [36] (h) EnGAN [35] (i) Ours

Figure 6: Comparisons with state-of-the-art low-light image enhancement methods on the LOL dataset [7].

Table 4: Quantitative analysis for Fig. 6.

SR [20] MF [27] LIME [8] LCR [25] LNet [34] DCE [36] EnGAN [35] Ours
PSNR 20.4168 23.6441 22.4414 22.9476 14.5470 24.9617 20.6196 24.9643
SSIM 0.7472 0.7452 0.8447 0.8335 0.6454 0.7735 0.7747 0.8876

ARISM 2.8441 3.8166 3.5368 3.7769 3.7327 3.8326 2.9925 2.7359

regions slightly. LIME [8] can sufficiently enhance the input image but it also generate
noises in dark regions. RUAS [33] fails to well process the very dark areas. DCE [36]
and EnGAN [35] can reveal the image content in low-visibility regions but they can not
suppress the noise in low-illumination regions. In Table 3, we also report the PSNR,
SSIM and ARISM values of enhanced images obtained by using different methods. Our
proposed method achieves the highest PSNR and SSIM and lowest ARISM values among
the competing methods, which indicates that our method can successfully enhance the
overall quality of images and generate images that are visually more pleasant.

Fig. 6(a) is a test image chosen from the LOL dataset [7]. Fig. 6(i) is our result with λ=
0.01 and µ=2 by using the BM3D denoiser. From the comparison, we can clearly see that
all methods can improve visual effect of such a low-light image to some extent. SR [20],
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(a) Low-light (b) Normal-light (c) MF [27] (d) NPE [26] (e) LIME [8]

(f) LNet [34] (g) DCE [36] (h) LCR [25] (i) w/o denoiser (j) Ours

Figure 7: Enhancing results of state-of-the-art methods and ours on images from the NPE dataset [26]. (a) Low-
light image, (b) normal-light image, (c)-(h) enhanced results by using other competing methods, (i) enhanced
result by using our method without any denoiser, (j) enhanced result by using our method with RF denoiser.

Table 5: Quantitative analysis for Fig. 7.

MF [27] NPE [26] LIME [8] LNet [34] DCE [36] LCR [25] w/o denoiser Ours
PSNR 13.3928 12.9826 14.5336 10.4912 14.2942 13.6247 13.1376 15.3001
SSIM 0.6411 0.6428 0.6553 0.4266 0.7119 0.5912 0.7099 0.7370

ARISM 2.8449 2.8704 2.8439 2.8409 2.8363 2.8482 2.6179 2.6129

LCR [25] and LNet [34] can brighten the whole image slightly. LIME [8] over-enhances
the input image that some low-illumination regions are saturated. EnGAN [35] can fully
enhance the low-visibility regions, it also generates artifacts. MF [27] and DCE [36] fail
to restore a low-light image, which result in unknown noises in the enhanced images.
Additionally, in Table 4, we also see that our method gives the higher PSNR and SSIM
and lower ARISM values compared with other competing methods. This means that our
method presents satisfying performance handling low-light images both in visual terms
and overall enhanced image evaluation.

Fig. 7 illustrates that our method can recover low-light images to match with hu-
man perception. Fig. 7(a) and (b) are low-light and normal-light images from the NPE
dataset [26]. Fig. 7(i) and (j) are our enhanced results without any denoiser and with RF
denoiser respectively by using λ = 0.01 and µ = 5. As can be observed in visual com-
parisons, we can clearly see that all results generated by different methods can enhance
the visibility of low-light images to some extent. However, our method can sufficiently
light up the low-illumination image. From Fig. 7, we see that without any denoiser, the
PSNR of our enhanced image is 13.1376 in Fig. 7(i). In contrast, the PSNR is boosted to
15.3001 by using the RF denoiser. It verifies the effectiveness of our method against other
competing methods by using off-the-shelf denoisers in the second stage. In Table 5, we
also report the PSNR, SSIM and ARISM values of enhanced images obtained by using
different methods. In terms of three quantitative metrics mentioned above, our method
is always best. It again indicates that our method can successfully improve visualization
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Figure 8: Box plot of the PSNR values for different algorithms.

and preserve the naturalness of the whole image.
In order to further demonstrate the generalization ability of our model, we evalu-

ate the aforementioned methods on 30 low-light images collected from three challenging
datasets: NPE dataset [26], LOL dataset [7], and GladNet dataset [56]. Fig. 8 describes
box plot of PSNR values gained by our method and other state-of-the-art enhancement
algorithms. As shown in Fig. 8. We find that the median of PSNR value gained by our
method is significantly higher. Moreover, in Fig. 8, the top rectangular box indicates
that our proposed method is more closer to a normal-light image with noise removal
than other competing techniques. The failure cases exist in other competing enhance-
ment algorithms mainly due to the unknown noise hidden in the dark areas, leading to
unsatisfactory enhanced results.

5 Conclusion

In this paper, we propose a two-stage method for enhancing low-light images based on
fractional-order differential. In the first stage, our method finds a piecewise smooth il-
lumination map by solving a variational model with two regularization terms based on
fractional differential. One regularization term serves the purpose of preserving structure
similarity between the fractional derivative of the refined illumination and the fractional
derivative of input images. The other regularization term is designed to constrain spatial
smoothness on the estimated illumination. In the second stage, it uses a general image
restoration model to recover a low-light image. It is worth noticing that the regularization
term in the restoration part can be viewed as an adaptive mapping. Hence, various net-
works can be incorporated into our model and do not need to design any priors. Since
the regularization term can be arbitrary, we can use different off-the-shelf denoisers to
regularize the reflectance component and require no training at all. Comparisons with
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state-of-the-art methods show that our proposed method can somehow enhance low-
visibility images with satisfactory visual effects.
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